# Wavelet Transform Daubechies4 (G Dataflow)

Computes the wavelet transform based on the Daubechies4 function of a sequence.  ## reset

A Boolean that specifies whether to reset the internal state of the node.

 True Resets the internal state of the node. False Does not reset the internal state of the node.

This input is available only if you wire a double-precision, floating-point number to x.

Default: False ## x

The input sequence.

The length of the sequence must be a power of 2, otherwise this node returns an error.

This input accepts a double-precision, floating-point number or a 1D array of double-precision, floating-point numbers. ## sample length

Length of each set of data. The node performs computation for each set of data.

sample length must be greater than zero.

This input is available only if you wire a double-precision, floating-point number to x.

Default: 128 ## error in

Error conditions that occur before this node runs.

The node responds to this input according to standard error behavior.

Standard Error Behavior

Many nodes provide an error in input and an error out output so that the node can respond to and communicate errors that occur while code is running. The value of error in specifies whether an error occurred before the node runs. Most nodes respond to values of error in in a standard, predictable way.

error in does not contain an error error in contains an error  If no error occurred before the node runs, the node begins execution normally.

If no error occurs while the node runs, it returns no error. If an error does occur while the node runs, it returns that error information as error out.

If an error occurred before the node runs, the node does not execute. Instead, it returns the error in value as error out.

Default: No error ## wavelet daubechies4{x}

The wavelet Daubechies4 transform of the input sequence. ## error out

Error information.

The node produces this output according to standard error behavior.

Standard Error Behavior

Many nodes provide an error in input and an error out output so that the node can respond to and communicate errors that occur while code is running. The value of error in specifies whether an error occurred before the node runs. Most nodes respond to values of error in in a standard, predictable way.

error in does not contain an error error in contains an error  If no error occurred before the node runs, the node begins execution normally.

If no error occurs while the node runs, it returns no error. If an error does occur while the node runs, it returns that error information as error out.

If an error occurred before the node runs, the node does not execute. Instead, it returns the error in value as error out.

## Algorithm Definition

The Wavelet Transform Daubechies4 transform can be defined using the following transformation matrix:

$C=\left[\begin{array}{cccccccccc}{c}_{0}& {c}_{1}& {c}_{2}& {c}_{3}& \text{\hspace{0.17em}}& \text{\hspace{0.17em}}& \text{\hspace{0.17em}}& \text{\hspace{0.17em}}& \text{\hspace{0.17em}}& \text{\hspace{0.17em}}\\ {c}_{3}& {-c}_{2}& {c}_{1}& {\begin{array}{c}-c\end{array}}_{0}& \text{\hspace{0.17em}}& \text{\hspace{0.17em}}& \text{\hspace{0.17em}}& \text{\hspace{0.17em}}& \text{\hspace{0.17em}}& \text{\hspace{0.17em}}\\ \text{\hspace{0.17em}}& \text{\hspace{0.17em}}& {\begin{array}{c}c\end{array}}_{0}& {c}_{1}& {c}_{2}& {c}_{3}& \text{\hspace{0.17em}}& \text{\hspace{0.17em}}& \text{\hspace{0.17em}}& \text{\hspace{0.17em}}\\ \text{\hspace{0.17em}}& \text{\hspace{0.17em}}& {c}_{3}& {-c}_{2}& {c}_{1}& {-c}_{0}& \text{\hspace{0.17em}}& \text{\hspace{0.17em}}& \text{\hspace{0.17em}}& \text{\hspace{0.17em}}\\ \text{\hspace{0.17em}}& \text{\hspace{0.17em}}& \text{\hspace{0.17em}}& .& \text{\hspace{0.17em}}& \text{\hspace{0.17em}}& \text{\hspace{0.17em}}& \text{\hspace{0.17em}}& \text{\hspace{0.17em}}& \text{\hspace{0.17em}}\\ \text{\hspace{0.17em}}& \text{\hspace{0.17em}}& \text{\hspace{0.17em}}& .& \text{\hspace{0.17em}}& \text{\hspace{0.17em}}& \text{\hspace{0.17em}}& \text{\hspace{0.17em}}& \text{\hspace{0.17em}}& \text{\hspace{0.17em}}\\ \text{\hspace{0.17em}}& \text{\hspace{0.17em}}& \text{\hspace{0.17em}}& \text{\hspace{0.17em}}& \text{\hspace{0.17em}}& \text{\hspace{0.17em}}& \text{\hspace{0.17em}}& \text{\hspace{0.17em}}& \text{\hspace{0.17em}}& \text{\hspace{0.17em}}\\ \text{\hspace{0.17em}}& \text{\hspace{0.17em}}& \text{\hspace{0.17em}}& \text{\hspace{0.17em}}& \text{\hspace{0.17em}}& \text{\hspace{0.17em}}& \text{\hspace{0.17em}}& \text{\hspace{0.17em}}& \text{\hspace{0.17em}}& \text{\hspace{0.17em}}\\ \text{\hspace{0.17em}}& \text{\hspace{0.17em}}& \text{\hspace{0.17em}}& \text{\hspace{0.17em}}& \text{\hspace{0.17em}}& \text{\hspace{0.17em}}& {c}_{0}& {c}_{1}& {c}_{2}& {\begin{array}{c}c\end{array}}_{3}\\ \text{\hspace{0.17em}}& \text{\hspace{0.17em}}& \text{\hspace{0.17em}}& \text{\hspace{0.17em}}& \text{\hspace{0.17em}}& \text{\hspace{0.17em}}& {c}_{3}& {-c}_{2}& {c}_{1}& {-c}_{0}\\ {c}_{2}& {\begin{array}{c}c\end{array}}_{3}& .& .& .& .& .& .& {c}_{0}& {c}_{1}\\ {c}_{1}& {-c}_{0}& .& .& .& .& .& .& {c}_{3}& {-c}_{2}\end{array}\right]$

The Wavelet Daubechies4 transform of an array X is defined by the following equation:

WaveletDaubechies4{X} = C * X

Where This Node Can Run:

Desktop OS: Windows

FPGA: Not supported

Web Server: Not supported in VIs that run in a web application