Polynomial Eigenvalues and Vectors (CDB) VI
- Updated2025-07-30
- 3 minute(s) read
Solves the polynomial eigenvalue problem. Wire data to the Input Matrices input to determine the polymorphic instance to use or manually select the instance.

Inputs/Outputs
Input Matrices
—
Input Matrices is a 3D array of size n*n*p and contains square input matrices of the same size. The input matrices must be square. The matrices are in ascending order of power for Eigenvalues.
output option
—
output option determines whether the VI computes Eigenvectors.
Eigenvalues
—
Eigenvalues is a complex vector of n*p elements and contains all the computed eigenvalues.
Eigenvectors
—
Eigenvectors is an n × (n*p) complex matrix and contains all the computed eigenvectors in its columns.
error
—
error returns any error or warning from the VI. You can wire error to the Error Cluster From Error Code VI to convert the error code or warning into an error cluster. |
The following equation defines the polynomial eigenvalue problem.
where
C0, C1, …, Cp – 1 are square n × n matrices in Input Matrices λj is the jth element in Eigenvalues xj has length n and is the jth column in Eigenvectors with j = 0, 1, …, n*p – 1If p = 1, the VI calculates eigenvalues and eigenvectors using the following equation.
C0xj = λjxjIf p = 2, the VI calculates generalized eigenvalues and eigenvectors using the following equation.
C0xj = –λjC1xj
Input Matrices
—
output option
—
Eigenvalues
—
Eigenvectors
—
error
—