KPCA VI
- Updated2023-02-21
- 4 minute(s) read
KPCA VI
Owning Palette: Feature Manipulation VIs
Requires: Analytics and Machine Learning Toolkit
Trains a kernel principal component analysis (KPCA) model. You can use the KPCA model to reduce the dimension of training data.

![]() |
model in specifies the information about the entire workflow of the model. | ||||||||||||||||||||||||||
![]() |
PCA settings specifies the method and value for this VI to calculate the number of principal components.
| ||||||||||||||||||||||||||
![]() |
kernel settings specifies the settings to configure the kernel function. This VI supports the following kernel functions:
| ||||||||||||||||||||||||||
![]() |
error in describes error conditions that occur before this node runs. This input provides standard error in functionality. | ||||||||||||||||||||||||||
![]() |
model out returns the information about the entire workflow of the model. Wire model out to the reference input of a standard Property Node to get an AML Analytics Property Node. | ||||||||||||||||||||||||||
![]() |
KPCA model info returns the information of the KPCA model. Wire KPCA model info to the reference input of a standard Property Node to get an AML KPCA Property Node. | ||||||||||||||||||||||||||
![]() |
error out contains error information. This output provides standard error out functionality. |
Example
Refer to the Feature Manipulation (Training) VI in the labview\examples\AML\Feature Manipulation directory for an example of using the KPCA VI.











