Solves the polynomial eigenvalue problem. Wire data to the Input Matrices input to determine the polymorphic instance to use or manually select the instance.


icon

Inputs/Outputs

  • c3ddbl.png Input Matrices

    Input Matrices is a 3D array of size n*n*p and contains square input matrices of the same size. The input matrices must be square. The matrices are in ascending order of power for Eigenvalues.

  • ci32.png output option

    output option determines whether the VI computes Eigenvectors.

    0eigenvalues
    1eigenvalues and vectors (default)
  • i1dcdb.png Eigenvalues

    Eigenvalues is a complex vector of n*p elements and contains all the computed eigenvalues.

  • i2dcdb.png Eigenvectors

    Eigenvectors is an n × (n*p) complex matrix and contains all the computed eigenvectors in its columns.

  • ii32.png error

    error returns any error or warning from the VI. You can wire error to the Error Cluster From Error Code VI to convert the error code or warning into an error cluster.

  • The following equation defines the polynomial eigenvalue problem.

    where

    C0, C1, …, Cp – 1 are square n × n matrices in Input Matrices λj is the jth element in Eigenvalues xj has length n and is the jth column in Eigenvectors with j = 0, 1, …, n*p – 1

    If p = 1, the VI calculates eigenvalues and eigenvectors using the following equation.

    C0xj = λjxj

    If p = 2, the VI calculates generalized eigenvalues and eigenvectors using the following equation.

    C0xj = –λjC1xj