Computes the generalized singular value decomposition (GSVD) of a matrix pair (A,B). The data types you wire to the A and B inputs determine the polymorphic instance to use.


icon

Inputs/Outputs

  • c2ddbl.png A

    A is a matrix with m rows and p columns.

  • c2ddbl.png B

    B is a matrix with n rows and p columns.

  • cbool.png singular values only?

    singular values only? specifies whether to compute only the generalized singular values. The default is FALSE. When singular values only? is TRUE, the VI computes only Singular Values.

  • cu16.png SVD option

    SVD Option specifies how the VI performs the decomposition.

    0Thin (default)—Decomposes matrix A as the multiplication of matrix U (m x min(m,p)), C (min(m,p) x p) and transpose of R (p x p). Decomposes matrix B as the multiplication of matrix V (n x min(n,p)), S (min(n,p) x p) and transpose of R (p x p).
    1Full—Decomposes matrix A as the multiplication of matrix U (m x m), C (m x p) and transpose of R (p x p). Decomposes matrix B as the multiplication of matrix V (n x n), S (n x p) and transpose of R (p x p).
  • i1ddbl.png Singular Values

    Singular Values returns the generalized singular values of matrix pair (A,B).

  • i2ddbl.png Matrix U

    Matrix U returns the U matrix of the GSVD results.

  • i2ddbl.png Matrix V

    Matrix V returns the V matrix of the GSVD results.

  • i2ddbl.png Matrix C

    Matrix C returns the C matrix of the GSVD results.

  • i2ddbl.png Matrix S

    Matrix S returns the S matrix of the GSVD results.

  • ii32.png error

    error returns any error or warning from the VI. You can wire error to the Error Cluster From Error Code VI to convert the error code or warning into an error cluster.

  • i2ddbl.png Matrix R

    Matrix R returns the R matrix of the GSVD results.

  • The following expressions define the generalized singular value decomposition of a matrix pair (A,B).

    A = UCR B = VSR

    where U and V are orthogonal matrices, and R is a square matrix.

    When you let k be the rank of matrix , then the first k diagonal elements of matrix CC + SS are ones and all of the other elements are zeros. The square roots of the first k diagonal elements of CC and SS determine the numerators and denominators of the generalized singular values, respectively.