Converts a 3-by-3 matrix of direction cosines into Euler angles.


icon

Inputs/Outputs

  • c2ddbl.png Direction Cosines

    Direction Cosines specifies the 3-by-3 direction cosine matrix, which maps points in the old coordinate frame to points in the new coordinate frame. Each element in Direction Cosines must be in the range of [-1, 1].

  • cu16.png rotation order

    rotation order specifies the order of the axes to rotate the coordinates around.

    For example, X-Y-Z specifies the first, second, and third rotations are about the x-, y-, and z-axes respectively. Z-X-Z is the default order.

    0X-Y-Z
    1X-Z-Y
    2Y-X-Z
    3Y-Z-X
    4Z-X-Y
    5Z-Y-X
    6X-Y-X
    7X-Z-X
    8Y-X-Y
    9Y-Z-Y
    10Z-X-Z
    11Z-Y-Z
  • inclst.png Euler Angles

    Euler Angles returns the Euler angles in radians.

  • idbl.png phi

    phi returns the rotation angle about the first axis in radians.

  • idbl.png theta

    theta returns the rotation angle about the second axis in radians.

  • idbl.png psi

    psi returns the rotation angle about the third axis in radians.

  • ii32.png error

    error returns any error or warning from the VI. You can wire error to the Error Cluster From Error Code VI to convert the error code or warning into an error cluster.

  • You can express a rotation using direction cosines or Euler angles. The following equation describes the relationship between Direction Cosines and Euler Angles (assume the rotation is the default Z-X-Z order):

    R =

    where R is the input 3-by-3 Direction Cosines matrix. ϕ (–π < ϕ ≤ π), θ (0 ≤ θ ≤ π), and ψ (–π < ψ ≤ π) are the output Euler Angles in radians.