Converts Euler angles into a 3-by-3 matrix of direction cosines. The VI accepts both proper and Tait-Bryan angle types.


icon

Inputs/Outputs

  • cnclst.png Euler Angles

    Euler Angles specifies the Euler angles in radians.

  • cdbl.png phi

    phi specifies the rotation angle about the first axis in radians.

  • cdbl.png theta

    theta specifies the rotation angle about the second axis in radians.

  • cdbl.png psi

    psi specifies the rotation angle about the third axis in radians.

  • cu16.png rotation order

    rotation order specifies the order of the axes to rotate the coordinates around.

    For example, X-Y-Z specifies the first, second, and third rotations are about the x-, y-, and z-axes respectively. Z-X-Z is the default order.

    0X-Y-Z
    1X-Z-Y
    2Y-X-Z
    3Y-Z-X
    4Z-X-Y
    5Z-Y-X
    6X-Y-X
    7X-Z-X
    8Y-X-Y
    9Y-Z-Y
    10Z-X-Z
    11Z-Y-Z
  • i2ddbl.png Direction Cosines

    Direction Cosines returns the 3-by-3 direction cosine matrix, which maps points in the old coordinate frame to points in the new coordinate frame. Each element in Direction Cosines must be in the range of [-1, 1].

  • ii32.png error

    error returns any error or warning from the VI. You can wire error to the Error Cluster From Error Code VI to convert the error code or warning into an error cluster.

  • You can express a rotation using direction cosines or Euler angles. The following equation describes the relationship between Euler Angles and Direction Cosines (assume the rotation is the default Z-X-Z order):

    R =

    where R is the output 3-by-3 Direction Cosines matrix. ϕ (–π < ϕ ≤ π), θ (0 ≤ θ ≤ π), and ψ (–π < ψ ≤ π) are the input Euler Angles in radians.