Power Spectrum Estimation Methods
- Updated2025-10-28
- 3 minute(s) read
A power spectrum describes the energy distribution of a time series in the frequency domain. Methods for estimating power spectral density are classified as either parametric or nonparametric.
Energy is a real-valued quantity, so the power spectrum does not contain phase information. Because a time series may contain non-periodic or asynchronously-sampled periodic signal components, the power spectrum of a time series typically is considered to be a continuous function of frequency. When you use a series of discrete frequency bins to represent the continuous frequency, the value at a specific frequency bin is proportional to the frequency interval. To remove the dependence on the size of the frequency interval, you can normalize the power spectrum to produce the Power Spectral Density (PSD), which is the power spectrum divided by the size of the frequency interval.
The PSD measures the signal power per unit bandwidth for a time series in V2/Hz, which implicitly assumes that the PSD represents a signal in volts driving a 1 ohm load. If the PSD is represented in a decibel (dB), the corresponding unit for the PSD is dB ref V/sqrt(Hz). If you want to use other units for the estimated PSD of a time series, you need to scale the unit of the time series into appropriate Engineering Units (EU). After scaling the unit of the time series, you can obtain the corresponding unit for the linear PSD value and the dB PSD value as EU 2/Hz and dB ref EU/sqrt(Hz), respectively. Use the TSA Scale to EU VI to scale the unit for a time series to appropriate EU.
PSD estimation methods are classified as follows: