FFT, DFT, and Zoom
- Updated2024-06-07
- 2 minute(s) read
FFT, DFT, and Zoom
FFT, DFT, and Zoom are transforms used to convert data from the time domain into the frequency domain.
The Fast Fourier Transform (FFT) resolves a time waveform into its sinusoidal components. The FFT takes a block of time-domain data and returns the frequency spectrum of the data. The FFT is a digital implementation of the Fourier transform. Thus, the FFT does not yield a continuous spectrum. Instead, the FFT returns a discrete spectrum, in which the frequency content of the waveform is resolved into a finite number of frequency lines, or bins.
The algorithm used to transform samples of the data from the time domain into the frequency domain is the discrete Fourier transform (DFT). The DFT establishes the relationship between the samples of a signal in the time domain and their representation in the frequency domain. The DFT is widely used in the fields of spectral analysis, applied mechanics, acoustics, medical imaging, numerical analysis, instrumentation, and telecommunications.