Initialize Classification Model (LR) VI
- Updated2023-02-21
- 6 minute(s) read
Initialize Classification Model (LR) VI
Owning Palette: Classification VIs
Requires: Analytics and Machine Learning Toolkit
Initializes the hyperparameters of the logistic regression (LR) algorithm. You can either set the hyperparameters or specify multiple values for each hyperparameter. If you specify multiple values for each hyperparameter, the Train Classification Model VI uses grid search to find the optimal set of hyperparameters.
Set Parameters

![]() |
hyperparameters specifies the hyperparameters of the logistic regression model.
| ||||||||||||||||||
![]() |
cross validation configuration specifies settings for cross validation.
| ||||||||||||||||||
![]() |
error in describes error conditions that occur before this node runs. This input provides standard error in functionality. | ||||||||||||||||||
![]() |
untrained logistic regression model returns the initialized logistic regression model for training. | ||||||||||||||||||
![]() |
error out contains error information. This output provides standard error out functionality. |
Search Parameters

![]() |
hyperparameter grids specifies multiple values for each hyperparameter of the logistic regression model.
| ||||||||||||||||||
![]() |
hyperparameter optimization specifies the method of optimization to determine the optimal hyperparameter settings.
| ||||||||||||||||||
![]() |
cross validation configuration specifies settings for cross validation.
| ||||||||||||||||||
![]() |
error in describes error conditions that occur before this node runs. This input provides standard error in functionality. | ||||||||||||||||||
![]() |
untrained logistic regression model returns the initialized logistic regression model for training. | ||||||||||||||||||
![]() |
error out contains error information. This output provides standard error out functionality. |
Initialize Classification Model (LR) Details
The following equation defines the logistic regression model:
| where | |
| x is the input with k + 1 dimensions. x0 is always 1. | |
| y is the output with a binary value 0 or 1 | |
| β is the weight vector with k + 1 dimensions | |
| P (y = 1|x) is the probability of y = 1 given a known instance of x |
Examples
Refer to the following VIs for examples of using the Initialize Classification Model (LR) VI:
- Classification (Set Parameters, Training) VI: labview\examples\AML\Classification
- Classification (Search Parameters, Training) VI: labview\examples\AML\Classification











