Initialize Anomaly Detection Model (SOM-MQE) VI
- Updated2023-02-21
- 7 minute(s) read
Initialize Anomaly Detection Model (SOM-MQE) VI
Owning Palette: Anomaly Detection VIs
Requires: Analytics and Machine Learning Toolkit
Initializes the hyperparameters of the self-organizing map (SOM) algorithm.
The minimum quantization error (MQE) is the distance between the input data and the best matching unit.
The Deploy Anomaly Detection Model VI uses health index to return the MQE value.
You can initialize a SOM model for batch training with this VI when you have a large training data set. To improve the machine learning model quality and the predictive performance, NI recommends that you shuffle the data set before training so each batch has similar distribution.
One Shot

![]() |
initial parameters specifies the initial parameters of the SOM baseline model.
| ||||||||||||||||||
![]() |
hyperparameters specifies the hyperparameters of the SOM baseline model.
| ||||||||||||||||||
![]() |
error in describes error conditions that occur before this node runs. This input provides standard error in functionality. | ||||||||||||||||||
![]() |
untrained SOM baseline model returns the initialized SOM baseline model for training. | ||||||||||||||||||
![]() |
error out contains error information. This output provides standard error out functionality. |
Batch

![]() |
initial parameters specifies the initial parameters of the SOM baseline model.
| ||||||||||||||
![]() |
hyperparameters specifies the hyperparameters of the SOM baseline model.
| ||||||||||||||
![]() |
error in describes error conditions that occur before this node runs. This input provides standard error in functionality. | ||||||||||||||
![]() |
untrained SOM baseline model returns the initialized SOM baseline model for training. | ||||||||||||||
![]() |
error out contains error information. This output provides standard error out functionality. |
Examples
Refer to the following VIs for examples of using the Initialize Anomaly Detection Model (SOM-MQE) VI:
- Anomaly Detection (Training) VI: labview\examples\AML\Anomaly Detection
- Anomaly Detection (Training) (Batch) VI: labview\examples\AML\Anomaly Detection









