
National Instruments

MacBus

User Manual

Part Number 320073 - 01

February 1987 Edition

National Instruments
12109 Technology Boulevard

Austin, Texas 78727-6204
(512) 250-9119

0 Copyright 1986, 1987 by National Instruments
All Rights Reserved

Notice About Warranties

MacBus is warranted against defects in materials and workmanship
for a period of one year from date of shipment. National
Instruments will repair or replace equipment which proves to be
defective during the warranty period. This warranty includes
parts and labor. A Return Material Authorization (RMA) number
must be obtained from the factory before any equipment is
returned for repair. Faults caused by misuse are not covered
under the warranty. During the warranty period, the owner may
return failed parts to National Instruments for repair. National
Instruments will pay the shipping costs of returning the part to the
owner. All items returned to National Instruments for repair must
be clearly marked on the outside of the package with a Return
Authorization Number.

No other warranty is expressed or implied. National Instruments
shall not be liable or responsible for any kind of damages,
including special, indirect, or consequential damages, arising or
resulting from its products, the use of its products, or the
modification to its products.

Trademarks

MacBus is a trademark of National Instruments.

Macintosh is a trademark of McIntosh Laboratories, Inc.

IBM PC and IBM PC AT are trademarks of International Business
Machines.

WARNING

This equipment generates, uses, and can radiate radio frequency
energy and if not installed and used in accordance with the
instruction manual, may cause interference to radio
communications. It has been tested using a double-shielded
IEEE-488 cable (National Instruments 763061-0X or Hewlett-
Packard Model 10833 or equivalent) and found to comply with the
limits for a Class A computing device pursuant to Subpart J of
Part 15 of FCC Rules, which are designed to provide reasonable
protection against such interference when operated in a
commercial environment. Operation of this equipment in a
residential area is likely to cause interference, in which case the
user at his expense will be required to take whatever measure may
be necessary to correct the interference.

If the equipment does cause interference to radio or television
reception, which can be determined by turning the equipment on
and off, one or more of the following suggestions may reduce or
eliminate the problem:

. Operate the computing device and receiver on different branches
of your AC electrical system.

. Move the computing devices away from the receiver with which
the computing device is interfering.

. Reposition the computing device or receiver.

. Reposition the receiver’s antenna.

. Unplug any unused I/O cables - unterminated I/O cables are a
potential source of interference.

. Remove any unused circuit boards - unterminated circuit boards
are also a potential source of interference.

. Be sure the computing device is plugged into a grounded outlet
and that the grounding has not been defeated with a cheater
plug.

If none of these measures resolves your interference problems,
contact the manufacturer or write to the US Government Printing
Office, Washington, DC 20402, for the booklet How to Identify
and Resolve Radio-TV Interference Problems, Stock Number
004-000-00034504.

INSTALLATION
Verify Voltage Requirements .
Ins ta l l In ternal Opt ions . . .
Connect Cables
Turn Power Switch to ON . .
Run the Diagnostic Software .

S E C T I O N T H R E E - IBCL
INTRODUCTION
L A N G U A G E S T R U C T U R E . .

Stacks
Dictionary
Vocabularies
Definitions
Postfix Notation
Command Line Input

THE IBCL INTERPRETERS . .
Inner Interpreter Sequence . .
Outer Interpreter Sequence . .
Errors

...... 2 - l

. 2 - l

. 2-1

. 2-4

. 2-6

. 2-6

...... 3-1

. 3 - l

. 3 - l

...... 3-3

. 3-4

...... 3-5

...... 3-6

...... 3-7

...... 3-7

STACK MANIPULATION : : :
Return Stack

A R I T H M E T I C & L O G I C . . .
Constants
Unary Operators
Binary and Ternary Operators .
Signed or Unsigned Operands .
Signed Operands
Mixed Length Signed Operands
Unsigned Operands
Logical, Sign Bit Not Significant
External Double Number Words

MEMORY ACCESS
Load and Store
Fill
Move
String Functions
String Literals

IBCL INPUT

...... 3-8

. 3-8

. 3-9

. 3-12

. 3-13

. 3-15

. 3-16

. 3-17

. . 3-18
3-19
3-20
3-20.

...... 3-21

. 3-21

. 3-21

. 3-22

. 3-23

...... 3-23

. 3-26

. 3-27

...... 3-28

. 3-30

. 3-31

vi

ASCII-Type Input
Binary-Type Input

IBCL OUTPUT
ASCII-Type Output Words

Character-Based Words
Numeric-Based Words

Binary-Type Output
GENERAL PORT I/O
LOADING PROGRAMS
DEFINING NEW WORDS

Colon Definitions
Machine Code Definitions
Constants, Variables, and Arrays
Vocabularies
Program Segments
Defining Defining Words
Internal Workings
Headerless Words
Overlaid Code Primitives
Forget-Task

CONTROL
Vectored Execution
Conditional Execution
Loops
Case

USING ASSEMBLY LANGUAGE FROM
IBCL

Assembler Mnemonics
Macro Definition
Branch Control
Things to Remember
NEC V4O/V50 Architecture

Registers
Memory Addressing
Flags

Abbreviations and Conventions
Error Messages
Timing

3-31
3-33
3-34
3-34
3-36
3-37
3-40
3-40
3-42
3-42
3-43
3-48
3-49
3-52
3-54
3-56
3-58
3-59
3-60
3-60
3-62
3-62
3-64
3-65
3-67

3-68
3-69
3-70
3-71
3-71
3-72
3-72
3-73
3-75
3-75
3-76
3-77

vii

Instruction Set
Data Transfer
Arithmetic and Logic
Rotate and Shift
String Manipulation
Jumps, Calls, and Loops
Conditional Execution & Loops
Processor Control
Interrupts
CoProcessor Support

NEC 72191 Architecture
Data registers
Status Word
Control Word
Tag Word
Data Types

NEC 72 19 1 Instructions
Data Type Selection
Instruction Format
Data Transfer
Comparison
Constants
Arithmetic
Transcendental
Processor Control

S E G M E N T M A N A G E M E N T : : :
Relocation Tools
GPIB Control Words

GPIB Status Variables
Associating Names with GPIB
Devices
Device Level Words
MacBus GPIB Port Level Words
Configuration Control Words
GPIB Port and Device Configuration
Tables
Advanced Features
Additional GPIB Words

3-77
3-77
3-80
3-84
3-85
3-86
3-91
3-95
3-97
3-98
3-99
3-99
3-99

3-101
3-102
3-102
3-104
3-104
3-105
3-106
3-107
3-109
3-109
3-112
3-113
3-115
3-115
3-117
3-118

3-118
3-119
3-138
3-163

3-171
3-172
3-174

. . .
Vlll

Configuration Control
GPIB-Macintosh Direct Transfer
Words

IBCL Heap Management Words
Memory Dumping Words

SECTION FOUR - TECHNICAL * * * ’ ’ ’ * ’
INFORMATION

PHYSICAL SPECIFICAT& ’ : : : : : : :
ENVIRONMENTAL
SPECIFICATIONS
ELECTRICAL SPECIFICATIONS
DETAILED DESCRIPTION

Enclosure
SCSI-PC Interface

SCSI-PC I/O Addresses
SCSI ID Switch Settings
DMA Settings
Interrupt Settings
Terminating Resistors

The GPIB-VSO
S E C T I O N F I V E - D I A G N O S T I C S ’ & ’ ’ ’ ’ ’ ’ ’
TROUBLESHOOTING

WHERE TO BEGIN
CHECK ELECTRICAL’ ’ ’ * ’ * ’ * ’ ’ -
CONNECTIONS
ISOLATE THE SYSTEM
RUN DIAGNOSTIC SOFTWARE

.............

3-174

3-175
3-176
3-177

4 - l
4 - l

4 - l
4-2
4-3
4-3
4-4
4-6
4-7
4-8
4-9
4-9

4-10

5- l
5 - l

5-2
5-2
5-3

APPENDIX A - MULTILINE INTERFACE
MESSAGES
APPENDIX B ‘_ THE GPIB ’ : :

A - l
B - l

TYPES OF MESSAGES B- 1
TALKERS, LISTENERS, AND
CONTROLLERS B - 1
THE CIC AND SYSTEM
CONTROLLER B-2
GPIB SIGNALS AND LINES B -3

Data Lines B-3
Handshake Lines B-3
Interface Management Lines B -4

ix

PHYSICAL AND ELECTRICAL
CHARACTERISTICS
CONFIGURATION REQUIREMENTS
RELATED DOCUMENTS

APPENDIX C - IBCL COMMAN;) - - -
SUMMARY
A P P E N D I X D ‘- ;Bc’L itiT;)R;A;, : : :

INTRODUCTION
THE LANGUAGE
TUTORIAL

Starting the IBCL Window
Defining New Words
Loops and Conditionals
Stack Words
More Looping
Forgetting
GPIB Functions
Exiting the IBCL Window

APPENDIX E - SCALED NUMBERS : :
MEMORY
STACK
COMPARISON
CONSTANTS
MATH . ;
TRANSCENDENTAL
CONVERSIONS
TYPE CHECKING
INPUT/OUTPUT
NEC 72191 CONTROL

NEC 72191 Notes
HIGH PRECISION I/O

APPENDIX F - USING LABVIEW WITH
MACBUS

WHY USE LABVIEW WITH MACBUS?
WHY USE MACBUS WITH LABVIEW?
THE LABVIEW MACBUS INTERFACE

. . . . B-5

. . . . B-9

. . . . B-9

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

C-l
D - l
D - l
D - l
D-2
D-2
D-4
D-5
D-7
D-8

D-10
D-11
D-11

E - l
E-3
E-4
E-4
E-5
E-5
E-6
E-7
E-8
E-8
E-9

E-10
E-10

F - l

F-2
F-3

LABVIEW/MACBUS EXAMPLES
Done Poll
Ulm Poll
Dlm Poll
Higher Level MacBus Interface
Instruments

String to MacBus
String from MacBus . . .
MacBus String I/O
MacBus DLM
MacBus ULM

Applications of These Example
Instruments

...... F-4

...... F-5

...... F-8

...... F-11

...... F-14

...... F-14

...... F-17

...... F-20

...... F-23

...... F-27

. F-30

xi

LIST OF FIGURES

Figure 1- 1 - MacBus Connected to a Macintosh
Plus

Figure l-2 - GPIB-V50 Card
Figure l-3 - SCSI-PC Card
Figure 2-l - Rear Panel of MacBus
Figure 4-2 - SCSI-PC Parts Locator

Diagram
Figure 4-3 - SCSI ID Switch Settings
Figure 4-4 - SCSI-PC DMA Channel 3

Setting
Figure 4-5 - SCSI-PC Interrupt Level 5

Setting
Figure B-l - GPIB Connector and the Signal

Assignment
Figure B-2 - Linear Configuration
Figure, By_3 d Star Configuration
Figure F-l - LabVIEW/MacBus Interface Instrument

Icons
Figure F-2 - Done Poll Icon, Connector Pane, and

Connector Pane Controls
Figure F-3 - Done Poll Panel
Figure F-4 - Done Poll Diagram
Figure F-5 - Ulm Poll Icon, Connector Pane, and

Connector Pane Controls
Figure F-6 - Ulm Poll Panel
Figure F-7 - Ulm Poll Diagram
Figure F-8 - Dlm Poll Icon, Connector Pane, and

Connector Pane Controls
Figure F-9 - Dlm Poll Panel

Figure F- 10 - Dlm Poll Diagram
Figure F- 11 - String to MacBus Icon, Connector Pane,

and Connector Pane Controls

. l -2

. l - 4

. l -5

. 2-4

. 4-5

. 4-7

. 4-8

. 4-9

. B-6

. B-7

. B-8

. F-3

. F-6

. F-6

. F-7

. F-9

. F-9

. F-10

. F-12

. F-12

. F-13

. F-15

xii

Figure F- 12 -
Figure F- 13 -
Figure F- 14 -

String to MacBus Panel
String to MacBus Diagram
String From MacBus Icon, Connector
Pane, and Connector Pane
Controls

Figure F- 15 - String From MacBus Panel
Figure F-16 - String From MacBus Diagram

F-19
Figure F-17 - MacBus String I/O Icon, Connector Pane,

and Connector Pane Controls
F-21

Figure F-18 - MacBus String I/O Panel
F&w-e F-19 - M a c B u s S t r i n g I / O D i a g r a m
J%w-e F-20 - MacBus DLM Icon, Connector Pane, and

Connector Pane Controls
Figure F-21 -, MacBus DLM Panel
Figure F-22 - MacBus DLM Diagram
Figure F-23 - MacBus ULM Icon, Connector Pane, and

Connector Pane Controls
Figure F-24 - MacBus ULM Panel
Figure F-25 - MacBus ULM Diagram

F-15
F-16

F-18
F-18

F-21
F-22

F-25
F-25
F-26

F-28
F-28
F-29

. . .
x111

LIST OF TABLES

TABLE l-l - Equipment Supplied in the MacBus
Kit l - 6

TABLE l-2 - Accessory Equipment for MacBus
Kit l -7

xiv

National Instruments 0 Preface

Following is a description of each section of the MacBus User
Manual.

SECTION ONE, “INTRODUCTION,” contains a brief
description of MacBus, a list of equipment supplied, and a list
of optional equipment.

SECTION TWO, “INSTALLATION,” contains information on
the installation of the MacBus.

SECTION THREE, “IBCL,” contains a description of the IBCL
(Interface Bus Control Language) operating system.

SECTION FOUR, “TECHNICAL INFORMATION,” contains a
description of technical information for MacBus.

SECTION FIVE, “DIAGNOSTICS AND
TROUBLESHOOTING,” contains the diagnostics and
troubleshooting procedures for MacBus.

APPENDIX A, “MULTILINE INTERFACE MESSAGES,”
contains an ASCII chart with GPIB messages.

APPENDIX B, “THE GPIB,” contains a description of the
operation of the GPIB.

APPENDIX C, “IBCL COMMAND SUMMARY,” contains a
list of all IBCL commands.

APPENDIX D, “IBCL TUTORIAL,” contains a brief tutorial of
the highlights of IBCL.

APPENDIX E, “SCALED NUMBERS,” contains a brief
description of the scaled numbers used in IBCL

APPENDIX F, “USING LABVIEW WITH MACBUS,” contains
examples on how to use MacBus with LabVIEW.

October 1986 xv MacBus User Manual

SECTION ON33 - INTRODUCTION

This section contains general information about the National
Instruments MacBus Kit. This information includes a brief
description of the MacBus Kit, a list of equipment supplied, and a
list of optional equipment.

MACBUS INTEXFACEi KIT DESCRIPTION
MacBus, shown in Figure l-l, is a powerful microcomputer
designed to give you the best of both worlds; the convenience and
ease of use of the Macintosh Plus and the power and expandability
of an IBM PC AT. MacBus communicates with the Macintosh
Plus through a high-speed parallel interface. This interface gives
the Macintosh Plus, which up until now has had closed system
architecture, true expandability.

October 1986 l - l MacBus User Manual

National Instruments 0 Introduction

Enclosure

The enclosure is a small metal “AT-style” case that can be placed
on any flat surface. The dimensions of the enclosure are 6 inches
high by 11 3/4 inches wide by 15 l/4 inches deep. A switching
power supply is mounted inside the box and is connected to the
motherboard which carries power to the I/O cards. The
motherboard has connectors for five AT-style cards, two of which
are used by the GPIB-V50 microprocessor card and the SCSI-PC
interface card. This leaves three slots available for optional
adapters.

October 1986 l -3 MacBus User Manual

Introduction (3 National Instruments

EQUIPMENT SUPF’IJED
Table l-l lists the equipment supplied in the National Instruments
MacBus Kit. Optional equipment is listed in Table l-2.

TABLE l-l - Equipment Supplied in the MacBus Kit

Description Part Number
MacBus Hardware Unit (115V)

with 128K bytes RAM 776139-01 *
with 512K bytes RAM 776 139-02 *

MacBus Hardware Unit (230V)
with 128K bytes RAM 776139-03 *
with 512K bytes RAM 776139-04 *

* Includes:
- Chassis with power supply and power cord
- GPIB-V50 microprocessor board with GPIB interface
- SCSI-PC interface board
- Distribution disk with IBDIAG, IBCL Window, IBCLload,

SCSI_CONF, and gpib.com files **
- MacBus User Manual

** For a description of the tiles included on the distribution disk,
refer to MACBUS HARDWARE DISTRIBUTION DISK
paragraph in this section.

MacBus User Manual l - 6 October 1986

National Instruments &3 Introduction

TABLE l-2 - Accessory Equipment for MacBus Kit

Description Part Number
MacBus RAM Memory Field Upgrade Kit 776139-03

(128K to 512K)
MacBus Software 776140-01

Includes:
- Distribution disk with IBIC, IBCONF, and

Microsoft BASIC language interface *
- Software Reference Manual
LabVIEW Software (double sided floppies) 776141-01
SCSI Cable (External)

Macintosh Plus to MacBus 180323-01
MacBus to SCSI peripheral 180330-01

SCSI Extension Cable (Internal) 180329-01
Megamax C Language Interface 776140-02

(includes Manual, requires MacBus software
package)

MacBus Technical Reference Manual 1 320075-01

* For a description of the files included on the distribution disk,
refer to MACBUS SOFTWARE DISTRIBUTION DISK
paragraph in this section.

February 1987 l -7 MacBus User Manual

Introduction 8 National Instruments

h4ACBUS HARDWARE DISTRIBUTION DISK
The following files are included with your MacBus hardware unit
on your distribution disk.

. IBDIAG

. IBCL Window

l IBCLload

. SCSI_CONF

l gpib.com

Refer to the following paragraphs for a description of each file.

IBDIAG

IBDIAG is a utility which provides the results of the onboard
diagnostics run on MacBus at power-on. There are five diagnostic
tests which are run. They are:

1. RAM test

2. ROM test

3. Non-interfering GPIB test

4. CPU test of internal registers

5. CPU test of onboard peripherals

MacBus User Manual l -8 February 1987

National Instruments 0 Introduction

The IBDIAG utility displays the results of these diagnostics. A
zero indicates no error. The remaining error codes are defined as
follows:

Error Code 1 Description

0 1 No errors
1 ROM checksum failure
2 CPU internal register failure
3 1 CPU onboard peripheral failure 1
4 1 RAM failure I
5 GPIB failure
6 SCSI bus error

Refer to SECTION FIVE of this manual for troubleshooting the
above errors.

Run IBDIAG by double-clicking the IBDIAG icon (shown below).

r;;;fi
IBDIAG

IBCL Window

The IBCL Window utility allows interactive communication with
the IBCL operating system on MacBus. IBCL commands are
entered directly to the IBCL interpreter on MacBus. Any output
or error messages generated are displayed on the Macintosh screen.

Run IBCL Window
The IBCL Window program is provided as an executable file on
your distribution disk.

February 1987 l - 9 MacBus User Manual

Introduction @ National Instruments

load <filename>:
type <filename>:
‘cm& c:

Send IBCL command tile to MacBus
Display Iile to screen
Stop displaying file to screen or break
from ‘hung’ bus.

ibcl:
stop:
‘q’ or ‘e’:

Enter IBCL interactive window
Return from IBCL interactive window
Exit IBCLload utility

Any IBCL error generated by your source tile will be displayed on
your screen.

Any IBCL source file can also be downloaded from a BASIC or C
program. The function format is:

ibclload(filename)
char *filename;

Any IBCL errors generated are written to the file IBCL.OUT.
The editor can open this file for viewing. You must enter the
editor first and then open the file. Your BASIC or C program
containing the ibclload call must be linked to CIB.0 contained on
your distribution disk.

SCSI_CONF

The utility SCSI_CONF allows the SCSI ID of MacBus to be
changed from its default setting of 6.

The Macintosh Plus has a fixed SCSI ID of 7. Valid SCSI IDS for
the remaining devices are 0 to 6. MacBus has three hardware
switches located on the SCSI interface board (see the MacBus User
Manual for more information). These switches must be configured
so that they are consistent with the software setting in this field.
The factory default setting is SCSI ID = 6.

The current SCSI ID is maintained in the file gpib.com. This tile
is provided on the distribution disk.

If you are operating under the Macintosh hierarchical file system,
the file gpib.com must reside in one of three locations for

MacBus User Manual 1-12 February 1987

National Instruments Q Introduction

SCSI_CONF and other MacBus utilities to have access to it.

The directory (or folder) where the application SCSI_CONF
and/or other MacBus utilities reside.

The system folder.

The root directory (or folder).

The file must be named gpib.com.

When executed, SCSI_CONF first looks for the gpib.com file in
the above mentioned locations. If SCSI CONF cannot find
gpib.com, you will be prompted to choose to have it created with
factory ID setting of 6. The file will be placed in the system
folder.

Run SCSI_CONF

The SCSI_CONF program is provided as an executable file on you
distribution disk.

To run SCSI_CONF, insert the distribution disk into the disk
drive and double-click the disk icon displaying the file icons.
Now double-click the SCSI_CONF icon.

A help screen will appear on your Macintosh Plus screen. The
current SCSI ID setting is displayed. Enter the new SCSI ID by
typing a number from zero to six. SCSI_CONF will verify your
entry by re-displaying to the screen.

Exit SCSI_CONF

Exit SCSI_CONF by typing ‘e’ or ‘q’. The new SCSI ID is saved
to the file gpib.com where other MacBus applications have access
to it.

February 1987 l-13 MacBus User Manual

Introduction 0 National Instruments

gpib.com

The file gpib.com contains the current SCSI ID information. It
must reside in one of three locations (see SCSI_CONF paragraph
above for details).

IBCL SOURCE FILES
The remaining files on the distribution disk contain IBCL source
code. These files are:

l Scaler

l MicroASM

. HiFlow

. 721911BCL

. 72191ASM

. String

. Forth83

. Toolbox

0 case

. BCD

l Upper Case IBCL

To use these files you must first download them to the IBCL
interpreter. There are two methods of doing this. The first
method uses the IBCLload utility. This utility was described in the
IBCLload paragraph mentioned earlier. The second method
downloads an IBCL source file to MacBus through functions or
subroutines in a language interface library. This method may only
be used if you have purchased a MacBus language interface
library from National Instruments. Consult the appropriate
language interface supplement for details.

MacBus User Manual l-14 February 1987

National Instruments @ Introduction

Scaler

This tile contains IBCL source code allowing manipulation of
software floating point numbers. The IBCL words defined in
Scaler are documented in APPENDIX E - SCALED NUMBERS.

MicroASM

This file contains IBCL source code allowing you to use INTEL
8086/88 sytle assembly language mnemonics to create very fast
IBCL words. For more details see SECTION THREE - USING
ASSEMBLY LANGUAGE FROM IBCL.

HiFlow

This file contains IBCL source code allowing you to use high-level
control flow constructs such as begin...again,
begin...while...repeat, etc. These IBCL words are documented in
SECTION THREE - Conditional Execution & Loops.

721911BCL and 72191ASM

These files contain IBCL source code allowing manipulation of the
NEC 72191 floating point coprocessor. 721911BCL contains
high-level IBCL definitions and may be downloaded at any time.
72191ASM contains assembler extensions allowing you to use
72191 opt codes in IBCL assembly language definitions. You must
download the assembler utility MicroASM before you download
72191ASM. The definitions contained in these two files are
documented in SECTION THREE - NEC 72191 Architecture.

String

This file contains IBCL source code allowing convenient
manipulation of ASCII strings. The IBCL words are documented
in SECTION THREE - String Functions.

February 1987 1-15 MacBus User Manual

Introduction 0 National Instruments

Forth83

As shipped by National Instruments, IBCL closely approximates a
FORTH79 standard system. Forth83 contains IBCL source code
that will bring IBCL into compatibility with the Forth83 standard.
These words are not documented in this manual; consult any
Forth-83 reference for their usage.

Toolbox

This file contains IBCL source code which supports IBCL
debugging.

case

This executable file converts the contents of your text file from
uppercase to lowercase to allow your file to run with IBCL.

BCD

This file contains IBCL source code providing IBCL support for
Binary Coded Decimal numbers.

Upper Case IBCL

This file contains IBCL source code which will convert the words
in the IBCL dictionary from lowercase ot uppercase.

MacBus User Manual 1-16 February 1987

National Instruments @

SECTION TWO - INSTALLATION

Installation

INSPECTION
Before you install MacBus, inspect the shipping container and its
contents for damage. If damage appears to have been caused in
shipment, tile a claim with the carrier. Retain the packaging
material for possible inspection or for reshipment.

If the equipment appears to be damaged, do not attempt to
operate it. Contact National Instruments for instructions.

INSTALLATION
There are five basic steps to installing MacBus.

1. Verify voltage requirements.

2. Install optional internal adapters.

3. Connect cables.

4. Turn power switch to on.

5. Run the diagnostic software.

Verify Voltage Requirements

MacBus is shipped from the factory set at a particular operating
voltage, either 115 VAC or 230 VAC, and cannot be changed by
the user.

Verify that the voltage you are using is the same as the voltage on
the label on the back of the MacBus chassis. If it is not, contact
National Instruments for further instructions.

Install Internal Options

The basic MacBus computer consists of a system unit with 2 cards,
a GPIB-V50 microprocessor card and a SCSI-PC interface card for

October 1986 2- l MacBus User Manual

Installation 0 National Instruments

connection to the Macintosh Plus. You may add compatible
options to expand your system to meet your particular needs.

NOTE

Before attempting to install an option on MacBus,
check with National Instruments to verify that the
option is supported on MacBus. Use of other
manufacturers cards are the sole responsibility of
the customer.

If you do not need to install internal options, you may skip
directly to the paragraph Connect Cables. The steps for installing
optional cards are listed below.

1.

2.

3.

4.

5.

6.

Turn the system unit’s power switch to the OFF position.

Remove any externally attached devices from the MacBus
back panel.

Unplug your system unit’s power cord from the wall outlet,
and also from the back of MacBus.

Remove the four cover mounting screws located in each
corner of the rear panel.

Remove the cover by sliding it towards the front of the
machine in a straight line.

Some optional cards can be damaged by static electricity
caused by handling of the cards. Make sure you take the
following precautions when installing optional cards.

a. Use a grounded wrist-strap and work on a grounded
work area.

b. Remove the optional cards from their shipping
containers carefully and hold the adapters by their
edges only.

c. Avoid touching any connections or components on the
optional adapters or on any card already installed in the
unit.

MacBus User Manual 2-2 October 1986

National Instruments 0 Installation

7.

8.

9.

10.

d. When installing options, hold the adapter by their upper
corners or top edges only.

Remove the screw that holds the expansion slot’s cover in
place, then remove the cover.

Firmly press the adapter into the expansion slot and reinstall
the screw removed in Step 7. The I/O connectors on the
motherboard are slot independent, that is, any adapter can be
installed in any available slot.

When adding optional interface adapters, it may be necessary
to change such parameters as I/O addresses, interrupt levels,
or DMA channels, if they conflict with those of the SCSI-PC
card. It may also be necessary to change the SCSI ID or to
remove the power resistors in your system. To determine if
these steps are necessary see SECTION FOUR -
TECHNICAL INFORMATION.

Install the system unit’s cover and reinstall the four cover
mounting screws removed in Step 4.

October 1986 2-3 MacBus User Manual

National Instruments 8 Installation

Some connector pairs use strain-relief locks to ensure proper
signal connections. Make sure these locks are used if they are
provided. IEEE-488 cables usually come with two screw lock
assemblies on each side of the connector. The SCSI connector
comes with two spring retainers. Make sure that the cables are
pressed firmly into the connectors and that the strain-relief
mechanisms are used.

The Macintosh Plus uses a 25-pin D-subminiature connector for
its SCSI interface. Locate this connector on the rear panel of the
Macintosh Plus, designated by a small symbol of a disk drive, and
connect the remaining end of the SCSI connector to the rear of
the Macintosh Plus.

Special Note for Multi-SCSI-Device Users

If other SCSI devices are to be used, two options exist for daisy-
chaining the SCSI cable to the remaining devices. For the first
option, the MacBus cable can be connected to other SCSI devices
by using the optional SCSI extension cable, NI part number
180329-01. If this method is used, the SCSI signals will be input
to MacBus through the rear panel connector on the SCSI-PC board
and the signals will be propagated to the next SCSI device via a
SCSI connector on a rear back panel slot which is connected to the
SCSI-PC through a mass-terminated ribbon connector. If this
method is used and there is a SCSI device attached to the SCSI
connector, the SCSI terminating resistors on the SCSI-PC board
should not be used (see SECTION FOUR - TECHNICAL
INFORMATION).

A second method to connect MacBus into a multi-SCSI device
environment is to make MacBus the last device on the SCSI bus.
This is a desired configuration for two reasons. First, since there
are no signals to daisy-chain to another device, you will not need
the optional SCSI extension cable and, therefore, you will free up
a slot in MacBus for other I/O boards. Second, you will not need
Apple’s SCSI cable terminator because all SCSI signals can be
terminated on the SCSI-PC (see SECTION FOUR - TECHNICAL

February 1987 2-5 MacBus User Manual

Installation 0 National Instruments

INFORMATION).

Another important consideration for multiple SCSI device users is
to make sure that no two SCSI devices have the same SCSI ID.
The SCSI-PC is shipped from the factory with its SCSI ID set to
6. If this conflicts with another SCSI ID, one of the devices’ IDS
will need to be changed. To change the SCSI ID on the SCSI-PC
refer to SECTION FOUR - TECHNICAL INFORMATION.

Turn Power Switch to ON

The next step to setting up MacBus is turning the unit’s power
switch to ON. Wait 10 seconds before appling power to the
Macintosh Plus so that MacBus has time to complete its power-on
self-test. If changes have been made to certain adapters, such as
changing the SCSI ID on the SCSI-PC, they will take effect when
the MacBus unit is powered on.

Run the Diagnostic Software

The last step to setting up MacBus is to run the diagnostic
software to verify the system was set up correctly. The diagnos
software is included on the distribution disk which came with
your MacBus Kit. It can be run by double-clicking on the
IBDIAG icon. If the system was installed correctly, the diagnos
software will print “Diagnostic Completed Successfully” on the
Macintosh Plus screen. If any other result is posted, refer to
SECTION FIVE - DIAGNOSTICS AND TROUBLESHOOTING

tic

tic

MacBus User Manual 2-6 February 1987

IBCL Q National Instruments

your system. It is usually best to limit yourself to the standard
character set, but you may use uppercase and the special graphics
characters if you wish.

Learning IBCL is similar to adding a few hundred words to your
vocabulary. The names of the words will often relate to English
words that you already know. The definitions of these words are
detailed and specific; they are neither ambiguous nor dependent
on context, and can be learned a few at a time.

The definition of a new IBCL word is a list of previously defined
IBCL words or a machine code primitive.

An IBCL program is executed by executing a sequence of words.
If a word in the sequence is defined by a code primitive, that
code is executed. When a word is defined by a list of other IBCL
words, execution of the original list is suspended until the list
from the definition is executed. When you run an IBCL program,
each word in the sequence composing the program executes in
turn.

This execution sequence is different from subroutine oriented
languages. In a subroutine oriented language, you may still define
a higher level subroutine as a list of lower level ones, but time is
always wasted by returning to the high-level routine before
proceeding to the next routine in the definition. The more
efficient course is apparent:

MacBus User Manual 3-2 October 1986

o National Instruments IBCL

subroutine compiler IBCL

S
” >>>>>>>>

b subroutine b
r <<<<<<-z-z
0
IJ > > > > > > > >

t subroutine c
i <<-z-z-c<<<
n
e >>>>>s>>
/ subroutine d
* <<<<<<<<

I >>>>>>>>

B IBCL-word-b
C V

L V

V

W IBCL-word-c
0 V

:

V

V

IBCL-word-d
e <<<<<<<<

Stacks

IBCL keeps the data it is using on a stack. IBCL words generally
take their input parameters from this stack and leave their results
on it. The most fundamental IBCL words are defined in machine
code and perform the following functions.

Place an address on the stack.
Replace an address on the stack with the contents of that
address.
Replace the top element(s) on the stack with the result of
some math or logic operation using them.
Place a copy of some stack element on top of the stack.
Rearrange the top few elements of the stack.
Delete element(s) from the top of the stack.

A stack may be viewed as a deck of cards lying face up with each
card only partially covering the one below, as in some solitaire
games. In this game, you have the ability to create a copy of any
card you see in the deck and place it on top of the stack. You
can also remove any card and place it on top, but this takes much
longer. The top three cards are most easily copied or rearranged.
A math or logic operator like max (maximum value) would take
the top two cards from the stack, place the higher valued one
back, and destroy the other. Instead of playing cards, we could
have a stack of plain cards with numbers written on them and a

October 1986 3-3 MacBus User Manual

IBCL o National Instruments

supply of blank cards. Addition is defined as removing the top
two cards, writing the sum of their numbers on a blank card, and
placing the new card on the stack.

IBCL has another stack which usually takes care of itself. It is
called the return stack. When a higher level word is executed,
each lower level word in its definition is executed. But each of
these words may also be defined in terms of yet lower level words,
until the lowest level words defined in machine code are reached.
As IBCL descends through each level of a definition, it leaves the
address of the next word of the current level on the return stack.
When the lower level is completed, this address is removed from
the return stack and execution proceeds from that point.

Sometimes it is convenient to temporarily move some word from
the data stack to the return stack, usually to perform some
operation using words lower on the data stack. Because of the
definition interpreter’s use of the return stack, that word should
only be used in the definition placing it on the return stack. It
must be removed from the return stack before execution of the
definition terminates.

Dictionary

IBCL ‘remembers’ word definitions using a data structure called
the dictionary. When you define a new word, IBCL adds a
dictionary entry for that word. The only words IBCL understands
which are not in the dictionary are numbers.

IBCL separates the dictionary entry for each word into three parts
in three different segments (a segment is a contiguous block of
MacBus memory). The word’s ASCII name string is stored in a
vocabulary segment. Its definition is stored in the definition list
segment. The first byte-pair of the list contains the address in the
code segment of the code primitive that begins execution of the
word. (To avoid confusion with IBCL “words”, byte-pair will be
used instead of word when referring to a 16-bit memory location.)

Since each aspect of the definition naturally defaults to its own
segment register, the partition generates no memory or time

MacBus User Manual 3-4 October 1986

o National Instruments IBCL

overhead loss. In addition, no more memory pointers are needed
than in a conventional Forth system. The pointer into the
definition list segment replaces the pointer to the previous word
found in conventional systems. The pointer to the previous word
is not needed since only word names occupy the vocabulary
segments and since each vocabulary has its own segment.

Vocabularies

The vocabulary entry has three parts. The first byte-pair contains
the address in the definition list segment of the beginning of the
word’s definition. The following bytes contain the ASCII name
string. The last byte contains the number of bytes needed for the
string. Its high-order bit is set to make it easier to find during
the forward searches required by decompilers. The second to
high-order bit is set if the word is defined as immediate. When a
word is encountered in a definition, the address of its definition
list (from the first byte-pair of the vocabulary entry) is usually
entered into the new definition. If the word is immediate, it is
executed instead.

IBCL allows many separate vocabularies. This allows you to
separate definitions into well-organized groups, much like you
would place related C functions in a single file. IBCL can find
words faster when it only has to search a couple of vocabularies
instead of the entire dictionary. IBCL provides a separate segment
for each vocabulary defined.

The two vocabularies, ‘context’ and ‘current’, are always singled
out for special treatment. The ‘context’ vocabulary is searched
first for words encountered in the input stream. If the word is
not found, the root directory (named IBCL) is searched. The
‘current’ vocabulary is the vocabulary to which new definitions are
added. The variables ‘context’ and ‘current’ contain pointers to
these two vocabularies.

October 1986 3-5 MacBus User Manual

IBCL o National Instruments

Definitions

The actual definition of an IBCL word consists of two parts: the
code field and the parameter field. The code field is a single
byte-pair designating the address in the code segment of the
machine code primitive associated with the word. The parameter
field immediately follows the code field. Its use varies from word
to word; a pointer to the parameter field is passed to the machine
code primitive, which may use the parameter field in any way it
chooses.

The simplest IBCL words are written in machine code. These
words have no parameter field. IBCL executes the code addressed
by the pointer stored in the parameter field. These words execute
very fast.

High level definitions are more complicated. The parameter field
of a high-level definition contains a list of addresses. Each
address points to the code field of one of the lower level words
making up the high-level word. The code field of a high-level
word points to code that saves IBCL’s ‘program counter’ on the
return stack and replaces its value with the address of the high-
level word’s parameter field (remember, the parameter field
address is made available to the machine code primitive for any
purpose; in this case it contains the list of addresses composing the
word’s definition.).

The last address in the list making up a high-level definition will
point to the code field of a word that removes the address from
the return stack and restores IBCL’s ‘program counter’ to this
value, thus returning control to the next level up.

Other commonly used IBCL word types are constants and
variables. The code field of a constant points to a routine that
places the contents of the first byte-pair of the parameter field on
IBCL’s data stack. The code field of a variable points to a routine
that places the address of the first byte-pair of the parameter field
on the data stack.

MacBus User Manual 3-6 October 1986

o National Instruments IBCL

Postfix Notation

IBCL uses postfix notation syntax. In postfix, one writes the stack
numbers and then the operators. Numbers are pushed onto a stack
and taken from it. For instance:

7 212 3 / * -

First 7, and then 2, 12, and 3 are pushed onto the stack. Then 12
is divided by 3 and the result is placed on the stack. Now we
have 7, 2 and 4 on the stack and the next operator is *, leaving 7
and 8 on the stack. The - leaves -1 on the stack.

Note that it is not the syntax of IBCL that gives rise to this
appearance of postfix notation, but the semantics of those words
used to implement mathematical operations most efficiently. Other
forms of notation can be developed on this system if desired.

Command Line Input

IBCL executes the word query when it has exhausted its ASCII
input and needs some more. This word sets status that allows the
MacBus’ host system to learn of the situation and download new
input. The exact method used by the host to accomplish this
varies depending on the host software package you have; see
SECTION ONE - IBCL Source Files for details.

October 1986 3-7 MacBus User Manual

IBCL o National Instruments

THE IBCL INTERPRETERS
IBCL has two interpreters, the inner interpreter and the outer
interpreter. The inner interpreter does nothing except branch
from one machine code routine to the next. The nesting and
unnesting routines supporting high-level IBCL definitions are
among the code routines through which execution passes.

The outer interpreter accepts text from the host. It then attempts
to parse the text string as a sequence of IBCL words and/or
numbers. In execute mode, words are executed and numbers are
placed on the stack. In compile mode, words and numbers are
entered into the definition of the new word.

Inner Interpreter Sequence

IBCL uses the si register as its ‘program counter’. si always points
to the next entry in a word’s definition list to be executed.
IBCL’s inner interpreter is the simple four-byte machine code
sequence:

lodsw ;move code field address of next word
;into ax register

xchg di, ax ;move next word cfa into di
jmp [dil ;execute code pointed to by cfa

Note that [di+2] will contain the address of the parameter field,
which the code executed may use in any way it chooses.

If the definition list which the inner interpreter is interpreting
consists of a list of pointers to simple machine code primitive
instructions such as stack and math words, execution will simply
proceed from one word to the next in the list. A few special
machine code primitives alter this orderly flow.

One of these diverting primitives is <docob. <docob is the
primitive that nests control to a lower level definition as discussed
earlier.

MacBus User Manual 3-8 October 1986

Q National Instruments IBCL

exit is the last pointer in a definition list. Its machine code
primitive pops the top element from the return stack and
continues list interpretation at that address. This is the word from
which control was originally diverted.

There are several other words which alter the sequential
interpretation of a definition list. x.5 and <abort”> are compiled
by the immediate words, .” and abort”. They control display of
the following inline string and cause interpretation to skip to the
word following that string. lit and dlit cause the following word
or double word value to be pushed onto the stack; interpretation
continues after the last value.

execute causes a branch to the word pointed at by the top value
on the stack, just as if the pointer to that words code field address
had been in the list instead of execute.

The remaining control-flow altering words handle the high-level
flow control within a single definition list. branch causes control
to skip forward or backward the number of words contained in
the following location. Obranch does so only if the top word on
the data stack is zero. Otherwise control continues with the word
following the unneeded relative offset.

The do loop terminating words are similar in function and
appearance to Obranch. First they perform the additional task of
updating an index and comparing it to a limit. If the limit has
exceeded bounds, control is transferred as with branch. If the
bound has not been exceeded interpretation continues after the
relative offset.

Outer Interpreter Sequence

Text is accepted a line at a time from the host. A line can be up
to 1024 bytes long. The interpreter further breaks each line or
block into individual words and processes them one at a time in
sequence. A word is a string of characters preceded and followed
by blank spaces or by a null. A few words require text strings as
following arguments and use a special delimiter such as quote to
end the string. Within these strings, blanks are not interpreted as

October 1986 3-9 MacBus User Manual

IBCL o National Instruments

word separators. These strings are processed by the preceding
word rather than by the interpreter.

One such special string is the comment which opens with (. The
interpreter ignores input after the (word until the next) or until
the end of the current line or block. The initial (is a true IBCL
word but the closing) is only a delimiter and need not be
preceded by a blank.

Once a word is extracted, an attempt is made to locate it in the
dictionary. If it is found, its code field address is returned. In
execution mode the definition beginning at this address is
executed, but when compiling a higher level word the address is
appended to the definition being created unless it is an
‘immediate’ word. These execute even within a colon definition.

The IBCL word immediate makes the most recently compiled
word immediate.

If the word was not located, the interpreter assumes that it is a
number and attempts to convert it to binary form. The value
stored in base identifies the current number system
(ten,decimal;eight,octal;sixteen,hexadecimal). The number may
begin with a minus sign. If it contains a decimal point, it is
converted as a double length number, otherwise it must fit in a
single byte-pair. When a single byte-pair number is too large,
high-order bits are lost. A single byte-pair number may be as
small as -32768 or as large as 65535, a double byte-pair number
may be as small as -2147483648 or as large as 4294967295. The
upper half of the positive range is for unsigned numbers only.
Double byte-pair numbers cannot overflow, but the correct
decimal point location must be determined from the user variable
dpl.

The decimal point in the double numbers identifies them as double
numbers but does not affect the binary value generated. The two
numbers 123. and 1.23 produce the same binary value. The
location of the decimal point is available in the user variable dpl,
which is 0 and 2 for the above numbers. dpl is used by the
application to scale numbers according to the location of the

MacBus User Manual 3-10 October 1986

o National Instruments IBCL

decimal point.

In execution mode, the binary value is placed on the stack. For
single byte-pair numbers in compilation mode, the code field
address of lit (literal) is appended to the definition followed by
the binary value. For double byte-pair numbers in compilation
mode, the code field address of dlit (double literal) is appended to
the definition followed by the low-order byte-pair of the double
number and then the high-order byte-pair.

If the string cannot be converted, the interpreter aborts with an
error message. The stacks are cleared and the rest of the block or
line being interpreted is ignored.

The interpreter uses -find (see DEFINING NEW WORDS
paragraph) to locate the potential word in the dictionary. Since
the source string for -find is the next word in the input stream,
this also advances the interpreter over the input text.

If the string is not a word, number is used to convert it to binary
form. number is vectored through ‘number to <number> so you
may change the operation of number by storing the code field
address of your numeric conversion routine in ‘number.
<number> expects the address of the source string’s count byte on
the stack. It replaces the address with the double word binary
value converted using the current base. If conversion is not
possible, <number> aborts with a “NOT RECOGNIZED” error.
The user variable dpl will contain 8000H if no decimal point was
present in the numeric string. In this case the number was single
word length and the top word on the stack may be dropped.
Other values in dpl represent the power of 10 by which the double
word integer returned must be multiplied in order to recover the
original decimal value. The interpreter ignores dpl except as a
flag to drop the top word of single word entries.

When all words in the input stream have been executed, query is
used to obtain more input and the entire cycle repeats.

October 1986 3-11 MacBus User Manual

IBCL o National Instruments

Errors

When an error is encountered during interpretation, an error
message is usually generated using abort”. Execution of the run
time portion of this word, <abort”>, clears the stacks and prints an
error message. Control is then returned to the terminal to await
the next line of input. See DEFINING NEW WORDS, COLON
DEFINITIONS, and IBCL INPUT paragraphs.

abort is vectored through ‘abort to <abort>. You may alter the
operation of abort by storing the code field address of your abort
word in the variable ‘abort. It generates no error messages but
does clear the stack, resets both context and current vocabularies
to IBCL, and returns control to the terminal.

Storing 0 in the user variable warning will suppress non-fatal
system error messages. The only non-fatal error in the base
system is the “ISN’T UNIQUE” message generated for attempts to
redefine a word that is already in the current vocabulary or in the
IBCL vocabulary. The word will be redefined, and access to the
old definition is lost. Previously defined words that used the old
definition are not affected.

MacBus User Manual 3-12 February 1987

Q National Instruments IBCL

STACK MANIPULATION
IBCL uses two stacks: the parameter or data stack and the return
stack. The parameter or data stack is used to pass information
from one word to the next. It is often referred to as “the stack”.
The return stack is used by the interpreter to find its way back up
through nested sequences of words being executed. It is always
called “the return stack”. Occasionally the return stack is used
within a word as temporary storage. Any temporary items on the
return stack must be removed before the word completes
execution. The return stack also holds the index and limit for do
loops within colon definition words. These are automatically
removed when the loop terminates.

Parameter stack words rearrange, drop, and duplicate words on the
parameter stack. Note that “words on the parameter stack” refer
to 16-bit numbers, not to IBCL definitions.

The parameter stack grows downward from an offset within the
stack segment. The parameter stack pointer occupies the sp
register. The return stack grows upward from the bottom of the
stack segment. The return stack stack pointer occupies the bp
register. Both reside in the stack segment and use the stack
segment register.

Any words which refer to the state of the stack refer to the state
that existed before the word was executed.

October 1986 3-13 MacBus User Manual

IBCL o National Instruments

Parameter Stack

?dup
depth
drop
dup
over
n pick

n roll

rot
swap
SP@

sp!
SPO

so

ddrop

Duplicate top word on stack if it is non-zero.
Return number of words on stack before operation.
Drop top word from stack.
Duplicate top word on stack.
Duplicate second from top word on stack.
Duplicate n’th word on stack.
1 pick is equivalent to dup
2 pick is equivalent to over
Remove n’th word from stack, leaving it on top.
2 roll is equivalent to swap
3 roll is equivalent to rot
This is a time consuming operation since all words
on stack from top through n’th must be moved.
Remove third word from stack, leaving it on top.
Remove second word from stack, leaving it on top.
Return offset into stack segment of top of stack.
(Top of stack has the lowest physical address.)
(Return stack pointer, stored in the sp register)
Initialize stack pointer to SO, clearing stack.
Return the address within the stack segment
descriptor pointing to the bottom of the stack.
Return the address of the bottom of the stack.
When the stack pointer has this value,
the stack is empty.
Drop the top two words from the stack.
Duplicate the top pair of words on the stack.
Produces same result as over over.

The following external words are from the Forth 79 & 83
Standard double number word set, with the prefix character
changed from 2 to d. They correspond to their single word
counterparts, but operate on pairs of words.

MacBus User Manual 3-14 October 1986

Q National Instruments IBCL

High level implementation.

: dover 4 pick 4 pick ;
: drot 6 roll 6 roll ;
: dswap 4 roll 4 roll ;

Code level implementation (see USING ASSEMBLY LANGUAGE
FROM IBCL paragraph).

code dover

code drot

code dswap
cx push. bx push.

Return Stack

>r
+>I-

dup>r
rdrop
r@
r>
rp@
rp!

bx push. bp sp xchg.
bx 4 +Ibpl mov. ax 6 +Cbpl mov. sp bp xchg.
ax push. end- code
2 +cbp1 pop.
dx POP. cx POP-
ax POP. di pop.
cx push. dx push.
2 +Cbpl push. bx push.
di push. bx ax xchg. end-code
cx POP- ax POP. dx POP.
dx push. bx ax xchg. end-code

Transfer top word from data stack to return stack.
Add top word on data stack onto
top word of return stack.
Copy top word from data stack to return stack.
Drop top word from return stack.
Copy top word from return stack to data stack.
Transfer top word from return stack to data stack.
Return value of return stack pointer (bp register).
Clear the return stack.

October 1986 3-15 MacBus User Manual

IBCL Q National Instruments

ARITHMISTIC & L O G I C

The arithmetic and logic words Iind all of their inputs on the data
stack, remove the inputs from the stack, and return their results
on the stack.

The ranges for the supported number types are:

integer type decimal range hexadecimal range
- - - - - - - - - - - - - _ - - - - - - - - - ________------_-
signed -32,768 32,767 -8000 7FFF
unsigned 0 65,535 0 FFFF
double -2,147,483,648 2,147,483,647 -8000.0000 7FFF.FFFF
logical 0 for false; -1 generated, non-zero accepted for true

Some people don’t like using -1 for true, they would rather use 1
to be able to use it as a counter. Negative one can be used as a
counter and the eventual sum negated with negligible time loss. It
also has compelling advantages, too numerous to cover completely.

Suppose we want to find the sum of a subset of a series of
numbers. A parallel series contains true flags (-1) for those
elements we want to include. The numbers are constants ending
with n, and the flags are variables ending with f.

an af @ and bnbf@and+ cncf@and+ e t c .

If truth had been 1 instead we could have resorted to a complex
sequence of if statements within colon definitions or could have
used:

anaf@ * bn bf iii * + cn cf hl * + etc.

Of course, * requires five times the execution time that and uses.
This type of summation is important in math, logic, electronics,
and even games.

Error conditions other than divide overflow are not detected,
although the flags from the operation can be returned on the stack
by the flags> word. It should be used immediately after the
arithmetic operator. Remember that for complex operators, the

MacBus User Manual 3-16 October 1986

Q National Instruments IBCL

flags are from the last operator invoked. The corresponding
assembler operation (see USING ASSEMBLY LANGUAGE
FROM IBCL paragraph) will indicate which flags are set. Errors
may also be detected by checking whether the result has an
obviously incorrect sign.

The divide error uses interrupt vector number zero. If you wish
to replace this routine, the segment paragraph number at
OOOO:OOOO and the offset at 0000:0002 must be set for your routine.
The error will trap attempts to divide by zero and divisions that
produce a quotient larger than the range for the divisor type.

When an arithmetic operation results in a number that is too large,
positive or negative, the high-order bits are truncated. The result
returned is usually very different from the desired result and often
doesn’t even have the correct sign. Adding one to 32767 gives
-32768.

Division follows the conventions of Forth-79. The remainder has
the same sign as the dividend and the quotient is rounded toward
zero. Note that this is the same type of division as performed by
the 8088 division instruction, making it the most efficient division
for this processor. The Forth-83 standard requires the remainder
to have the same sign as the divisor and the quotient to be
rounded downward. The extra overhead to convert to this form
should be incurred only if it is genuinely essential. If the
remainder will be used to round the quotient, the form is
unimportant.

Constants

A few small integers are used so frequently that it is worthwhile
to implement them as constants. When the interpreter encounters
them, they are located in the dictionary rather than being parsed
by number. More important, when used in definitions, they result
in compilation of a single word rather than the lit and value pair
of words produced by other integers. When executed, a constant
pushes its value onto the top of the stack.

October 1986 3-17 MacBus User Manual

IBCL o National Instruments

The IBCL constants are: -2 -1 0 1 2 3 4

Unary Operators

These words alter the top word length integer on the stack. Most
operate on either signed or unsigned integers. The few exceptions
(0-z O> abs neg b->w) must obviously deal with signed
quantities. The divide by 2 operator, 2/, also applies to signed
quantities, since division requires the sign bit to propagate
downward as the number occupies fewer significant bits.

IBCL maintains the top word of the stack in the bx register, so no
memory accesses are required for these operators, not even a push
or pop. bx will be used as a shorthand notation for the top word
on the stack.

2- Subtract 2 from bx.

l- Subtract 1 from bx.

l+ Add 1 to bx.

2+
2*
2/

Add 2 to bx.
Multiply bx by 2. (Shift bx left one bit.)
Divide bx by 2. (Shift bx arithmetic right one bit,
if bx is negative, increment by one.)

4+ Add 4 to bx.
6+ Add 6 to bx.

o< If bx is less than 0, replace with -1, else with 0.
o= If bx equals 0, replace with -1, else with 0.
o> If bx is greater than 0, replace with -1, else with 0.

abs Replace bx with its absolute value.
negate Replace bx with its 2’s complement (negate bx).

b->w Propagate the high-order bit of the low-order byte

MacBus User Manual 3-18 October 1986

o National Instruments IBCL

s->d

in bx through the upper byte (convert signed byte
to signed word).
Convert signed word length integer to signed double
word integer. The former top word is pushed one
deeper into the stack. The new bx is all one bits if
the old bx was negative, all zero bits otherwise.

The following unary operators replace the top two
stack words. The high-order word is at the top of
the stack in the bx register, the low-order word is
below it.

dabs
dnegate

Replace double word integer with its absolute value.
Replace double word integer with its 2’s complement.

udsqrt Replace unsigned double word integer with unsigned
singleword square root.

Binary and Ternary Operators

Binary integer operators remove the top two words from the stack
and replace them with the result of the operation, usually a single
word. Ternary integer operators remove the top three words from
the stack and replace them with one or two results.

Mixed word length operators have one operand that is a double
word. For double word length operators, both operands are
double words. A double length word occupies two words on the
stack. The high order half is toward the top of the stack with the
low-order half under it. Mixed operators generally begin with m ,
double with d. To run some Forth-79 standard programs, it may
be necessary to redeline the d prefix words as 2 prefix words, or
change 2 prefix words in the program to d prefix words.

IBCL maintains the top word of the stack in the bx register and
the second stack word at the top of the physical stack. A single
pop is necessary to bring the second operand into the registers,
assuring maximum efficiency. bx will be used as a shorthand
notation for the top word on the stack, and nx for the next word

October 1986 3-19 MacBus User Manual

IBCL o National Instruments

on the stack. The third word, when required, will be called t x
and a fourth qx. Double length words require two of these codes
separated by a period.

All input words are removed from the stack and the result
becomes the new bx. If more than one word is returned, a new
nx is created as well.

Signed or Unsigned Operands

+ Add bx to nx
Subtract bx from nx

= -1 if nx and bx were identical, 0 otherwise

d+
d+-

Return sum of double integers bx.nx and tx.qx
Return nx.tx, negated if bx was negative.

Signed Operands

+- Return nx, negated if bx was negative.

* Multiply nx by bx.
If product is too large, high-order bits are lost.

;mod

mod
l /

l /moD

Divide nx by bx, rounding quotient toward zero.
Like / but the remainder is returned in nx with
the same sign as the dividend.
Return the remainder of the division of nx by bx.
Multiply nx by tx and divide the 32-bit product
by bx, rounding toward zero. If result exceeds range
(-32768 through 32767), a 0 divide error occurs.
Like */ but the remainder is returned in nx with
the same sign as the intermediate product.

< -1 if nx is less than bx, 0 otherwise

MacBus User Manual 3-20 October 1986

o National Instruments IBCL

> -1 if nx is greater than bx, 0 otherwise

max
min

Return the greater of nx and bx.
Return the lesser of nx and bx.

Mixed Length Signed Operands

m+ Add double integer nx.tx to bx, return in bx.nx.
m* Multiply bx by nx, return double integer bx.nx.
m/ Divide double integer nx.tx by bx, rounding toward

zero. Return remainder in nx, quotient in bx.
m*/ Multiply double integer tx.qx by nx and divide the

48-bit product by bx. Round double integer
quotient bx.nx toward zero.

m/mod Like m/ but return double word quotient bx.nx and
remainder tx.

d< bx becomes -1 if tx.qx is less then bx.nx,
0 otherwise

Unsigned Operands

II*

u/mod

Multiply nx by bx, returning double word product.
Low order word in nx, high-order word in bx.
Divide double integer nx.tx by bx. Low order word
of dividend is tx, high-order word is nx. Return
remainder in nx, quotient in bx.

u< -1 if nx is below bx, 0 otherwise
Below is the unsigned counterpart of less than.

Logical, Sign Bit Not Significant

and Bitwise logical conjunction of bx and nx.
For each bit position, 1 if corresponding bits in both

October 1986 3-21 MacBus User Manual

IBCL o National Instruments

not
Or

xor

nx and bx are one, 0 otherwise.
-1 if bx is zero, 0 otherwise
Bitwise logical inclusive disjunction of bx and nx.
For each bit position, 1 if corresponding bits in either
nx or bx are one, 0 otherwise.
Bitwise logical exclusive disjunction of bx and nx.
For each bit position, 1 if a single corresponding bit in
nx or bx is one, 0 otherwise.

slr Shift nx right by bx bits, shifting in zeroes.

External Double Number Words

d-

dO=

d2/

d=

d>

dmax

dmin

du<

Double negative of top double word.

True if top double word is zero.

Arithmetic right shift top double word.

True if top two double words are equal.

True if bottom element of double word
pair is greater than top.

Return larger of signed double word pair.

Return smaller of signed double word pair.

True if bottom element of double word
pair is below the top element, unsigned.

code d-

code dO=

bx ax xchg. dx pop. cx pop. bx pop.
cx ax sub. bx dx sbb. cx push.

ax POP. bx ax or. bx 0 iw mov.
jnz false. bx dec. >>> fa lse.

code d2/ ax POP. bx 1 sar. ax 1 rcr. ax push.

MacBus User Manual 3-22

end- code

end- code

end-code

October 1986

o National Instruments IBCL

MEMORY ACCESS
These words store values into memory or retrieve them from
memory using an address and possibly a segment paragraph
number from the data stack. A single byte, word, or double word
may be stored or returned, or an entire block of bytes may be
filled, anywhere in memory. Any contiguous block less than 64K
bytes may be moved anywhere in memory.

Load and Store

The root of these words is @ (at) for load and ! for store. A word
with the root @ requires an address from the stack. A word with
the root ! takes two parameters from the stack, an address from
the top of the stack and a number under the address. Long
addresses include a segment paragraph number beneath the offset.
Double word numbers store the most significant portion toward
toward the top, just below the address word or words.

A word with the root @ replaces an address on the stack with the
value stored at that address.

A word with the root ! stores the number from the stack under
the address into the location at that address.

nnnn @ Returns the word from the memory location
with offset nnnn in the definition list
segment.

number nnnn ! Stores number into word at the memory
location with offset nnnn in the definition
list segment.

Several of the addressing modes use the segment paragraph
number found in es, the extra segment register. This register is
not used by the IBCL stack, arithmetic, logic, load, store, port
I/O, or control words. It may be set with es!

new-segment-paragraph-nunber es!

October 1986 3-23 MacBus User Manual

IBCL Q National Instruments

NOTE: The xx@e and xx!e addressing modes may only be used
within colon definitions since the interpreter uses the es register
for dictionary searches. Within colon definitions (Defining New
Words paragraph) the es segment register retains its contents
throughout execution of words from the sections listed above.
This extra segment mode is almost as efficient as the default
definition list segment addressing mode. It may be the only
addressing mode required when working with an array or arrays in
a single foreign segment. If two arrays from different segments
must be used, this mode should be used for the one accessed most
frequently and the long address mode should be used for the
other. In the long address mode, the address occupies two words.
The lower word on the stack is the segment paragraph number,
the top word on the stack is the offset into that segment.

Addressing modes are identified by a suffix appended @ or !

SUfflX
----__
none
E
L

segment paragraph address
_-__---------------_-----
Definition list segment, ds register.
Extra segment paragraph number, es register.
Address occupies two words on stack, the
segment paragraph number is under the offset.

The data type is identified by a prefix preceding @ or !

prefix
- - - - - -
none
C

d

data type
__-_-____
Word, two bytes.
Character or byte, lower byte of word on
stack upper byte set to zero for @ and
ignored for !.
Double precision, two words
Low order word is the first word in memory,
and is followed by the high-order word. For
small positive numbers the high-order word is
zero, for small negative numbers the high order
word is all ones (-1). The low-order word is

MacBus User Manual 3-24 October 1986

o National Instruments IBCL

lowest on stack, with the high-order word
toward top.

The indexed addressing mode uses load and store words generated
above prefixed by i. Before the load or store takes place, the top
two numbers on the stack are added. This allows byte offsets into
arrays without the linkage overhead of the otherwise equivalent +
! or + @ forms.

The load and store words covered so far are:

a @E @L C@ C@E GIL D@ D@E D@L
I@ I@E I@L IC@ I C@E IC@L ID@ ID@E ID@L
! ! E ! L C! C ! E C!L D! D ! E D ! L
I ! I ! E I ! L IC! IC!E IC!L I D ! ID!E I D ! L

All load and store words are machine code primitives implemented
with code sharing. The many addressing modes occupy little more
code than the basic modes. This is also true of the hybrid access
words below. The address plus index should not exceed 64K. An
offset exceeding 64K wraps back to the beginning of the current
segment.

The +! words resemble ! in use but instead of replacing the word
length number located at the memory address, the number on the
stack is added into it. All addressing modes are included, but
only for word length operands.

+! I+! I+!E I+!L

Often counters must be incremented or decremented by one or
two. These may almost always be kept in the definition list
segment and are usually word length.

l+! l-! 2+! 2-!

The most common number which memory must be set or reset to
is zero. The value for the following stores need not be fetched
from the stack since it is zero.

October 1986 3-25 MacBus User Manual

IBCL o National Instruments

O! O!E OC!E

The following words are used in the implementation of IBCL and
have many general uses.

dw@ Duplicate the address before returning contents.
The address is often needed later.

dwc@ Like dupe but for byte access.

step Increment the address by two, then do dup@.
Used for stepping through word arrays.

cstep Increment the address by one, then do dupe@.
Used for stepping through byte arrays.

Fill

These words fill a block of memory with copies of a single byte
length number. The destination paragraph number is stored in the
es register and remains there. Nothing is returned on the stack.
The address plus count ordinarily should not exceed 64K. Offsets
past 64K do not extend into the next segment, but back to the
beginning of the first one.

addr n byte fill

Fill n consecutive memory bytes beginning at addr in the
definition list segment with the byte. If the count n is negative,
no action is taken. Use of the machine code primitive <fill>
circumvents the sign check.

seg-para-# a d d r n b y t e fill1

This is the long address version of fill used to fill a block
anywhere in memory. The count is unsigned and may range up to
64K.

MacBus User Manual 3-26 October 1986

o National Instruments IBCL

addr n blank

This behaves like fill, but the byte stored is hex 20 (blank).

Move

These words copy a block of memory to a new, possibly
overlapping block. The source uses the ds segment register, the
destination uses the es register. The ds register is restored to its
original value after the operation, but the es register retains the
segment paragraph number of the destination. Nothing is returned
on the stack.

Neither the source address plus count nor the destination address
plus count should exceed 64K. Offsets past 64K do not extend
into the next segment, but back to the beginning of the original
segment.

source-addr dest-addr n cmove

This moves a block of memory n bytes long beginning at the
source address to the block at the destination address. Both blocks
are in the definition list segment, lists. If n is not positive, no
action takes place. The sign check is circumvented by using the
code primitive for cmove, <cmove>. The lowest addressed bytes
are moved first.

The two blocks may overlap if the destination is below the source.
If the two blocks overlap and the destination is above the source
the copy will proceed smoothly until the source address equals the
original destination address. At that point, the original data has
been overwritten and the sequence of bytes copied to that point
will repeat throughout the remainder of the copy.

The long address form of cmove is:

src-para# src-adr dest-para# dest-adr n cmovel

This moves any block from any segment to the same segment or to
any other segment. The count is unsigned and may range up to

October 1986 3-27 MacBus User Manual

IBCL Q National Instruments

64K. The lowest addressed byte is moved first. cmovel behaves
like cmove for overlapping blocks where the destination is at a
higher address.

The overlap problem can be avoided by using <cmovel, which
moves the highest addressed byte first. It is slightly less efficient
than cmovel and should only be used for overlapping blocks where
the destination is an address below the source (unless you are
trying to produce a downward ripple):

s r c - p a r a # s r c - a d r dest-para# dest-adr n wsovel

The above words all move byte oriented blocks. move is similar to
cmove except that it moves blocks of words.

src-adr dest -adr n mve

For any copy to take place, n must be between 1 and 3FFF. The
copy is performed by cmove after doubling the count, n.

move is included for compatibility, but its function may be
performed equally well by the various cmove instructions which
also access segments other than the definition list segment.

String Functions

A string is any sequence of bytes where the first byte contains the
number of bytes in the sequence, excluding that first byte. The
string support words are loaded from a utility file.

See SECTION ONE - IBCL Source Files for methods of inputting
utility files to IBCL.

Strings will frequently reside in the pad buffer, which serves as
temporary storage for terminal input and string functions. The
pad buffer is at a fixed offset above the allotted portion of the lists
segment. When more space is allotted, the buffer is moved and the
old contents are left behind. The pad is for temporary storage
only.

MacBus User Manual 3-28 October 1986

o National Instruments IBCL

Space for more permanent strings is allotted using $variable or
$constant. The run time code for both is the same as for variable,
it simply returns the address of the first byte. To reserve n bytes
plus a count byte for a string, type:

n Svariable string-variable-name

$constant can be used to initialize a string variable as it is created:

Oconstant s-v-name the_initial_sequencel’

If you have created an extra segment to hold arrays, you can also
allot strings in that segment:

segment-name #bytes Sat--far string-variable-name

Execution of this string variable name will push the segment
paragraph number and the offset onto the stack.

Strings are moved among string variables and the pad with store
words:

src-seg
lists @

src-addr dst-addr 3!
src-addr dst - seg dst-addr $!I
pad dst-seg dst-addr S!l

It is also possible to exchange the contents of two string locations
- but only if both locations are large enough to hold the longer of
the two strings.

addr-a
seg-a addr-a

sv-name
sv-far-name

addr-b Sxchg
seg-b addr-b Sxchg 1

pad Sxchg
lists @ p a d Oxchgl

The following words all create a new string in the pad buffer and
leave the address of pad on the stack.

addr-a a d d r - b O+ (concatenate strings)
seg-a addr-a seg-b addr-b S+l

October 1986 3-29 MacBus User Manual

IBCL Q National Instruments

addr n lefts (n characters at left)
addr n rights (n characters at right)

addr start n midS (n char beginning at start)
byte chrS (1 byte string of byte)

addr n stringS (n byte string of first)
(char from string at addr)

asc is the inverse of chr$. It returns the first byte after the count
byte on the stack.

addr a s c

$find will find the offset of characters from a string in any
segment. The template string must be in the lists segment.

ts-addr segment start-addr stop-addr $tind

Three values are returned on the stack. The segment, the address
of the first instance of the string in the range, and a flag set to -1
if the string was found. If the string was not found the flag is set
to 0 and the address is set to the start address.

cr$ and eof$ are predefined one byte string variables used to find
carriage returns and end of file bytes.

$= compares two byte sequences of equal length. A zero is
returned if the sequences are identical. Otherwise, the absolute
value of the number returned is the number of the first
mismatched byte pair. It is negative if the byte from sequence 2
is larger than the byte from sequence 1 and positive otherwise.

segl addrl seg2 addr2 length S=

String Literals

The string literal is so useful that it is included in the base system.
It can be used in a colon definition or to initialize a string array.
In the first case it compiles a word that, when executed, leaves the
address of the string literal on the stack and jumps past the string
and then compiles the count byte and characters of the string. In

MacBus User Manual 3-30 October 1986

O, National Instruments IBCL

the second case, only the count byte and characters are compiled.
The following examples illustrate the two uses.

or

or

: message ,I’ hi there! II type ;

15 Svariable your-name 9 Alex” your-name $!
: prefix , II Your name is II your-name $+ count type ;

c r e a t e i t e m 0 c , ,I’ paper” ,I1 scis.sorP ,I’ stone” oklw
: .choice (addr i
item 2 .choice

Do you see how the loop

IBCL INPUT

-) 0 do count + loop count type ;

indexes through the string array?

Just as IBCL has separate words to manage ASCII and binary
output, so it has separate words to manage ASCII and binary
input. This section documents these words.

ASCII-Type Input

Whenever IBCL exhausts its ASCII input stream, it executes the
word expect. This word takes an address and count from the
stack and waits for the Macintosh Plus to initiate an ASCII data
transfer over the SCSI bus. For example, the following IBCL
fragment will create a buffer and Ii11 it five times with ASCII data
from the Macintosh Plus:

variable string-buffer 3E allot

: 5-fills
5 o d o
string-buffer 40 expect
loop

The IBCL phrase variable string-buffer allocates memory for a
two-byte IBCL integer variable. The phrase 3E allot adds an
additional hex 3E bytes to the two already allocated, increasing

October 1986 3-31 MacBus User Manual

IBCL Q National Instruments

the size of the buffer to hex 40 bytes. When later executed, the
word string-buffer will leave the address of the 40 byte buffer on
the stack.

The remainder of the fragment is a colan definition implementing
an indexed loop. The word 5-tills will execute the IBCL
sequence:

string-buffer 40 expect

five times. Each time execution of string-buffer leaves the buffer
address on the stack, execution of 40 leaves the buffer size on the
stack, and execution of expect pauses until the Macintosh Plus
transmits an ASCII data string over the SCSI bus. This string is
placed string-buffer.

IBCL executes expect not only when the user explicitly uses it
interactively or in a program, but also when the IBCL interpreter
itself needs more ASCII input.

Obviously, expect requires cooperation from the Macintosh Plus.
This can be accomplished in several ways, but one example may
be taken from the Megamax C MacBus support library, available
from National Instruments as a separate purchase. This library
includes the following C functions:

string-out (s, n, id) char *s; int n, id;

This function sends n bytes of ASCII data to MacBus. The data is
taken from the character buffer s, and the string is sent to MacBus
at SCSI address id.

poll(id) int id;

This function reads a block of status data from MacBus at SCSI
address id. By analyzing this status block, the Macintosh Plus can
determine (among other things) when MacBus has exhausted its
ASCII input stream.

MacBus User Manual 3-32 October 1986

Q National Instruments IBCL

The following C fragment waits for MacBus to be ready for ASCII
input, then sends an IBCL command string:

/* wait for MacBus to exhaust its ASCII input */
poll(ID);
while ((fstat & DONE)==01
poll(ID);

/* put the MacBus GPIB interface online and send
Interface Clear */

string out ("1 bon1 bsic18, 11, ID);-

After executing this fragment, the Macintosh Plus is free to do
other things while MacBus tends to the GPIB. This is just one
example of how MacBus provides increased performance by
allowing parallel processing in many situations.

Binary-Type Input

The IBCL word dlm allows the Macintosh Plus to transmit large
arrays of binary data to MacBus. This word expects a count on
top of the stack and a long buffer address under that. It waits for
the Macintosh Plus to send the specified number of bytes over the
SCSI bus and places the data at the specified long address. The
following example illustrates operation of this word:

IBCL program:

ibfind plotter (put GPIB plotter on line)
1000 allot data-buffet-(allocate a buffer for data)
data-buffer 1000 dlm(download data from Mac+)
plotter data-buffer 1000 wrt(write data to the plotter)

Macintosh C Program:

poll(ID); /* wait for MacBus to be ready for data download */
while((fstat & DLM)==O)

poll(ID);
dlm(0x1000, buff, ID);/* download the data */
while((fstat & DONE)==O)/* wait for MacBus to finish */

poll(ID);

October 1986 3-33 MacBus User Manual

IBCL Q National Instruments

IBCL OUTPUT
During normal operation IBCL discards all of its terminal output.
All information the host needs from IBCL is contained in a small
status block. During debugging, however, you might like to see
all IBCL output. If you execute the IBCL string:

'find iaemit 'emit !I

IBCL begins to place its ASCII output in a buffer that a host
routine allows you to retrieve. To turn output off, execute the
IBCL string:

'find drop 'emit !I

IBCL provides several words that transmit information to the
Macintosh Plus. These words may be placed in one of two
categories; ASCII-type output words and binary-type output
words. This section documents IBCL’s collection of output words.

ASCII-Type Output Words

Many different ASCII output words exist, but all of them work by
calling the IBCL word emit. This word outputs a single ASCII
character.

During normal operation you will have little use for IBCL’s ASCII
output. During debugging, however, you will find it
indispensable. Therefore, IBCL is capable of “turning OIY its
ASCII output. The following IBCL command strings turn ASCII
output on and off:

find iaemit 'emit ! (turn ASCII output ON)
find drop 'emit ! (turn ASCII output OFF)

MacBus powers up with ASCII output OFF. Whenever ASCII
output is off, you don’t need to worry about it at all; emit simply
throws its characters away.

MacBus User Manual 3-34 October 1986

B National Instruments IBCL

When ASCII output is on, emit places each character in a text
output buffer in MacBus memory. At all times this buffer is null
terminated, i.e., there is a zero byte following the last valid output
byte. If the buffer fills up, IBCL will stop what it is doing and
wait for the Macintosh to read the buffer.

Obviously, the Macintosh must pay attention to the output buffer
whenever ASCII output is ON. If you are using the IBCL
interactive window utility supplied with your MacBus, this is
automatic. If, however, you write your own programs using, for
instance, the Megamax C MacBus support library (available from
National Instruments as a separate purchase), you Macintosh
program must monitor the status of the output buffer anytime
ASCII output is on. The following example shows how you might
coordinate IBCL and Macintosh programs that use ASCII output.

IBCL Definition:
: letter-a's

0 do
ascii a emit

loop

Megamax C Program:
/* send IBCL command string */
string out(l'lO letter a's"- - , 13, ID);

/* loop till MacBus is finished with c0mnat-d */
poll(ID);
while((fstat & DONEl==D) C

poll(ID);
if (fstat & OUTPUT) C

fout(s, ID);
print (%V, s);

>
1

The C functions string_out and poll were described in the
Terminal Input section. The function fout tills the string pointed
to by s with the current contents of the IBCL output buffer. This
is a normal C string, and can be printed using a printf statement,

October 1986 3-35 MacBus User Manual

IBCL Q National Instruments

as in the example above.

This example repeatedly polls the MacBus. After each poll it
checks for available ASCII output in the output buffer. If there is
output in the buffer, the C program retrieves and prints it. This
continues until the result of poll indicates that IBCL is waiting for
more input (i.e., it has finished with the command.)

All other IBCL words that produce ASCII output invoke emit one
or more times. The remainder of this sections describes these
words.

Character-Based Words

space will emit one blank space. spaces will take the top number
on the stack and emit that number of spaces. bl will leave the
ASCII code for a space on the stack.

type uses the top number on the stack as a character count and the
next number as a source address. Consecutive characters
beginning at the source address are emitted until the count is
satisfied. If the count is zero or negative no action takes place
and the address and count remain on the stack. type only applies
to strings in the definition list segment. The address is an offset
into this segment.

type1 performs the function of type for strings in any segment.
The segment paragraph number must be on the stack under the
source offset

Two words are often used before type. count assumes the top
number on the stack is the address of the count field of a string in
the definition lists segment. It increments the address by one and
returns it and then the count byte on the stack. -trailing expects
the count byte on the stack with the address of the first character
under it, in the form returned by count. Both address and count
are returned on the stack, after the count has been reduced to
discard any trailing blanks.

count1 performs the function of count for strings in any segment.
The segment paragraph number must be on the stack under the
source offset.

MacBus User Manual 3-36 October 1986

Q National Instruments IBCL

Numeric-Based Words

The representation of a number depends on the base being used.
There are 50 states in the United States if the base is decimal, but
there are 32 states if the base is hexadecimal. A jigsaw puzzle of
the United States could be divided into five piles of ten states
each with none left over, or it could be divide into three piles of
sixteen states each with two left over. The representation base is
stored in the user variable base. base contains ten when in
decimal mode and sixteen when in hexadecimal mode, but may be
set to other values. decimal stores ten in base and hexadecimal
stores sixteen in base. Octal could be set by:

8 base !

The following words output a number from the stack. The top
stack word contains a field width for some of them. The
individual digits are output by emit.

number

double-number

number

number #char

double #char d.r Like .r but for double word length number.

October 1986

Display number with a single trailing blank
and, if required, a leading negative sign.

d. Like . except for double word length number.
The high-order word is on top of the stack
with the low-order word under it.

U. Like . but the number is unsigned and the
magnitude may therefore range from 0 through
65535 (decimal) or 0 through FFFF (hexadecimal)

.r Display number right aligned in field #char
characters wide. The sign is included only
if it is negative. If #char is to small,
no leading blank appears but the field is
expanded to include all digits and sign.

3-37 MacBus User Manual

IBCL o National Instruments

number u.r Like .r but the number is unsigned.

source-address ? Print the number stored at the address.
:? @ -* ,

The only punctuation included in the above numbers is the leading
minus sign. If more specific formatting is required, words are
available to convert numbers one digit at a time. The following
example will output the negative decimal single word number
-12345 and insert a decimal point between the 3 and 4.

decimal -12345 dup s->d dabs <# # # 46 hold #s rot sign #> type

decimal -12345
dup
s->d
dabs
<#
#
#
46
hold
#s
rot
sign
#>

Place two copies of -12345 on stack
Sign extend top copy to double length
Take absolute value of double number
Initialize for output conversion
Place the lowest order digit (5) in buffer
Place second lowest order digit in buffer
ASCII code for decimal point
Place decimal point in buffer
Place remaining digits in buffer
Rotate original signed number to top of stack
Place sign of number in buffer
Terminate output conversion and leave buffer
address below number string length on stack
type number - 123.45type

The <# . . .#> construct converts an unsigned double length
number to a string. The string is built rightmost character first
and growing downward from the buffer address returned by pad.
The opening <# stores this address in the user variable hld,
which thereafter holds the address of the character most recently
added to the string.

Each instance of # extracts the next higher order digit from the
double number on the stack and adds it to the downward growing
string. The unsigned double number is divided by the base. The

MacBus User Manual 3-38 October 1986

Q National Instruments IBCL

double word quotient is left on the stack, eventually becoming
zero. The remainder is converted to its ASCII code and added to
the string. If # is used after all digits have been converted,
leading zeroes will be added to the string.

will convert all remaining digits but stop before generating any
leading zeroes.

Any character may be inserted anywhere in the string by placing
its ASCII code on the stack and using hold. hold can be used to
insert decimal points, commas, hyphens, slashes, etc.

M,234,567.89 4-15-82 4mia2 2:37:15

The following ASCII codes are in decimal:

35 I# 43 + 46 . 58 :
32 blank 36 $ 44 , 47 / 59 ;

37 % 45 -

If a sign is required, a number with the correct sign must be
available. The double word number on the stack cannot be used
since it must be converted to its absolute value. In the example,
the signed number was kept on the stack under the double word
unsigned number. This location is convenient but not necessary.
The sign is usually added after converting all of the digits, placing
it in the number string’s first character position. It could just as
easily be added to the string before converting any digits, placing
it at the end of the number string as required by some financial
formats. For instance: 123.45

The #> drops the double number from the stack. At this point, it
should have been zero. The address of the first character in the
string (from hld) is returned on the stack under the number of
characters included in the string. This address and count are the
arguments expected by type, which is used to output the string.
Alternatively, the string could just as easily be moved to a file
buffer.

October 1986 3-39 MacBus User Manual

IBCL a National Instruments

Binary-Type Output

IBCL provides a single word to perform binary-type output.
Binary output is ALWAYS turned “on”, and the Macintosh must
always pay proper attention to MacBus when an IBCL program
that does binary output is running.

IBCL’s binary output word is ulm. This word expects a count on
top of the stack and a long address just below that. It waits for
the Macintosh Plus to request a binary data upload, then sends the
specified number of bytes over the SCSI bus, starting at the
specified long address.

Just as the Megamax C MacBus Support Library provides the fout
function to read ASCII output, so it provides the ulm function to
read binary output from MacBus. Proper handling of binary
output involves cooperative action by MacBus and the Macintosh
Plus, as the following example shows.

IBCL program:

1000 allot data-buffer
data-buffer fil l-up
data-buffer 1000 ulm

(allocate a buffer for data)
(we don’t care how buffer gets filled)
(upload buffer to the Macintosh)

Macintosh C program:

poll(ID); /* wait for Hacks to get ready for
memory upload */

w h i l e ((fstat 8 ULM)==O)
pol l (ID);

ulm(Ox1000, buff, I D) ; /* upload results from MacBus */

GENERAL PORT I/O
The port input/output words transfer data between the top of the
stack and any of the 64K I/O ports. For specific port assignment,
see the Technical Reference Manual for your system.

MacBus User Manual 3-40 October 1986

Q National Instruments IBCL

The following words assume that the port number is at the top of
the stack:

(place word from port on stack)
(place byte from port on stack,
zero fill high-order byte of stack word)

The following words assume that the port number is at the top of
the stack and that the output word (or byte) is the next word on
the stack. For an output byte, the high-order byte of the stack
word is ignored.

pu! (output word to port)
P! (output byte to port)

In practice, these words must often be used several times to input
or output a single data item. Each interface may be composed of
several ports. Both incoming and outgoing status ports may be
needed in addition to the incoming and outgoing data ports. You
will usually be required to write into the outgoing status ports
before any data transfers may take place. This accomplishes such
tasks as setting the baud rate, parity, and number of bits,
depending on the type of interface. It also initializes the interface
to a known state.

Next, an incoming status port is interrogated to see whether the
interface is ready to receive or transmit data, depending on the
pending operation. If you are ready to output data, and the
interface is not ready to receive it you have two options. You
may continue doing something else and interrogate the incoming
status port later, or you may repeatedly interrogate the status port
until the appropriate bit or bits indicates the interface is ready to
accept outgoing data. Then you may output data to the outgoing
data port. If you output data when the port is not ready, it will
be lost and may interfere with the previous data output.

If you are trying to input data and the status port indicates none
is ready, you will read garbage or reread the previous data item.
Again, you may do something else for a while or continue reading
incoming status until data is ready.

October 1986 3-41 MacBus User Manual

IBCL o National Instruments

LOADING PROGRAMS
IBCL treats programs just like normal text input. The routines
running on your host machine are responsible for breaking
program files into pieces smaller than 1024 bytes and downloading
the pieces to IBCL. See SECTION ONE - IBCL Source Files for
details on downloading.

DEFINING NEW WORDS
This section is the heart of IBCL. By defining new words
interactively with minimal overhead costs, IBCL surpasses both
interpreted and compiled high-level languages. Since word
definitions can be kept short without excessive overhead, they can
be easier to write than the longer subroutines usually written in
higher level languages. They are much easier to write or maintain
than the endless nest of branches and goto’s found in BASIC.

IBCL can define several kinds of words, and can even define
words that define new types of words. This latter ability gives
IBCL power that is as yet beyond our imaginations to fully tap.
At the simplest level, it can provide direct language support for
almost any data type or structure imaginable. The dot product of
order n vectors can easily be reduced to a-vector b-vector dot.
This is simultaneously both simpler and more efficient than BASIC
with:

result=0 ; for i = 1 to n ; result=result+a(i)*b(I) ; next i

Even high-level languages with decent subroutine syntax quickly
fill with distracting call’s and parenthesis’ that have nought to do
with your algorithm, let alone your problem.

The primary word used to define all new words is create, as in:

create new-name

This enters new-name in the context vocabulary with a pointer to
the next free memory word in the definition list segment. This
word is initialized to point to the run time code for variables, but

MacBus User Manual 3-42 October 1986

D National Instruments IBCL

may be changed either by the defining word invoking create or by
another word within or terminating the definition. create is used
directly by the user only to define new defining words. It is used
by all system defining words.

create will truncate names longer than the value contained in the
user variable width. The initial value, also the maximum value, is
decimal 63 characters. If truncation occurs, the system remembers
only the shortened length.

Colon Definitions

These are the most pervasive definitions in IBCL. They resemble
the subroutines or functions of other high-level languages such as
Pascal or Fortran - with some important differences.

The syntax is not cluttered with parenthesis and parameter lists.
This enables IBCL words to be used more nearly like the words in
a human language - admittedly more like German than English
since the action is specified after any values or addresses required.

Values and addresses are passed either on the data stack or
through locations specified within the definition. Use of the data
stack aids in the creation of more generally useful words.

The other crucial difference is that the definition is compiled when
it is entered. No distracting, time consuming compile and link
sequence is required.

In a very small way, BASIC shares this convenient lack of extra
steps. BASIC may be used calculator style like IBCL, or it may be
used to define the equivalent of a single IBCL word with the
name RUN. In IBCL, one could type:

: run IBCL equivalent of BASIC program ;

In IBCL, of course, run could be named anything and you could
have hundreds of programs at your fingertips simultaneously. No
need for BASIC’s incomprehensible tangle, single program limits,
or incomparable slowness (of use mainly to hardware

October 1986 3-43 MacBus User Manual

IBCL e National Instruments

manufacturers trying to sell more expensive machines).

The basic format of the colon definition is:

: name-of-new-word words comprising definition ;

The colon and name must be on the first line, but the remainder
of the definition may occupy as many lines as required. Each
word or number must be complete on a single line.

The definition of : is:

: : spa csp ! (save current stack pointer)
(in user variable csp)

current 0 context !
create (create dictionary entry for name)
3 (switch state to compile mode)
-’ docol, (set code field to docol)

docol points to the machine code routine that nests the interpreter
down one level and transfers control to the word after the code
field containing that instance of the pointer to docol. state is a
user variable which may be set to compile mode by] or to execute
mode by [.

After : has initialized the definition and set compilation mode,
the following words are compiled into the definition for execution
when the defined word is executed. When a word is compiled, the
address of its code field is appended to the list being created for
the word being defined. If a number is encountered, the word lit
(or dlit for double word numbers) is compiled into the definition
followed by the number. Later execution of lit will cause the
number to be placed on the stack and the interpreter will skip the
location that held the number. The ; terminates the definition by
compiling an exit at its end and setting execution mode. exit will
unwind the interpreter nesting one level, returning control to the
word after the instance of the one that finished execution.

The following example will print the number followed by a % sign
when the words name is entered: (37 is ASCII code of %)

MacBus User Manual 3-44 October 1986

o National Instruments IBCL

decimal
: fifteen-percent 15 . 37 emit ; ok
fifteen-percent 15 % ok
hex ok
fifteen-percent E % ok

Numbers are interpreted using the current base. In the example
above, the previous base was discarded in favor of decimal.
Changing the base to hex changes the output representation of the
number but not the ASCII character. The output of an ASCII
character requires no numeric conversion. Note that typing:

: fifteen-percent decimal 15 . 37 emit ;

would not have changed the base until the definition executed.
The 15 and 37 would be interpreted according to the previous
base, and typing fifteen-percent would always change the base to
hex.

The words . and emit perform no action when used in a
definition. Instead, their code field addresses are stored in the
definition and will be executed only when the defined word is
executed. All non-immediate words follow this pattern.

Another type of word executes even when used within a colon
definition. The word may, but need not, alter or add to the
definition. Primary examples include the flow control words,
definition terminator words, and embedded string words. To
create an immediate word, type:

: name definition ; immediate

Every definition needs at least one immediate word - the word
that signals its end. ; provides this service in the above example
and for all simple high-level colon definitions.

Another immediate word often used in definitions is ‘. This word
places the parameter field address of the next word in the input
stream on the stack. Assuming that we have a code field address
on the stack, we could determine whether it was a variable with

October 1986 3-45 MacBus User Manual

IBCL Q National Instruments

the following word: (memory is an IBCL variable)

: ?var ’ memory I cfa Cl 1 literal =
i f .I’ variable” else .‘I not variableI then -,

The .‘I immediate word is used to include a message in a
definition. If it is in an active path, the message prints when the
word is executed.

Sometimes it is necessary to cause compilation of an immediate
word as if it were a non-immediate one. This is accomplished by
preceding the immediate word with [compile]. A word to print
the address of another word could be defined as:

: .address Ccompilel I c r .I’ address is II . ;
-address some-word
address is .lP

This is basically a means for reusing the function of an immediate
word within another word which is itself often immediate.

Occasionally it is necessary to cause execution of non-immediate
words while creating a colon definition. This is accomplished by a
pair of words, [(switches state from compile to execute mode),
and] (switches state from execute to compile mode). The [word
leaves the definition open. The most common use for this pair
would be the calculation of some offset, address, or constant. This
pair is frequently used with the literal word, which takes the top
value on the stack and enters it into the current definition. The
following are equivalent ways to define a word returning the
address of the fifth line of a block given its base address, except
that the first is inefficient since the operations are performed
every time the word is executed:

: l ine-5 644*+;
644* : t ine-5 l i tera l + ;
: line-5 I64 4 * I literal + ;

The second format could lead to ambiguity in a real program, and
might not be usable if the stack was busy with control parameters

MacBus User Manual 3-46 October 1986

o National Instruments IBCL

for loops. A similar word, dliteral, is available for compiling
double length values from the stack into the definition.

Sometimes the word we are defining will be used to build part of
the definition of other words. In this case our definition may
contain words that we don’t want to execute even when the word
executes. Instead we want the word to be copied to the definition
being created. An example is the definition of ; which must
compile exit at the end of the definition being created:

: ; compile exit ?csp I ; imediate

None of the words defining ; are immediate. When ; executes, the
?csp and [check the stack level and terminate compilation mode.
The definition for compile takes the code field address for exit
and appends it to the definition being created. Note that compile
takes the next word from the definition list, the word following
compile should never be immediate.

Let’s summarize the behavior of some word, we’ll call it a-word,
depending on whether or not it is immediate.

: 9
: q
: q Cconpi Lel
: q conpi le

a-word
C a-word 1 ;
a - w o r d ;
a - w o r d ;
a - w o r d ;

non-imnediate

executed
executed
conpi led
cmpiled *
compiled **

immediate
-_-______
executed
executed *
executed
compiled
error

* These forms are not really used since they are redundant.
** This q must be used in a definition and a-word will be

compiled into that definition.

Comments may be inserted within the definition by enclosing
them in parenthesis. The opening one must be preceded and
followed by a space since it is an IBCL word. The terminating
one is just a delimiter.

: name some words (cements) more words ;

October 1986 MacBus User Manual

IBCL o National Instruments

Machine Code Definitions

The words in this section provide a simple means of entering
machine code definitions for words which must execute rapidly or
which require machine resources not immediately available in
high-level IBCL. They also support the assembler extensions
discussed in the ASSEMBLER paragraph. IBCL remains in the
execution mode when creating machine code definitions.

code name-of-neu-word words to install code end-code

The format resembles the colon definition with code replacing :
and end-code replacing ; but words used in colon detinitions are
not generally applicable. Code enters the new name in the current
vocabulary and establishes a link to the definition list segment and
from there to the code segment. end-code generates the code for
the inner interpreter next linkage and terminates the definition.

Bytes may be added to the definition with c% and words with
w%. It is important to remember that the lowest order byte of a
word is stored in the lowest memory location when using the V50.
Both c% and w% use the top word on the stack to obtain the byte
or word needed. w% is often used to append an address offset
from the stack after an opcode that requires an address. w% or c%
are also used to append immediate values.

A string of machine code bytes without addresses or immediate
values can be more easily entered using the <% and %> pair. The
following are equivalent ways to enter the definition for +:

hex
code +
code +
code +

58 c% 03 c% d8 cx
5 8 c% d803 w%
X% 58 03 d8 %>

end-code
end-code
end-code

Variable names and arithmetic to calculate offsets are often used in
code definitions to provide addresses. Referencing a constant is
often used to provide an immediate value, or an absolute address
such as an interrupt vector location.

MacBus User Manual 3-48 October 1986

Q National Instruments IBCL

Constants, Variables, and Arrays

The words in this section provide a basic set of data objects,
which can be extended to meet the user’s specific needs.

A constant may be defined by typing:

nnnn constant name-of-new-constant

The top word on the stack provides the value for the new
constant. Whenever the new constant is executed, the number
nnnn will be pushed onto the top of the stack. The constant can
be executed by entering its name outside of a colon definition or
within the square bracket pair inside a colon definition. It can
also be executed when any definition into which the constant has
been compiled is executed.

A signed constant may range from -32768 through 32767 decimal
and an unsigned one from 0 through 65535 decimal.

5 constant five ok
five . 5 ok
: pr int - f ive f ive . ; ok
print-five 5 ok

A variable is delined similarly, except that no initial value is
given:

variable name-of-new-variable

Whenever the new variable is executed, its parameter lield address
is pushed onto the stack. Values may be stored and retrieved
from this location. Initially a single memory word is allotted, but
this may be increased using the allot word to allocate mmmm
more bytes:

variable mytable mm-m allot

This will create an array of mmmm+2 bytes within the definition
list segment. allot checks to see that sufficient room exists within

October 1986 3-49 MacBus User Manual

IBCL o National Instruments

the definition list segment, and issues an error message if the
segment will overflow. allot is used by all words that assign space
from the definition list segment.

Since constants are usually few in number, they can be limited to
the definition list segment. Variable arrays, however, can easily
require much more room than would be available if they were all
confined to a single segment. In IBCL it is possible to give each
array its own segment. Each array can be 64K bytes long.

If space permits, assignment within the definition list segment
yields programs which execute slightly faster. Placing arrays that
participate in the same computations in the same segment will also
provide faster execution, if appropriate memory addressing words
are used.

To allocate an array in a segment other than the definition list
segment type:

name-of-segment length-in-bytes array-far array-name

In the following example, we will create several arrays:

hex 7000 segment my-arrays
my-arrays 1000 array-far enployee#
my-arrays 1000 array-far wage/hour
my-arrays 1000 array-far hours-worked
my-arrays 1000 array-far total-pay

Before each assignment, a check is performed for sufficient space
in the segment. Executing any of these array names will cause the
segment paragraph number to be pushed onto the stack, followed
by the offset of the array in that segment. This pair is used by all
memory addressing words of the form XXL (Memory Access
paragraph).

Sometimes it is necessary to address into segments other than the
definition list segment without allocating space. A label can be
created that returns the segment paragraph number and the offset
address with which it is initialized.

MacBus User Manual 3-50 October 1986

IBCL 0 National Instruments

Vocabularies

An IBCL system initially contains a single vocabulary named ibcl.
New words are added to this vocabulary as they are defined. It is
possible to create additional vocabularies and to limit the scope of
word searches to one of the additional vocabularies followed by
the IBCL vocabulary.

In IBCL, the three primary parts of a definition are split into
three separate segments. Machine code for all vocabularies
occupies the codes segment. High level definition lists occupy the
lists segment. The word’s ASCII representation, along with its
immediate flag and definition list pointer occupy another segment,
with words from different vocabularies accumulating in their own
private segments. The IBCLS segment contains the IBCL
vocabulary. Creation of new segments for new vocabularies is
automatic. The number of bytes to be allocated is contained in
the user variable seg-size. This variable is initially set to four
kilobytes, but may be reset by the user.

To change the default segment size type:

new-size seg-size !

If the previous default size is adequate, a new vocabulary and its
segment may be created by typing:

vocabulary new-vocabulary-name

for instance:

vocabulary assembler

The segment name will be the vocabulary name with -seg
appended. The example would create the empty assembler
vocabulary in the assembler-seg segment.

To cause the assembler vocabulary to be searched before the IBCL
vocabulary, type:

MacBus User Manual 3-52 October 1986

Q National Instruments IBCL

assembler

At this point, no words will be found in the assembler vocabulary,
but the user variable context will contain a pointer to it rather
than to the IBCL vocabulary. New definitions would still be
assigned to the IBCL vocabulary.

To cause new definitions to be assigned to the context vocabulary,
type:

definitions

Now the user variable current points to the assembler vocabulary
instead of the IBCL vocabulary. current governs which
vocabulary receives new definitions. Had we wanted to enter new
definitions in my-words, but limit our interpreter searches to
IBCL, we would have had to type:

vocabulary my-words my-words definitions assembler

This would have reset context to point to assembler. Caution,
entering a colon definition sets context to current.

In the course of defining new words, you may discover that you
have made a mistake. Words can be forgotten and dictionary
space can be recovered by typing:

forget word-to-forget-thru

This type of forget may only be used in the newest vocabulary. If
that vocabulary is still IBCL, the user variable fence contains a
pointer to a word below which forgetting is disabled, to protect
you from forgetting the system.

A more general forget supports switching from one application to
another. It requires you to create a task boundary before you
define the applications vocabularies, segments, and words. It can
recover both segments and portions of segments allocated after the
boundary. Before entering the application, type:

October 1986 3-53 MacBus User Manual

IBCL

task name-of-task

o National Instruments

Forget back to the boundary by typing:

name-of-task forget-task

Segment relocation is not affected.

One task boundary is included in the system. Typing:

empty forget-task

will forget all words, vocabularies, and segments entered by the
user. This will reclaim memory from all non-system words and
segments, but will not restore system segments to their original
positions in physical memory. empty is preserved by forget-task
but user task names are forgotten along with the task.

Program Segments

IBCL provides limited automatic segment management. The goal
is not to provide completely general segment management, but to
provide the most economical set of words that still supports use of
the entire address space. Words are provided for the creation of
new segments.

Initially the IBCL system occupies four segments. The names of
these segments are variables that return the address of the first
word of the five word segment descriptor table:

1. Segment paragraph number. Absolute address of first byte
of segment divided by 16

2. Maximum number of bytes allocated to this segment.
3. Temporary working end of segment. Address of bottom of

stack for stack segments
4. End of segment. Current stack pointer for stack segments.
5. Link to first word of segment descriptor for previously

defined segment.

MacBus User Manual 3-54 October 1986

o National Instruments IBCL

The segment names are:

codes
stacks

lists

ibcls

machine code segment
stack segment, return stack at bottom
data stack at top
definition list segment, code address followed
by parameter field entries, if any
ASCII representation of words

The memory variable returns the address of the four word
memory descriptor table:

1. Paragraph at which user memory starts, base of codes.
Paragraphs below this one belong to IBCL.

2. Last available paragraph, set by system board switches.
3. Paragraph at which free memory begins. Initially end of

IBCL, updated as new segments are allocated.
4. Pointer to first word of most recently created segment

descriptor, this address is returned by last-seg.

To create a new segment, type:

size-in-bytes segment name-of-new-segment

The maximum size is 64K. An error message is generated if an
attempt is made to exceed memory limits. segment uses another
word which allocates additional memory and updates memory, but
does not create a new segment descriptor. This word can be used
to increase the length of the top memory segment. The initial last
segment is the lists segment which usually requires the most space.
Its initial space allocation is limited by the need for the system to
tit into systems with only 64K bytes of memory.

size- in-bytes dup allot-seg last-seg 2+ +!

The last line updates the memory limit for the last segment. Be
certain that the old value and your increase do not exceed 64K or
it will wrap around to a low value. For extra protection, use the

October 1986 3-55 MacBus User Manual

IBCL o National Instruments

following definition:

: grow l a s t - s e g 2+ d d u p a
d d u p I+ u< abortI’ a l r e a d y LargeP

allot-seg ! ;

final-size grow

Two temporary user variables are provided for segment values:
seg and seg-size. seg may hold the address of some segment
descriptor. seg-size should contain a default segment size. It is
used by vocabulary to set the size of any new vocabulary
segments.

Defining Defining Words

Two actions must be specified when defining defining words. The
first is executed when the defining word is executed. The next is
executed when the word defined using the defining word is
executed. As an example, let us assume that the system does not
provide the word defining constants. One way to define this
defining word is:

: constant create , does 0 ;

create and does> are immediate words, they execute when the
definition is entered. The @ is compiled as usual.

To define the constant five using this defining word, type:

5 constant five

The 5 is placed on the stack and momentarily ignored. Referring
to the definition of constant, the create requires a word from the
input stream. It takes the string five and adds it to the current
vocabulary, with a pointer to the next free word in the definition
list segment. This word is initialized with a pointer to the code
for variables, and the working end of the definition list segment is
incremented by two to point to the parameter field of the word

MacBus User Manual 3-56 October 1986

o National Instruments IBCL

being defined, five. Next the , takes the top value on the stack, 5,
and stores it at the working end of the definition list segment, the
parameter field of five, and increments the end pointer by two.
Next the does> replaces the the contents of the code field with a
pointer to a few bytes of code created by does> each time it is
used. The code has two functions. It nests the interpreter one
level deeper, transferring control to the word after does>, and it
places the parameter field address of the word being delined, five,
on the stack. The code is executed only when five is executed.
Finally, the @ is compiled and the ; causes an exit to be compiled
and then terminates the definition.

When five is executed, the code created by does> is executed. The
address of five’s parameter field is placed on the stack and the
interpreter nests down to the @ in the definition of constant. A 5
is waiting at the parameter field address, and is returned on the
stack. The exit compiled by ; returns the interpreter to the next
higher level, with the 5 remaining on the stack. Or, stated simply,
executing five causes 5 to be left on the stack.

In actual practice, a word as important as constant should define
words that execute as rapidly as possible. The run time action
should be defined at the machine code level rather than the high-
level IBCL level used above. This is the technique used in IBCL:

code docon <% 53 8b Sd 02 %> end-code

or:
code docon bx push. bx 2 +Idil mov. end-code

This defines the run time behavior of the defined word. Next
define constant itself:

: c o n s t a n t c r e a t e , ;I docon

The ;’ replaces the code field of the word being defined with the
code field of docon.

Note that does>;’ and ;code must all be used with a word that
initiates a dictionary entry. create is presently the only system

October 1986 3-57 MacBus User Manual

IBCL o National Instruments

supplied word that performs this function,

The above example was a relatively simple use of IBCL to create a
defining word. This is admittedly the most complex topic in
IBCL, and the vast majority of other languages don’t even try to
provide this capability.

For a slightly more complex case, consider a double length
constant.

: dconstant create swap , ,
does> dup @ snap 2+ @ ;
hex 1234.5678 dconstant longfellow

dconstant create a double length constant named longfellow.
When longfellow executes, it leaves a double length number on the
stack. First 5678 is pushed onto the stack, then 1234.

segment is an example of an even more complex defining word.
When a segment is being defined, space must be allotted from free
memory and a segment descriptor initialized. The run time action
is the same as for a variable - the parameter field address is left
on the stack unchanged.

vocabulary is the most complex defining word in the system. It
must allocate a segment and create definitions and descriptors for
both the segment and the vocabulary. The run time action moves
the parameter field address from the stack into context.

The only limit to the complexity and utility of words that define
words is your imagination. BASIC is one dimensional
programming; compiled languages with good subroutine facilities
provide a second dimension. IBCL with its ability to define
defining words clearly provides a third dimension. Learning to
use that dimension well will give you an edge unattainable in
other languages.

Internal Workings

Defining a new word increases the memory allocated in the
current word ASCII representation segment and the definition list

MacBus User Manual 3-58 October 1986

o National Instruments IBCL

segment. It may increase allocation in the machine code segment.
While a definition is being created, the working end of segment is
greater than the verified segment end. If an error causes the
definition to abort before completion, memory allotted in these
segments is reclaimed. The address stored as the verified end is
the address of the start of the detinition being created.

address of address of
working end verified end working end
--------_-- _____------ --_________

(end? @)
machine codes endc oldc here-c
definition lists end1 old1 here
current vocabulary endw oldw here-w

nextw will return the segment and the address of the next free
word in the current vocabulary segment. A byte or word may be
stored to this location from the top of the stack and endw
incremented with c,words or ,words.

Error checking is performed by the following words:

?comp
?csp
?pairs
?stack
?stream

error if not compiling
error if stack position is not that in csp
error if top two stack elements unequal
error if stack out of bounds
error if input stream exhausted
(top of stack true)

Headerless Words

IBCL provides useful features not possible in systems with
conventional architectures. Since the vocabulary segments contain
only names, count bytes, and pointers into the definition list
segment, the entry for each word is completely relocatable and can
be deleted when no longer needed. This can only be done with a
time consuming (and often expensive) cross compiler on other
systems. The following words delete .a name or range of names
and shift the remainder of the current vocabulary segment down

October 1986 3-59 MacBus User Manual

IBCL o National Instruments

to close the gap created. lpa stands for the list pointer address
field, the first byte pair of the vocabulary entry of a word.

lpa-of-Ist-word-name-to-delete lpa-of-Last-name <behead>

behead’ name-to-be-deleted
behead’ I name-of-lst-word-name-to-delete name-of-last

<behead> should be used with caution, if at all, since it does not
check for valid Ipa’s, and and invalid one will crash the system.
behead’ and behead” will both respond with “NOT FOUND” if the
word was not found. behead” will delete all word names in the
physically sequential range. The contents of a vocabulary may be
checked with vlist.

Overlaid Code Primitives

IBCL code primitives are overlaid upon one another if the “tail” of
one happens to be identical to some other useful word. This may
also be viewed as having code primitives with multiple entry
points.

code stepbx inc. bx inc.
code+ dup@bx push.
Code+ @bx Cbxl mov. end-code

This overlay used 9 machine code bytes instead of the 22 required
by conventional systems. end-code does not automatically clear
the jump table, so branches may occur throughout this structure.
High level flow constructs must open and close within a single
code, code+ or end-code pair.

Forget-Task

forget-task expects the parameter field address of the task on the
stack. It checks for a valid task parameter field address by
verifying that the preceding code field points to <dotsk>.
forget-task forgets the task descriptor block created by task along
with the associated task. It will forget segments and parts of
segments and reclaim space for segments or for free memory that

MacBus User Manual 3-60 October 1986

o National Instruments IBCL

has been allotted since the task was declared. It cannot rearrange
segments, so segment sizes and positions should not be changed
within the confines of a task . . forget-task pair. Otherwise the
forget-task may leave gaps in the allotted segment map and may
reduce the free memory pointer to a value below that of the
highest segment actually allotted.

task name-of-task
definitions
definitions

name-of-task forget-task

October 1986 3-61 MacBus User Manual

IBCL o National Instruments

CONTROL
IBCL contains high-level control structures similar to those found
in BASIC and Pascal. These perform conditional execution and
repeated execution of word blocks, and case selection. They
eliminate the need for any program position labels such as
BASICS line numbers.

Words that control the flow of program execution are used only
within colon definitions (Detining New Words section). They are
immediate words which execute when the colon definition is first
compiled. Most cause branches or conditional branches to be
compiled into the definition list of the word being compiled, but a
few merely save an address and identifier on the stack for use by
a later control word.

The branch compiled into the definition list may be a conditional
Obranch or an unconditional branch. The Obranch is ignored if
the top word on the stack is nonzero. In either case the branch
fills two words in the definition list. The first, as with any
compiled word, is a pointer to the code field address of the word,
in this case branch or Obranch. The second word is the byte
offset of the destination relative to the second word.

The conditional branch always uses and drops the top stack word.

Vectored execution permits words to be defined after they have
been used in creating other definitions. It is usually useful only
within colon definitions.

Vectored Execution

You cannot actually include a word in a definition if that word
has not already been defined. If the function you wish to perform
cannot be defined before the word in which it is used, you must
first define a variable that will eventually contain the code field
address of the not yet defined word.

MacBus User Manual 3-62 October 1986

0 National Instruments IBCL

variable vector-name
: some-word words vector-name B execute words ;
: future-word words ;
I future-word cfa vector-name !
some-word

The vector name used in some-word compiles like any variable.
When executed, it leaves its parameter field address on the stack
and @ replaces that address with the variable’s contents. This
variable was initialized on the last line to contain the code field
address of future-word. (’ returns the parameter field address of
the next word in the input stream and cfa converts the parameter
field address to the code field address.) execute executes the word
whose code field address is on the stack, just as if it had been
compiled into the definition.

Since execute is almost always preceded by @, IBCL includes
execute@ - a more efficient replacement for this pair.

These words are used when the implementation of a word may
have to change after words which use it are defined. System
words with this capability are vectored through user variables.

system word user variable

-find
abort
cr
emit
expect
interpret
nurber
vocabulary
word

l-find
‘abort
lcr
‘emit
‘expect
‘interpret
‘nunbet-
‘vocabulary
I uord

routine
_ _ _ _ _ _ _
<-find>
<abort>
<cm
*emit>
<expect>
interpret
mnher>
<voc79>
<word>

These words are also necessary to fully implement recursion.
They enable the creation of a circular set of definitions in which
each word can include previously defined words as usual, but may
also include words defined later in the sequence. Recursion is not
very eIIicient for numerical operations such as factorial evaluation
but is very efficient for symbolic manipulations.

October 1986 MacBus User Manual

0 National Instruments

Conditional Execution

The if true-phrase else false-phrase then construct is used within
colon definitions to enable a number on the stack to control
whether or not groups of words within the definition are executed.
A phrase is any list of words normally allowed in a colon
definition. If conditional or loop constructs are included, they
must be completed within the phrase. Nesting is limited only by
stack size - overlapping is forbidden.

The following example will display a game score along with one
of two messages (the new score is on the stack):

: .scoredup high-score @ >
i f dup high-score ! .I’ neu high score!!!l~ .
else .(I your score is II

.‘I high score is II high-score @ . then ;

When .score is executed your latest score should be at the top of
the stack. It is duplicated and compared with the old high score.
The comparison sets the top number on the stack to 0 (false) if
your score is not greater than the old high score. It sets the top
number to a nonzero (true) value otherwise. If the number is 0,
execution will branch to the words after the else. If it is nonzero,
execution will continue after the if, then skip the words between
else and then. The true part sets the new high score, then
displays new high score!!! and the new score. The false part
displays your score and the old high score.

else and the words between it and then may be omitted, in which
case no action is taken if the condition is false.

The if compiles a Obranch and puts the address of its destination
field on the stack. It then places an identifier on the stack to
signal its presence to else or then. The else checks for if’s
identifier and issues an error message if it isn’t found. else next
compiles an unconditional branch. It calculates the offset from the
address on the stack to the word after the branch and stores that
offset into the original Obranch. The address of the destination
field of the branch is placed on the stack, followed by another

MacBus User Manual 3-64 October 1986

o National Instruments IBCL

copy of the identifier. The then aborts with an error message if
the identifier isn’t found, but does not need to know whether it
follows an if or an else. It calculates the offset from the address
on the stack to the next free word and stores it into the previous
branch.

Loops

Loop constructing words are similar to the above words in that
they compile branches and leave addresses on the stack. As
above, a phrase may be any list of words normally allowed in a
colon definition. If conditional or loop constructs are included,
they must be completed within the phrase. Nesting is limited only
by stack size - overlapping is forbidden.

There are three types of conditional loops:

begin phrase again

This is really an unconditional infinite loop since it has no exit.
The only legal exit would be an abort or abort” within the phrase
or within a word in the phrase.

begin phrase until

until is a bit like if except that it compiles a backward branch to
the beginning of the phrase. The phrase executes repeatedly until
the top word on the stack is true (nonzero). The phrase always
executes at least once.

begin test-phrase while phrase repeat

After the test phrase is executed, the top word on the stack is
examined. If it is true (nonzero), the phrase is executed and
control branches back to the test-phrase. If it is false (zero), the
loop is exited and execution continues after the repeat. The
second phrase will not execute even once if the initial test-phrase
was false.

October 1986 3-65 MacBus User Manual

IBCL o National Instruments

There are also three types of do loops:

limit start do phrase l o o p

This do loop starts execution with an index set to start and
increments that index by one for every encounter of loop. The
phrase is executed repeatedly until the index equals or exceeds the
limit using a signed comparison. The limit and start values are
taken from the data stack at execution time. While executing the
loop, the index is on top of the return stack with the limit under
it. You may use the return stack within the phrase, but its
condition at the end of the phrase should be the same as at the
beginning. The data stack is not used other than on entry.

l i m i t s t a r t d o p h r a s e +Loop

This is similar to the first do loop, but the +loop takes a signed
number from the data stack and adds this to the index instead of
incrementing the index by one. If the increment is positive,
termination is the same as for loop. If the increment is negative,
execution repeats until the index is less than the limit.

l imi t star t do phrase / loop

This is similar to the above loops, but /loop takes an unsigned
number from the data stack and adds this to the index instead of
one. The limit and start values are naturally unsigned also.

Several words are useful only within the above do loops.

i Place a copy of the index on the data stack.

0,1 Place a copy of the index on the data stack.
(Assuming it has been buried one deep and is
the second element on the return stack)

j Place a copy of the index of the next outer do
loop on the data stack. (The index should be
the third word on the return stack)

MacBus User Manual 3-66 October 1986

o National Instruments IBCL

leave Set the index equal to the limit, causing exit
of this do loop when execution of the phrase
completes.

Case

Machine code level support is provided for implementing efficient
case statements. The word match signifies that the required case
has been found and execution should skip the next higher level
colon definition. This often avoids the necessity of deeply nested
if . . . else . . . then clauses.

These examples assume a temperature is available on the stack:

: ?hot
: ?cold
: ?good
: goldy

dup high-temp @ > ;
duP Low-temp &I < ;
dup good-temp @ = ;
?hot
i f .‘I This porridge is too hot!’
else ?cold

if .I8 This porridge is too cold!11
else ?GODD

if .‘I This porridge is just right!”
else .‘I Oh well, it will do.”
then then then drop ;

: hot ?hot if .I8 This porridge is too hot!” drop match then ;
: cold ?cold if .‘I This porridge is too cold!b1 drop match then ;
: good ?good if .I1 This porridge is just right!” drop match then ;
: f ine .I’ Oh well, it will do.” drop match ;
: goldy hot cold good fine ;

The version using match is much easier to read. Execution exits
goldy after finding a single match. Words in goldy beyond the
match are not entered. match itself including its copy of the
inner interpreter next routine requires only 6 bytes of machine
code.

February 1987 3-67 MacBus User Manual

IBCL Q National Instruments

USING ASSEMBLY LANGUAGE FROM IBCL
MacBus uses a NEC V50 microprocessor and the NEC 72191
numerical coprocessor. Most users, however, are more familiar
with the Intel 8088 and 8087 instruction sets, with which the NEC
chips are completely compatible. For this reason, we will use Intel
mnemonics throughout the discussion below.

National Instruments supplies the assembler in IBCL source form
on the Macintosh Plus diskette shipped with MacBus. In order to
use the assembler, you must download the file microasm to
MacBus.

The assembler is loaded by having MacBus download the utility
file microasm. Refer to SECTION ONE - Source Code Files for
more details.

If IBCL-like high-level flow control words are required and you
are not loading autoopt, you must also load the control words.

The high-level flow control words are loaded by having the host
download the utility file hiflow. See SECTION ONE - IBCL
Source Files for details.

After the assembler has been loaded, the program you are writing
may be directed to another vocabulary. The following words will
cause your words to be defined in the my-words vocabulary, even
though words in the definition are found in the microasm
vocabulary.

vocabulary my-words my-words definitions microasm

If you are using the assembler to write a stand alone machine code
program rather than add to the IBCL primitives, you may want to
direct the code to a segment other than the IBCL codes segment.
The assembler will assemble code at the working end of any
segment. The user variable asmseg contains the segment
descriptor address of the current assembly segment. Initially it
points to codes. To create a new segment and assemble our
original example into it, type:

MacBus User Manual 3-68 February 1987

Q National Instruments IBCL

500 segment my-code
my-code esmseg !
>>>far my-entry

(create new segment to receive code)
(redirect new code definitions)
(my-entry will return address)
(of next byte of code assembled)
(in this segment.)

(assembly)
(code)
(definitions)
here-c oldc !
codes asmseg !

(set segment end to working end)
(rest to system codes segment)

Remember to reset the code definition segment to codes in case
any future definitions generate code in the IBCL machine code
segment codes. >mfar creates a label named my-entry.
Execution of this label will return the segment paragraph number
and offset with that segment for use by future calls and jumps.
The here-c oldc ! sequence sets a fence below which future errors
will not reclaim memory. Without it an error assembling n’th
subroutine would reclaim the entire segment instead of just the
space allotted to that word. The end-code terminating word of a
code definition provides this function when defining IBCL code
primitive words.

Usually code should only be used when asmseg points to codes. If
you need more than 64K of pure code, export your longer
routines and call them through the codes segment. Overhead using
this method is negligible. One exception is that asmseg may point
to an alternate segment to create a special purpose codes segment
that will later replace the original IBCL codes segment. Replacing
IBCL system segments is an advanced capability best left to
experienced programmers familiar with the system.

Assembler Mnemonics

The assembler accepts mnemonics similar to those of the IBM-PC
Macroassembler. The main difference is that operands are listed
before operators, and operators other than jumps end with a
period. If you also choose to end your jump label names with a
period, this leads to an instruction syntax that resembles sentences,
and is easier to read than typical Forth assembly language. The

October 1986 3-69 MacBus User Manual

IBCL o National Instruments

following simple example defines a word that adds the contents of
variables x and y and stores the result in z.

codeadd ax x+tlmov. axy+Cl add. 2 +tl ax mov. end-code

First specify the destination, then the source, then the operator.
The +[I operand assembles an offset without base or index register.
Some operators have only a source or destination, or an operand
that is both. The operand is always typed before the operator,
with the exception of labels for jump and label operators. If an
offset or an immediate value is required, it is taken from the data
stack.

The complete Intel NEC V4O/V50 instruction set is supported.
This assembler may be used to write any program that could be
written with any conventional assembler.

Macro Definition

Macro capability is inherent by the very nature of IBCL. The
source code sequence forming the macro is used in a colon
definition to define the macro. Any element in the code sequence
may be replaced with a dummy entry created by the defining
word param. All dummy entries must be set before the macro is
used by a code definition. For the above example let us assume
that the temporary register ax may vary:

: param create does cfa execute ; (ut i l i ty)

param tenp
: mat-add temp x +I1 mov. temp y +Cl add.

z+n t e m p m o v . ; (adder macro)
I ax ’ tenp !
code add mat-add end- code (use ax)
’ dx ’ temp !
code add-dx mat-add end-code (use dx)

MacBus User Manual 3-70 October 1986

o National Instruments IBCL

Branch Control

The assembler provides high-level branch control similar to IBCL
control structures in function, but implemented in an altogether
different manner. Do not use the IBCL control words inside the
assembler. The assembler control words end with a period.

Machine level branch control is also available for both forward
and reverse branches. A jump table of hex 80 bytes is provided.
This value may be increased by editing the value of jmp-lim in
the microasm file. Each label requires space for the number of
characters in the label plus 3 bytes. An entry occurs for each
non-reconcilable reference to a label. When a label’s location
becomes known, these entries are removed and an entry for the
label itself is created. The definition of the word that returns the
absolute value of a number on the stack illustrates label and
branch syntax.

code abs
bx bx or. jns positive. bx neg. >>> positive. end-code

The period ending the labels is a strongly encouraged convention.
It ensures that all operational units end with the same visual cue.
The label is not an IBCL word, but a string argument for the
jump or label operator. The label operator >>> makes label
locations easy to spot at a glance.

Things to Remember

When learning assembly language from an IBCL system, remember
that you have a marvelous tool that lets you learn in small steps,
and that enables you to check your understanding at the end of
every step. Learning assembly language has never been so easy.
While you are learning, remember that IBCL uses all the registers
while interpreting from word to word except for ax, cx, dx, di,
and es. These five registers may be used within your practice
machine code words without crashing the system. The remaining
registers would have to be saved and restored - fine if you are an
expert but unnecessary if you are learning. Even experts would

October 1986 3-71 MacBus User Manual

IBCL o National Instruments

first look for a way to avoid the overhead of first saving a register
to memory and then restoring it. The five free registers may be
changed within any word, don’t count on their values across word
boundaries unless you know the structure of the intervening
words.

NEC V4O/V50 Architecture

Registers
Now for a word on the NEC V50. You already know that you
have up to a megabyte of memory that can be addressed by a
paragraph number and an offset. The most common addressing
mode assumes the lists segment for a default paragraph number -
you only need to provide the offset to store and retrieve 16-bit
and occasionally 8-bit numbers. In assembly language you have a
dozen more addresses at which your numbers may be stored.
They are not addressed by number, but by a two character name.
The addresses of the 16-bit registers are:

;“x
cx
dx
bp
SP
si
di
cs

:

top element of the stack is at bx

offset into stack segment of top of return stack
offset into stack segment of top of data stack
offset into lists segment of word to execute next

paragraph number of code segment (codes)
paragraph number of stack segment (stacks)
paragraph number of definition list segment (lists)

es

The first four 16-bit registers may also be addressed as though
they were eight 8-bit registers. They are split into high and
low-order halves.

ah al bh bl ch cl dh dl

MacBus User Manual 3-72 October 1986

o National Instruments IBCL

Remember that bh holds the high-order half of the top word of
the data stack and bl holds the low-order half. bh and bl are not
separate registers from bx, but only a way to address it a byte at a
time.

All registers except the segment registers may be used as source or
destination for most math and logic operations. The byte
accumulator al or the word accumulator ax is always the assumed
destination for multiplication and division. The segment registers
are restricted to mov. push. and pop. operations.

Memory Addressing

Some of the registers may also be used to provide an offset into a
segment for memory addressing. The simplest example is the code
for @ which replaces the top word on the stack with the number
at that offset in the definition list segment.

code @ b x Cbxl mov. end- code

The source is the 16-bit number at the offset found in bx. The
destination is the top of the stack, namely the bx register. Most
operators use the paragraph number in ds to select the segment,
but any segment register may usually be explicitly selected.

c o d e @e es : bx [bxl mov. end-code

In the definition of @e, the es register is selected to provide the
paragraph number. The segment selectors (cs: ss: ds: es:)
immediately generate one byte of machine code, so they may also
be used directly before the memory operand.

code @e bx es: lbxl mm. end-code

This produces the same code as above.

The following registers and combinations may be used to provide
memory offsets. If more than one register is used, the contents of
the two are added in a temporary scratch register.

October 1986 3-73 MacBus User Manual

IBCL Q National Instruments

lbxl kil
Cdil

tbx+sil
tbp+sil

Cbx+dil
Cbpcdil

It is also possible to form an offset by adding a constant to the
contents of the above registers or combinations. If a constant is to
be added use the names below.

+tbxl +Csil +Cbx+sil +tbx+dil + [I
+cbp1 +Cdil +Cbp+sil +Ibp+dil

Note that the addressing mode corresponding to [bpl does not exist
on this microprocessor. It has been replaced with a special mode
+[I which uses a constant offset with no base register. In all cases
the constant used is the top word on the stack.

Single operand instructions need to know whether memory
operands are bytes or words. The following instruction to
increment memory at the offset stored in bx is incomplete and
generates an error since it does not indicate whether a byte or
word should be incremented:

Cbxl inc. (error b/u?)

To specify byte or word, use one of the following:

Cbxl byte-ptr inc.
tbxl word-ptr inc.

Both the source and destination may be a register, but a memory
offset is legal for only one at a time. Attempting to use memory
offsets for both source and destination will generate an error
message.

For some operators, the source may be an immediate value. In
this case the machine code created will include the immediate
value. An immediate byte or word is declared by typing ib or i w
instead of the register or offset words.

ax 339 iw mov. (store 339 into ax)
dl 51 ib add. (add 51 into dl)

MacBus User Manual 3-74 October 1986

Q National Instruments IBCL

The destination can usually be either a register or memory. The
immediate operands obviously can’t be used as destinations.

Flags

The flags and their abbreviations are as follows. The
abbreviations are not assembler words. Assembler words to set
and reset the flags and move them to and from the stack and the
ah register are covered in the instruction section. Flags are
generally set by math or logic operations and are unaffected by
move, stack, or control transfer instructions.

overflow of or 0
direction df d
interrupt if i
trap tf t
sign sf S

zero zf Z

auxiliary carry a f a
parity Pf P
carry cf C

Abbreviations and Conventions

The following abbreviations are used for sets of legal operands.

b-reg
w-reg

reg
seg-reg
memory

reg/mem
immed
accum

ah bh ch dh al bl cl dl
ax bx cx dx bp sp si di
b-reg or w-reg
cs ss ds es
[bx] [si] [bx+si] . . . +[I . . . +[bp+di]
reg or memory
ib iw
byte or word accumulator - ax or al

Source and destination operands must both be byte or both be
word length operands.

October 1986 3-75 MacBus User Manual

IBCL e National Instruments

All operands of the form +E ?] use a number from the stack to
provide an offset relative to the contents of the registers. The ib
and iw operands use a number from the stack to provide the
immediate value. The operand identifier words above do not use
the stack, so no conflict exists with immediate values or offsets on
the stack. If both immediate and offset values are required, the
immediate value should either be below the offset, or preferably
not placed on the stack until just before the ib or iw. Both
numbers are included in the machine code created for the current
operator.

If a short 8-bit offset or immediate is legal and the value is small
enough, the assembler will generate the code for that form.

Error Messages

not found
too many
byte,word
mem,mem
immediate
segreg
operands?
dest=cs
dest?
source?
2 operands
operand ?
byte
count ?
too large
too large
not ace

table full
too far

Attempted to use undefined word.
Cannot have more than two operands.
Byte and word operands cannot be combined.
Source and destination cannot both be memory.
Immediate operand not permitted here.
Segment register not permitted here.
Missing operands.
Destination cannot be code segment register.
Missing destination.
Missing source.
Instruction accepts only one operand.
Single operand missing.
Word operand required.
Count missing for shift or rotate.
Value too large for byte representation.
External opcode exceeds 6 bits for ESC.
Input destination or output source must be
an accumulator.
Jump table full.
Label out of range for short relative jump.
Destination must be within -128 through +127 bytes
of byte following jump instruction.

MacBus User Manual 3-76 October 1986

o National Instruments IBCL

Timing

Since the main purpose of programming in assembly language is to
achieve the fastest possible execution times, the clock cycles
required are listed along with the instructions. Often special
forms of an instruction provide significantly faster execution. If a
+ follows the number of clocks, you must add a correction to
number of clocks for that instruction. The correction depends on
the addressing mode used:

operand
__----- __---

[bxl [si] [di] 5
+[I 6
[bx+si] P-w-W 7
[bx+di] [bp+si] 8

tibxl tibpl +[si] +[di] 9
+Ebx+si] +[bp+dil 11
+[bx+di] +[bp+si] 12

clocks

For a word operand at an odd address, add 4 more clock cycles.

Instruction Set

Data Transfer

mov. Move a byte or word from one location to another.
The source and flags are not affected.

dest

reg
seg-reg
w-reg
reg
accum
41
w

source operator clocks comment
----_- _______ _____ -__-----

reg mov. 2
w-reg mov. 2 cs illegal dest
seg-reg mov. 2 cs legal source
immed mov. 4
+[I mov. 10
accum mov. 10
memory mov. 8+

October 1986 3-77 MacBus User Manual

IBCL e National Instruments

push.

POP.

xchg.

lea.

Ids.

memory reg mov. 9+
memory seg-reg mov. 8+
seg-reg memory mov. 9+

Push the contents of the source location onto the stack.
Decrement the stack pointer sp by 2, and copy the
source contents to that address in the stack segment.
Flags are not affected.

w-reg push. 10
s e g - r e g p u s h . 1 0
memory push. 16+

Pop the top of the stack into the destination location.
Copy the word in the stack segment at offset contained
in sp to the destination, and increment sp by 2. Flags
are not affected.

w-reg POP. 8
seg-reg POP. 8
memory POP. 17+

Exchange the byte or word source and destination operands.
Flags are not affected.

accum reg xchg. 3
reg reg xchg. 4
memory reg xchg. 17+

Load effective address. Load the effective address of
the source operand into the destination operand.
Unlike the mov. instruction, the address rather than the
contents of that address are loaded into the destination.
The flags are not affected.

w-reg memory lea. 2+

Load data segment pointer. Load the destination register

MacBus User Manual 3-78 October 1986

B National Instruments IBCL

les.

lahf.
sahf.

pushf. Push the flag registers onto or pop the flag registers
POPf. from the stack. The flags occupy these bit positions:

xlat. Translate. Replace byte in al with byte at offset

from the word at the memory offset. Load the ds
segment register from the next higher word. Flags are
not affected.

w-reg memory Ids. 16+

Load extra segment pointer. Load the destination
register from the word at the memory offset. Load the
es segment register from the next higher word. Flags
are not affected.

w-reg memory les. 16+

Load ah from the flag registers.
Store ah to the flag registers.
(sign zero ? aux-carry ? parity ? carry)
The bits marked 1 are undetined

lahf. 4
sahf. 4

bit 11
10
9
8
7
6
4
2
0

overflow of
direction df
interrupt if
trap tf
sign sf
zero zf
auxiliary carry af
parity Pf
carry cf
pushf. 10
POPf. 8

October 1986 3-79 MacBus User Manual

IBCL o National Instruments

given by sum of bx and al. The action would be
equivalent to al [bx+al] mov., except that this
instruction is illegal. Essentially, this command
provides an 8-bit index register. A similar but slower
instruction with a 16-bit index register is al [bx+si]
mov. Flags are not affected.

xlat. 11

in.
out.

Transfer a byte or word from an input port to ax or al.
Transfer a byte or word from ax or al to an output port.
The port number may range from 0 through 255. Flags
are not affected.

accum
accum

port# i n .
port# out .

10
10

in-dx. Transfer a byte or word from an input port to ax or al.
out-dx. Transfer a byte or word from ax or al to an output port.

The port number must be in dx and may range from 0
through 64K. Flags are not affected.

accum in-dx. 8
accum out-dx. 8

Arithmetic and Logic
Two operand instructions:

dC. Add with carry dest + source + cf o...sz ap c
add. Add dest + source o...sz ap c
and. Bitwise logical AND dest AND source o...sz p c
cnp- Compare virtual (dest - source) o...sz ap c

MacBus User Manual 3-80 October 1986

Flag usage is indicated to right,
using bit order as would be pushed
to stack. Blank bit positions are
undefined, . are unaffected.

gA987654321D

o National Instruments IBCL

or. Bitwise logical OR dest OR source o...sz p c
Sbb . Subtract with borrou dest - source - cf O...SL a p c
sub. Subtract dest - source o...sz ap c
xor . gitwise exclusive OR dest XOR source o...sz p c

The above words require a destination followed by
a source in one of the following forms.

dest source operand clocks
__-_ ----__ __----- - - - - - -

ret3 reg xxx. 3
act immed xxx. 4
reg immed xxx. 4
reg memory xxx. 9+
memory reg xxx. 16+
* memory reg cmp. 9+
memory immed xxx. 17+

Flags
test. Bitwise logical AND, destination unaffected o...sz p c

rw3 reg test. 3
act immed test. 4
reg immed test. 4
reg memory test. 9+
memory reg test. 9+
memory immed test. lO+

One operand instructions:

dec. Decrement
inc. Increment
neg. Negate
not. Bitwise logical not

The above instructions accept one operand in one of the

October 1986 3-81 MacBus User Manual

Flags
dest - 1 o...sz a p .
dest + 1 o...sz a p .
2’s complement of dest o...sz a p c
l’s complement of dest

IBCL o National Instruments

following forms:

dest
- - - -

reg
memory byte-ptr
memory word-ptr

operand
- - - - - _ -
xxx.
xxx
xxx

clocks
___---
3
16+
16+

For the multiplication and division instructions, an accumulator is
always the destination. The high-order extension of the al
accumulator is the ah register. The high-order extension of the
ax accumulator is the dx register. For multiplication, the
accumulator is multiplied by the source and the result overflows
into the extension if necessary. For division, the numerator is a
double length number held in the accumulator and its extension.
A single length signed numerator may be converted to double
length by cbw. or cwd. (convert byte to word or convert word to
double word). The extension for an unsigned numerator may be
set to zero.

The remainder is left in the extension register and has the same
sign as the numerator. The quotient is left in the accumulator. If
it is too large, a type 0 divide overflow interrupt is generated.

div. Unsigned division.

b-reg div.
w-reg div.
memory byte-ptr div.
memory word-ptr div.

idiv. Signed division.

b-reg
w-reg
memory byte-ptr
memory word-ptr

MacBus User Manual

idiv.
idiv.
idiv.
idiv.

3-82

Flags
. . .

90
155
90+
155+

o...sz a p c

112
177
112+
177+

October 1986

o National Instruments IBCL

mul. Unsigned multiplication. Overflow and o... C

carry flags set if extension becomes nonzero.

b-reg
w-reg
memory byte-ptr
memory word-ptr

mul. 71
mul. 124
mul. 71+
mul. 124+

imul. Signed multiplication. Overflow and o...
carry flags set if extension is not the
sign extension of the accumulator.

c

b-reg imul. 90
w-reg imul. 144
memory byte-ptr imul. 90+
memory word-ptr imul. 144+

The following instructions accept no operands. The source and
destination, the ax or al accumulator, are implied by the
command.

cbw. Sign extend al into ah 2
cwd. Sign extend ax into dx 5

888. ASCII adjust after addition 4 . . . a c
aas. ASCII adjust after subtraction 4 . . . a c
aam. ASCII adjust after multiplication 83 . ..sz p
aad. ASCII adjust after division 60 . ..sz p

daa. Decimal adjust after addition. 4 . ..sz a p c
das. Decimal adjust after subtraction. 4 . ..sz a p c

The ASCII adjust operations are used to correct the
accumulator after arithmetic on unpacked decimal
numbers, numbers with one decimal digit per byte. al may
exceed the value of a legal decimal digit after such an
operation. These operators store the legal higher order

October 1986 3-83 MacBus User Manual

IBCL o National Instruments

digit in ah, leaving al within the 0 to 9 range.

The decimal adjust operations perform a similar function
for packed binary coded decimal where each half of al
stores a separate decimal digit.

Rotate and Shift

The rotate and shift instructions accept a single location operand
and a number from the stack to indicate a single or a multiple bit
shift. The number from the stack is not actually used to set the
shift count, but only to select the single versus multiple bit
machine code pattern. A one on the stack will select the single bit
shift, anything else will select multiple. For multiple bit shifts,
the count must have been set in the cl register by some previous
instruction.

Rotation causes bits that are forced out one end of the byte or
word to be reinserted at the other. Bits that are forced out by a
shift never reenter the operand. Bits forced out of either end of
any operand are moved into the carry flag cf.

Note: If count is not one, the overflow flag of is undefined. For
right shifts and rotates by one the overflow flag is set to one only
if the two new high-order bits are unequal. For left shifts and
rotates by one the overflow flag is set to one only if the new
high-order bit does not equal the carry flag.

Flags
rol. Rotate left, high-order bit to low. 0 C

for. Rotate right, low-order bit to high. 0 C

rcl. Like rol. but cf is included in the circle. o c
rcr. Like ror. but cf is included in the circle. o c
shl. Shift left, zero low-order bit. o...sz PC
shr. Shift logical right, zero high-order bit. o...sz PC

The above instructions accept one operand and a count on
the stack in one of the following formats. The count may
follow the operand or may already be on the stack.

MacBus User Manual 3-84 October 1986

o National Instruments IBCL

dest count operator
---_ ----_ _______
reg 1 xxx.
reg 2..15 x x x .
memory byte-ptr 1 xxx.
memory word-ptr 1 xxx.
memory byte-ptr 2..15 x x x .
memory word-ptr 2..15 x x x .

clocks
- - - - -
2
8 +4 per bit
15+
15+
20+ +4 per bit
20+ +4 per bit

String Manipulation

The string manipulation instructions accept no operands. Register
usage is implied by the instruction. Generally the data segment,
extra segment, source and destination registers (ds es si di) must
be set by previous instructions. In some cases one of the default
segment registers may be replaced by an explicit declaration using
the segment register prefixes (cs: ss: ds: es:). These may be used in
conjunction with the repeat prefix (repx.) and/or the bus lock
prefix (lock:). If more than one prefix is used, interrupts must be
disabled. The return from an interrupt returns control to at most
one prefix byte before the instruction.

Both byte and word versions of all string operators exist.

The source string defaults to the data segment at the offset given
by the source index register. The segment may be over-ridden by
an explicit segment prefix. The destination string is always in the
extra segment at the offset given by the destination index register.
If the operation has a repeat prefix, the repeat count must have
been placed in the cx register by a previous instruction. The
repeat prefix will cause the following string operator to be
repeated and cx decremented by one until cx reaches zero. If the
string operator is cmpsx. or scasx., the operation will be ended
prematurely if the zero flag becomes set when using repz: or repe:
or if the zero flag becomes zero when using repnz: or repne:.

After each operation, the si and di registers are incremented if the
direction flag is clear and decremented if the direction flag is set.
The delta is one for byte operators and two for word operators.

October 1986 3-85 MacBus User Manual

IBCL o National Instruments

clocks

movsb.
movsw.

cmpsb.
cmpsw.

__---
17
17

22
22

Move byte (word) string. Transfer byte (word)
from source to destination

Compare byte (word) string. For this compare,
the destination is subtracted from the source
but only the flags are affected.o...sza p c

lodsb.
lodsw.

12
12

Load byte (word) string. Transfer byte (word) to
accumulator al or ah from source
di not used or affected.

stosb.
stosw.

10
10

Store byte (word) string. Transfer byte (word)
from accumulator to destination
si is not used or affected.

scasb.
scasw.

15
15

Scan byte (word) string. For this compare,
the destination is subtracted from
the accumulator but only the flags
are affected. si is not used or
affected.o...sza p c

repz: 6
repe: 6
repnz: 6
repne: 6

Repeat following string operation until cx becomes
zero, decrementing cx each iteration. Terminate
repz: or repe: if zero flag becomes one.
Terminate repnz: or repne: if zero flag becomes
zero. Premature termination possible only for
compsb. compsw. scasb. and scasw.

Jumps, Calls, and Loops

There are two formats for jumps and calls. Calls, indirect jumps,
and intersegment jumps follow the usual operand first syntax.
Intrasegment direct jumps, both conditional and unconditional, are
followed by the target label. Loops are like conditional jumps
except that a count in the cx register is decremented by one. The
branch is taken only if the cx register has not become zero.

MacBus User Manual 3-86 October 1986

Q National Instruments IBCL

The segment and offset for intersegment direct jumps and calls are
most easily provided by creating a label with nsfar. Suppose we
are assembling code into an auxiliary segment and want the target
of a direct call or jump to be within that code:

previous code >>>far come-here remainder of code
then

come-here callf.

will assemble a far call to come-here.

Calls push the offset of the next instruction onto the stack. For
intersegment calls the cs register is pushed first. Control then
transfers to the target location.

Calls may be direct or indirect, intrasegment or intersegment. For
direct calls, the destination offset is on the stack. The target
segment is next on the stack for far calls.

For indirect calls the usual destination operand format is used.
clocks

offset call. 11 Call intrasegment direct.
reg calli. 13 Call intrasegment indirect.
memory calli. 13+ Call intrasegment indirect.

segment offset callf. 20 Call intersegment direct.
memory callfi. 29+ Call intersegment indirect.

A called subroutine may return control to the instruction after the
call by using a return instruction. The top stack value is popped
into the instruction pointer. For far returns the next stack value
is popped into the code segment register. If the return contained
the + character, it was assembled with a number from the stack
which will be added to the stack pointer sp to discard parameters.
The number should be even, since all stack operations are on
words.

Intrasegement returns must be used with intrasegment calls, and
far (intersegment) returns must be used with far calls.

October 1986 MacBus User Manual

IBCL o National Instruments

#bytes-drop

#bytes-drop

ret. 8
ret+. 12

retf+. 17

Intrasegment return.
Intrasegment return,
add immediate to sp.
Intersegment return,
add immediate to sp.

Unconditional jumps may be direct or indirect, intrasegment or
intersegment. For direct intersegment jumps, the destination offset
and target segment are on the stack. For indirect jumps, the usual
destination operand format is used. Direct intrasegment jumps are
covered with conditional jumps.

segment offset jmpf. 7 Jump intersegment direct.
reg jmpi. 7 Jump intrasegment indirect.
memory jmpi. 7+ Jump intrasegment indirect.
memory jmpti. 16+ Jump intersegment indirect,

Conditional and unconditional intrasegment jumps transfer to a
location at an offset relative to their own position. Use of a jump
table to reconcile jumps and targets prevents any space from being
permanently lost in the dictionary. The table is necessary since
the location of forward jumps is unknown until the target label is
assembled.

The relative offset of the unconditional jump jmp allows access to
the full segment. Offsets for the conditional jumps, and the short
form of the unconditional jump, must be within -128 through
+127 bytes of the next instruction.

There is only one label defining word for these jumps. It does not
directly assemble any machine code, but creates an entry in the
jump table consisting of the label’s length, name string, and
absolute offset within the current codeseg segment.

If any jumps have previously used this label, their entries in the
jump table are used to insert the correct offset in their code and
the entry is removed. Future references to that label by other
jumps immediately enter the correct offset and no further table
entries are created. The jump table may be cleared by setting its

MacBus User Manual 3-88 October 1986

o National Instruments IBCL

first word, number of entries, to zero.

0 jmp-tab !

The constant jmp-lim contains the number of bytes allotted for
jmp-tab. It should be sufficient for defining IBCL primitives of
any reasonable size, but the value in the file may be edited to
provide sufficient room to use the assembler to create programs of
any size.

To create a label, type:

>>> label-name.

The >>> string (pronounced label) makes labels easy to spot. The
same string can be reused for a new label only if the jump table
has been cleared. To clear the jump table, set the first word of
jmp-tab to zero. The jump table is not automatically cleared by
terminating one code primitive or beginning another.

Since labels are just entries in the jump table, they cannot conflict
with IBCL words. All labels defined using >>> should end with a
period to make your programs more readable. This is a
convention, not a requirement.

NOTE: The operator for these instructions does not end with a
period. It is not the end of the instruction.

All direct intrasegment jumps and loops follow the form:

jvrp-operator label-name

For instance, the primitive to return the absolute value of a
number on the stack:

code abs
bx bx or. jns positive. bx neg. >>> positive. end-code

clocks

jmp 7 Unconditional direct

October 1986 3-89

jump. Only jump with

MacBus User Manual

IBCL o National Instruments

label that may be anywhere in segment. Long
form of relative offset always used.

xxx
xxx

8 If jump is taken.
4 If jump is not taken.

The remaining jumps are conditional and the destination label
must be within -128 through +127 bytes of the byte after the
jump. The conditions for taking a jump are given both as flag
settings and relation of destination to source. The latter form is
relevant following a subtract or compare operation.

Jump if , dest is source.

3
jae
j b
jbe
jc
jcxz
je
jg
jge
j l
jle
jmps
jna
jnae
jnb
jnbe
jnc
jne
jng
jnge
jnl
jnle
jno
jnp

cf=O and zf=O above
cf=O above or equal to
cf=l below
cf=l or zf=l below or equal to
cf=l below
cx=o (if count is zero)
zf= 1 equal to
sf=of and zf=O greater than
sf=of greater than or equal to
sf of less than
sf of or zf=l less than or equal to
unconditional, short
cf=l or zf=l not above
cf= 1 not above or equal to
cf=O not below
cf=zf=O not below or equal to
cf=O
zf=O not equal to
sf of or zf=l not greater than
sf of not greater than or equal to
sf=of not less than
sf=of and zf=O not less than or equal to
of=0 (jump if no overflow)
pf=O (parity odd)

MacBus User Manual 3-90 October 1986

o National Instruments IBCL

jns
jnz
jo
jp
jpe
jpo
js
jz

sf=O
zf=O
of= 1
pf= 1
pf= 1
pf=O
sf=l
ZF= 1

(no sign)
(not zero)

(jump if overflow set)
(parity even)
(parity even)
(parity odd)

(negative)
(zero)

Above and below refer to unsigned numbers.
Greater than and less than refer to signed numbers.

loopcx
loope
loopz
loopne
loopnz

cx
cx and zf=l
cx and zf=l
cx and zf=O
cx and zf=O

Loop (jump) if cx is not zero.
Loop if equal.
Loop if zero.
Loop if not equal.
Loop if not zero.

Conditional Execution & Loops

The high-level flow control words parallel the high-level flow
control words of IBCL. They are used by the assembler. They
may be loaded from hiflow. Since the purpose of these packages
is fast execution, we also include minor variations of the control
words that are more efficient in some instances. The source code
is provided on disk in file hiflow, enabling you to create control
words tailored to your particular needs.

The primary variation is a set of words that does not pop the
stack when testing a conditional. Recall that in IBCL the top of
the stack is in the bx register. This is the register that the
conditionals check. Its contents are usually lost when the next
element is popped into it. Often the flag word is used within an
if or a loop and the control word would have to be preceded by a
dup to provide an extra copy. Another variation is easy to write
but too numerous for including a complete set. For these the
condition refers to the flags left by the previous instruction, for
instance:

October 1986 3-91 MacBus User Manual

IBCL o National Instruments

begin. cx bx cmp. uhi le-below. cbxl 0 ib nw. bx inc. repeat.

The condition name is taken from the related conditional jump
name.

All code class high-level flow control words end with a period to
maintain consistency with the assembler. The flow control words
that do not drop the word on top of the stack include a minus
sign. These words use the stack for branch and target addresses
and for tags to check matching errors. The compile time stack
beyond the most recent flow control word should be considered
inaccessible. The execute time stack is used as noted in the
individual words. Nesting on all of these words is limited only by
stack space.

First Terminators
word

if. tt then.

if. tt else. ff then.

if-t. tt then.

if-t. tt else. ff then.

begin. bb again.

begin. bb until.

MacBus User Manual

NOTE: bx is the top stack word.
sp points to the second.

Code tt executes if bx is nonzero.
Next stack word pops into bx.

Code tt executes if bx is nonzero.
Code ff executes if bx is zero.
Next stack word pops into bx.

Code tt executes if bx is nonzero.
bx unchanged.

Code tt executes if bx is nonzero.
Code ff executes if bx is zero.
bx unchanged.

Infinite loop, stack not used.

Code bb repeatedly executes
until bx is nonzero entering until.
Next stack word is pops into bx
on every pass through until.

3-92 October 1986

Q National Instruments IBCL

begin. bb

begin. cc

begin. cc

begin. cc

do.

do-.

until-t. Like until., but bx preserved.

while. bb repeat.
Loop exits when bx is zero entering
while. Next stack word pops into
bx on every pass through while.

while-t. bb repeat.
Like while. except bx preserved.

while-below. bb repeat.
Like while-t. except loop exits
when carry flag is clear.

Push si, then di, onto return stack.
Pop initial value from data stack
(bx) into di, pop limit into si, pop
third stack word into bx.

loop.

+loop.

Like do. but initial value remains
on stack (in bx). Limit is still
removed from stack.

Either form of do. may be used with
any of the following do loop
terminators.

Increment di. If di less than si,
branch back to code after do.
Otherwise pop the top of the return
stack into di, and next word into si,
and continue executing after loop.

Like loop. but the value in the bx
register is added to di instead of 1.
If the increment is negative, the
loop is repeated until the count is
less than the limit.

October 1986 3-93 MacBus User Manual

IBCL o National Instruments

+loop-.

/loop.

The next data stack word is popped
into bx.

Like +loop. but the increment is
retained in bx.

Add value in bx to di. If di is
below limit (unsigned), branch back
to code after do.
Otherwise pop the top of the return
stack into di, and next word into si,
and continue executing after /loop.
The next data stack word is popped
into bx.

/loop-. Like /loop. but the increment is
retained in bx.

Words to use inside do loops.

leave. Set di to si, terminating loop at
next pass through loop terminator.

i. Push count onto data stack.
(Push bx, then copy di to bx)

i. Push count of next outer do loop
onto data stack.
(Push bx, then copy top of return
stack to bx)

MacBus User Manual 3-94 October 1986

o National Instruments IBCL

Processor Control

These instructions have no operands, the operator is sufficient to
generate the code.

hlt.

clocks
-_---

2 Cause cpu to enter halt state. This state may be
cleared by an enabled external interrupt or by a
system reset.

lock: 2 Bus lock prefix. The processor’s bus-lock
signal will be asserted for the duration of the
operations caused by the following instruction.
Used in multiprocessor systems to control access
to shared resources. For instance, the following
sequence will wait for some resource to become
available, signaled by a non-zero value in the
variable free?.

code wait m> notyet.
al al xor.

lock: free? +[I al xchg.
al al test.
jz notyet.end-code

code release free? +[I 0 ib mov.end-code

nop. 3 No operation. Implemented as ax ax xchg.

CIC.

stc.
cmc.

2 Clear carry flag.
2 Set carry flag.
2 Complement carry flag.

October 1986 3-95 MacBus User Manual

IBCL o National Instruments

cld.
std.

2 Clear direction flag, set to ascending.
2 Set direction flag, set to descending.

cli. 2 Clear interrupt flag, disable maskable
external interrupts.

sti. 2 Set interrupt flag, enable maskable
external interrupts.

MacBus User Manual 3-96 October 1986

e, National Instruments IBCL

Interrupts

Interrupts may be generated by software to transfer control
through any of 256 vectors at the bottom of memory. The address
of the vector transferred through is four times the interrupt
number. For instance, the vector for interrupt 3 is at location 12
decimal. The first word at this location holds the segment
paragraph number into which control is transferred. The second
word holds the offset into that segment of the entry of the
interrupt handler. See the IBM Technical Reference Manual or its
equivalent for your computer for system interrupt usage.
Interrupts between 128 and 255 are listed in the BIOS memory
map as available for independent use.

int.

into.

iret.

Push the flag registers on the stack, clear tf and if
(trap and interrupt flags), and transfer control as if
for indirect intersegment call through vector element.

clocks
--___

interrupt-number int. 50
3 int. 51

Generate interrupt 4 if overflow

into. 52
4

(breakpoint interrupt)

flag (of) is set.

(overflow flag set)
(overflow flag not set)

Perform intersegment return, then pop next stack word
into flags. This restores
had before the interrupt
routine.

iret.

the flags to the values they
which caused entry into this

24

October 1986 3-97 MacBus User Manual

IBCL o National Instruments

CoProcessor Support

est. This instruction forms the base for all NEC 72191
numeric coprocessor instructions. It requires a 6
bit number (0 through 63) on the stack to use as the
opcode for the coprocessor instruction. The
instruction also requires either a memory operand
([XXI or +Dxl 1 or a second number on the stack.
The second number selects either one of the eight
NEC 72191 stack registers or one of eight specific
commands for the given opcode. In both cases the
possible values are 0 through 7. The top register of
the NEC 72191 stack is 0, the one under it is 1.

or
memory 0..63 est.

0..7 0..63 est.

You will not normally need to use this instruction
since complete NEC 72191 instruction mnemonics are
provided in the 72191asm file.

wait.
fwait.

These instructions are the same. The fwait. version is
just a reminder that the floating point processor is the
cause of the delay. The primary processor must not
access any memory location that the coprocessor is
attempting to read or to write. The primary
processor is free to read or write other memory
locations. The coprocessor must not be given a new
instruction until the previous one has been completed.
This last requirement is met automatically by
instructions using NEC 7219 1 mnemonics from the
72191asm file - they all code an fwait. preceding
each instruction.

Omission of fwait. wherever needed to prevent memory
conflicts, can produce random bugs which are extremely
difficult to detect. The logic may be flawless, but if
the result isn’t ready it will be wrong.

MacBus User Manual 3-98 October 1986

Q National Instruments IBCL

NEC 72191 Architecture

The NEC 72191 is an arithmetic coprocessor similar to but more
advanced than the Intel 8087. Your MacBus is socketed to accept
this coprocessor, but it is not available at this time. IBCL,
however, can use the coprocessor. Two IBCL source files on your
distribution diskette (72191ibcl and 72191asm) provide high and
low level support, respectively, for the coprocessor. The next
section, NEC 72191 Instructions, describes the IBCL words
contained in these two files for coprocessor support.

Data registers

The eight 80-bit data registers of the NEC 72191 are organized as
a stack. If a ninth data word is forced onto this stack, both its
value and the value of the bottom word on the stack are lost.
This happens because both would occupy the same register, so the
NEC 72 191 marks that register empty. Data in the NEC 72191
data registers is always in an internal temporary real format. The
current top of fstack may occur in any of the registers, and all
addresses are relative to the current top of stack.

Status Word

The status word may be stored in memory and examined to
determine the current state of NEC 72191 operations including the
result of comparisons.

bit definition

15
14
13.11
10.8
7

Set if previous instruction still executing (busy).
c3 of condition code.
Absolute register address of top of stack.
c2 through CO of condition code.
The interrupt request bit is set if any of the
following exceptions are set.
precision
underflow

5
4

October 1986 3-99 MacBus User Manual

IBCL

MacBus User Manual 3-100

o National Instruments

overflow
zerodivide
denormalized operand
invalid operation

October 1986

IBCL o National Instruments

Tag Word

The tag word contains a 2-bit code for each of the eight data
registers. The first 2 bits are for register 7 (absolute) and the last
2 bits for register 0.

00
01
10

11

valid nonzero
valid zero
special
(zero, unnormal, infinity, indefinite, or
not a number)
empty

Registers are empty
assigned or freed as
stack.

when the coprocessor is initialized and are
numbers are pushed and popped from the

Data Types

All numbers are stored in the NEC 72191 in the same Temporary
Real format. Instructions that require a memory reference will
read or write a number at the memory location using one of the
following data types.

Note: The packed decimal, long integer, and temporary real
data types are used only by fld. and fstp. load and
store instructions.

Type # bits
____ ______
Word Integer 16
Short Integer 32
Long Integer 64
Packed Decimal 80

range

-32768 through 32767
-2,147,483,648 through 2,147,483,647
-9*10**18 through 9*10**18
18 digits (signed)

MacBus User Manual 3-102 October 1986

o National Instruments IBCL

exponent
#bits bias
---____---

Short Real 32 8 127 6 or 7 digits
lo**-37 to lo**38

Long Real 64 11 1023 15 or 16 digits
lo**-307 to lo**308

Temporary Real 80 15 16383 19 digits
1 O**-4932 to lo**4932

The least significant byte is always at the lowest addressed
memory location. All integers are in the usual 2’s complement
form. Only the high-order bit of highest addressed byte of a
packed decimal is significant - it is set for negative numbers.
The corresponding bit is also set to indicate negative real numbers,
but it is immediately followed by an exponent. The leading bit of
the magnitude is explicit in temporary real format, but left
understood in the other real formats.

IBCL’s scaled decimal package interfaces through the short integer
data type. The precision of this interface is more than adequate
for entering and printing most numbers, and the decimal point is
handled automatically. Intermediate steps could possibly require
more precision, and this is easily accomplished using the assembler
extensions and longer data types. Be careful to allot sufficient
space to variables for the various data types.

October 1986 3-103 MacBus User Manual

IBCL o National Instruments

NEC 72191 Instructions

To use the 72191 from IBCL, you must download one of the IBCL
source files (72191ibcl or 72191asm). 72191ibcl provides a set of
high level IBCL words which you may use interactively or in
colon definitions. You may download this file to MacBus using
the interactive IBCLload utility or the language interface function
IBCLload. Refer to SECTION ONE - IBCL Source Files for more
details.

Before downloading 72191asm, you must download the IBCL
assembler contained in the file microasm. 72191asm contains
IBCL definitions which allow you to use 72191 operations in your
IBCL assembly language definitions. This section documents the
coprocessor support facilities provided by these two utility files.

A full complement of NEC 72191 high-level IBCL words are
included in the file 72 19 1 ibcl. They include NEC 7219 1 versions
of most stack control and memory reference words, as well as
comparisons and math from addition and subtraction through trig
and log functions. Format conversion to and from the scaled
decimal accepted and printed by IBCL is also provided. The
scaled decimal package is not needed by 72191ibc1, which
duplicates those words which are useful. Duplicated words
include:

sc-constant scaler SC! sc6l and SC .

Our stack notation will contain a double colon :: with the NEC
72191 stack always to the right. Remember that the NEC 72191
stack can only hold eight numbers. Some of the transcendental
functions need two extra temporary register from the NEC 72191
stack for intermediate calculations.

Data Type Selection

These words set the data type assumed by memory reference
instructions. The data type set remains in effect until changed.

MacBus User Manual 3-104 October 1986

o National Instruments IBCL

i16 Word integer
r32 Short real
i32 Short integer
r64 Long real

i64
bed
treal

Long integer fld. and fstp. only
Binary coded decimal I,

Temporary real II

Instruction Format

The NEC 72191 mnemonics follow the usual IBCL pattern, and
always begin with f. They may be preceded by either a single
operand or no operand. If an operand is present, it must be of
the memory reference type or a single word integer from 0
through 7 addressing one of the 8 NEC 72191 stack registers
relative to the top of the NEC 72191 on chip stack. Instructions
needing two operands always use the top number on the NEC
72191 stack for one.

n
[ccl

offset +Ecc]

Fccccc.
Fccccc.
Fccccc.
Fccccc.

[bxl]
x +[bp+di]

fabs.
fadd.
fsub.
fdiv. (x is some variable.)

October 1986 3-105 MacBus User Manual

IBCL o National Instruments

Data Tram fer

fld. Read using memory/fstack operand and push value on
fstack. (NEC 72191 stack)

fst. Format number on top of fstack using current data
type and store at memory/fstack location.

fstp. Format number on top of fstack using current data
type and store at memory/fstack location. Then pop
fstack (throw away top number).

fxch. Exchange top of fstack with number at fstack location.

stack
clock count range
i64 bed treal

memory fld.
memory fstp.

60-68+ 290-310+53-65+
94-105+ 520-540+52-58+

fstack fld. 17-22
fstack fst . 15-22
fstack fstp. 17-24
fs tack fxch . lo-15

i16 r32 i32 r64
memory fld. 46-54+ 38-56+ 52-60+ 40-60+
memory fst. 80-90+ 84-90+ 82-92+96-104+
memory fstp. 82-92+ 86-92+ 84-94+98-106+

MacBus User Manual 3-106 October 1986

o National Instruments IBCL

Comparison

The compare, test, and examine commands return their results by
setting the condition code bits in the NEC 72191 Status word.

fcom. Compare number on top of fstack with memory/fstack
operand.

fcomp. Compare as for fcom., then pop top number from fstack.
fcompp. Compare top two numbers on fstack and then pop both.
f&t. Compare top fstack number to zero.

Set condition codes as follows: c3 co

Top number > operand 0 0
Top number < operand 0 1
Top number = operand 1 0
not a number or projective infinity 1 1

fxam. Examine number on top of fstack and set condition
codes c3..cO to indicate type.

0 + unnormal 1 invalid 2 - unnormal 3 invalid
4 + normal 5 + infinity 6 - normal 7 - infinity
8 + 0 9 empty 10 - 0 11 empty

12 invalid 13 empty 14 invalid 15 empty

Unnormal numbers are so small that normalizing them would give
a negative (unrepresentable) biased exponent. Instead, the biased
exponent is set to zero and magnitude bits are right shifted to
compensate. If the number is small enough, all bits are shifted
out the end of the register and it becomes an ordinary positive or
negative zero. Slightly larger numbers retain some bits, but since
the full register width is not being used some precision is lost.

October 1986 3-107 MacBus User Manual

IBCL o National Instruments

clock count range
i16 r32 i32 r64

memory fcom. 72-86+ 60-70+ 78-91+ 65-75+
memory fcomp. 74-88+ 63-73+ 80-93+ 67-77+
fstack fcom. 40-50
fstack fcomp. 45-52

fcompp. 45-55
ftst. 38-48
fxam. 12-23

MacBus User Manual 3-108 October 1986

o National Instruments IBCL

Constants
Push the specified constant onto the fstack.

fldz.
fldl.
fldpi.
fld12t.
fldl2e.
fldlg2.
fldln2.

zero
one

Eg base 2 of 10
log base 2 of e
log base 10 of 2
log base e of 2

Arithmetic

fadd.
fsub.
fmul.
fdiv.

fadd”.
fsub”.
fmul”.
fdiv”.

faddp.
fsubp.
fmulp.
fdivp.

clock count
11-17
15-21
16-22
16-22
15-21
18-24
17-23

fsubr.

fdivr.

fsubr”.

fdivr”.

fsubrp.

fdivrp.

Add, subtract, multiply, or divide the number on top of the fstack
and the memory/fstack operand. The suffix determines the
destination, order of operands, and whether or not to pop the top
of the stack.

none
II

P

r
I”
rP

Subtract from/divide into number on top of fstack.
result returned in top of fstack
result returned to mem/fstack operand
result returned to mem/fstack operand

fstack popped

Subtract from/divide into mem/fstack operand
result returned in top of fstack
result returned to mem/fstack operand
result returned to mem/fstack operand

and fstack popped

October 1986 3-109 MacBus User Manual

IBCL o National Instruments

memory
memory
memory
memory
fstack
fstack
fsteck
fstack

fadd--.
fsub--.
fnwl--.
fdiv--.
fadd--.
fsub--.
flmll--.
fdiv--.

clock count range
stack i16 r32 i32 t-64

102-137+ 90-120+ 108-143+ 95-125+
102-137+ 90-120+ 108-143+ 95-125+
124-138+ IIO-125+ 130-144+ 112-168+
224-238+ 215-225+ 230-243+ 220-230+

70-100
70-100
90-145
193-203

The following words use the top one or two numbers on the
fstack. The result replaces the top number (x), but any second
number (y) remains on the stack unchanged.

clock count

fsqrt.

fscale.

fmdint.
fxtract.

fabs.
fchs.
fprem.

180-186 Replace top number with its square root.
-0 <= x <= +infinity

32-38 Scale top number by second.
i.e., Add second (rounded toward zero to
an integer) to the exponent of the first.
-2**15 <= y <= 2**15, y integer

16-50 Round top number to integer.
27-55 Replace top number with its exponent,

then push significand onto fstack.
(an fscale. at this point would put
the number back together, except that
a copy of the exponent would remain.)

10-17 Absolute value of top number.
10-17 Change sign of top number.
15-190 Partial remainder of top/second.

fprem. is usually used to reduce the argument of a cyclic function
to its fundamental range. (to reduce an angle in radians to the
range of 0.0 through pi/4) To allow more rapid response to
system interrupts, the maximum clock count of this instruction has
been kept low by limiting the range reduction for one step to
2**64. If the top number was (33.9 * 2**64 * pi/4) and the

MacBus User Manual 3-110 October 1986

o National Instruments IBCL

second was pi/4, one execution would leave (33.9 * pi/4), which
is still not in the range of the fptan. function. A second
execution would leave the desired result, (.9 * pi/4). Bit c2 of
the status word will be set if the operation must be repeated.

The three lowest order bits of the quotient are returned in status
word bits CO, c3, and cl, where cl is the least significant bit and
CO the most significant. c3 occupies bit 14 of the status word,
while c2 through CO occupy bits 10, 9 and 8. If you store the
status word out to memory to check these bits, remember to use
an fwait. after the store and before trying to load the status word
into an NEC V50 register or otherwise attempting to use it.

October 1986 3-111 MacBus User Manual

IBCL o National Instruments

Transcendental

The transcendental instructions also use the top one or two
numbers on the fstack. x represents the number on top of the
fstack, and y the number under it.

In all cases, the arguments are destroyed and only the results are
returned on the fstack.

ALL ARGUMENTS MUST BE VALID, NORMALIZED, AND
IN RANGE.

fptan.

fpatan.

f2xml.

fyl2x.

clocks

30-540 Tangent. Angle (x) must be in radians

with 0 < x < pi/4. This function does not
really return the tangent, but the length of the
opposite and adjacent side of a triangle with
radius about 1.5. The length of the adjacent
side is stored on top so the tangent could be
calculated with: 1 fdivrp.

250-800 Arctangent. Arguments are lengths of the
opposite and adjacent sides as returned by
fptan. 0 < y(opposite) < x(adjacent) < infinity

310-630 Exponential. (2 ** x) - 1
x must be between 0 and 0.5 inclusive.
Offsetting the result by minus one preserves
precision when x is very near zero and the
result would be very near one. To calculate
other exponents, use the relation x**y =
2**(y * LOG2(x))

Y * log2(x) 0 < x < +infinity
900-l 100 -infinity < y < +infinity

Note: Neither x nor y can be infinite.

MacBus User Manual 3-112 October 1986

o National Instruments IBCL

fyl2xpl. y * log2(x+1) 0 <= x <= I-sqrt(0.5)
700- 1000 -infinity < Y < +infinity

The inverse of f2xml.

Processor Control

i-hit.

fnop.

fwait.

fldcw.

fstcw.

fstsw.

feni.

fdisi.

2-8

IO-16

3+5n

7-14+

12-18+

12-18+

2-8

2-8

Initialize NEC 72 19 1
Control word:
projective infinity, round to nearest, 64 bits,
interrupts disabled, all exceptions masked
Status word:
not busy, empty stack, no interrupt, no
exceptions
Tag word:
all tags 11 for empty register
Data registers unchanged

No operation.

Wait until NEC 72191 has completed instruction.

Load control word into NEC 72 191. (2 bytes)
memory fldcw.

Store NEC 72191 control word into memory.
(2 bytes)
memory fstcw.

Store NEC 72191 status word into memory.
(2 bytes)
memory fstsw.

Enable interrupts. Clear interrupt enable
mask bit in Control word.

Disable interrupts. Set interrupt enable
mask bit in Control word.

October 1986 3-113 MacBus User Manual

IBCL e National Instruments

fclex. 2-8

flncstp. 6-12

Clear exception, interrupt and busy flags.

Increment fstack pointer. This makes a
register within the fstack the temporary
top of fstack. If you pop numbers while
at this temporary top of fstack, you
could leave empty registers within your
fstack. Use with care.

fdecstp.

ffree.

6-12 Decrement fstack pointer.

9-16 Mark indicated register empty.
fstack# ffree.

fstenv. 40-50+ Store environment.
Control word, status word, tag word, instruction
pointer, operand pointer. (14 bytes)

memory fstenv.

fldenv. 35-45+ Load environment.
memory fldenv.

fsave. Save complete NEC 72191 state in 94 byte area
197-207+ with environment at beginning followed by

data registers.
memory fsave.

frstor. Restore NEC 72191 state.
197-207+ memory fsave.

MacBus User Manual 3-114 October 1986

o National Instruments IBCL

SEGMENT MANAGl!lMENT
IBCL provides two mechanisms for manipulating the full one
megabyte address range of the NEC V50. This section documents
the segment management system which is designed for use prior to
compilation of your program. The heap manager, which is
designed for use during execution of your program, is discussed in
the section “HEAP MANAGEMENT WORDS.”

IBCL reserves areas of memory for various purposes. For
instance, IBCL reserves a large area for definitions of new words
you define. In IBCL terminology we say that the definition
segment is not completely full. It does, however, have a default
size limit that is less than 64K. If you try to compile a large
program you may run out of dictionary space.

The IBCL words discussed in this section allow you to enlarge
IBCL’s reserved areas prior to compiling your program. Include
the necessary segment management word sequence at the
beginning of your program.

These words conflict with the heap manager. Once you have
initialized the heap, you may no longer use segment management
words.

Relocation Tools

The basic segment relocation tool is copy-seg. A new segment for
the destination must be created first unless an old one can be
reused. The size of the destination segment must be sufficient to
hold the portion of the source segment below its working end.
The destination segment may be larger or smaller than the source.
To create a new segment and copy an old one into it, type:

size-of-new-segment segment name-of-new-segment
name-of-source-segment name-of-new-segment copy-seg

Another word will automatically allocate space for a new segment,
move the contents of the old segment to it, and reuse the old
segment descriptor and name for the new location. The descriptor

October 1986 3-115 MacBus User Manual

IBCL o National Instruments

is relinked to maintain a sequential list corresponding to the
physical memory. (First descriptor in the list is for the top
segment, last descriptor is for the lowest.) The space occupied by
the segment is added to the space allocated to the segment below
it. This word is primarily used by the special system segment
move words.

new-size segment-descriptor move-seg

The new size is left on the stack and the segment descriptor is
replaced by the new first paragraph number.

System segments cannot be summarily moved. Other actions must
take place to maintain continuity of control. These segments
include the definition list segment lists, the stack segment stacks,
and all vocabulary segments including ibcls. The code segment
codes is never moved. Its size may be increased up to 64K bytes
by moving the segments above it higher.

Additional definition list segments may be created by typing:

size-of-new-list-segment make-list name-of-new-segment

Control may be transferred to an alternate definition list segment
by typing:

alternate-segment-descriptor use-list

Alternate list segments should only be created from the original
system list segment lists. When in the alternate segment, its
descriptor will use the name lists. Return to the system list
segment is accomplished by again typing:

alternate-segment-descriptor use-list

The first action on entering an alternate list segment should be to
create a new vocabulary for words created in it. Words from a
single vocabulary should always refer to a single definition list
segment. The task and forget-task pair will not work if used

MacBus User Manual 3-116 October 1986

Q National Instruments IBCL

across multiple list segments.

The following words are used to move system segments and alter
their size:

new-size new-voc (moves context vocabulary segment)
new-size new-stack
new-size new-list

In each case the new size is checked against the working end of
the segment and the operation aborts if it is too small. The
contents of the old segment are moved to the new segment at the
start of free memory, and the old segment descriptor and name
are reused. The descriptor is relinked to maintain a sequential list
corresponding to the physical memory. The first descriptor in the
list is for the highest segment, last descriptor is for the lowest.
The space formerly occupied by the segment is added to the space
allocated to the segment below it.

Although segments may be moved at any time, it is advisable to
plan each move carefully. Careless moving can leave gaps in the
memory map that are unreachable by the segment management
utilities. More general memory management operations are
provided by the heap manager.

GPIB Control Words

IBCL provides a complete set of words for manipulation of the
IEEE-488 (GPIB) bus. This section documents the IBCL GPIB
word set. For a complete explanation of GPIB operations, see
APPENDIX B.

IBCL has two types of words that manipulate the GPIB: device
level words and MacBus GPIB port level words. When you use
device level words IBCL automatically computes and sends the
required command strings over the GPIB. IBCL maintains a table
of configuration information for each device. This information
defines the characteristics of a particular device, including its
GPIB address, a time limit for data transfers, and any end-of-
string modes.

February 1987 3-117 MacBus User Manual

IBCL o National Instruments

When performing I/O operations, IBCL takes the device’s GPIB
address from the appropriate configuration table and its own GPIB
address from the MacBus interface configuration table and sends
these out as GPIB command bytes. The configuration tables may
be changed with IBCL words documented later in this section.

To perform device level operations, MacBus must be CIC.

The following is a description of each GPIB-related IBCL word.

GPIB Status Variables

Some of the GPIB words documented so far use global variables to
reflect their status. This technique allows easy access to operation
results without cluttering up IBCL’s stack. The global IBCL
variables are:

ibret (-- a)
iberr (-- a)
ibcnt (-- a)
ibppr (-- a)
ibspr (-- a)

contains return value from last operation.
contains error status of last operation.
contains byte count of last transfer.
contains response from last parallel poll
contains response from last serial poll.

Associating Names with GPIB Devices

Device level IBCL words require a device number as a stack
parameter. A device’s configurations table stores its name,
however, IBCL lets you use this name in device calls instead of
having to remember the device number. The IBCL word ibfind
scans the device table for a name and creates an IBCL constant of
this name using the device number as the value. For instance, if
you have used the IBCONF utility to give device 3 the name
‘plotter’, you may issue the following ibfind call:

ibfind plotter

Now you may use the word plotter anywhere in an IBCL program
and the result will be the same as if you had used the number 3
instead.

MacBus User Manual 3-118 February 1987

Q National Instruments IBCL

Note that ibfind MAY NOT BE COMPILED INTO AN IBCL
WORD! You MUST issue any ibfind commands outside of colon
definitions. Once device names are defined, they may be used
within colon definitions.

Device Level Words

The following pages describe the device level words.

February 1987 3-119 MacBus User Manual

CLR (device) CLR

NAME
clr - send selected device clear (SDC)

SYNOPSIS
d clr

DESCRIPTION
d is a device number or device name used in an ibfind call.

clr sends the message selected device clear (SDC). SDC
reinitializes all device functions. clr sends the following
commands:

- Unlisten (UNL)
- Listen address of the device
- Secondary address of the device if applicable
- Selected Device Clear (SDC)
- Unlisten (UNL)

EXAMPLE

1. To clear device plotter:

plotter clr

MacBus User Manual 3-120 February 1987

LLO (device) LLO

NAME
110 - place all devices in local lockout state

SYNOPSIS
d 110

DESCRIPTION
d is a device number or device name used in an ibflnd call.

110 sends the message LLO which places all devices in the
local lockout state. This usually inhibits recognition of
front panel input.

Ilo sends the following command:

- Local Lockout (LLO)

EXAMPLE

1. To place device plotter in local lockout state:

plot ter Llo

SEE ALSO
lot.

February 1987 3-121 MacBus User Manual

LOC (device) LOC

NAME
lot - go to local mode

SYNOPSIS
d lot

DESCRIPTION
d is a device number or device name used in an iblind call.

lot is used to move devices temporarily from a remote
program mode to a local mode. A device enters remote
mode when the REN line is asserted and the device detects
its listen address.

lot places the indicated device in local mode by sending
the command sequence:

- Unlisten (UNL)
- Listen address of the device
- Secondary address of the device if applicable
- Go To Local (GTL)
- Unlisten (UNL)

EXAMPLE

1. To return device plotter to local state:

plot ter Lot

SEE ALSO
110.

MacBus User Manual 3-122 February 1987

ONL (device) ONL

NAME
on1 - place device online or offline

SYNOPSIS
d f on1

DESCRIPTION
d is a device number or device name used in an ibflnd call.

f is a true/false value indicating online/offline.

on1 reinitializes all software as though bringing the device
online for the first time.

Call on1 with f non-zero to reset a device software to its
power-on state. Call on1 with f zero only when finished
with a device.

EXAMPLE

1. To disable device plotter:

plotter 0 on1

SEE ALSO
ibfind.

February 1987 3-123 MacBus User Manual

PCT (device) PCT

NAME
pet - pass control

SYNOPSIS
d pet

DESCRIPTION
d is a device number or device name used in an ibfind call.

pet passes Controller-In-Charge (CIC) authority to the
specified device. The MacBus GPIB port automatically
goes to an idle state. The function assumes that the device
has Controller capability.

pet sends the following commands.

- Talk address of the device
- Secondary address of the device, if applicable
- Take Control (TCT)

EXAMPLE

1. To pass control to device pcxt:

MacBus User Manual 3-124 February 1987

PPC (device) PPC

NAME
ppc - parallel poll configure

SYNOPSIS
d v PPC

DESCRIPTION
d is a device number or device name used in an ibfind call.

v is a valid parallel poll enable/disable command.

ppc enables or disables the device from responding to
parallel polls.

ppc sends the following commands:

- Unlisten (UNL)
- Listen address of the device
- Secondary address of the device, if applicable
- Parallel Poll Configure (PPC)
- Parallel Poll Enable (PPE) or Disable (PPD)
- Unlisten (UNL)

Each of the 16 PPE messages specifies the GPIB data line
(DIOl through D108) and sense (one or zero) that the
device must use when responding to the Identify (IDY)
message during a parallel poll. The assigned message is
interpreted by the device along with the current value of
the individual status (ist) bit to determine if the selected
line is driven true or false. For example, if PPE=Ox64,
DIOS is driven true if ist=O and false if ist=l. And if
PPE=Ox68, DIOl is driven true if ist=l and false if ist=O.
Any PPD message or zero value cancels the PPE message
in effect.

Which PPE and PPD messages are sent and the meaning of
a particular parallel poll response are all system dependent
protocol matters to be determined by the user.

February 1987 3-125 MacBus User Manual

PPC (device) PPC

EXAMPLES

1. To configure device dvm to respond to a parallel poll
by sending data line D103 true if IST=O:

dm 62 ppc

2. To configure device dvm to respond to a parallel poll
by sending data line DIOl true if IST= 1:

dm 68 ppc

3. To cancel the parallel poll configuration of device
dvm:

SEE ALSO
rpp.

MacBus User Manual 3-126 February 1987

(device) RD

NAME
rd - read data from GPIB

SYNOPSIS
d buf cnt rd

DESCRIPTION
d is a device number or device name used in an ibfind call.

buf is the long address of the buffer to use (buf might have
been created using allot).

cnt specifies the number of bytes to read from the GPIB.

rd reads cnt bytes of data from a GPIB device. The
following steps are performed:

1. The device is addressed to talk and the MacBus GPIB
port to listen, if not already addressed to do so.

2. The MacBus GPIB port reads the data from the
device.

3. Attention is reasserted.

When rd returns, ibcnt is the actual number of data bytes
read from the device; and iberr is the first error detected
if iberr is non-zero.

rd operation terminates on any of the following events:

- When cnt bytes have been read
- Error is detected
- Time limit is exceeded
- END message is detected
- eos character is detected (if this option is enabled)

After termination, ibcnt contains the number of bytes read.

October 1986 3-127 MacBus User Manual

(device) RD

EXAMPLES

1. To read hex 56 bytes of data from device tape:

tape buf 56 rd

MacBus User Manual 3-128 October 1986

RPP (device) RPP

NAME
rpp - conduct a parallel poll

SYNOPSIS
d rpp

DESCRIPTION
d is a device number or device name used in an ibfind call.

rpp conducts a parallel poll of previously configured
devices by sending the IDY message (ATN and EOI both
asserted). If ibret contains a non-zero value upon
completion, ibrpp contains a valid response.

EXAMPLE

1. To remotely configure device lcrmtr to respond
positively on D103 if its individual status bit is 1, and
then parallel poll all configured device:

lcrmtr 6A ppc
lcrmtr rpp

SEE ALSO
PPC.

October 1986 3-129 MacBus User Manual

RSP (device) RSP

NAME
w - conduct a serial poll

SYNOPSIS
d rsp

DESCRIPTION
d is a device number or device name used in an ibthd call.

rsp is used to serially poll one device and obtain its status
byte or to obtain a previously stored status byte. If the
0x40 bit of the response is set, the status response is
positive, i.e., the device is requesting service.

If automatic serial polling is enabled (default
configuration), devices are polled the instant they request
service. Positive responses are saved in a queue. If a
device has been polled, the RQS bit of that device’s status
word is set, and in this case a call to rsp returns the
previously acquired status byte. If the RQS bit of the
status word is not set when rsp is called, the device is
serially polled. Upon completion, if ibret contains a non-
zero value, ibspr contains a valid serial poll response.

The interpretation of the response in ibspr, other than the
RQS bit, is device-specific. For example, the polled
device might set a particular bit in the response byte to
indicate that it has data to transfer, and another bit to
indicate a need for reprogramming. Consult the
manufacturer’s documentation for the device for
interpretation of the response byte.

MacBus User Manual 3-130 October 1986

RSP (device) RSP

EXAMPLE

1. To obtain the Serial Poll response byte from device
tape:

tape rsp

SEE ALSO
wait, wrqs.

February 1987 3-131 MacBus User Manual

(device) TRG

NAME
trg - Send device trigger

SYNOPSIS
d trg

DESCRIPTION
d is a device number or device name used in an ibflnd call.

trg addresses and triggers the specified device, then
unaddresses all devices on the GPIB.

trg sends the following commands:

- Unlisten (UNL)
- Listen address of the device
- Secondary address of the device, if applicable
- Group Execute Trigger (GET)
- Unlisten (UNL)

The response to a trigger is device dependent.

EXAMPLE

1. To trigger device analyz:

analyz trg

MacBus User Manual 3-132 February 1987

WAIT (device) WAIT

NAME
wait - wait for selected events

SYNOPSIS
d mask wait

DESCRIPTION
d is a device number or device name used in an ibflnd call.

The mask bit is set to wait for the corresponding event to
occur.

wait is used to monitor the events selected in mask and to
delay processing until any of them occur. These events
and bit assignments are shown below:

Device Wait Mask Layout
Mnemonic Bit Hex Description

Pos Val
TIM0 14 4000 Time limit exceeded
END 13 2000 END detected

RQS 11 800 Device requesting
service

Disabling timeouts should be done only when it is certain
the selected event will occur. wait always returns when
the time limit is exceeded regardless of whether the TIM0
bit is specified. To disable timeouts, use the configuration
control words (described later in this section)
to set the time limit to zero.

EXAMPLES

1. To wait for zero:

logger 0 wait

2. To wait for device logger to request service or timeout:

logger 4800 wait

February 1987 3-133 MacBus User Manual

WAIT (device) WAIT

3. To wait indefinitely for device logger to request
service:

0 logger d_tmo setd
logger 800 wait

SEE ALSO
rsp, wrqs.

MacBus User Manual 3-134 February 1987

WRQS (device) WRQS

NAME
wrqs - wait for specific status byte

SYNOPSIS
d mask val wrqs

DESCRIPTION
d is a device number or device name used in an ibfind call.

mask defines the specific status bits of interest.

val defines the desired bit configuration.

wrqs will wait for a device to request service with a status
byte that matches the mask and value. The serial poll
queue is first examined to see if a match is found.

A match is made if a status byte, stb, is received such that:

(stb & mask) == value

This technique allows waiting for specific bits in a status
byte. An exact match of the value is always required.

EXAMPLES

1. To wait for device rx3 to request service with the byte
hex 45:

rx3 FF 45 wrqs

2. To wait for device rx3 to request service with any byte
with either bit 2 or bit 3 asserted:

rx3 OC OC wrqs

SEE ALSO
rsp, wait.

February 1987 3-135 MacBus User Manual

(device) WRT

NAME
wrt - write data to GPIB

SYNOPSIS
d buf cnt wrt

DESCRIPTION
d is a device number or device name used in an ibiind call.

buf contains the data to be sent over the GPIB (buf might
have been allocated using allot).

cnt specifies the number of bytes to be sent over the GPIB.

wrt writes cnt bytes of data to a GPIB device.

The following steps are performed:

1. The device is addressed to listen and the MacBus
GPIB port to talk, if not already addressed to do so.

2. The MacBus GPIB port writes the data to the device.

3. Attention is reasserted.

When wrt returns, ibcnt is the actual number of data bytes
written to the device; and iberr is the first error detected if
iberr is non-zero.

wrt terminates on any of the following events:

- When cnt bytes have been written
- Error is detected
- Time limit is exceeded

After termination, ibcnt contains the number of bytes
written.

The double quote (‘I) places the text, up to the closing
quote, in memory.

The double quote word leaves the long address and string
length on the stack and is thus ideal for use with wrt. For
instance, “abc” leaves the long address of the string and a

MacBus User Manual 3-136 February 1987

WRT (device) WRT

count of 3 on the stack.

EXAMPLES

1. To write 10 bytes of instructions to device dvm:

dvm M F3RlX5PZGO" wrt

February 1987 3-137 MacBus User Manual

IBCL o National Instruments

MacBus GPIB Port Level Words

MacBus GPIB Port level words are used to manipulate the MacBus
GPIB port directly. These words are used in situations that
require greater flexibility than the device functions provide.

Such situations include:

- Anytime MacBus is not CIC.

- A Group Execute Trigger (GET) involving more than one
device.

- A data transfer between two devices without MacBus
participating.

- Waiting for any device to request service (see wait).

To use these words, you must be familiar with GPIB protocol. It
is your responsibility to perform all addressing and unaddressing
of the GPIB.

MacBus User Manual 3-138 February 1987

BCAC (GPIB port) BCAC

NAME
bcac - become active controller

SYNOPSIS
v bcac

DESCRIPTION

If v is non-zero, MacBus takes control synchronously with
respect to data transfer operations; otherwise, MacBus
takes control immediately (and possibly asynchronously).

It is generally not necessary to use the bcac word. Words
such as bcmd and brpp, which require that MacBus take
control, do so automatically.

To take control synchronously, MacBus waits before
asserting the ATN signal so that data being transferred on
the GPIB will not be corrupted. If a data handshake is in
progress, the take control action is postponed until the
handshake is complete; if a handshake is not in progress,
the take control action is done immediately. Synchronous
take control is not guaranteed if an brd or bwrt operation
completed with a timeout or error.

Asynchronous take control should be used in situations
where it appears to be impossible to gain control
synchronously (e.g., after a timeout error).

The ECIC error results if MacBus is not CIC.

EXAMPLES

1. To take control immediately without regard to any
data handshake in progress:

1 bcac

February 1987 3-139 MacBus User Manual

BCAC (GPIB port) BCAC

2. To take control synchronously and assert ATN
following a read operation:

1 bcac

MacBus User Manual 3-140 February 1987

BCMD (GPIB port) BCMD

NAME
bcmd - send command message to GPIB

SYNOPSIS
buf cnt bcmd

DESCRIPTION
buf is the long address of a buffer containing the
commands to be sent over the GPIB.

cnt specifies the number of bytes to be sent over the GPIB.

bcmd is used to transmit interface messages (commands)
over the GPIB. These commands include device talk and
listen addresses, secondary addresses, serial and parallel
poll configuration messages, and device clear and trigger
instructions.

bcmd is NOT used to transmit programming instructions to
devices; programming instructions and other device
dependent information are transmitted with brd and bwrt.

bcmd terminates on any of the following events:

- All commands are successfully transferred
- Error is detected
- Time limit is exceeded
- Take Control (TCT) command is sent
- Interface Clear (IFC) message is received from the

System Controller (not MacBus)

After termination, the ibcnt variable contains the number
of command bytes sent.

An ECIC error results if the MacBus GPIB port is not CIC.
If the MacBus GPIB port is not Active Controller, it
asserts ATN prior to sending the command bytes. The
MacBus GPIB port remains Active Controller afterward.

February 1987 3-141 MacBus User Manual

BCMD (GPIB port) BCMD

EXAMPLES

In the following examples, GPIB commands and addresses
are coded as printable ASCII characters. When the hex
values to be sent over the GPIB correspond to printable
ASCII characters, this is the simplest means of specifying
the values. APPENDIX A contains conversions of hex
values to ASCII characters.

1. To unaddress all Listeners with the Unlisten command
(ASCII ?) and address a Talker at 0x46 (ASCII F) and
a Listener at 0x31 (ASCII 1):

” ?Fl" bcmd

2. Same as Example 1 except the Listener has a secondary
address of Ox6E (ASCII n):

MacBus User Manual 3-142 February 1987

BGTS (GPIB port) BGTS

NAME
bgts - go from active controller to standby

SYNOPSIS
v bgts

DESCRIPTION

v is the type of go-to-standby.

bgts causes MacBus to go to the Controller Standby state
and to unassert the ATN signal if it is the Active
Controller. bgts permits GPIB devices to transfer data
without MacBus being a party to the transfer.

It is generally not necessary to use bgts. Functions such as
brd and bwrt, which require that MacBus go to standby, do
so automatically.

If v is non-zero, MacBus shadows data transfer handshakes
as an Acceptor, and when the END message is detected,
MacBus enters a Not Ready For Data (NRFD) handshake
holdoff state on the GPIB. If v is zero, no shadow
handshake or holdoff is done.

If the shadow handshake option is activated, MacBus
participates in data handshake as an Acceptor without
actually reading the data. It monitors the transfers for the
END message and holds off subsequent transfers. This
mechanism allows MacBus to take control synchronously on
a subsequent operation such as bcmd or brpp. 1 bgts
should always be followed by a wait for END (Example 2).

The ECIC error results if MacBus is not CIC.

February 1987 3-143 MacBus User Manual

BGTS (GPIB port) BGTS

EXAMPLES

1. To turn the ATN line off

0 bgts

2. To turn the ATN line off with bgts after unaddressing
all listeners with the Unlisten (ASCII ?) command,
addressing a talker at 0x46 (ASCII F), and addressing a
listener at 0x31 (ASCII 1) to allow the talker to send
data messages:

" ?Fl" bcmd
1 bgts
6000 buait

SEE ALSO
bcac, bcmd, bwait.

MacBus User Manual 3-144 February 1987

BIST (GPIB port) BIST

NAME
bist - set or clear individual status bit (IST)

SYNOPSIS
v bist

DESCRIPTION
v is the sense of the IST bit.

If v is non-zero, the individual status bit is set. If v is
zero, the bit is cleared.

bist is used when MacBus participates in a parallel poll
that is conducted by another device that is the Active
Controller. The Active Controller conducts a parallel poll
by asserting the EOI and ATN signals which send the
Identify (IDY) message. While this message is active, each
device that has been configured to participate in the poll
responds by asserting a predetermined GPIB data line
either true or false, depending on the value of its local IST
bit. MacBus, for example, can be assigned to drive the
D103 data line true if IST=l and false if IST=O;
conversely, it can be assigned to drive D103 true if IST=O
and false if IST= 1.

The relationship between the value of IST, the line that is
driven, and the sense at which the line is driven is
determined by the Parallel Poll Enable (PPE) message in
effect for each device. MacBus is capable of receiving this
message either locally, via bppc, or remotely, via a
command from the Active Controller. Once the PPE
message is executed, bist changes the sense at which the
line is driven during the parallel poll, and in this fashion
MacBus can convey a one-bit, device dependent message
to the Controller.

October 1986 3-145 MacBus User Manual

BIST (GPIB port)

EXAMPLES

1. To set the individual status bit:

1 bist

2. To clear the individual status bit:

0 bist

SEE ALSO
bm, brw.

MacBus User Manual 3-146

BIST

October 1986

BLOC (GPIB port) BLOC

NAME
bloc - go to local mode

SYNOPSIS
bloc

DESCRIPTION
The MacBus GPIB port is placed in a local state by
sending the local message Return To Local (rtl), provided
it is not locked in remote mode. bloc is used to simulate a
front panel Return-To-Local switch when the computer is
used to simulate an instrument.

EXAMPLE

1. To return the MacBus GPIB port to local state:

bloc

SEE ALSO
bsre.

February 1987 3-147 MacBus User Manual

BONL (GPIB port) BONL

NAME
bon1 - place MacBus GPIB port online or offline

SYNOPSIS
v bon1

DESCRIPTION
If v is non-zero, the MacBus GPIB port is enabled for
operation (i.e., online). If v is zero, it is held in a reset,
disabled mode (offline).

Taking the MacBus GPIB port offline may be thought of as
disconnecting its GPIB cable from the other devices.

bon1 can also be used to restore the default configuration
settings of a MacBus GPIB port. Calling bon1 with v
non-zero when the device or MacBus GPIB port is already
online simply has the effect of restoring all configuration
settings to their defaults.

EXAMPLES

1. To reset the configuration settings to their defaults:

1 bon1

2. To disable MacBus GPIB port:

0 bon1

SEE ALSO
ibfind.

MacBus User Manual 3-148 February 1987

BPPC (GPIB port) BPPC

NAME
bppc - parallel poll configure

SYNOPSIS
v bppc

DESCRIPTION
v is a valid parallel poll enable/disable command.

The MacBus GPIB port itself is programmed to respond to
a parallel poll by setting its local poll enable (lpe) message
to the value of v.

Each of the 16 PPE messages specifies the GPIB data line
(DIOI through D108) and sense (one or zero) that the
device must use when responding to the Identify (IDY)
message during a parallel poll. The assigned message is
interpreted by the device along with the current value of
the individual status (ist) bit to determine if the selected
line is driven true or false. For example, if PPE=Ox64,
D105 is driven true if ist=O and false if ist=l. And if
PPE=Ox68, DIOI is driven true if ist=l and false if ist=O.
Any PPD message or zero value cancels the PPE message
in effect.

Which PPE and PPD messages are sent and the meaning of
a particular parallel poll response are all system dependent
protocol matters to be determined by the user.

The 16 valid PPE messages and the 16 valid PPD messages
are found in APPENDIX A.

EXAMPLES

1. To cancel the parallel poll configuration of MacBus:

70 bppc

2. To configure MacBus GPIB port to respond to a
parallel poll by sending data line DIO8 true if IST=O:

February 1987 3-149 MacBus User Manual

BPPC

SEE ALSO
bcmd, bist.

MacBus User Manual

(GPIB port)

3-150

BPPC

February 1987

(GPIB port) BRD

NAME
brd - read characters from GPIB

SYNOPSIS
buf cnt brd

DESCRIPTION
buf is the long address of the buffer to use.

cnt specifies the number of bytes to read from the GPIB.

brd reads cut bytes of data from a GPIB device.

brd attempts to read from a GPIB device that is assumed
to already be properly initialized and addressed.

If the MacBus GPIB port is CIC, bcmd must be called
prior to brd to address a device to talk and the MacBus
GPIB port to listen. If the MacBus GPIB port is not CIC,
the device on the GPIB that is the CIC must perform the
addressing.

If the MacBus GPIB port is Active Controller, the MacBus
GPIB port is first placed in Standby Controller state (ATN
off) and remains there after the read operation is
completed.

An EADR error results if the MacBus GPIB port is CIC
but has not been addressed to listen with bcmd. An EABO
error results if the MacBus GPIB port is not CIC and is
not addressed to listen within the time limit. An EABO
error also results if the device that is to talk is not
addressed and/or the operation does not complete for
whatever reason within the time limit.

brd operation terminates on any of the following events:

- When cnt bytes have been read
- Error is detected
- Time limit is exceeded
- END message is detected
- eos character is detected (if this option is enabled)

October 1986 3-151 MacBus User Manual

BRD (GPIB port) BRD

- Device Clear (DCL) or Selected Device Clear (SDC)
command is received from another device which is CIC

After termination, ibcnt contains the number of bytes read.
A short count can occur on any of the above events but
the first.

EXAMPLE

1. To read 56 bytes of data from a device at talk address
Ox4C (ASCII L) and then unaddress it (the MacBus
GPIB port at listen address is 0x20 or ASCII blank):

” ? L ” bcmd (address talker and listener)
twf 56 brd (read data)
II ?” bcmd (unaddress talker and listener)

SEE ALSO
bcmd, beos.

MacBus User Manual 3-152 October 1986

(GPIB port) BRPP

NAME
brpp - conduct a parallel poll

SYNOPSIS
brpp

DESCRIPTION
brpp conducts a parallel poll of previously configured
devices by sending the IDY message (ATN and EOI both
asserted).

When done, if ibret contains a non-zero value, ibppr
contains a valid poll response.

An ECIC error results if MacBus is not CIC. If MacBus is
Standby Controller, it takes control and asserts ATN
(becomes Active) prior to polling. It remains Active
Controller afterward.

EXAMPLE

1. To remotely configure a device at listen address 0x23
to respond positively on D103 if its individual status
bit is I, and then parallel poll all configured devices:

23 cmd c!L
5 cmdl+c!L
68 cmd 2 + C!L
3F cmd 3 + c! 1
cmd4bcmd
brw

SEE ALSO
bcmd, bist, bppc.

(listen address)
(parallel poll configure)
(parallel poll enable)
(unlisten)
(send comsnd string)
(response in ibppr)

October 1986 3-153 MacBus User Manual

(GPIB port) BRSC

NAME
brsc - request or release system control (SC)

SYNOPSIS
v brsc

DESCRIPTION
v specifies request or release system control.

If v is non-zero, functions requiring System Controller
capability are subsequently allowed. If v is zero, functions
requiring System Controller capability are disallowed.

brsc is used to enable or disable the capability of MacBus
to send the Interface Clear (IFC) and Remote Enable
(REN) messages to GPIB devices using the bsic and bsre
functions. The MacBus GPIB port must not be System
Controller to respond to Interface Clear sent by another
Controller.

In most applications, MacBus will always be the System
Controller. In other applications, MacBus will never be
the System Controller. In either case, brsc is used only if
the Macintosh Plus is not going to be System Controller for
the duration of the program execution. While the IEEE-
488 standard does not specifically allow schemes in which
System Control can be passed dynamically from one device
to another, brsc would be used in such a scheme.

EXAMPLE

1. To request to be System Controller if the MacBus
GPIB port is not currently so designated:

1 brsc

MacBus User Manual 3-154 October 1986

BRSV (GPIB port) BRSV

NAME
brsv - request service and/or set serial poll status byte

SYNOPSIS
v brsv

DESCRIPTION
v specifies the serial poll response byte.

If the 0x40 bit is set in v, MacBus additionally requests
service from the Controller by asserting the GPIB SRQ
line.

brsv is used to request service from the Controller using
the Service Request (SRQ) signal and to provide a system
dependent status byte when the Controller serially polls
MacBus.

It is not an error to call brsv when MacBus is CIC,
although this usage makes sense only if control will be
passed later to another device. In this case, the call
updates the status byte, but the SRQ signal is asserted only
if the 0x40 bit is set and only when control is passed.

EXAMPLES

1. To set the Serial Poll status byte to 0x41, which
simultaneously requests service from an external CIC:

41 brsv

2. To stop requesting service (unassert SRQ):

0 brsv

3. To change the status byte to 1 without requesting
service:

1 brsv

February 1987 3-155 MacBus User Manual

BSIC (GPIB port) BSIC

NAME
bsic - send interface clear (IFC)

SYNOPSIS
bsic

DESCRIPTION
bsic causes MacBus to assert the IFC signal for at least 100
ms, provided MacBus has System Controller authority.
This action initializes the GPIB and makes the MacBus
GPIB port CIC. bsic is generally used when you want to
become CIC or clear a bus fault condition.

The IFC signal is supposed to reset only the GPIB
interface functions of bus devices and is not intended to
reset internal device functions. Device functions are rese
with the Device Clear (DCL) and Selected Device Clear
(SDC) commands. To determine the effect of these
messages, consult the device documentation.

EXAMPLE

1. To initialize the GPIB and become CIC at the
beginning of a program:

SEE ALSO
brsc.

MacBus User Manual

t

3-156 February 1987

BSRE (GPIB port) BSRE

NAME
bsre - set or clear Remote Enable (REN)

SYNOPSIS
v bsre

DESCRIPTION
v specifies set or clear.

bsre turns the REN signal on and off. If v is non-zero, the
Remote Enable (REN) signal is asserted. If v is zero, the
signal is unasserted. REN is used by devices to select
between local and remote modes of operation. REN
enables the remote mode. A device does not actually enter
remote mode until it receives its listen address.

The ESAC error occurs if MacBus is not System Controller.

EXAMPLES

1. To place a device at listen address 0x23 (ASCII #) in
remote mode with local ability to return to local mode:

1 bsre
" #" bcmd

(set REN to true)
(LAD 1

2. To exclude the local ability of the device to return to
local mode, send the Local Lockout command (0x1 I),
or include it in the command string in Example 1:

11 buf c!L (send LLO)
buflbcmd

or

1 bsre (REN true 1
ascii # buf c! 1 (LAD LLO)
11 buf 1 + c!l
buf2bcn-d

October 1986 3-157 MacBus User Manual

BSRE (GPIB port)

3. To return all devices to local mode:

0 bsre

SEE ALSO
brsc, bsic.

(set REN to false)

MacBus User Manual 3-158

BSRE

October 1986

BWAIT (GPIB port) BWAIT

NAME
bwait - wait for selected events

SYNOPSIS
mask bwait

DESCRIPTION
The mask bit is set to wait for the corresponding event to
occur.

bwait is used to monitor the events selected in mask and to
delay processing until any of them occur. These events
and bit assignments are shown below:

Mnemonic

TIM0
END
SRQI
LOK
REM
CIC
TACS
LACS
DTAS
DCAS

Board Wait Mask Layout
Bit 1 Hex 1 Description
Pos Val
14 4000 Time limit exceeded
13 2000 MacBus detected END or EOS
12 1000 SRQ on

7 80 MacBus in Lockout State
6 40 MacBus in Remote State
5 20 MacBus is CIC
3 8 MacBus is talker
2 4 MacBus is listener
1 2 MacBus in Device Trigger State
0 1 MacBus in Device Clear State

If mask = 0, the function returns immediately. This is used
to report the current device or MacBus GPIB port state.

If the TIM0 bit is 0 or the time limit is set to 0; timeouts
are disabled. Disabling timeouts should be done only when
it is certain the selected event will occur.

All activity on the MacBus GPIB port is suspended until
the event occurs.

February 1987 3-159 MacBus User Manual

BWAIT (GPIB port) BWAIT

EXAMPLES

1. To wait for a service request or a timeout:

5000 bwait

2. To report the current status:

0 bwait

3. To wait indefinitely until control is passed from
another CIC:

20 bwait

4. To wait indefinitely until addressed to talk or listen by
another CIC:

C tmait

SEE ALSO
bgts.

MacBus User Manual 3-160 February 1987

BWRT (GPIB port) BWRT

NAME
bwrt - write data to GPIB

SYNOPSIS
buf cnt bwrt

DESCRIPTION
buf contains the data to be sent over the GPIB.

cut specifies the number of bytes to be sent over the GPIB.

bwrt writes cnt bytes of data to a GPIB device.

bwrt attempts to write to a GPIB device that is assumed to
already be properly initialized and addressed.

If the MacBus GPIB port is CIC, bcmd must be called
prior to bwrt to address the device to listen and the
MacBus GPIB port to talk. Otherwise, the device on the
GPIB that is the CIC must perform the addressing.

If the MacBus GPIB port is Active Controller, the MacBus
GPIB port is first placed in Standby Controller state with
ATN off and remains there after the write operation is
completed. Otherwise, the write operation commences
immediately.

An EADR error results if the MacBus GPIB port is CIC
but has not been addressed to talk with bcmd. An EABO
error results if the MacBus GPIB port is not CIC and is
not addressed to talk within the time limit. An EABO
error also results if the operation does not complete for
whatever reason within the time limit.

bwrt terminates on any of the following events:

- When cnt bytes have been written
- Error is detected
- Time limit is exceeded
- Device Clear (DCL) or Selected Device Clear (SDC)

command is received from another device which is CIC

October 1986 3-161 MacBus User Manual

BWRT (GPIB port) BWRT

After termination, ibcnt contains the number bytes written.
A short count can occur on any of the above events but
the first.

EXAMPLE

1. To write 10 instruction bytes to a device at listen
address 0x35 (ASCII 5) and then unaddress it (the talk
address of the MacBus GPIB port is 0x40 or ASCII @):

” ?a5” bcmd (UNL MTA LAD)
)I F3R1X5P2GOBt but-t (send instruction bytes)
II 'M bcmd-.

SEE ALSO
bcmd.

MacBus User Manual 3-162 October 1986

BWRT
a National Instruments

(GPIB port) BWRT
IBCL

Configuration Control Words

IBCL provides words to inspect and alter the MacBus GPIB port
and device configuration tables. Using these words, you can
change a devices primary or secondary address, the timeouts
associated with various devices, and so on.

To inspect or change device configuration table entries, use the
IBCL words getd and setd, respectively. These words are used in
the following manner:

dev field-word getd (leaves value on top of stack)
new dev field word setd (replaces old value with new)-

In these examples dev is a device number or device name used in
an ibfind call, and field word is one of the device field words
defined below:

Field Word Field Interpretation

d_eos
d_eot
d-pad
d-sad
d_tmo

end of string field
end termination mode
device primary address
device secondary address
device timeout setting

These meaning of each of these fields in the device configuration
table is more thoroughly explained in the next few pages.

October 1986 3-163 MacBus User Manual

D_EOS (device) D_EOS

NAME
d_eos - end of string mode field word

DESCRIPTION
When used with setd, the new value specified selects the
eos character and the data transfer termination method
according to the following table.

The assignment made by this function remains in effect
until beos is called again or bon1 is called.

Data Transfer Termination Method

Method Value of v *
Byte 1 Byte 0

A. Terminate read when eos REOS eos
is detected (ibrd and ibrdf) 0x04
B. Send END when eos is XEOS eos
written 0x08 (ibwrt and ibwrtf) 0x08
C. Compare all 8 bits of eos BIN eos
byte rather than low 7 0x10
bits (all reads and writes)

* Byte 0 is the least significant byte.

1 byte 3 1 byte 2 1 byte 1 1 byte 0 1

Methods A and C determine how read operations
terminate. If Method A alone is chosen, reads terminate
when the low 7 bits of the byte that is read match the low
7 bits of the eos character. If Methods A and C are
chosen, a full 8-bit comparison is used.

Methods B and C together determine when write
operations send the END message. If Method B alone is
chosen, the END message is sent automatically when the
low 7 bits of any byte match the low 7 bits of the eos
character. The eos character should always be the last byte

MacBus User Manual 3-164 October 1986

D_EOS (device) D_EOS

sent. If Methods B and C are chosen, a full 8-bit
comparison is used.

EXAMPLES

1. To send END when the linefeed character is written
for operations involving device dvm:

80A dvm d_eos setd
asci i 1 buf c!l (data bytes to)
ascii 2 buf 1 + c!l (be written)
ascii 3 buf 2 + c!L (EOS character)
OA buf 3 + c! 1 (is last byte)
dvm buf 4 wrt

2. To program device devl to terminate a read on
detection of the linefeed character (‘\n’ == OxOA) that
is expected to be received within 512 bytes:

40A devl d_eos setd
devl buf 512 rd
(The END bit is set if the read terminated)
(on the eos character, with the actual number of)
(bytes received contained in ibcnt.)

SEE ALSO
d_eot.

October 1986 3-165 MacBus User Manual

D_EOT (device) D_EOT

NAME
d_eot - END termination mode field

DESCRIPTION
If the value of this field is non-zero, the END message is
sent automatically with the last byte of each write
operation. If the value is zero, END is not sent. setd i s
used to alter the value from its configuration setting.

The END message is sent when the GPIB EOI signal is
asserted during a data transfer. It is used to identify the
last byte of a data string without having to use an end-
of-string character.

The value of this field changes only when it is explicitly
set or when bon1 is called.

EXAMPLES

1. To send the END message with the last byte of all
subsequent writes to device plotter:

1 plotter d_eot setd
(It is assmed that wrt
(to the GPIB)
plotter buf 3 wrt

2. To stop sending END

0 plotter d_eot setd

SEE ALSO

(enable sending of EOI 1
contains the data to be written 1

(write 3 bytes)

with the last byte:

(disable sending EOI)

d_eos.

MacBus User Manual 3-166 October 1986

D-PAD (device) D PAD-

NAME
d-pad - primary address field

DESCRIPTION
The valid primary addresses are 0 to 30. A device listen
address is formed by adding 0x20 to the primary address;
the talk address is formed by adding 0x40 to the primary
address. This is done automatically by the GPIB firmware
on the GPIB-VSO.

This field retains its value until it is explicitly set or bon1
is called.

A devices primary address determines the talk and listen
addresses for use in all I/O directed to that device. The
actual GPIB address of any device is set within that device
either with hardware switches or a software program.
Refer to the manufacturer’s device documentation for
instructions.

EXAMPLE

1. To change the primary GPIB listen and talk address of
device plotter from the configuration setting to Ox2A
and Ox4A respectively:

A plotter dgad setd

SEE ALSO
d-sad.

October 1986 3-167 MacBus User Manual

D-SAD (device) D-SAD

NAME
d-sad - change or disable secondary address

DESCRIPTION
The valid secondary addresses are 60 to 7E. Values of 0 to
7F disable secondary addressing.

This field retains its value until it is explicitly changed or
bon1 is called.

When secondary addressing is enabled, this field records
the secondary GPIB address of that device to be used in
subsequent device level I/O function calls.

EXAMPLES

1. To change the secondary GPIB address of device dvm
from its current value to Ox6A:

6A dvm d-sad setd

2. To disable secondary addressing for device dvm:

0 dvm d-sad setd

MacBus User Manual 3-168 October 1986

D-TM0 (device) D-TM0

Timeout values are approximate, though never less than
indicated.

EXAMPLES

1. To change the time limit for device level I/O
operations involving device tape to approximately 300
us:

4 tape d_tma setd

2. To perform I/O operations with no timeout in effect:

0 tape d_tmo setd

MacBus User Manual 3-170 February 1987

GPIB Port and Device Configuration Tables

To inspect or change MacBus GPIB port configuration table, use
the IBCL words getb and setb, respectively. These words have the
following syntax:

field-word getb
new field word setb-

(current value on stack)
(replace old value with new)

The valid MacBus GPIB port level field words are:

Field Word Field Interpretation

b_uflags contains a set of bits used to track information
pertinent to the MacBus GPIB port. You may set
and monitor the value of this field using setb and
getb, just like the other port level configuration
words. The bit definition of the b_uflags field
is as follows:

Bit # Meaning When Set

0
1

2

3
4

5
6
7
8
9
10

11

Assert EOI with last byte of each write
Hold off handshake at the end of each
read
Terminate read when end of string
received
Assert EOI with end of string byte
Use 8-bit compare on the end of string
byte
Terminate I/O operation on device clear
Terminate I/O on address status change
reserved
reserved
GPIB port individual status (IST) bit
MacBus will assert remote enable when
it is System Controller
MacBus is System Controller

February 1987 3-171 MacBus User Manual

IBCL o National Instruments

12

13
14

Tri-state timing is enabled (faster
transfers)
Repeat addressing is disabled
Automatic serial polling is disabled

b_eos end of string field
b_eot end termination mode
b-pad MacBus GPIB port primary address
b-sad MacBus GPIB port secondary address
b_tmo MacBus GPIB port timeout value

All of these fields are very similar to their device counterparts
except the primary and secondary addresses. The PAD and SAD
fields in the device tables specify the address MacBus uses when it
tries to communicate with the devices in question. The PAD and
SAD fields in the MacBus GPIB port table specify the addresses
that MacBus RESPONDS to as its own addresses.

The MacBus GPIB port configuration table also has a field
determining whether or not the board uses DMA for GPIB
transfers. Switching between DMA and program controlled I/O is
more difficult than simply changing a configuration field, so setb
does not work on this field. The IBCL word bdma achieves the
transition. For example, to use DMA for GPIB transfers, use:

1 bdma

To use programmed I/O for GPIB transfers, use:

0 bdma

Advanced Features

IBCL offers one other powerful GPIB management tool. Using
IBCL, you may install handlers that IBCL will automatically
execute when a GPIB interrupt occurs or a device requests service.
The words supporting this ability are:

MacBus User Manual 3-172 February 1987

o National Instruments IBCL

onirq (irq --) When used in the form

irq onirq xxxxx

onirq will request that the IBCL word xxxxx
be executed when the GPIB interrupt irq
occurs. irq is one of the following:

SRQI - service request
DCAS - device clear
DTAS - device trigger
ADSC - address status change
TACS - talker status change
LACS - listener status change
CIC - controller-in-charge status change
REMC - remote/local status change
LOKC - lockout status change

If you use the digit 0 for xxxxx, onirq recognizes
this as a special value and turns OFF handling of
that interrupt. For instance, to disable
automatic serial polling, use the command string

SRQI onirq 0

This disables automatic serial polling.

onrqs (d m v --) When used in the form:

d m v onrqs xxxxx

onrqs will request that the IBCL word xxxxx be
called when GPIB device d requests service with
a status byte (stb) which satisfies the test
(m & spr)==v. In order for onrqs to operate, the
default onirq for SRQ must not be changed.

February 1987 3-173 MacBus User Manual

o National InstrumentsIBCL

Additional GPIB Words

IBCL contains several other words for GPIB management that
were implemented specifically to ease development of the
Megamax C MacBus Support Library. You will probably never
have cause to use these words, but this section documents them
anyway, just in case.

Configuration Control

The following words change a MacBus GPIB port or device
configuration table field and return the old value in the variable
ibret. Words beginning with b are MacBus GPIB port words and
have the syntax:

new-val bxxxxxx

Words starting with i are device words and have the syntax:

device new val ixxxxx-

Field Changing
Word

bidma

bieos
ieos

bieot
ieot

bipad
ipad

MacBus User Manual

Field Affected

When new_val is zero, MacBus uses
programmed control I/O for GPIB
transfers; when non-zero, MacBus
uses DMA

MacBus GPIB port end of string field
device end of string field

MacBus GPIB port timeout field
device timeout field

MacBus GPIB port primary address
device primary address

3-174 February 1987

Q National Instruments IBCL

bisad
isad

MacBus GPIB port secondary address
device secondary address

GPIB-Macintosh Direct Transfer Words

The MacBus Support Library provides functions which transfer
GPIB data and commands directly to/from Macintosh memory.
These are synchronous functions; however, control doesn’t return
until the transfer is 100% complete. In some applications you
might be able to exploit parallel processing if you could continue
to run your Macintosh program while MacBus handled the GPIB.
Using the following IBCL words, you can construct your own
asynchronous GPIB functions.

bprd (II --) bprd instructs IBCL to read n bytes from
the GPIB using brd and then to upload
the memory to the host by executing ulm.

prd (d n --) prd instructs IBCL to read n bytes from
GPIB device d using rd and then to
upload the memory to the host by executing
ulm.

bpwt (n --) bpwt instructs IBCL to obtain n bytes of
data from the host by executing dlm and
then to write the data to the GPIB using bwrt.

pwt (d n --) pwt instructs IBCL to obtain n bytes of
data from the host by executing dlm and
then to write the data to GPIB device d using
wrt.

Data moving between the GPIB and the Macintosh must “stop off
in MacBus memory temporarily; the possibility of memory
exhaustion exists. The IBCL word avail? leaves in ibret the
number of bytes available as a temporary transfer buffer. You
should never need to use this word; it is built into bprd, prd,

February 1987 3-175 MacBus User Manual

IBCL o National Instruments

bpwt, and pwt.

IBCL Heap Management Words

IBCL provides a sophisticated heap manager to manage memory
resources on MacBus. The heap manager interface is provided by
the following words:

<alloo (n - - s) Allocate an n-byte buffer and return its
segment address.

allot (n - -) When used in the form:

n allot buf

allot allocates an n byte buffer and creates
an IBCL word buf that will leave the buffer’s
segment address on the stack when executed.

free (s --) Free the buffer starting at segment address s.

The heap manager automatically reclaims free space and merges
adjacent free blocks into larger, single free blocks.

The heap is initialized by the ibcl word init-heap. Once you have
initialized the heap, you MUST NOT use any segment
management words, nor even create a new IBCL vocabulary. All
segment management should be part of the application compilation
process, and the heap should be initialized after the application
begins execution. init-heap has no stack arguments.

The skeleton of a sample MacBus session might look like this:

vocabulary application
(define application words and data here)
: final-word init-heap word1 word2 etc... ;
final-word(run application)

Note that the application program should not use segment

MacBus User Manual 3-176 February 1987

o National Instruments IBCL

management words as part of its algorithm.

Memory Dumping Words

Memory dumps can aid the program debugging process
considerably. IBCL provides two dump words, one for near
addresses and one for segment addresses:

dump (a n --) Dumps n bytes starting at offset a
in the default data segment.

ldump (s a n --) Dumps n bytes starting at long address s:a.

February 1987 3-177 MacBus User Manual

a National Instruments Technical Information

SECTION FOUR - TECHNICAL
INFORMATION

This section provides technical information about MacBus. This
information is provided to allow knowledgeable users to interface
compatible interface cards to their systems. This section describes
the physical, environmental, and electrical specifications for
MacBus as well as a technical description of the major system
components.

PHYSICAL SPECIFICATIONS
MacBus measures 6 inches high, by 11 3/4 inches wide, by 15 l/4
inches deep and weighs approximately 15 pounds. The unit can
accommodate up to three optional IBM PC or IBM PC AT
compatible interface cards in addition to the two standard cards
which come with the unit.

ENVIRONMENTAL SPECIFICATIONS
The GPIB-V50 is designed for use under the following
environmental conditions:

Storage Temperature: 0 to 70 degrees C
Operating Temperature: 10 to 40 degrees C
Humidity: 10% to 95% non-condensing

October 1986 4 - l MacBus User Manual

Technical Information D National Instruments

ELECTR.ICAL SPECIFICATIONS
The electrical specifications for the MacBus power supply are as
follows:

Input Voltages: 90V to 130V (115V nominal)
or

18OV to 260V (230V nominal)
Input Frequency: 47-440 HZ
Inrush Current: 20A maximum peak at cold start
Fuse on Input Line: 2.5A, 250V
+5VDC Current: 13A max *
+12VDC Current: 5A max *
- 12VDC Current: 1A max *
Max Output Wattage: 1oow

* Note: Maximum current cannot be drawn from all outputs
simultaneously. At no time should the average
power (excluding transients) exceed the maximum
output wattage.

The electrical specifications for the GPIB-V50 and SCSI-PC
boards are as follows:

GPIB-V50: +SVDC 1.45A typical
SCSI-PC: +SVDC 380mA typical

MacBus User Manual 4-2 October 1986

0 National Instruments Technical Information

DETAILED DESCR,IPTION
MacBus consists of three basic components: an enclosure, a
SCSI-PC interface, and a GPIB-VSO microprocessor card. The
MacBus operating system is contained in ROM on the GPIB-V50
card and is called the Interface Bus Interactive Control program
(IBCL). IBCL handles all system interaction including SCSI I/O
and all IEEE-488 functions.

Enclosure

The enclosure is an “AT style” box complete with a switching
power supply, room for up to three disk drives, and a
motherboard with connectors for either IBM PC or IBM PC AT
style cards. The switching power supply supplies +12VDC,
-12VDC, and +SVDC to the I/O connectors. Because of the
nature of switching power supplies, it is necessary to load the
outputs so that a minimum amount of current will flow from the
supply. The MacBus interface cards, as shipped from the factory,
do not draw enough current to properly load down the +5V or
+12V supply outputs. For dependable operation these lines have
been loaded with power resistors which are connected to the inside
of the chassis case.

If optional interface cards are added, it is possible that the cards
will load down the power supply outputs so that the power
resistors are no longer needed. If this is the case, remove the
resistors from the circuit by disconnecting the connector between
the resistors and the supply.

Caution: The power resistors get extremely hot after only a few
minutes of operation. Never touch the resistors after operation
and avoid touching the area around where the resistors are
connected.

Use the following guidelines to help you determine when the
resistors should be disconnected.

1. If, when adding optional interface cards, the total current
draw (typical) from all the boards in the system exceeds 6.OA

October 1986 4-3 MacBus User Manual

Technical Information Q National Instruments

on the +5V line, then disconnect the power resistor with the
red and black wires.

2. If, when adding optional interface cards, the total current
draw (typical) from all the boards in the system exceeds 2A
on the +12V line, then disconnect the power resistor with the
red and blue wires.

The typical current draw for the GPIB-V50 and SCSI-PC cards is
given on page 4-2.

Also, remember if you remove a board or boards from your
system and the total current draw falls under the thresholds given
above, then you need to reconnect the resistors.

SCSI-PC Interface

The factory configurations for the SCSI-PC are shown below:

Factory Setting

SCSI-PC I/O Addresses: 330-33F hex
SCSI ID: 6
Interrupt level: 5
DMA channel: 3
Terminating Resistors: present

The SCSI-PC I/O address, interrupt level, and DMA channel
should not be changed. If any of these parameters conflict with
an optional adapter card, the optional adapter card must be
changed so that the conflict is removed. The SCSI ID and the
presence of the terminating resistors can and should be changed
under certain circumstances. To change the SCSI PC
configuration, open the unit as described in SECTION TWO,
Install Internal Options paragraph, and remove the SCSI-PC card.
Figure 4-l shows a parts locator diagram for the SCSI-PC card.
Use this figure to locate the SCSI ID switch and the terminating
resistors. Refer to the following paragraphs for descriptions of
these options.

MacBus User Manual 4-4 October 1986

Technical Information D National Instruments

SCSI-PC I/O Addresses

The SCSI-PC interface uses 16 I/O registers from 330 hex to 33F
hex. These I/O registers are hardwired so their locations cannot
be changed. When adding I/O interface adapters, make sure their
I/O addresses do not conflict with those of the SCSI adapter or
any other adapter which has been added to the system.

MacBus User Manual 4-6 October 1986

Technical Information o National Instruments

The GPIB-VSO

The system’s RAM is located on the GPIB-VSO card and starts at
hex 00000 of the 1 Mb address space. The RAM is socketed in
the locations designated Ul through U8 and U16 through U23 on
the GPIB-VSO card.

The RAM subsystem consists of either 16 65,536x1 or 16
262,144x1 dynamic RAM modules for a total address space of
either 128K or 512K, respectively. If the GPIB-VSO card is
socketed with 128K bytes of RAM, you can increase your RAM
space by changing the RAM modules; however, the following
precautions should be made:

l The RAM modules, as well as other system components, can be
damaged by improper handling techniques. Make sure you use
a grounded wrist strap and work on a grounded work area
when changing the RAM modules.

. Memory chips should be change only with the same or
compatible type of RAM modules with a maximum access time
of 120 nanoseconds.

l All 16 RAM locations must be socketed with the same type of
RAM modules - either 64Kxl or 256Kxl.

There are no user contigurable jumpers or switches on the GPIB-
V50 card. The system dynamically determines the amount of
RAM on power-up and all other available options are configurable
in software through IBCL function calls.

Although the GPIB-VSO was designed to allow interfacing to IBM
PC and IBM PC AT compatible interfaces, there are a few notable
differences between the signals supported on the GPIB-VSO I/O
connector and those provided on an IBM PC AT. These
differences are listed below:

l LA17 through LA23 are not supported on the GPIB-VSO

l CLK is an 8 MHz signal

. OWS is not supported on the GPIB-VSO

MacBus User Manual 4-10 October 1986

	MacBus User Manual
	Important Information
	Notice About Warranties
	Trademarks
	Warning

	Contents
	Preface
	SECTION ONE - INTRODUCTION

