Complex Schur Decomposition VI
- Updated2025-07-30
- 3 minute(s) read
Performs the Schur decomposition of a square matrix. Wire data to the Input Matrix input to determine the polymorphic instance to use or manually select the instance.

Inputs/Outputs
Input Matrix
—
Input Matrix must be a square complex matrix.
compute Schur vectors?
—
compute Schur vectors? specifies whether the VI calculates Schur Vectors. The default is FALSE.
order
—
order specifies how to order the Eigenvalues and the corresponding Schur Form and Schur Vectors.
Schur Form
—
Schur Form returns the upper triangular matrix.
Schur Vectors
—
Schur Vectors returns the unitary matrix.
Eigenvalues
—
Eigenvalues returns a complex vector that contains all the computed eigenvalues of Input Matrix.
error
—
error returns any error or warning from the VI. You can wire error to the Error Cluster From Error Code VI to convert the error code or warning into an error cluster. |
The following expression defines the Schur decomposition of a square n × n matrix A.
A = QSQHwhere S is in Schur form, and QH is the conjugate transpose of matrix Q.
Real Matrix
For a real matrix A, Q is an n × n orthogonal matrix. S is a block upper triangular matrix in real Schur form, whose elements on the main diagonal are all 1 × 1 or 2 × 2 blocks, as shown in the following matrix.
where Sii are square blocks of dimension 1 or 2, and i = 1, 2, …, m.
Complex Matrix
For a complex matrix A, Q is an n × n unitary matrix. S is an upper triangular matrix in complex Schur form.
Input Matrix
—
compute Schur vectors?
—
order
—
Schur Form
—
Eigenvalues
—
error
—