Initialize Anomaly Detection Model (One-Class SVM) VI
- Updated2023-02-21
- 4 minute(s) read
Initialize Anomaly Detection Model (One-Class SVM) VI
Owning Palette: Anomaly Detection VIs
Requires: Analytics and Machine Learning Toolkit
Initializes the hyperparameters of the one-class support vector machine (SVM) algorithm. This VI uses the nu-SVM algorithm.
Use the one-class SVM model to estimate the boundary of a high-dimensional distribution. The one-class SVM algorithm trains models on data that has only one class.

![]() |
hyperparameters specifies the hyperparameters of the one-class SVM model.
| |||||||||||||||||||||||||||||||||||||||
![]() |
error in describes error conditions that occur before this node runs. This input provides standard error in functionality. | |||||||||||||||||||||||||||||||||||||||
![]() |
untrained one-class SVM model returns the initialized one-class SVM model for training. | |||||||||||||||||||||||||||||||||||||||
![]() |
error out contains error information. This output provides standard error out functionality. |
Example
Refer to the Anomaly Detection (Training) VI in the labview\examples\AML\Anomaly Detection directory for an example of using the Initialize Anomaly Detection Model (One-Class SVM) VI.











