p(x) numerator
Numerator coefficients, in ascending order of power, of the first rational polynomial.
This input accepts the following data types:
-
1D array of double-precision, floating-point numbers
-
1D array of complex double-precision, floating-point numbers
p(x) denominator
Denominator coefficients, in ascending order of power, of the first rational polynomial.
This input accepts the following data types:
-
1D array of double-precision, floating-point numbers
-
1D array of complex double-precision, floating-point numbers
q(x) numerator
Numerator coefficients, in ascending order of power, of the second rational polynomial.
This input accepts the following data types:
-
1D array of double-precision, floating-point numbers
-
1D array of complex double-precision, floating-point numbers
q(x) denominator
Denominator coefficients, in ascending order of power, of the second rational polynomial.
This input accepts the following data types:
-
1D array of double-precision, floating-point numbers
-
1D array of complex double-precision, floating-point numbers
error in
Error conditions that occur before this node runs.
The node responds to this input according to standard error behavior.
Many nodes provide an
error in
input and an
error out
output so that the node can respond to and communicate errors that occur while code is running. The value of
error in
specifies whether an error occurred before the node runs. Most nodes respond to values of
error in
in a standard, predictable way.
error in
does not contain an error
|
error in
contains an error
|
|
|
If no error occurred before the node runs, the node begins execution normally.
If no error occurs while the node runs, it returns no error. If an error does occur while the node runs, it returns that error information as
error out.
|
If an error occurred before the node runs, the node does not execute. Instead, it returns the
error in
value as
error out.
|
Default:
No error
threshold
Level at which the node removes the trailing elements from the numerator and denominator of the addition of two polynomials.
The node removes the trailing elements whose absolute values or relative values are less than or equal to
threshold. If all the elements in the numerator and denominator of the addition of two polynomials are less than or equal to
threshold,
g(x) numerator
and
g(x) denominator
return a one-element array.
Default:
0
threshold type
Method this node uses to remove the trailing elements from the numerator and denominator of the addition of two polynomials.
Name |
Value |
Description |
Absolute Value |
0 |
Removes the trailing elements whose absolute values are less than or equal to
threshold.
|
Relative Value |
1 |
Removes the trailing elements whose absolute values are less than or equal to
threshold
* |a|, where
a
is the coefficient that has the maximum absolute value in the numerator and denominator of the addition of two polynomials.
|
Default:
Absolute Value
g(x) numerator
Numerator coefficients, in ascending order of power, of the rational polynomial that results from the addition of two rational polynomials.
This output can return the following data types:
-
1D array of double-precision, floating-point numbers
-
1D array of complex double-precision, floating-point numbers
g(x) denominator
Denominator coefficients, in ascending order of power, of the rational polynomial that results from the addition of two rational polynomials.
This output can return the following data types:
-
1D array of double-precision, floating-point numbers
-
1D array of complex double-precision, floating-point numbers
error out
Error information.
The node produces this output according to standard error behavior.
Many nodes provide an
error in
input and an
error out
output so that the node can respond to and communicate errors that occur while code is running. The value of
error in
specifies whether an error occurred before the node runs. Most nodes respond to values of
error in
in a standard, predictable way.
error in
does not contain an error
|
error in
contains an error
|
|
|
If no error occurred before the node runs, the node begins execution normally.
If no error occurs while the node runs, it returns no error. If an error does occur while the node runs, it returns that error information as
error out.
|
If an error occurred before the node runs, the node does not execute. Instead, it returns the
error in
value as
error out.
|
Algorithm for Adding Rational Polynomials
This node uses the following equation to add two rational polynomials:
where
-
g(x) is the addition of
p(x) and
q(x)
-
p(x) is the first rational polynomial
-
q(x) is the second rational polynomial
-
p
n
(x) is the numerator polynomial of
p(x)
-
q
n
(x) is the numerator polynomial of
q(x)
-
p
d
(x) is the denominator polynomial of
p(x)
-
q
d
(x) is the denominator polynomial of
q(x)
Where This Node Can Run:
Desktop OS: Windows
FPGA:
Not supported
Web Server: Not supported in VIs that run in a web application