Related Documentation (Control Design and Simulation Module)
- Updated2023-03-14
- 4 minute(s) read
You must have Adobe Reader installed to view PDFs. Refer to the Adobe Systems Incorporated website at www.adobe.com to download the latest version of Adobe Reader. Refer to ni.com/manuals for updated documentation resources.
The following resources contain information that you might find helpful as you use the LabVIEW Control Design and Simulation Module.
- ni.com/gettingstarted—This website provides information about getting started with LabVIEW.
- LabVIEW Control Design User Manual—This manual contains information about using LabVIEW to design, analyze, and deploy controllers for dynamic systems.
- Getting Started with the LabVIEW Real-Time Module—This manual introduces the concepts necessary to create real-time simulations.
- Real-Time Execution Trace Toolkit documentation.
- NI-CAN Hardware and Software Manual
- NI-DAQmx Help
- LabVIEW Control Design and Simulation Module Readme—Use this file to learn important last-minute information, including installation and upgrade issues, compatibility issues, changes from the previous version, and known issues with the Control Design and Simulation Module. Open this readme by selecting Start»All Programs»National Instruments»LabVIEW»Readme and opening readme_ControlandSim.html or by navigating to the labview\readme directory and opening readme_ControlandSim.html.
- LabVIEW Control Design and Simulation Module example VIs—Refer to the labview\examples\Control and Simulation directory for example VIs that demonstrate common tasks using the Control Design and Simulation Module. You also can access these VIs by selecting Help»Find Examples and selecting Toolkits and Modules»Control and Simulation in the NI Example Finder window.
- (Windows) System Identification example VIs—Refer to the labview\examples\System Identification directory for example VIs that demonstrate common tasks using the System Identification VIs. You also can access these VIs by selecting Help»Find Examples and selecting Toolkits and Modules»System Identification in the NI Example Finder window.
- (Windows) LabVIEW System Identification VIs Algorithm References—Use this manual to learn about the algorithms and function references that the System Identification VIs use.
- Additional LabVIEW documentation.
![]() |
Note The following resources offer useful background information on the general concepts discussed in this documentation. These resources are provided for general informational purposes only and are not affiliated, sponsored, or endorsed by NI. The content of these resources is not a representation of, may not correspond to, and does not imply current or future functionality in the Control Design and Simulation Module or any other NI product. |
- Åström, K., and T. Hagglund. 1995. PID controllers: theory, design, and tuning. 2d ed. ISA.
- Balbis, Luisella. 2006. Predictive control tool kit. UKACC control, 2006. Mini symposia: 87–96.
- Bertsekas, Dimitri P. 1999. Nonlinear programming. 2d ed. Belmont, MA: Athena Scientific.
- Datta, A., M. T. Ho, and S. P. Bhattacharyya. 2000. Structure and synthesis of PID controllers. London: Springer-Verlag.
- Dorf, R. C., and R. H. Bishop. 2010. Modern control systems. 12th ed. Upper Saddle River, NJ: Prentice Hall.
- Franklin, G. F., J. D. Powell, and A. Emami-Naeini. 2009. Feedback control of dynamic systems. 6th ed. Upper Saddle River, NJ: Prentice Hall.
- Franklin, G. F., J. D. Powell, and M. L. Workman. 1997. Digital control of dynamic systems. 3d ed. Menlo Park, CA: Addison Wesley.
- Ho, Ming-Tzu, G. J. Silva, A. Datta, and S. P. Bhattacharyya. 2004. Real and complex stabilization: stability and performance. Proc. Of the 2004 American Control Conference 5:4126–38.
- Keel, L. H., J. I. Rego, and S. P. Bhattacharyya. 2003. A new approach to digital PID controller design. IEEE Transactions on Automatic Control 48, no. 4.
- Keel, L.H., and S.P. Bhattacharyya. 2002. Root counting, phase unwrapping, stability and stabilization of discrete time systems. Linear algebra and its applications 351–2:501–518.
- Kuo, Benjamin C. 1995. Digital control systems. 2d ed. New York: Oxford University Press.
- Loan, C.F.V. 1978. Computing integrals involving the matrix exponential, IEEE Transactions on Automatic Control, vol. 23, no. 3, pp. 395–404.
- Nise, Norman S. 2010. Control systems engineering. 6th ed. New York: John Wiley & Sons, Inc.
- Ogata, Katsuhiko. 1995. Discrete-time control systems. 2d ed. Englewood Cliffs, N.J.: Prentice Hall.
- Ogata, Katsuhiko. 2009. Modern control engineering. 5th ed. Upper Saddle River, NJ: Prentice Hall.
- Zhou, Kemin, and John C. Doyle. 1998. Essentials of robust control. Upper Saddle River, NJ: Prentice Hall.
Related Documentation for ODE and DAE Solvers
The following resources contain information about ordinary differential equation (ODE) solvers the Control Design and Simulation Module provides.
- Ascher, U. M., and L. R. Petzold. 1998. Computer methods for ordinary differential equations and differential-algebraic equations. Philadelphia: Society for Industrial and Applied Mathematics.
- Bogacki, P., and L. F. Shampine. 1989. A 3(2) Pair of Runge-Kutta formulas. Applied Mathematics Letters, vol. 2, no. 4, pp. 321-325.
- Brown, Roy Leonard, and Charles William Gear. 1973. Documentation for DFASUB - A Program for the Solution of Simultaneous Implicit Differential and Nonlinear Equations. Urbana, Illinois: Department of Computer Science, University of Illinois at Urbana-Champaign.
- Gear, C. W. 1970. The Simultaneous Numerical Solution of Differential-Algebraic Equations. Stanford, California: Stanford Linear Accelerator Center and Computer Science Department, Stanford University.
- Gear, C. William. 1971. Numerical Initial Value Problems in Ordinary Differential Equations. New Jersey: Prentice-Hall.
- Hairer, E. and G. Wanner. 1991. Solving Ordinary Differential Equations II, Stiff and Differential-Algebraic Problems (Springer Series in Computational Mathematics). Berlin: Springer-Verlag.
- Hairer, Ernst, and Gerhard Wanner. Stiff differential equations solved by Radau methods. Journal of Computational and Applied Mathematics, vol. 111, no. 1-2, pp. 93-111.
- Hairer, E., S. P. Nørsett, G. Wanner. 1993. Solving Ordinary Differential Equations I, Nonstiff Problems, (Springer Series in Computational Mathematics). 2nd ed. Berlin: Springer-Verlag.
- Ralston, A. 1978. A First Course in Numerical Analysis. 2nd ed. New York: McGraw-Hill Inc.
- Shampine, Lawrence F. 1994. Numerical solution of ordinary differential equations. New York: Chapman & Hall, Inc.
- Shampine, Lawrence F., and M. K. Gordon. 1975. Computer Solution of Ordinary Differential Equations: The Initial Value Problem. New York: W. H. Freeman and Company.