NI Vision

NI 17xx Smart Camera User Manual
For NI 1712/1732/1752/1754 Smart Cameras

February 2013
372429C-01
Worldwide Technical Support and Product Information
ni.com

Worldwide Offices
Visit ni.com/niglobal to access the branch office Web sites, which provide up-to-date contact information, support phone numbers, email addresses, and current events.

National Instruments Corporate Headquarters
11500 North Mopac Expressway Austin, Texas 78759-3504 USA Tel: 512 683 0100

For further support information, refer to the Technical Support and Professional Services appendix. To comment on National Instruments documentation, refer to the National Instruments Web site at ni.com/info and enter the Info Code feedback.

© 2008-2013 National Instruments. All rights reserved.
Important Information

Warranty
The NI 17xx is warranted against defects in materials and workmanship for a period of one year from the date of shipment, as evidenced by receipts or other documentation. National Instruments will, at its option, repair or replace equipment that proves to be defective during the warranty period. This warranty includes parts and labor.

The media on which you receive National Instruments software are warranted not to fail to execute programming instructions, due to defects in materials and workmanship, for a period of 90 days from date of shipment, as evidenced by receipts or other documentation. National Instruments will, at its option, repair or replace software media that do not execute programming instructions if National Instruments receives notice of such defects during the warranty period. National Instruments does not warrant that the operation of the software shall be uninterrupted or error free.

A Return Material Authorization (RMA) number must be obtained from the factory and clearly marked on the outside of the package before any equipment will be accepted for warranty work. National Instruments will pay the shipping costs of returning to the owner parts which are covered by warranty.

National Instruments believes that the information in this document is accurate. The document has been carefully reviewed for technical accuracy. In the event that technical or typographical errors exist, National Instruments reserves the right to make changes to subsequent editions of this document without prior notice to holders of this edition. The reader should consult National Instruments if errors are suspected. In no event shall National Instruments be liable for any damages arising out of or related to this document or the information contained in it.

Except as specified herein, National Instruments makes no warranties, express or implied, and specifically disclaims any warranty of merchantability or fitness for a particular purpose. Customer’s right to recover damages caused by fault or negligence on the part of National Instruments shall be limited to the amount thereof already paid by the customer. National Instruments will not be liable for damages resulting from loss of data, profits, use of products, or incidental or consequential damages, even if advised of the possibility thereof. This limitation of the liability of National Instruments will apply regardless of the form of action, whether in contract or tort, including negligence. Any action against National Instruments must be brought within one year after the cause of action accrues. National Instruments shall not be liable for any delay in performance due to causes beyond its reasonable control. The warranty provided herein does not cover damages, defects, malfunctions, or service failures caused by owner’s failure to follow the National Instruments installation, operation, or maintenance instructions; owner’s modification of the product; owner’s abuse, misuse, or negligent acts; and power failure or surges, fire, flood, accident, actions of third parties, or other events outside reasonable control.

Copyright
Under the copyright laws, this publication may not be reproduced or transmitted in any form, electronic or mechanical, including photocopying, recording, storing in an information retrieval system, or translating, in whole or in part, without the prior written consent of National Instruments Corporation.

National Instruments respects the intellectual property of others, and we ask our users to do the same. NI software is protected by copyright and other intellectual property laws. Where NI software may be used to reproduce software or other materials belonging to others, you may use NI software only to reproduce materials that you may reproduce in accordance with the terms of any applicable license or other legal restriction.

End-User License Agreements and Third-Party Legal Notices
You can find end-user license agreements (EULAs) and third-party legal notices in the following locations:
• Notices are located in the <National Instruments>_Legal Information and <National Instruments>\Shared\MDF\Legal\license directories.
• EULAs are located in the <National Instruments>\Shared\MDF\Legal\license directory.
• Review <National Instruments>_Legal Information.txt for more information on including legal information in installers built with NI products.

Trademarks
LabVIEW, National Instruments, NI, ni.com, the National Instruments corporate logo, and the Eagle logo are trademarks of National Instruments Corporation. Refer to the Trademark Information at ni.com/trademarks for other National Instruments trademarks.

Other product and company names mentioned herein are trademarks or trade names of their respective companies.

Members of the National Instruments Alliance Partner Program are business entities independent from National Instruments and have no agency, partnership, or joint-venture relationship with National Instruments.

Patents
For patents covering National Instruments products/technology, refer to the appropriate location: Help\Patents in your software, the patents.txt file on your media, or the National Instruments Patent Notice at ni.com/patents.

Export Compliance Information
Refer to the Export Compliance Information at ni.com/legal/export-compliance for the National Instruments global trade compliance policy and how to obtain relevant HTS codes, ECCNs, and other import/export data.

WARNING REGARDING USE OF NATIONAL INSTRUMENTS PRODUCTS
(1) NATIONAL INSTRUMENTS PRODUCTS ARE NOT DESIGNED WITH COMPONENTS AND TESTING FOR A LEVEL OF RELIABILITY SUITABLE FOR USE IN OR IN CONNECTION WITH SURGICAL IMPLANTS OR AS CRITICAL COMPONENTS IN ANY LIFE SUPPORT SYSTEMS WHERE FAILURE TO PERFORM CAN REASONABLY BE EXPECTED TO CAUSE SIGNIFICANT INJURY TO A HUMAN.
(2) In any application, including the above, reliability of operation of the software products can be impaired by adverse factors, including but not limited to fluctuations in electrical power supply, computer hardware malfunctions, computer operating system software fitness, fitness of compilers and development software used to develop an application, installation errors, software and hardware compatibility problems, malfunctions or failures of electronic monitoring or control devices, transient failures of electronic systems (hardware and/or software), unanticipated uses or misuses, or errors on the part of the user or applications designer (adverse factors such as these are hereafter collectively termed "system failures"). Any application where a system failure would create a risk of harm to property or persons (including the risk of bodily injury and death) should not be reliant solely upon one form of electronic system due to the risk of system failure. To avoid damage, injury, or death, the user or application designer must take reasonably prudent steps to protect against system failures, including but not limited to back-up or shut down mechanisms. Because each end-user system is customized and differs from National Instruments testing platforms and because a user or application designer may use National Instruments products in combination with other products in a manner not evaluated or contemplated by National Instruments, the user or application designer is ultimately responsible for verifying and validating the suitability of National Instruments products whenever National Instruments products are incorporated in a system or application, including, without limitation, the appropriate design, process and safety level of such system or application.
Compliance

Electromagnetic Compatibility Information

This hardware has been tested and found to comply with the applicable regulatory requirements and limits for electromagnetic compatibility (EMC) as indicated in the hardware’s Declaration of Conformity (DoC)\(^1\). These requirements and limits are designed to provide reasonable protection against harmful interference when the hardware is operated in the intended electromagnetic environment. In special cases, for example when either highly sensitive or noisy hardware is being used in close proximity, additional mitigation measures may have to be employed to minimize the potential for electromagnetic interference.

While this hardware is compliant with the applicable regulatory EMC requirements, there is no guarantee that interference will not occur in a particular installation. To minimize the potential for the hardware to cause interference to radio and television reception or to experience unacceptable performance degradation, install and use this hardware in strict accordance with the instructions in the hardware documentation and the DoC\(^1\).

If this hardware does cause interference with licensed radio communications services or other nearby electronics, which can be determined by turning the hardware off and on, you are encouraged to try to correct the interference by one or more of the following measures:

- Reorient the antenna of the receiver (the device suffering interference).
- Relocate the transmitter (the device generating interference) with respect to the receiver.
- Plug the transmitter into a different outlet so that the transmitter and the receiver are on different branch circuits.

Some hardware may require the use of a metal, shielded enclosure (windowless version) to meet the EMC requirements for special EMC environments such as, for marine use or in heavy industrial areas. Refer to the hardware’s user documentation and the DoC\(^1\) for product installation requirements.

When the hardware is connected to a test object or to test leads, the system may become more sensitive to disturbances or may cause interference in the local electromagnetic environment.

Operation of this hardware in a residential area is likely to cause harmful interference. Users are required to correct the interference at their own expense or cease operation of the hardware.

Changes or modifications not expressly approved by National Instruments could void the user’s right to operate the hardware under the local regulatory rules.

\(^1\) The Declaration of Conformity (DoC) contains important EMC compliance information and instructions for the user or installer. To obtain the DoC for this product, visit ni.com/certification, search by model number or product line, and click the appropriate link in the Certification column.
Contents

About This Manual
Conventions .. xi
Related Documentation .. xi
 Hardware Documents .. xi
 NI Vision Builder for Automated Inspection Documents .. xii
 LabVIEW and NI Vision Development Module Documents .. xii
 NI Vision Acquisition Software Documents .. xiii

PART I
Getting Started with the NI 17xx Smart Camera

Chapter 1
Hardware Overview and Installation
Hardware Overview .. 1-1
Connect the Power Supply .. 1-2
 NI Desktop Power Supply .. 1-3
 Third-Party Power Supply .. 1-3
Power Requirements ... 1-5
Connect to the Development Computer ... 1-5
 Direct Connection .. 1-5
 Network Connection ... 1-6
 Subnet Considerations .. 1-6
 IP Address Assignment .. 1-6
 DHCP IP Addresses ... 1-6
 Firewall Configuration ... 1-7

Chapter 2
Software Overview
Configuring the NI Smart Camera with Vision Builder AI .. 2-2
 Configure the IP Address ... 2-2
 Install Software on the NI Smart Camera ... 2-3
 Acquire an Image with Vision Builder AI .. 2-3
Configuring the NI Smart Camera with LabVIEW ... 2-4
 Configure the IP Address ... 2-5
 Install Software on the NI Smart Camera ... 2-6
 Acquire an Image .. 2-6
PART II
NI 17xx Smart Camera Technical Reference

Chapter 3
Connectors
POWER-I/O Connector ..3-2
NI Smart Camera Power Requirements..3-3
Lighting Connector ...3-3
Ethernet Ports ..3-4
 Ethernet LEDs ...3-4
 ACTIVITY/LINK LED ..3-5
 SPEED LED ...3-5

Chapter 4
Connecting Lighting and External Devices
Direct Drive Lighting Controller ..4-1
 Lighting Files ..4-3
 Selecting a Light ...4-4
 Connecting a Light to the Direct Drive Lighting Controller4-5
External Lighting Controllers ...4-5
 Connecting an External Lighting Controller to the NI Smart Camera4-7
Isolated Inputs ...4-7
Isolated Outputs ..4-8
 Protecting Against Inductive Loads ..4-9
Connecting to Serial Devices ..4-10
 Communicating with the Console ...4-10
Connecting to a Quadrature Encoder ..4-10

Chapter 5
Image Sensor
Field of View ..5-1
Image Sensor Spectral Response ..5-2
Partial Scan Mode ..5-3
Binning ...5-3
Gain ...5-4
Hardware Binarization ...5-4
Maintenance ..5-5
Chapter 6
Image Acquisition

- Exposure ... 6-1
- Acquiring Images ... 6-2
 - Internal Timing .. 6-2
 - External Trigger ... 6-2
- Maximum Frame Rate .. 6-5
 - Determining the Maximum Frame Rate .. 6-5
 - Determining the Scan Mode .. 6-6
 - Determining the Exposure Time .. 6-6
 - Determining the Trigger Delay ... 6-6
 - Calculating the Minimum Frame Period .. 6-6

Chapter 7
LED Indicators and DIP Switches

- Understanding the LED Indicators ... 7-1
- Device Initialization .. 7-2
- POWER LED ... 7-2
- STATUS LED ... 7-2
- IMG ACQ LED ... 7-4
- PASS LED ... 7-4
- FAIL LED ... 7-4
- Configuring DIP Switches .. 7-4
 - SAFE MODE Switch .. 7-4
 - IP RESET Switch ... 7-5
 - NO APP Switch .. 7-5
 - CONSOLE Switch .. 7-6

Chapter 8
Thermal Considerations and Mounting

- Thermal Considerations .. 8-1
- Mounting the NI Smart Camera .. 8-2

Appendix A
Specifications

- Power Requirements .. A-1
- Memory ... A-1
- Processor ... A-1
- VGA Sensor (NI 1712/1732/1752 Only) ... A-1
- SXGA Sensor (NI 1754 Only) .. A-2
- Lighting ... A-3
- Network ... A-4
- Serial ... A-5
Contents

Optically Isolated Inputs and Outputs ... A-5
 Isolated Inputs .. A-5
 Isolated Outputs .. A-5
Quadrature Encoder (NI 1732/1752/1754 Only) .. A-5
Physical Characteristics .. A-5
Safety ... A-6
Electromagnetic Compatibility .. A-6
CE Compliance .. A-7

Appendix B
Troubleshooting
Configuration Problems ... B-1
 The NI Smart Camera Does Not Appear in MAX or Vision Builder AI B-1
 The NI Smart Camera Restarts Unexpectedly .. B-2
Run-Time Problems .. B-3
 The NI Smart Camera is Unresponsive and Blinks the IMG ACQ and FAIL LEDs B-3
Lighting Problems ... B-3
 The Light Does Not Illuminate When Using the Direct Drive Controller B-3
 There is No External Lighting Strobe ... B-5
 MAX .. B-5
 Vision Builder AI .. B-5
Triggering Problems .. B-5
 No Trigger is Received ... B-5
LED Error Indications .. B-6
 STATUS LED Error Conditions ... B-6
 POWER LED is Not Lit When the NI Smart Camera is Powered On B-6

Appendix C
Technical Support and Professional Services
Glossary
Index
About This Manual

This manual is divided into two parts. Part I contains instructions for installing software and configuring your device. Part II contains detailed electrical and mechanical information for the National Instruments 17xx Smart Camera.

Conventions

The following conventions appear in this manual:

- **Bold** text denotes items that you must select or click in the software, such as menu items and dialog box options. Bold text also denotes parameter names.

- **Italic** text denotes variables, emphasis, a cross-reference, or an introduction to a key concept. Italic text also denotes text that is a placeholder for a word or value that you must supply.

- **Monospace** text in this font denotes text or characters that you should enter from the keyboard, sections of code, programming examples, and syntax examples. This font is also used for the proper names of disk drives, paths, directories, programs, subprograms, subroutines, device names, functions, operations, variables, filenames, and extensions.

- **Italic Monospace** text in this font denotes text that is a placeholder for a word or value that you must supply.

Related Documentation

The following documents contain information that you may find helpful as you read this manual:

Hardware Documents

- **NI 17xx Series Smart Camera: Using the NI Smart Camera with LabVIEW**—Contains basic installation and configuration instructions for using the NI Smart Camera with LabVIEW.

- **NI 17xx Series Smart Camera: Using the NI Smart Camera with Vision Builder AI**—Contains basic installation and configuration instructions for using the NI Smart Camera with Vision Builder AI.
• NI Developer Zone—Contains example programs, tutorials, technical presentations, the Instrument Driver Network, a measurement glossary, an online magazine, a product advisor, and a community area where you can share ideas, questions, and source code with developers around the world. The NI Developer Zone is located on the National Instruments Web site at ni.com/zone.
 – *Using the NI 17xx Smart Camera Direct Drive Lighting Controller*—Demonstrates how to utilize the Direct Drive lighting controller feature on the NI 17xx Smart Camera with LabVIEW or Vision Builder for Automated Inspection.

NI Vision Builder for Automated Inspection Documents

• *NI Vision Builder for Automated Inspection Tutorial*—Describes Vision Builder for Automated Inspection and provides step-by-step instructions for solving common visual inspection tasks, such as inspection, gauging, part presence, guidance, and counting.
• *NI Vision Builder for Automated Inspection: Configuration Help*—Contains information about using the Vision Builder for Automated Inspection Configuration Interface to create a machine vision application.
• *NI Vision Builder for Automated Inspection: Inspection Help*—Contains information about running applications created with Vision Builder for Automated Inspection in the Vision Builder Automated Inspection Interface.

LabVIEW and NI Vision Development Module Documents

• *LabVIEW Help*—Includes information about LabVIEW programming concepts, step-by-step instructions for using LabVIEW, and reference information about LabVIEW VIs, functions, palettes, menus, and tools.
• *Getting Started with LabVIEW*—Use this manual as a tutorial to familiarize yourself with the LabVIEW graphical programming environment and the basic LabVIEW features you use to build data acquisition and instrument control applications.
• *Getting Started with the LabVIEW Real-Time Module*—Use this manual as a tutorial to familiarize yourself with the LabVIEW Real-Time Module and the basic Real-Time Module features you use to build real-time applications.
• *NI Vision Concepts Help*—Describes the basic concepts of image analysis, image processing, and machine vision. This document also contains in-depth discussions about imaging functions for advanced users.
• *NI Vision for LabVIEW Help*—Describes how to create machine vision and image processing applications in LabVIEW using the Vision Development Module. The help file guides you through tasks beginning with setting up your imaging system to taking measurements. It also describes how to create a real-time vision application using NI Vision with the LabVIEW Real-Time Module and contains reference information about NI Vision for LabVIEW palettes and VIs.
NI Vision Acquisition Software Documents

- **NI-IMAQ VI Reference Help**—Contains reference information about the LabVIEW VIs and properties for NI-IMAQ driver software.
- **Measurement & Automation Explorer Help for NI-IMAQ**—Describes how to configure NI-IMAQ driver software, NI image acquisition devices, and NI Smart Cameras using Measurement & Automation Explorer.
Part I

Getting Started with the NI 17xx Smart Camera

This section provides the following information:
• Basic information about the NI 17xx Smart Camera hardware
• Instructions for configuring the NI 17xx Smart Camera hardware
• Basic information about software options for application development
• Instructions for acquiring your first image with the NI 17xx Smart Camera using the selected application development software
Hardware Overview and Installation

This chapter provides an overview of the features and components of the NI 17xx Smart Camera. Figure 1-1 shows the NI 17xx Smart Camera.

Figure 1-1. NI 17xx Smart Camera

Hardware Overview

The NI Smart Camera is available in several different configurations. When a feature pertains only to specific smart camera models, a list at the beginning of the section shows which smart camera models support the feature.

All smart camera models incorporate an image sensor, processor, and digital I/O in a compact, rugged housing.

1. Image Sensor
2. Standard C Lens Mount
3. Lighting Connector
4. LED Indicators
5. DIP Switches
6. POWER-I/O Connector
7. Ethernet Ports (Single Port on NI 1712)
Table 1-1 shows the differentiating features for each smart camera model.

<table>
<thead>
<tr>
<th>Processor</th>
<th>Image Sensor</th>
<th>Lighting Strobe</th>
<th>Direct Drive Lighting Controller</th>
<th>Quadrature Encoder Support</th>
</tr>
</thead>
<tbody>
<tr>
<td>NI 1712 400 MHz PowerPC</td>
<td>1/3 inch Sony ICX424AL CCD Monochrome 640 × 480 pixels (VGA)</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>NI 1722 400 MHz PowerPC</td>
<td>1/3 inch Sony ICX424AL CCD Monochrome 640 × 480 pixels (VGA)</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>NI 1752 600 MHz PowerPC</td>
<td>1/3 inch Sony ICX424AL CCD Monochrome 640 × 480 pixels (VGA)</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>NI 1754 600 MHz PowerPC</td>
<td>1/2 inch Sony ICX205AL CCD Monochrome 1,280 × 1,024 pixels (SXGA)</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>

For more information about the image sensors, refer to Chapter 5, *Image Sensor*. For complete device specifications, refer to Appendix A, *Specifications*.

All smart cameras have an RS-232 serial port, Gigabit Ethernet ports, and use a standard C-mount lens. Some smart camera models also include the Direct Drive lighting controller and support for quadrature encoders. The Direct Drive lighting controller is an integrated controller to directly power a variety of third-party current-controlled lights. Some smart camera models also have one 5 V TTL strobe output and one unregulated 24 V strobe output for lighting control. Refer to Chapter 4, *Connecting Lighting and External Devices*, for more information about strobe output and the Direct Drive lighting controller. For complete device specifications, refer to Appendix A, *Specifications*.

The smart camera also includes LEDs for communicating system status, four DIP switches to specify startup options, isolated inputs, and isolated outputs for connecting to external devices. Refer to Chapter 7, *LED Indicators and DIP Switches*, for more information about the LEDs and DIP switches.

Connect the Power Supply

To connect a power supply to the NI Smart Camera, complete the steps listed in one of the following sections. Refer to the *NI Desktop Power Supply* section to connect the NI desktop power supply directly to the smart camera with no additional I/O. Refer to the *Third-Party Power Supply* section to connect a third-party power supply. If you plan to use additional pins
on the 15-pin D-SUB connector for I/O, refer to the POWER-I/O Connector section of Chapter 3, Connectors, for information and pin descriptions.

⚠️ **Caution** Use the smart camera only with a 24 VDC, UL listed, limited power source (LPS) supply. The power supply will bear the UL listed mark, LPS. The power supply must also meet any safety and compliance requirements for the country of use.

NI Desktop Power Supply

Refer to Figure 1-2 while completing the following steps to connect the NI desktop power supply to the NI Smart Camera with no additional I/O.

![Figure 1-2. NI 17xx Smart Camera](image)

1. Connect and secure the 15-pin D-SUB connector on the NI desktop power supply to the POWER-I/O connector on the smart camera.
2. Plug the power supply power cord into the power supply.
3. Plug the power supply into an outlet.

When power is first applied to the smart camera, the POWER LED flashes red for one second while internal systems power up. The POWER LED then lights green when power is correctly wired to the smart camera.

Third-Party Power Supply

National Instruments provides the following two cable options for connecting a third-party power supply to the NI Smart Camera.

- Terminal block with a 15-pin D-SUB connector, such as the NI Smart Camera I/O Accessory, and a 15-pin D-SUB to 15-pin D-SUB cable
- 15-pin D-SUB pigtail cable
Refer to Figure 1-3 while completing the following steps to connect a third-party power supply to the smart camera using either a terminal block or the pigtail cable.

Figure 1-3. Connecting the NI Smart Camera to a Third-Party Power Supply

1. Connect and secure the 15-pin D-SUB connector on your cable to the POWER-I/O connector on the smart camera.
2. If you are using a terminal block, connect the cable to the terminal block.
3. Connect the +24 V signal from the cable or terminal block to the corresponding signal on the power supply.

Table 3-2 shows the pin locations for the POWER-I/O connector and lists the signal names and pin numbers used to supply power to the NI Smart Camera. Refer to Chapter 3, Connectors, for a complete description of pin functions for I/O. The table lists wire colors for the National Instruments 15-pin D-SUB pigtail cable. Cables from another vendor may have different wire colors.

4. Connect the COM signal from the cable or terminal block to the corresponding signal on the power supply.
5. If necessary, connect the power cord to the power supply.
6. Plug the power supply into an outlet.
To connect any additional I/O signals necessary for your application, refer to Chapter 3, *Connectors*, for complete pin information.

When power is first applied to the smart camera, the POWER LED flashes red for one second while internal systems power up. The POWER LED then lights green when power is correctly wired to the smart camera.

Power Requirements

The smart camera uses a nominal 24 VDC power source. The smart camera accepts power within the range of the industry standard IEC 1311 input power specification (24 V ±20%/-15% with an additional allowance for an AC peak of +5%). Refer to Appendix A, *Specifications*, for complete power requirement specifications.

Caution The 24 V external lighting strobe is an unregulated output dependent on the range of the power supply provided to the smart camera. If the power provided to the smart camera is +20%/-15% with +5% AC ripple, the external lighting strobe output could be as high as 30 V. If the provided power exceeds the input voltage specifications of the third-party lighting controller, do not connect the 24 V lighting strobe output to the controller to prevent damage to the controller. Use a power supply with tolerances that meet the requirements of the controller, or use the 5 V external lighting strobe.

If you are using the Direct Drive lighting controller, the power supply wattage must be sufficient to power both the camera and the light. The power required by the light can be significantly more than the power required by the smart camera. Refer to Chapter 4, *Connecting Lighting and External Devices*, for more information about using external lighting.

Connect to the Development Computer

The NI 17xx Smart Camera can connect to the development computer directly or through a network. To configure the NI 17xx Smart Camera through a network, the NI 17xx Smart Camera and the development computer must be connected to the same subnet.

Caution To prevent data loss and to maintain the integrity of your Ethernet installation, do not use a cable longer than 100 m. National Instruments recommends using a shielded twisted pair cable for maximum signal integrity.

Direct Connection

To connect the NI 17xx Smart Camera directly to the development computer, use an Ethernet cable to connect from the Ethernet port on the development computer to Ethernet port 1 on the smart camera. For NI 1712 Smart Cameras, use the single Ethernet port.
Network Connection
To connect the NI 17xx Smart Camera to the development computer through a network, complete the following steps.

1. Verify that the development computer is connected to the network and powered on.
2. Using an Ethernet cable, connect from an Ethernet hub or other network port to Ethernet port 1 on the smart camera.

The NI 17xx Smart Camera is now connected through a network and is available for additional configuration with the development computer.

Subnet Considerations
To use the NI 17xx Smart Camera on a subnet other than the one on which the development computer resides, first connect and configure the NI 17xx Smart Camera on the same subnet as the development computer. Next, physically move the NI 17xx Smart Camera. Contact your network administrator for assistance in determining which network ports reside on the same subnet.

IP Address Assignment
If the NI 17xx Smart Camera is connected directly to the development computer, the device will use a link-local IP address. If the NI 17xx Smart Camera is connected to a network that has a DHCP server, the device will automatically obtain an IP address. You can also configure the NI 17xx Smart Camera to use a static IP address. If you cannot locate the NI 17xx Smart Camera on the network, first refer to the Firewall Configuration section, then assign a static IP address or contact your network administrator.

Note If the NI 17xx Smart Camera has a link-local IP address (169.254.x.x), the device is only accessible from the local subnet. To access the smart camera from a remote subnet, configure the smart camera to obtain an IP address from a DHCP server or manually assign a static IP address.

DHCP IP Addresses
Using a DHCP server to assign an IP address has the following advantages:

- The DHCP server manages the IP addresses of the network. You do not need to know the IP address of the NI 17xx Smart Camera.
- The DHCP server does not allow other devices to use the IP address that is already assigned to your NI 17xx Smart Camera.
Although using a DHCP server simplifies IP address configuration, using a static IP address can be more reliable. Consider the following potential issues before using a DHCP server to assign an IP address to the NI 17xx Smart Camera:

- If the network has both static IP addresses and IP addresses managed by a DHCP server, the DHCP server must be configured to not use reserved static IP addresses. If the DHCP server is not configured this way, the DHCP server can assign a reserved IP address to another device, causing address conflicts on the network, which results in some devices being unreachable.

When a NI 17xx Smart Camera configured for DHCP starts, it must be able to connect to the DHCP server. If the NI 17xx Smart Camera cannot connect to the DHCP server and is not connected to the same subnet as the development computer, it does not appear in MAX or Vision Builder AI.

Note TA NI 17xx Smart Camera connected directly to the development computer or to the same subnet as the development computer is always configurable from MAX or Vision Builder AI, regardless of the IP address settings.

Firewall Configuration

If you are having difficulty detecting the NI 17xx Smart Camera on your network, you must configure the firewall to open the TCP/UDP ports used by the NI 17xx Smart Camera and the host machine. The required ports are listed in Table 1-3.

Table 1-3. TCP/UDP Ports Used by the NI 17xx Smart Camera

<table>
<thead>
<tr>
<th>Port</th>
<th>Type</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>3580</td>
<td>TCP/UDP</td>
<td>Reserved as nati-svrloc (NAT-ServiceLocator). Used by Measurement & Automation Explorer (MAX) to locate remote targets.</td>
</tr>
<tr>
<td>7749</td>
<td>TCP</td>
<td>Used for remote image display (not reserved).</td>
</tr>
<tr>
<td>7750</td>
<td>TCP</td>
<td>Used for NI-IMAQ remote configuration (not reserved).</td>
</tr>
<tr>
<td>3363</td>
<td>TCP/UDP</td>
<td>Reserved as nati-vi-server (NATI VI Server). Used by Vision Builder for Automated Inspection to configure a remote NI Smart Camera.</td>
</tr>
</tbody>
</table>

If your firewall is controlled remotely or you are unsure about configuring the firewall, contact your network administrator.
Software Overview

National Instruments provides two options for developing applications for the NI 17xx Smart Camera.

![Vision Builder for Automated Inspection](image)

or

![LabVIEW](image)

Note: Vision Builder for Automated Inspection and NI Vision Acquisition Software are included with the NI 17xx Smart Camera. LabVIEW, the LabVIEW Real-Time Module, and the NI Vision Development Module are sold separately.

The following sections describe the installation and configuration process for each development environment:

- **Note** Vision Builder for Automated Inspection and NI Vision Acquisition Software are included with the NI 17xx Smart Camera. LabVIEW, the LabVIEW Real-Time Module, and the NI Vision Development Module are sold separately.

- **Note** Vision Builder for Automated Inspection and NI Vision Acquisition Software are included with the NI 17xx Smart Camera. LabVIEW, the LabVIEW Real-Time Module, and the NI Vision Development Module are sold separately.

- Refer to Configuring the NI Smart Camera with Vision Builder AI for information about using the NI 17xx Smart Camera with Vision Builder AI.

- Refer to Configuring the NI Smart Camera with LabVIEW for information about using the NI 17xx Smart Camera with LabVIEW.

The installation and configuration process for each development environment is different. Complete only the instructions for your chosen development environment.

Caution: National Instruments software may require you to update the firmware for this device. **Do not remove power from the device until the software indicates that the firmware update is complete.** Removing power during a firmware update could cause your device to become unusable.
Configuring the NI Smart Camera with Vision Builder AI

Vision Builder AI is interactive, menu-driven configuration software for developing, benchmarking, and deploying machine vision applications. With Vision Builder AI, you can perform powerful visual inspection tasks and make decisions based on the results of individual tasks. You can also migrate your inspection to LabVIEW to extend the capabilities of your application, if necessary. The latest version of Vision Builder AI is included with the NI 17xx Smart Camera.

Complete the following steps to install Vision Builder AI and configure the NI 17xx Smart Camera.

1. Install and activate Vision Builder AI on the development computer. Refer to the NI Vision Builder for Automated Inspection Readme for installation instructions.
2. Launch Vision Builder AI.
3. On the Vision Builder AI welcome screen, select the NI 17xx Smart Camera in the list of targets.
 If the NI 17xx Smart Camera does not appear in the list of targets, verify that the device has power and is connected to an Ethernet port on the same subnet as the development computer, then click Refresh Target List. Refer to the section Understanding the LED Indicators in Chapter 7, LED Indicators and DIP Switches, for information about LED status messages.
5. In the Name field, enter a name for the device. Use the Description field to enter any additional information or a brief description of the device.
 Device names are limited to 31 characters with no spaces or special characters, except hyphens. The first and last characters must be alphanumeric.
6. Click Next.

Configure the IP Address

Complete the following steps to configure IP address settings for the NI 17xx Smart Camera in the The Remote Target Configuration Wizard.

1. If the network is configured to issue IP addresses using DHCP, select Obtain IP address from DHCP server. Otherwise, configure the IP address manually by selecting Edit the IP settings and clicking Suggest Values.
2. If you want to prevent other users from configuring the device, select Enable Password and click Set Password to set up password protection.
3. Click Next.
Install Software on the NI Smart Camera

Complete the following steps to install software from the development computer to the NI 17xx Smart Camera.

1. In the Remote Target Configuration Wizard, enable the Update Target Software checkbox.
2. Click the Browse button next to the Software Image to Install on the Target control.
3. Navigate to the Vision Builder AI software image you want to use, and click OK. Software images provided by National Instruments are installed to the <Vision Builder AI>\RT Images directory, where <Vision Builder AI> is the location where Vision Builder AI is installed.
4. Click OK to apply the IP configuration settings and download software to the device.
5. Click OK to close the Remote Target Configuration Successful dialog box.

Acquire an Image with Vision Builder AI

Complete the following steps to acquire an image using Vision Builder AI.

1. On the Vision Builder AI welcome screen, select the NI 17xx Smart Camera in the list of targets.
2. Click Acquire Image (Smart Camera) Example. The image acquisition example opens in the Vision Builder AI Configuration Interface.
3. Click the Run Inspection Once button to acquire a single image.
4. In the State Configuration Window, select the Acquire Image (Smart Camera) step.
5. Click the Edit Step button. The property page for the step opens.
6. Use the controls on the Main, Trigger, Lighting, Calibration or Advanced tabs to configure additional settings for your application.
7. Click OK to save the step configuration.

The NI 17xx Smart Camera is now configured and acquiring images. Use Vision Builder AI to add and configure additional inspection steps to create your application. Refer to the Related Documentation section in the introduction to this manual for a list of documentation and other resources to help you set up and use the NI 17xx Smart Camera in an application.
LabVIEW is a graphical programming environment for developing flexible and scalable applications. The following add-on modules are required for developing machine vision applications:

- **LabVIEW Real-Time Module**—Programming library for developing distributed, deterministic applications.
- **NI Vision Development Module**—Programming library for developing machine vision and scientific imaging applications.
- **NI Vision Acquisition Software**—Includes Measurement & Automation Explorer (MAX), the National Instruments configuration utility, and NI-IMAQ driver software for acquiring images and controlling I/O using the NI 17xx Smart Camera. The latest version of NI Vision Acquisition software is included with the NI 17xx Smart Camera.

Install the software in the following order:

1. **LabVIEW**—Refer to the LabVIEW Release Notes for installation instructions for LabVIEW and system requirements for the LabVIEW software. Refer to the LabVIEW Upgrade Notes for additional information about upgrading to the most recent version of LabVIEW.

 Documentation for LabVIEW is available by selecting Start→All Programs→National Instruments→LabVIEW→LabVIEW Manuals.

2. **LabVIEW Real-Time Module**—Refer to the LabVIEW Real-Time Module Release and Upgrade Notes for installation instructions and information about getting started with the LabVIEW Real-Time Module.

 Documentation for the LabVIEW Real-Time Module is available by selecting Start→All Programs→National Instruments→LabVIEW→LabVIEW Manuals.

3. **NI-IMAQ**—Refer to the NI Vision Acquisition Software Release Notes on the NI Vision Acquisition Software installation media for system requirements and installation instructions for the NI-IMAQ driver.

 Documentation for the NI-IMAQ driver software is available by selecting Start→All Programs→National Instruments→Vision→Documentation→NI-IMAQ.

4. **NI Vision Development Module**—Refer to the NI Vision Development Module Readme on the NI Vision Development Module installation media for system requirements and installation instructions.

 Documentation for the NI Vision Development Module is available by selecting Start→All Programs→National Instruments→Vision→Documentation→NI Vision.
Configure the IP Address

Complete the following steps to configure IP address settings for the NI 17xx Smart Camera in MAX:

1. Launch MAX by double-clicking the Measurement & Automation icon on the desktop, or selecting Start » All Programs » National Instruments » Measurement & Automation Explorer.

2. Expand the Remote Systems branch of the configuration tree, and select the device you want to configure. To uniquely identify multiple unconfigured devices, connect and configure one device at a time.

 If the NI 17xx Smart Camera does not appear in the list of targets, verify that the device has power and is connected to an Ethernet port on the same subnet as the development computer. Refer to Chapter 7, LED Indicators and DIP Switches for information about LED status messages.

3. In the Hostname field, enter a name for the device. Use the Comments field to enter any additional information or a brief description of the device.

4. Device names are limited to 31 characters with no spaces or special characters, except hyphens. The first and last characters must be alphanumeric.

5. Verify the IP address configuration in the Network Settings tab.
 - If the network is configured to issue IP addresses using DHCP, select DHCP or Link Local.
 - Otherwise, select Static to configure the IP address manually.

 Note If the IP address is 169.254.x.x or 0.0.0.0, the device is only accessible from the local subnet. To access the device from a remote subnet, configure the device to obtain an IP address from a DHCP server or manually assign a static IP address.

6. If you want to prevent other users from resetting the NI 17xx Smart Camera, click the Set Permissions button on the MAX toolbar to set up password protection.

7. Click Save on the MAX toolbar.

8. When prompted, click Yes to restart the NI 17xx Smart Camera. The initialization process may take several minutes.

Chapter 2 Software Overview

Install Software on the NI Smart Camera

Complete the following steps to install software from the development computer to the NI 17xx Smart Camera.

1. In the Remote Systems branch of the MAX configuration tree, expand the folder for your device and select Software.
2. Click Add/Remove Software on the MAX toolbar to launch the LabVIEW Real-Time Software Wizard.
3. Select NI Vision RT and NI-IMAQ RT. The software wizard will automatically select any other required software.
4. Click Next.
5. Verify your software installation choices, and click Next.
6. When the installation is complete, click Finish.

Acquire an Image

Complete the following steps to acquire an image using MAX.

1. In the Remote Systems branch of the MAX configuration tree, expand the folder for your device.
2. Click cam0:NI 17xx, where 17xx is replaced by the actual model number of your NI 17xx Smart Camera.
3. Click Snap to acquire a single image, or click Grab to acquire continuous images. Click Grab again to stop a continuous acquisition.
4. Use the controls on the Sensor, Triggering, Lighting, and LUT tabs to adjust the acquisition settings.

The NI Smart Camera is now configured and acquiring images. Use LabVIEW to create your application. Refer to the Related Documentation section in the introduction to this manual for a list of documentation and other resources to help you set up and use the NI 17xx Smart Camera in an application.
Part II

NI 17xx Smart Camera Technical Reference

This section provides the following information:

- Descriptions and pinout information for the connectors
- Wiring diagrams and instructions for connecting the NI 17xx Smart Camera to external devices
- Information about acquiring an image with the NI 17xx Smart Camera
- Descriptions and blink code explanations for the LED indicators
- Information about configuring the DIP switches on the NI 17xx Smart Camera
- Information about operating temperatures of the NI 17xx Smart Camera
- Information about mounting the NI 17xx Smart Camera
Connectors

This chapter provides information about the NI 17xx Smart Camera connectors.

Table 3-1. NI 17xx Smart Camera Connector Overview

<table>
<thead>
<tr>
<th>Connector Name</th>
<th>Connector Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>POWER-I/O connector</td>
<td>15-pin D-SUB</td>
<td>Power and I/O connection</td>
</tr>
<tr>
<td>Lighting connector</td>
<td>NI 780260-01</td>
<td>Lighting outputs from the NI Smart Camera</td>
</tr>
<tr>
<td>Ethernet port 1</td>
<td>Ethernet</td>
<td>10/100/1,000 Mb/s Ethernet port, primary</td>
</tr>
<tr>
<td>Ethernet port 2</td>
<td>Ethernet</td>
<td>10/100 Mb/s Ethernet port, static IP address only.</td>
</tr>
</tbody>
</table>
Table 3-2 lists the signal names and pin numbers for the 15-pin POWER-I/O connector. The table also lists the wire colors for the 15-pin D-SUB pigtail cable (part number 197818-05), sold separately by National Instruments. Cables sold by other manufacturers could have different wire colors.

Table 3-2. POWER-I/O Connector Signal Descriptions

<table>
<thead>
<tr>
<th>Connector Diagram</th>
<th>Signal Name</th>
<th>Pin Number</th>
<th>Wire Color</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>+24 V</td>
<td>5</td>
<td>Red</td>
</tr>
<tr>
<td></td>
<td>COM</td>
<td>15</td>
<td>Black</td>
</tr>
<tr>
<td></td>
<td>RS232_TXD</td>
<td>10</td>
<td>Pink</td>
</tr>
<tr>
<td></td>
<td>RS232_RXD</td>
<td>14</td>
<td>Black/White</td>
</tr>
<tr>
<td></td>
<td>TrigIn+</td>
<td>2</td>
<td>Brown</td>
</tr>
<tr>
<td></td>
<td>IsoIn(1)+</td>
<td>8</td>
<td>Orange</td>
</tr>
<tr>
<td></td>
<td>TrigIn-</td>
<td>12</td>
<td>Light Green</td>
</tr>
<tr>
<td></td>
<td>IsoOut(0)+</td>
<td>6</td>
<td>Yellow</td>
</tr>
<tr>
<td></td>
<td>IsoOut(0)-</td>
<td>1</td>
<td>Green</td>
</tr>
<tr>
<td></td>
<td>IsoOut(1)+</td>
<td>11</td>
<td>Light Blue</td>
</tr>
<tr>
<td></td>
<td>IsoOut(1)-</td>
<td>7</td>
<td>Gray</td>
</tr>
<tr>
<td></td>
<td>PhaseA+</td>
<td>3</td>
<td>Blue</td>
</tr>
<tr>
<td></td>
<td>PhaseA-</td>
<td>13</td>
<td>Brown/White</td>
</tr>
<tr>
<td></td>
<td>PhaseB+</td>
<td>9</td>
<td>Purple</td>
</tr>
<tr>
<td></td>
<td>PhaseB-</td>
<td>4</td>
<td>White</td>
</tr>
</tbody>
</table>
NI Smart Camera Power Requirements

Caution Use the NI 17xx Smart Camera only with a 24 VDC ±10%, UL listed, limited power source (LPS) supply. The power supply should bear the UL listed mark, LPS. The power supply must meet any safety and compliance requirements for the country of use.

The NI 17xx Smart Camera uses a nominal 24 VDC power source. The device accepts power within the range of 24 V ±10% with an additional allowance for an AC peak of +5%. Refer to Appendix A, *Specifications*, for complete power requirement specifications.

Lighting Connector

Figure 3-1 shows the lighting connector on the NI Smart Camera.

Caution All signals on the lighting connector are outputs from the smart camera. Do *not* connect any external voltage or current source to any pin on the lighting connector.

Note The NI 1712/1732 do not offer the Direct Drive lighting controller. Do *not* connect to the LED+ and LED- connectors on the NI 1712/1732.

Note The NI 1712 does not support strobe lighting. Do *not* connect to the strobe connectors on the NI 1712.

Figure 3-1. NI Smart Camera Lighting Connector

1	LED- Output (Absent on the NI 1712/1732)
2	LED+ Output (Absent on the NI 1712/1732)
3	Ground Output
4	5 V TTL Strobe Output (Absent on the NI 1712)
5	24 V Strobe Output (Absent on the NI 1712)

Note Additional/replacement plugs for use with the lighting connector, part number 780260-01, are available from NI.
Chapter 3 Connectors

Ethernet Ports

The Ethernet ports on the smart camera provide a connection between the smart camera and the
development computer or other network devices. The smart camera provides one
10/100/1,000 Mbps Ethernet port. The NI 1732/1752/1754 provide a second 10/100 Mb/s
Ethernet port. Figure shows the Ethernet ports on the smart camera.

Figure 3-2. NI Smart Camera Ethernet Ports

Port 1 is the primary port and port 2, when available, is the secondary port. The primary port can
be configured to acquire an IP address from a DHCP server. The secondary port can only be
configured for a static IP address.

The primary Ethernet port of the smart camera can connect to a 10, 100, or 1,000 Mbps (1 Gbps)
Ethernet network at either full or half duplex. The secondary port can connect to a 10 or 100
Mbps Ethernet network at either full or half duplex. The smart camera automatically detects the
speed and duplex capabilities of its link partner and configures for the fastest common interface.
The smart camera can also perform auto-crossover, allowing the use of straight or crossover
Ethernet cables, independent of the connection configuration.

When shielded Ethernet cables are being used, ensure that the shields on the Ethernet cables and
the POWER-I/O cable do not contact each other to maintain full Ethernet signal integrity.

Note A CAT 5e or CAT 6 1000Base-T Ethernet cable is required to achieve
maximum 1,000 Mbps (Gigabit) Ethernet performance. CAT 5e and CAT 6 Ethernet
cables adhere to higher electrical standards required for Gigabit Ethernet
communication. CAT 5 cables are not guaranteed to meet necessary electrical
requirements. While CAT 5 cables may appear to work in some installations at 1,000
Mbps, CAT 5 cables are likely to cause increased bit errors resulting in degraded or
unreliable network performance.

Ethernet LEDs

This section applies only to the following NI Smart Cameras:

- NI 1732
- NI 1752
- NI 1755
Figure shows the Ethernet LEDs on the NI Smart Camera.

Figure 3-3. NI Smart Camera Ethernet LEDs

<table>
<thead>
<tr>
<th>Port 1 ACTIVITY/LINK LED</th>
<th>Port 2 ACTIVITY/LINK LED</th>
</tr>
</thead>
<tbody>
<tr>
<td>Port 1 SPEED LED</td>
<td>Port 2 SPEED LED</td>
</tr>
</tbody>
</table>

ACTIVITY/LINK LED

The ACTIVITY/LINK LED indicates whether a link is established between the NI Smart Camera and the device connected at the other end of the Ethernet cable. The LED is unlit when no cable is connected or if the smart camera or the device connected at the other end of the cable are powered down. The LED is solid green when a link is established, but there is no traffic activity on the link. The LED will flash green when there is traffic activity on the link. If the smart camera is connected to a corporate network, traffic that is not related to the smart camera traffic will often be present on the link. In dedicated links between a computer and the smart camera, typically the only traffic on the link will be the communication between the computer and the smart camera.

SPEED LED

The SPEED LED indicates the speed of the negotiated link. The NI Smart Camera supports 10 Mbps, 100 Mbps, and 1,000 Mbps (1 Gbps) links, and will automatically select the highest speed shared by the smart camera and the device it is connected to. The SPEED LED follows the behavior specified in Table 3-3.

Table 3-3. SPEED LED Behavior

<table>
<thead>
<tr>
<th>SPEED LED Behavior</th>
<th>Indication</th>
</tr>
</thead>
<tbody>
<tr>
<td>Off</td>
<td>No link or a 10 Mbps link is negotiated</td>
</tr>
<tr>
<td>Solid Green</td>
<td>A 100 Mbps link is negotiated</td>
</tr>
<tr>
<td>Solid Amber</td>
<td>A 1,000 Mbps link is negotiated</td>
</tr>
</tbody>
</table>
Connecting Lighting and External Devices

This chapter provides information about connecting the NI 17xx Smart Camera to external devices, including external lighting and triggering devices. For information about the lighting connector, refer to the Lighting Connector section of Chapter 3, Connectors.

Direct Drive Lighting Controller

This section applies only to the following NI Smart Cameras:

- NI 1752
- NI 1754

The NI Smart Camera offers an innovative lighting controller that directly powers third-party current controlled lights. With other smart cameras, a lighting controller that drives a light must be purchased separately. The Direct Drive lighting controller is capable of powering a variety of third-party lights.

For a current controlled light, higher current produces more light, up to the maximum current rating of the light. The maximum current rating of the light is specified by the manufacturer and based on the average amount of power that can be safely dissipated by the light.

The Direct Drive controller can operate in continuous or strobed mode. When operating in strobed mode, the controller can provide more current to the light than in continuous mode. The average power dissipated while strobing the light for a short period of time at a higher current can be comparable to the average power dissipated while running the light continuously at a lower current. Table 4-1 shows the maximum allowed current for continuous mode and strobed mode.

<table>
<thead>
<tr>
<th>Maximum Strobed Current</th>
<th>Maximum Continuous Current</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 A</td>
<td>500 mA</td>
</tr>
</tbody>
</table>

For applications with a pause between exposures while new parts move into position, you can strobe the light, which allows the use of higher current and produces more light; thus you can reduce the exposure time. A shorter exposure time decreases the time it takes to acquire an image and potentially increases the total throughput of the system. Refer to the Exposure section of Chapter 6, Image Acquisition, for more information about exposure control.
The smart camera automatically synchronizes the lighting strobe with the image sensor exposure. The smart camera always turns the light on before an exposure starts and turns the light off once the exposure completes. The duration of the light strobe is dictated by the exposure time. Refer to Chapter 6, *Image Acquisition*, for more information.

When operating in strobed mode, it is important that the strobe duty cycle and strobe duration are within the specified limits of both the light and the Direct Drive lighting controller. The strobe duration is the amount of time that the light remains on. The strobe duration limit is the maximum amount of time that the light can remain on when being driven at the maximum current. The duty cycle is the ratio of the strobe duration to the frame period, expressed as a percentage. Refer to the *Maximum Frame Rate* section of Chapter 6, *Image Acquisition*, for more information about the frame period.

By default, you can set the exposure time to any setting within the range supported by your smart camera. However, if the smart camera is configured to use the Direct Drive lighting controller in strobed mode, care must be taken to ensure that the resulting strobe duty cycle and strobe duration do not violate the limits of the Direct Drive lighting controller or the limits of the light. For your convenience, the software calculates the resulting strobe duration and duty cycle for your configured frame rate and exposure time. It then compares them to the limits of the Direct Drive lighting controller and the limits specified in the associated lighting file. Refer to the *Lighting Files* section of this chapter or the *Maximum Frame Rate* section of Chapter 6, *Image Acquisition*, for more information.

If the requested exposure time violates the limits of the Direct Drive lighting controller or the limits for your light as specified in the associated lighting file, the smart camera can use the requested exposure time, but requires the configured current to be at or below the maximum continuous current.

Caution On devices with a 5 V strobe output or a 24 V strobe output, the software does not impose any limits on the duration or the duty cycle of the strobe output. You must ensure that your requested exposure time and the frame rate result in duration and duty cycle that do not violate the limits of the external controller and/or light(s). Refer to the *Maximum Frame Rate* section of Chapter 6, *Image Acquisition*, for more information.
Lighting Files

A lighting file is a text file that contains information about a light, such as the type and color of the light, maximum current limit, and maximum strobe duty cycle. Lighting files have the extension .ild. MAX and Vision Builder AI use lighting files to ensure that the current limits and duty cycle of your light are not exceeded when the light is used with the Direct Drive lighting controller. Lighting files exist in four levels of certification:

- **Digitally Signed by National Instruments**—The information contained within the lighting file has been verified as correct and safe by National Instruments. Contact National Instruments for support regarding this lighting data file or the light to which it refers.
- **Digitally Signed by a Third-Party Company**—The information contained within the lighting file has been verified as correct and safe by the specified third-party company. Contact the third-party company for support regarding this lighting data file or the light to which it refers.
- **Not Digitally Signed**—The information contained within the lighting file meets the requirements of Direct Drive lighting; however, it has not been verified that the information is safe to use with the specified light. Use this file at your own risk.
- **Invalid**—The information contained within the lighting file is unusable because the data does not meet the requirements of Direct Drive lighting, the data describing the light is not in the proper syntax, or the digital signature has been altered.

In digitally signed lighting files, the current limit and duty cycle limit are encoded as part of the signing process. The limits in signed lighting files are not human-readable. Modifying a signed lighting file will invalidate the signature and render the file unusable.

To use a light that has a lighting file, you can select the lighting data in MAX or Vision Builder AI:

- **In MAX**—Select the Lighting tab of the NI Smart Camera configuration page. Click Configure Light, and select Select Light.
- **In Vision Builder AI**—Select the Lighting tab of the Acquire Image (Smart Camera) step. Click Configure Light Source, and select Select Light.

To use a light that does not have a lighting file, you can enter the lighting data manually in MAX or Vision Builder AI:

- **In MAX**—Select the Lighting tab of the NI Smart Camera configuration page. Click Configure Light, and select Enter Lighting Data Manually.
- **In Vision Builder AI**—Select the Lighting tab of the Acquire Image (Smart Camera) step. Click Configure Light Source, and select Enter Lighting Data Manually.

Lighting files are installed to the following locations when you install NI-IMAQ. X represents the letter of the CD drive:

- **Windows 7/Vista**—X: \Users\Public\Documents\National Instruments\NI-IMAQ\Data
- **Windows XP/2000**—X: \Documents and Settings\All Users\Documents\National Instruments\NI-IMAQ\Data
Selecting a Light

This section applies only to the following NI Smart Cameras:

- NI 1752
- NI 1754

National Instruments software provides support for a variety of lights from major machine vision lighting companies. However, if your light is not in the list of supported lights, you may still be able to use your light with the Direct Drive lighting controller.

To determine if your light is compatible with the NI Smart Camera, verify the following:

- The light is current controlled and not voltage controlled.
- The smart camera can provide enough current to obtain the desired illumination from the light.
- The maximum voltage drop specified for the light does not exceed the specified range of the smart camera. Under some circumstances, some LEDs, particularly certain lights with white and blue LEDs, require a higher voltage drop than usual to turn on or reach full brightness. Such lights may be incompatible with the smart camera. These lights may need to be reconfigured by the manufacturer to bring the voltage drop within the specified range of the smart camera.
- The minimum voltage drop specified for the light does not fall below the specified range of the smart camera. Under some circumstances some LEDs, particularly certain lights with infrared LEDs and lights with only one LED per string, present a lower voltage drop than usual and may be incompatible with the smart camera. These lights may need to be reconfigured by the manufacturer to bring the voltage drop within the specified range of the smart camera.

Note: The voltage drop of a light can vary significantly with environmental conditions, such as ambient temperature, current supplied, and strobe time.

Refer to Appendix A, Specifications, for complete specifications for the Direct Drive lighting controller.
Connecting a Light to the Direct Drive Lighting Controller

This section applies only to the following NI Smart Cameras:

- NI 1752
- NI 1754

Figure 4-1 illustrates how to connect a light to the Direct Drive lighting controller. Do not use the GND signal when connecting a light to the Direct Drive lighting controller.

Figure 4-1. Connecting a Light to the Direct Drive Lighting Controller

The Direct Drive controller performs an initialization sequence to achieve the requested current output prior to acquiring the first image. You may notice a sequence of short flashes from the light when the application initializes or shuts down.

External Lighting Controllers

This section applies only to the following NI Smart Cameras:

- NI 1732
- NI 1752
- NI 1754

While the Direct Drive lighting controller is designed to handle common machine vision lighting requirements, some applications require the use of a light with current or voltage requirements beyond those supported by the Direct Drive. Other applications require more than one light. All NI Smart Cameras support connections to third-party lighting controllers to solve these applications.

The smart camera provides two types of external lighting outputs for synchronizing third-party controllers to the exposure of the smart camera: a 5 V TTL strobe output and a 24 V strobe output. The 5 V TTL strobe output is available for connecting to devices that require a 5 V signal. The 24 V strobe output is powered by the voltage from the smart camera power supply and is available for controllers that require higher voltage inputs. The 24 V strobe output is nominally a 24 V output if 24 V power is supplied to the smart camera.
Chapter 4 Connecting Lighting and External Devices

Caution The 24 V external lighting strobe is an unregulated output dependent on the range of the power supply provided to the smart camera. If the power provided to the smart camera is +20%/-15% with +5% AC ripple, the output could be as high as 30 V. If the provided power exceeds the input voltage specifications of the third-party lighting controller, do not connect the 24 V lighting strobe output to the controller to prevent damage to the controller. Use a power supply with tolerances that meet the requirements of the controller, or use the 5 V external lighting strobe.

When enabled, the 5 V and 24 V external strobe outputs create a strobe pulse that can be used as a level-sensitive signal by third-party controllers to strobe the light simultaneously with the image exposure. Alternatively, if the third-party lighting controller supports a programmable strobe time, the controller can be programmed for any arbitrary strobe duration, and the assertion edge of the smart camera output can start the strobe timer in the controller.

Caution If you are using the 5 V strobe output or the 24 V strobe output, the software does not impose any limits on the duration or the duty cycle of the strobe output. You must ensure that your requested exposure time and the frame rate result in duration and duty cycle that do not violate the limits of the external controller and/or light(s). Refer to the Maximum Frame Rate section of Chapter 6, Image Acquisition, for more information.

Enable the 5 V and 24 V lighting outputs as follows:

- In Vision Builder AI, enable the 5 V TTL Strobe and/or 24 V Strobe controls on the Lighting tab of the Acquire Image (Smart Camera) step. Refer to the NI Vision Builder for Automated Inspection: Configuration Help for more information about configuring the 5 V TTL and 24 V strobe outputs.
- In LabVIEW, configure the 24V Strobe and 5V Strobe lighting properties. Refer to the NI-IMAQ VI Reference Help for more information about configuring the 5 V TTL and 24 V strobe outputs.
- In MAX, select the 5 V TTL Strobe and/or 24 V Strobe checkboxes on the Lighting tab of the smart camera configuration page. Refer to the Measurement & Automation Explorer Help for NI-IMAQ for more information about configuring the 5 V TTL and 24 V strobe outputs.
Connecting an External Lighting Controller to the NI Smart Camera

Figure 4-2 illustrates how to connect an external lighting controller to the 5 V TTL output on the NI Smart Camera.

Figure 4-2. Connecting an External Lighting Controller to the 5 V TTL Strobe Output

Figure 4-3 illustrates how to connect an external lighting controller to the 24 V output on the NI Smart Camera.

Figure 4-3. Connecting an External Lighting Controller to the 24 V Strobe Output

Isolated Inputs

Caution Do not apply a voltage greater than 30 VDC to the isolated inputs. Voltages greater than 30 VDC may damage the NI Smart Camera.

Caution The isolated inputs and outputs on the smart camera provide an easy means for preventing ground loops that could degrade signal integrity. The isolation on the smart camera is not safety isolation.
Chapter 4 Connecting Lighting and External Devices

You can wire an isolated input to both sourcing and sinking output devices. Refer to Figures 4-4 and 4-5 for wiring examples by output type. Refer to Appendix A, Specifications, for current requirements.

Isolated inputs are not compatible with 5 V logic.

Figure 4-4. Connecting External Sourcing Output Sensors to Isolated Inputs

Isolated Outputs

⚠️Caution ⚠️ The isolated inputs and outputs on the smart camera provide an easy means for preventing ground loops that could degrade signal integrity. The isolation on the smart camera is not safety isolation.

⚠️Caution ⚠️ Do not power the load connected to the isolated outputs with any external power supply greater than 30 VDC. Voltages greater than 30 VDC may damage the NI Smart Camera.
The isolated outputs can be used to drive external loads, as shown in Figures 4-6 and 4-7.

Figure 4-6. Connecting an Isolated Output to a Sourcing External Load

![Diagram of Sourcing External Load](image)

Figure 4-7. Connecting an Isolated Output to a Sinking External Load

![Diagram of Sinking External Load](image)

Protecting Against Inductive Loads

When an inductive load, such as a relay or solenoid, is connected to an output, a large counter-electromotive force may occur at switching time due to energy stored in the inductive load. This flyback voltage can damage the outputs and the power supply.

To limit flyback voltages at the inductive load, install a flyback diode across the load. Mount the flyback diode as close to the load as possible. Use this protection method if you connect any of the isolated outputs to an inductive load.
Connecting to Serial Devices

Use the RS232_RXD and RS232_TXD signals on the POWER-I/O connector for serial communication. Connect the RS232_RXD signal on the NI Smart Camera to the Tx signal on your serial device. Connect the RS232_TXD signal on the smart camera to the Rx signal on your serial device. Connect COM on the smart camera to the ground of your serial device.

When the CONSOLE DIP switch is in the OFF position, you can use the NI-Serial driver for serial communication. You must install the NI-Serial software on the smart camera; it is not installed by default. Refer to the Serial Hardware and Software Help for information about installing the NI-Serial software on LabVIEW Real-Time targets, such as the smart camera. To open this document, navigate to Start> All Programs> National Instruments> NI-Serial> NI-Serial Help.

Communicating with the Console

When the CONSOLE DIP switch is in the ON position, you can read device information from the NI Smart Camera during startup, such as the IP address and firmware version, through a serial port terminal program. Ensure that the serial port terminal program is configured to the following settings:

- 9,600 bits per second
- Eight data bits
- No parity
- One stop bit
- No flow control

Connecting to a Quadrature Encoder

This section applies only to the following NI Smart Cameras:

- NI 1732
- NI 1752
- NI 1754

Connect RS-422 compatible differential quadrature encoders to the NI 17xx Smart Camera to provide positional information. A quadrature encoder uses two output channels, Phase A and Phase B, to track the position of a rotary shaft. Generally, the shaft is coupled to a motor drive that controls the movement of an object. By providing Phase A and Phase B signals to the smart camera, you can obtain a precise measurement of the object position. Using a quadrature encoder gives you the ability to specify your trigger delay in terms of positional units—such as inches or centimeters, after applying the resolution information of your encoder—rather than time.
National Instruments does not recommend the use of single-ended encoders with the smart camera. This configuration would require the ground for a single-ended encoder to be connected to the COM pin of the smart camera, and the PhaseA- and PhaseB- signals would be left unconnected. In this configuration, the system is susceptible to significant noise that would be eliminated by using a differential encoder.

Shielded encoder cables are recommended for all applications. Unshielded cables are more susceptible to noise and can corrupt the encoder signals.

Refer to the External Trigger section of Chapter 6, Image Acquisition, for information about using a quadrature encoder to delay a trigger.

Figure 4-8 shows an example of connecting the quadrature encoder differential line drivers.

Figure 4-8. Connecting Differential Line Drivers
Figure 4-9 shows the internal quadrature encoder/RS-422 input circuit.

Figure 4-9. NI Smart Camera Quadrature Encoder Input Circuit
This chapter provides an overview of the NI Smart Camera image sensors, field of view, spectral response, partial scan mode, binning, gain, and hardware binarization. NI 1712/1732/1752 Smart Cameras use a VGA sensor. The NI 1754 Smart Camera uses an SXGA sensor. Refer to Appendix A, Specifications, for information about the image sensors.

Field of View

The field of view is the area under inspection that will be imaged by the NI 17xx Smart Camera. It is critical to ensure that the field of view of your system includes the object you want to inspect.

To calculate the horizontal and vertical field of view (FOV) of your imaging system, use Equation 5-1 and the specifications for the image sensor of your device, as listed in Appendix A, Specifications.

\[
FOV = \frac{Pixel\ Pitch \times Active\ Pixels \times Working\ Distance}{Focal\ Length}\tag{5-1}
\]

Where

- \(FOV\) is the field of view in either the horizontal or vertical direction,
- \(Pixel\ Pitch\) measures the distance between the centers of adjacent pixels in either the horizontal or vertical direction\(^1\),
- \(Active\ Pixels\) is the number of pixels in either the horizontal or vertical direction,
- \(Working\ Distance\) is the distance from the front element (external glass) of the lens to the object under inspection, and
- \(Focal\ Length\) measures how strongly a lens converges (focuses) or diverges (diffuses) light.

\(^1\) Because NI 17xx Smart Camera sensors have square pixels, \(pixel\ pitch\) corresponds to the pixel size for the appropriate sensor.
Figure 5-1 illustrates horizontal field of view and working distance.

Figure 5-1. Parameters of an Imaging System

For example, if the working distance of your imaging setup is 100 mm, and the focal length of the lens is 8 mm, then the field of view in the horizontal direction of a NI 17xx Smart Camera using the VGA sensor is

\[
FOV_{\text{horizontal}} = \frac{0.0074 \text{ mm} \times 640 \times 100 \text{ mm}}{8 \text{ mm}} = 59.2 \text{ mm}
\]

Similarly, the field of view in the vertical direction is

\[
FOV_{\text{vertical}} = \frac{0.0074 \text{ mm} \times 480 \times 100 \text{ mm}}{8 \text{ mm}} = 44.4 \text{ mm}
\]

Based on the result of Equations 5-2 or 5-3, you can see that you might need to adjust the various parameters in the FOV equation until you achieve the right combination of components that match your inspection needs. This might include increasing your working distance, choosing a lens with a shorter focal length, or changing to a high resolution camera.

Image Sensor Spectral Response

The spectral response curve describes the relative sensitivity of the sensor to different wavelengths of light. The peak responsiveness of the VGA and SXGA sensors is to light with a wavelength of approximately 500 nm. If you are imaging a dim scene, this information can be useful when selecting a light source to use in your application as the camera is most sensitive at
its peak responsiveness. It also helps determine what, if any, filters your application might require to remove undesired wavelengths of light from the scene.

Refer to Appendix A, Specifications, to find the normalized spectral response curves for the image sensors.

Partial Scan Mode

Partial scan mode is a method of obtaining higher frame rates by reading out only a portion of the image from the sensor. Partial scan is frequently used when an application requires higher speed but less resolution than the sensor offers in full scan mode. The NI Smart Camera supports 1/2 scan and 1/4 scan. In 1/2 scan, shown in Figure 5-2b, one half of the image is read out from the center of the sensor and the rest of the image is discarded to enable a faster start of the next frame. In 1/4 scan, only one quarter of the image is read out. Figure 5-2 illustrates the portion of the sensor exposed during partial scanning.

Figure 5-2. Partial Scan Modes

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>b</td>
</tr>
<tr>
<td>Full Scan</td>
<td>1/2 Scan</td>
</tr>
</tbody>
</table>

Binning

Binning can improve the light sensitivity of the sensor by treating adjacent pixels as a single pixel. Binning allows the image sensor to collect more electrons per pixel, which reduces the amount of required light and exposure time. Binning results in higher frame rates and lower spatial resolution in the vertical direction. The NI Smart Camera supports 1 × 2 binning. Figure 5-3 illustrates what happens to the sensor output during binning.

Figure 5-3. Binning

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>b</td>
</tr>
<tr>
<td>No Binning</td>
<td>Binning</td>
</tr>
</tbody>
</table>
Gain

Gain is a multiplier applied to the analog signal prior to digitization. Increasing the gain increases the amplitude of the signal. Gain allows you to trade off between making smaller signals more visible at the cost of increased noise and no longer being able to differentiate between larger signals. For most applications, the NI 17xx Smart Camera default gain setting optimizes the balance between small signals and large signals.

Figure 5-4 shows what happens when gain is applied to a signal.

![Figure 5-4. Effect of Gain on the Video Signal](image)

In Figure 5-4a, low gain has been applied to the signal. The pixel values in the image are grouped close together. In Figure b, medium gain has been applied to the signal; there are now more notable differences in pixel value within the image. In Figure c, high gain has been applied to the signal; at high gain, mid-range and bright portions of the image are now both represented as white, the highest pixel value. In Figure c, several bright areas of the image have been clipped to the maximum pixel value, and you can no longer distinguish subtle shading in the brightest areas of the image.

Gain can be useful when there is not enough available light and you need to increase the brightness of your images. However, increasing gain multiplies both the signal and noise. When possible, it is preferable to add additional lighting.

Hardware Binarization

The NI Smart Camera supports binarization and inverse binarization of acquired images. Binarization and inverse binarization segment an image into two regions—a particle region and a background region. Use binarization and inverse binarization to isolate objects of interest in an image.

To separate objects under consideration from the background, select a pixel value range. This pixel value range is known as the gray-level interval, or the threshold interval. When enabled, binarization sets all image pixels that fall within the threshold interval to the image white value and sets all other image pixels to black. Pixels inside the threshold interval are considered part of the particle region. Pixels outside the threshold interval are considered part of the background region.
Inverse binarization reverses the assigned bit numbers of the particle region and the background region. All pixels that belong in the threshold interval, or the particle region, are set to black, and all pixels outside the threshold interval, or the background region, are set to the image white value.

Figure 5-5 illustrates binarization and inverse binarization.

Figure 5-5. Binarization and Inverse Binarization

You can enable hardware binarization in the following ways:

- In Vision Builder AI, configure the **Lookup Table** attribute on the **Advanced** tab of the **Acquire Image (Smart Camera)** step. Refer to the **NI Vision Builder for Automated Inspection: Configuration Help** for more information.
- In MAX, use the **Lookup Table** drop-down box on the **LUT** tab of the smart camera configuration page to enable hardware binarization. Refer to the **Measurement & Automation Explorer Help for NI-IMAQ** for more information.

Maintenance

Do not touch the CCD sensor by hand or with other objects. The sensor can be damaged by electrostatic discharge (ESD), body oils, and particulate matter.

Use a lens mount cover whenever a lens is not mounted on the camera to protect the sensor from dust and dirt.

Avoid drastic temperature changes to prevent dew condensation.

When necessary, use the following procedure to clean the sensor at a workstation equipped with anti-ESD facilities. If dust sticks to the CCD, first attempt to blow it off from the side of the sensor using ionized air. If oils are present on the sensor, clean the sensor with a cotton bud and ethyl alcohol. Be careful not to scratch the glass. Use only one pass over the glass per cotton bud to minimize the risk of recontamination and scratching.
Image Acquisition

This chapter contains information about acquiring images with the NI 17xx Smart Camera and explains the relationships between triggering, lighting, and exposure.

Exposure

The NI 17xx Smart Camera provides control of the image sensor exposure time through software. The exposure time is the amount of time that light is allowed to strike the sensor to produce an image. When light strikes the surface of the sensor, it dislodges electrons. As more light strikes the sensor, more electrons are freed, creating a charge on the sensor.

For a given amount of light, the sensor collects more charge during a longer exposure time than a shorter exposure time. Because the charge is what is read out to produce the image, it is important to have an optimal amount of light and exposure time for your application.

Exposing the image sensor for too short of a time relative to the amount of light in the environment results in a dark, low contrast image. Exposing the image sensor for too long of a time relative to the amount of light in the environment results in a bright, low contrast image. When the image sensor is exposed for an appropriate amount of time relative to the light in the environment, acquired images will exhibit appropriate contrast to easily distinguish both dark and light features. Contrast is a key factor in obtaining good results from image processing algorithms.

In applications where the object under inspection is moving, the exposure time must be carefully considered. If the object moves significantly during the exposure, the resulting image is blurry and unsuitable for processing.

The maximum exposure time for imaging a moving object without blurring depends on the per pixel spatial resolution and the rate of motion of the object. The per pixel spatial resolution is the field of view, calculated in the Field of View section of Chapter 5, Image Sensor, divided by the number of pixels in the sensor. Together, this information can be used to calculate the maximum exposure. Assuming the object is moving horizontally across the field of view, use Equation 6-1 to calculate the maximum exposure time.
where E_{max} is the maximum exposure time without blurring,

R is the rate of motion of the object either horizontally or vertically,

FOV is the field of view in the direction of motion, and

N is the number of sensor pixels in the direction of motion.

For many applications that include moving objects, additional lighting is necessary to achieve good image contrast due to the short exposure time required to avoid motion blur.

Additionally, in many environments, the ambient light conditions vary too significantly to obtain consistent results without adding dedicated lighting. For example, in a building with windows, the ambient light can vary significantly with weather. Also, standard fluorescent lighting flickers at a rate that is perceivable by the NI 17xx Smart Camera. In these situations, the ambient light must be overridden with a dedicated light source to ensure reproducible results.

Acquiring Images

You can configure the NI 17xx Smart Camera to acquire images based on internal timing or an external trigger signal. In both cases, the NI 17xx Smart Camera can acquire images at the camera’s maximum frame rate. Refer to the Maximum Frame Rate section for information about factors that affect the maximum frame rate.

Internal Timing

The NI 17xx Smart Camera features two types of internally-timed modes: free-run mode and fixed-frame-rate mode.

In free-run mode, the device acquires images at the maximum frame rate allowed by the configuration.

In fixed-frame-rate mode, you can specify a frame rate that is less than or equal to the maximum frame rate.

External Trigger

Use the trigger input to synchronize the NI 17xx Smart Camera with an external event, such as the assertion of a signal generated by a proximity sensor. You can trigger the NI 17xx Smart Camera at rates up to the maximum frame rate. Refer to the Maximum Frame Rate section for information about factors that affect the maximum frame rate.

To use an external trigger, the trigger signal must be provided on the TrigIn/IsoIn(0)+ and TrigIn/IsoIn(0)- inputs to the camera and triggering must be enabled in the software. Refer to the
Isolated Inputs section of Chapter 4, Connecting Lighting and External Devices, for information about connecting external signals.

You can enable triggering in the following software programs:

- **Vision Builder AI**—Select the Triggered Acquisition checkbox on the Trigger tab of the Acquire Image (Smart Camera) step.
- **LabVIEW**—Use the IMAQ Configure Trigger 3 VI.
- **MAX**—Select the Enable Trigger checkbox on the Triggering tab of the smart camera configuration page.

Figure illustrates the relationship between an external trigger, a lighting strobe, and the exposure time.

Figure 6-1. Externally Triggered Mode

1. User-Configurable Trigger Delay
2. Lighting Turn-On Time
3. Beginning of Image Readout

The trigger shown in Figure represents an external trigger, configured to use the rising edge as the active edge. The time between the active edge of the trigger and the assertion of the lighting strobe is a user-configurable trigger delay. The trigger delay can be configured in either milliseconds or quadrature encoder counts. The NI 1712 does not support quadrature encoders.
The incoming trigger is synchronized to the line rate of the smart camera. This adds an additional delay that can vary on a frame by frame basis. The maximum variability is shown in Table 6-1.

Table 6-1. Trigger Synchronization Variability

<table>
<thead>
<tr>
<th>Smart Camera Model</th>
<th>Trigger Synchronization Variability</th>
</tr>
</thead>
<tbody>
<tr>
<td>NI 1712</td>
<td>31.2 μs</td>
</tr>
<tr>
<td>NI 1732</td>
<td></td>
</tr>
<tr>
<td>NI 1752</td>
<td></td>
</tr>
<tr>
<td>NI 1754</td>
<td>71.6 μs</td>
</tr>
</tbody>
</table>

The amount of time required from the assertion of a trigger to the start of the light strobe and image exposure varies by application. For example, if a sensor that detects the presence of a part is positioned before the NI 17xx Smart Camera on a conveyor belt, a trigger delay is required to ensure that the image is not exposed until the part to be inspected passes in front of the NI 17xx Smart Camera. In this case, specifying the trigger delay in terms of edge counts allows the NI 17xx Smart Camera to expose the image when the part is in position regardless of changes in conveyor belt speed. For other applications, a delay specified in milliseconds is sufficient.

If you are strobing a light, there is a short delay while the lighting controller turns on the light. This delay is represented by the lighting turn-on time in Figure. Table 6-2 lists the lighting turn-on times.

Table 6-2. Lighting Turn-On Time

<table>
<thead>
<tr>
<th>Smart Camera Model</th>
<th>Lighting Turn-On Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>NI 1712</td>
<td>156 μs</td>
</tr>
<tr>
<td>NI 1732</td>
<td></td>
</tr>
<tr>
<td>NI 1752</td>
<td></td>
</tr>
<tr>
<td>NI 1754</td>
<td>143.2 μs</td>
</tr>
</tbody>
</table>

After the lighting turn-on time, the exposure begins. The width of the exposure pulse determines how long the sensor is exposed. The exposure time can be adjusted by setting the **Exposure Time** control in Vision Builder AI, setting the **Exposure Time** attribute in LabVIEW, or by setting the **Exposure Time** control in MAX. The lighting strobe deasserts at the end of the exposure pulse. The end of an exposure starts the image readout from the sensor.

The maximum trigger rate is determined by the maximum frame rate for your configuration. Refer to the **Maximum Frame Rate** section for information about the factors that affect the maximum frame rate.
Maximum Frame Rate

Frame rate is the inverse of the frame period. The frame period is the time from the start of exposure on one frame to the start of exposure on the next frame, as shown in Figure 6-2.

![Figure 6-2. Frame Period](image)

The frame period is affected by the following factors:

- Partial scan mode, as described in the Partial Scan Mode section of Chapter 5, Image Sensor
- Binning, as described in the Binning section of Chapter 5, Image Sensor
- Exposure time, as described in the Exposure section of this chapter
- Lighting mode, as described in Chapter 4, Connecting Lighting and External Devices
- Trigger delay, as described in the External Trigger section of this chapter

Determining the Maximum Frame Rate

You can determine the maximum frame rate for your configuration in software by reading the Max Frame Rate indicator in Vision Builder AI, reading the Acquisition Frame Rate Limit attribute in LabVIEW, or reading the Max Frame Rate indicator in MAX.

When external triggering is enabled, do not trigger faster than the maximum frame rate. If a trigger occurs faster than the maximum frame rate, the trigger is ignored.

Use Equation 6-2 to understand how software determines the maximum frame rate:

$$\text{max frame rate} = \frac{1}{\text{min frame period}}$$

(6-2)

where min frame period is the minimum amount of time for the strobe and trigger mode, as described in the Calculating the Minimum Frame Period section.
Determining the Scan Mode

The maximum frame rate for selected scan mode is determined by the partial scan mode and binning mode. Because the amount of data read out of the sensor is less in 1/2 or 1/4 scan mode, the readout takes less time, and you can achieve faster frame rates. The same is true of binning. When binning is enabled, the readout takes less time, and you can achieve faster frame rates. Refer to the Partial Scan Mode and Binning sections of Chapter 5, Image Acquisition, for more information about partial scanning and binning.

Use the maximum frame rate specifications for your smart camera in your scan mode in Appendix A, Specifications, to determine the maximum frame rate for selected scan mode.

Determining the Exposure Time

The minimum frame period depends on exposure time, lighting mode, and trigger delay. A longer exposure time results in a longer frame period, and a slower maximum frame rate.

Determining the Trigger Delay

If the trigger delay is set longer than the untriggered minimum frame period, the trigger delay value further limits the min frame period. When the trigger delay is specified in milliseconds, the software includes this in the calculation of the maximum frame rate indicator.

Calculating the Minimum Frame Period

Refer to Equations 6-3 and 6-4 to calculate the minimum frame period for untriggered acquisitions with and without strobing.

\[
\text{min frame period}_{\text{NoStrobeNoTrigger}} = T + L + E \quad (6-3)
\]

\[
\text{min frame period}_{\text{WithStrobeNoTrigger}} = T + L + E + R \quad (6-4)
\]

Refer to Equations 6-5 and 6-6 to calculate the minimum frame period for triggered acquisitions with and without strobing.

\[
\text{min frame period}_{\text{NoStrobeWithTrigger}} = \max(T + L + E, \text{Trigger Delay}) \quad (6-5)
\]

\[
\text{min frame period}_{\text{WithStrobeWithTrigger}} = \max(T + L + E + R, \text{Trigger Delay}) \quad (6-6)
\]

where

\(T\) is the trigger synchronization variability,

\(L\) is the lighting turn-on time,

\(E\) is the exposure time, and

\(R\) is the image readout duration.
Tables 6-1 and 6-2 list the values for the trigger synchronization variability and the lighting turn-on time, respectively.

The image readout duration varies depending on the smart camera configuration, as shown in Table 6-3.

Table 6-3. Image Readout Duration

<table>
<thead>
<tr>
<th>Smart Camera Model</th>
<th>Full Scan</th>
<th>1/2 Scan</th>
<th>1/4 Scan</th>
<th>Binning</th>
</tr>
</thead>
<tbody>
<tr>
<td>NI 1712</td>
<td>16.38 ms</td>
<td>8.86 ms</td>
<td>5.49 ms</td>
<td>8.17 ms</td>
</tr>
<tr>
<td>NI 1732</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NI 1752</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NI 1754</td>
<td>76.47 ms</td>
<td>41.38 ms</td>
<td>24.70 ms</td>
<td>38.23 ms</td>
</tr>
</tbody>
</table>
LED Indicators and DIP Switches

This chapter provides information about the location and functionality of the LED indicators and DIP switches on the NI Smart Camera.

Understanding the LED Indicators

Figure 7-1 shows the location of the LEDs on the NI Smart Camera.

Figure 7-1. NI Smart Camera LEDs
Device Initialization

While the NI Smart Camera initializes, the POWER LED lights solid green and the STATUS, IMG ACQ, PASS, and FAIL LEDs exhibit a scrolling pattern. When the smart camera finishes initializing, the STATUS LED lights solid green. If the system does not initialize within the expected period of time, the STATUS LED flashes a status code. Refer to the STATUS LED section for information about the status codes.

The initialization scrolling pattern will last longer than usual if the smart camera is configured to acquire an IP address from a DHCP server but no DHCP server is available on the network. When acquiring an IP address from a DHCP server, the smart camera waits up to 60 seconds to acquire an IP address. If the smart camera does not receive an IP address within 60 seconds, it connects to the network with a link-local IP address with the form 169.254.x.x. The STATUS LED flashes to indicate that the smart camera is in an unconfigured state.

POWER LED

The POWER LED indicates whether the power supplied to the camera is adequate. The POWER LED is green while the camera is properly powered on. When no power is being supplied to the NI Smart Camera, the POWER LED is unlit. When power is first applied to the smart camera, the POWER LED flashes red for one second while internal systems power up. If the POWER LED stays red for longer than one second, it indicates that the voltage is out of range.

STATUS LED

The STATUS LED is green during normal operation. The NI Smart Camera indicates specific conditions by flashing the STATUS LED, as shown in Table 7-1.
Table 7-1. STATUS LED Indications

<table>
<thead>
<tr>
<th>LED Behavior</th>
<th>LED Color</th>
<th>Indication</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solid</td>
<td>Green</td>
<td>The smart camera initialized successfully and is ready for use.</td>
</tr>
<tr>
<td>1 Flash</td>
<td>Green</td>
<td>The smart camera IP address or software is unconfigured. The smart camera ships from the factory unconfigured. The smart camera also enters the unconfigured state if it is configured for DHCP and no DHCP server is available. Use MAX or Vision Builder AI to configure the smart camera. Refer to the Configure the IP Address section of Chapter 2, Software Overview, for information about configuring the smart camera.</td>
</tr>
<tr>
<td>2 Flashes</td>
<td>Green</td>
<td>The smart camera detects an error in the software configuration. The camera has automatically started up into safe mode, regardless of the SAFE MODE DIP switch position. This usually occurs when an attempt to upgrade the software is interrupted or if system files are deleted from the smart camera. Reinstall software on the smart camera. Refer to the Install Software on the NI Smart Camera section of Chapter 2, Software Overview, for information about installing software on the smart camera.</td>
</tr>
<tr>
<td>3 Flashes</td>
<td>Green</td>
<td>The smart camera is in safe mode because the SAFE MODE DIP switch is in the ON position. Refer to the Configuring DIP Switches section for information about the SAFE MODE DIP switch.</td>
</tr>
<tr>
<td>4 Flashes</td>
<td>Green</td>
<td>The smart camera has experienced two consecutive software exceptions. The smart camera automatically restarts after an exception. After the second exception, the smart camera remains in the exception state, alerting you to resolve the problem. Reinstall software on the smart camera or contact National Instruments for assistance. Refer to the Install Software on the NI Smart Camera section of Chapter 2, Software Overview.</td>
</tr>
<tr>
<td>5 Flashes</td>
<td>Green</td>
<td>The smart camera detects a critical error. Reinstall software on the smart camera or contact National Instruments for assistance. Refer to the Install Software on the NI Smart Camera section of Chapter 2, Software Overview, for information about installing software on the smart camera.</td>
</tr>
<tr>
<td>Flashing</td>
<td>Red</td>
<td>The smart camera detects a software crash or hang. Contact National Instruments for assistance.</td>
</tr>
<tr>
<td>Solid</td>
<td>Red</td>
<td>The smart camera detects a critical firmware error. Contact National Instruments for assistance.</td>
</tr>
</tbody>
</table>
Chapter 7 LED Indicators and DIP Switches

IMG ACQ LED
The IMG ACQ LED briefly lights green when an image is captured and ready for analysis. Fast frame rates can give this LED the appearance of being continuously lit.

If the IMG ACQ LED and the FAIL LED both flash red, it indicates that the NI Smart Camera has shut down because the maximum internal temperature was exceeded. Refer to the Thermal Considerations section of Chapter 8, for information about measuring the temperature of the smart camera. Refer to Appendix A, Specifications, for complete specifications.

PASS LED
The PASS LED is a green LED that is user-configurable through the IMAQ property node in LabVIEW or the Read/Write I/O step in Vision Builder AI.

FAIL LED
The FAIL LED is a red LED that is user-configurable through the IMAQ property node in LabVIEW or the Read/Write I/O step in Vision Builder AI.

If the IMG ACQ LED and the FAIL LED both flash red, it indicates that the NI Smart Camera has shut down because the maximum internal temperature was exceeded. Refer to the Thermal Considerations section of Chapter 8, Thermal Considerations and Mounting, for information about measuring the temperature of the smart camera. Refer to Appendix A, Specifications, for complete temperature specifications.

Configuring DIP Switches

This section describes the SAFE MODE, IP RESET, NO APP, and CONSOLE DIP switches on the NI Smart Camera. To turn on a DIP switch, lift the DIP switch cover and carefully move the switch to the ON position.

Note To avoid potential damage to your device, use care when configuring DIP switches. Do not use blunt tools or excessive force when changing the switch position.

SAFE MODE Switch
To start the NI Smart Camera in safe mode, move the SAFE MODE switch to the ON position and reapply power or restart the smart camera. If the switch is in the ON position when the smart camera starts, the smart camera launches only the essential services required for updating configuration information and installing software. The LabVIEW Real-Time engine does not launch. Use safe mode to reconfigure the smart camera TCP/IP settings, update firmware, and to install or update the software on the smart camera.
If the software on the smart camera is corrupted, start the smart camera in safe mode and update the software. To resume normal operations, move the SAFE MODE switch to the OFF position and reapply power or restart the smart camera. Refer to the Install Software on the NI Smart Camera section of Chapter 2, Software Overview, for information about updating the software on the smart camera.

The STATUS LED flashes green three times when the smart camera is in safe mode. Keep the SAFE MODE switch in the OFF position during normal operation.

IP RESET Switch

To clear the NI Smart Camera IP settings, move the IP RESET switch to the ON position and reapply power or restart the smart camera. Use the IP RESET switch to reset the TCP/IP settings when moving the camera from one subnet to another or when the current TCP/IP settings are otherwise invalid.

When you start the camera with the IP RESET switch in the ON position, the camera attempts to connect to the network using DHCP. If the camera is unable to obtain an IP address, it connects to the network with a link-local IP address with the form 169.254.x.x. Once you have reset the IP address, you can set up a new network configuration for the smart camera from a development machine on the same subnet, or you can use an Ethernet cable to connect the smart camera directly to the development computer.

To resume normal operations, move the IP RESET switch to the OFF position and reapply power or restart the smart camera. Keep the IP RESET switch in the OFF position during normal operation.

NO APP Switch

Move the NO APP switch to the ON position to prevent a startup application from running when the NI Smart Camera powers on. If you want to permanently disable the application from running when the smart camera powers on, you can disable the startup application in software.

To automatically run an application when the smart camera powers on, keep the NO APP switch in the OFF position. You must configure the application in software to automatically run when the smart camera powers on. Refer to the LabVIEW Real-Time Module Help for more information about automatically launching VIs when the smart camera powers on. Refer to the NI Vision Builder for Automated Inspection: Configuration Help for more information about configuring remote target options.

Keep the NO APP switch in the OFF position during normal operation.
Chapter 7 LED Indicators and DIP Switches

CONSOLE Switch

With a serial port terminal program, you can use the CONSOLE switch to read device information from the NI Smart Camera during startup, such as the IP address and firmware version. When the CONSOLE switch is in the ON position, the serial port outputs device information and is not available for applications. The smart camera reads this switch only when powering up or restarting and will only display device information during startup.

When the CONSOLE switch is in the OFF position, you can use the smart camera serial port and NI-Serial driver software to send and receive serial data. The NI-Serial software is installed when you install NI-IMAQ. When using the NI-Serial driver, keep the CONSOLE switch in the OFF position during normal operation.

Refer to the Connecting to Serial Devices section of Chapter 4, Connecting Lighting and External Devices, for more information about using serial communication with the smart camera.
Thermal Considerations and Mounting

This chapter contains information about the operating temperature of the NI Smart Camera and provides the information necessary to create a custom mount for the smart camera.

Thermal Considerations

The NI Smart Camera can operate in environments with ambient temperatures ranging from 0 to 45 °C. The maximum housing temperature of the smart camera is 65 °C. Refer to Appendix A, Specifications, for complete specifications. Figure 8-1 shows the location to take temperature measurements on the smart camera.

Figure 8-1. Measuring the NI Smart Camera Housing Temperature

Operating the smart camera above the specified ambient temperature or above the specified case temperature will degrade image quality and can cause permanent damage to the device.

The smart camera also has an internal temperature sensor that provides an internal temperature measurement. You can monitor the temperature sensor from LabVIEW using the Status Information»Temperature property from the IMAQ property node.
Chapter 8 Thermal Considerations and Mounting

If the internal temperature sensor reads 75 °C or more, the smart camera immediately halts operation and becomes unresponsive. The IMG ACQ LED and the FAIL LED flash red. You must remove and reapply power to the smart camera to recover from this condition.

To maximize the cooling efficiency of the smart camera, mount it to a thermally conductive structure, as specified in the Mounting the NI Smart Camera section.

Mounting the NI Smart Camera

Caution If you choose not to mount the NI Smart Camera to a thermally conductive structure, do not position the smart camera with the heat sinks resting on any surface. Doing so may violate the thermal requirements of the smart camera and cause the smart camera to overheat. Refer to Appendix A, Specifications, for temperature specifications.

Figures 8-2 through 8-5 provide the dimensional drawings necessary to create a custom mount for the smart camera.

Figure 8-2. Back View of the NI Smart Camera with Dimensions
Figure 8-3. Front View of the NI Smart Camera with Dimensions

Figure 8-4. Side View of the NI Smart Camera with Dimensions

Figure 8-5. Bottom View of the NI Smart Camera with Dimensions
Specifications

The following specifications apply to the NI 1712/1732/1752/1754 Smart Camera. These specifications are typical at 25 °C, unless otherwise stated.

Power Requirements

Power consumption
NI 1712/1732 .. 24 VDC, +20%/-15% (IEC 1311); 450 mA
NI 1752/1754
 Direct Drive disabled........................ 24 VDC, +20%/-15% (IEC 1311); 450 mA
 Direct Drive enabled......................... 24 VDC, +20%/-15% (IEC 1311); 800 mA
Reverse polarity protection............................. Yes

Memory

SDRAM .. 256 MB
Nonvolatile program/data memory................... 512 MB
Image/data storage .. Unlimited using FTP or an Ethernet hard drive

Processor

NI 1712/1732 .. Freescale PowerQUICC II Pro 400 MHz
NI 1752/1754 .. Freescale PowerQUICC II Pro 600 MHz

VGA Sensor (NI 1712/1732/1752 Only)

Sensor ... Sony CCD ICX424AL
Active pixels (VGA)
 Full scan ... 640 × 480
 1/2 scan ... 640 × 240
 1/4 scan ... 640 × 120
 Binning (1 × 2) 640 × 240
Pixel size .. 7.4 μm × 7.4 μm
Pixel pitch for field of view calculation
 Full scan, 1/2 scan, 1/4 scan 7.4 μm horizontal,
 7.4 μm vertical
 Binning (1 × 2) 7.4 μm horizontal,
 14.8 μm vertical
Appendix A Specifications

Maximum frame rate

- Full scan: Up to 60 fps
- 1/2 scan: Up to 109 fps
- 1/4 scan: Up to 175 fps
- Binning (1 × 2): Up to 114 fps

Optical format: 1/3 in.

Sensor readout: Progressive scan

Bits per pixel: 8 bits; 256 gray levels

Minimum exposure time: 36.28 μs

Exposure time increment: 31.2 μs

Spectral characteristics: Refer to Figure A-1

Figure A-1. VGA Spectral Response Curve

Gamma: 1.0 fixed

SXGA Sensor (NI 1754 Only)

Sensor: Sony CCD ICX205AL

Active pixels (SXGA):

- Full scan: 1,280 × 1,024
- 1/2 scan: 1,280 × 512
- 1/4 scan: 1,280 × 256
- Binning (1 × 2): 1,280 × 512

Pixel size: 4.65 μm × 4.65 μm

Pixel pitch:

- Full scan, 1/2 scan, 1/4 scan: 4.65 μm horizontal,

1 Refer to the Maximum Frame Rate section of Chapter 6, Image Acquisition, for more information about calculating the maximum frame rate for your application.
Binning (1 × 2) 4.65 μm horizontal, 9.3 μm vertical

Maximum frame rate¹

- Full scan Up to 13 fps
- 1/2 scan Up to 23 fps
- 1/4 scan Up to 39 fps
- Binning (1 × 2) Up to 26 fps

Optical format 1/2 in.
Sensor readout Progressive scan
Bits per pixel 8 bits; 256 gray levels
Minimum exposure time 76.68 μs
Exposure time increment 71.6 μs
Spectral characteristics Refer to Figure A-2

Figure A-2. SXGA Sensor Spectral Response Curve

Gamma ... 1.0 fixed

Lighting

Direct Drive lighting controller (NI 1752/1754 Only)

- Maximum current 500 mA continuous; 1 A strobed
- Minimum current 50 mA

Light requirements

¹ Refer to the Maximum Frame Rate section of Chapter 6, Image Acquisition, for more information about calculating the maximum frame rate for your application.
Appendix A Specifications

<table>
<thead>
<tr>
<th>Specification</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum voltage drop across LED+/LED- terminals</td>
<td>30 V, with ±10% input power supply 25 V, with +20%/−15% input power supply</td>
</tr>
<tr>
<td>Minimum voltage drop across LED+/LED- terminals</td>
<td>7 V</td>
</tr>
<tr>
<td>Strobe frequency</td>
<td>Operating frame rate</td>
</tr>
<tr>
<td>Maximum strobe duty cycle</td>
<td>45%</td>
</tr>
</tbody>
</table>

5 V external strobe (NI 1732/1752/1754 Only)
- Polarity: Programmable
- Strobe frequency: Operating frame rate
- V_{OH} minimum: 3.8 V
- V_{OL} maximum: 0.55 V
- I_{OH} maximum: -12 mA
- I_{OL} maximum: 12 mA

24 V external strobe (NI 1732/1752/1754 Only)
- Polarity: Active high
- Strobe frequency: Operating frame rate
- ON state
 - Voltage: Unregulated output drawn from the smart camera power supply
 - Current: 16 mA, maximum
- OFF state
 - Voltage: Not driven
 - Current: Not applicable

Network
- Network interface: Ethernet
- Ports
 - NI 1712: 1
 - NI 1732/1752/1754: 2
- Speed
 - NI 1712: 10; 100 Mbps
 - NI 1732/1752/1754
 - Port 1: 10; 100; 1,000 Mbps
 - Port 2: 10; 100 Mbps
- Duplex: Full, half
- Speed autodetection: Yes
- Duplex autodetection: Yes
- Auto MDI/MDI-X correction: Yes
- DHCP Support: Port 1 only
Serial
Baud rates ... Up to 230.4 Kbps
 Default baud rate 9,600 bps
Hardware flow control No

Optically Isolated Inputs and Outputs

Isolated Inputs
Channels
 NI 1712 ... 1
 NI 1732/1752/1754 2
Input type .. Sinking/sourcing, both inputs must have the same configuration

Digital logic levels
 OFF state
 Input current 0 mA to 0.1 mA
 Input voltage 0 V to 1 V
 ON state
 Input current 3 mA to 5.4 mA
 Input voltage 20 V to 30 V
Minimum pulse width................................. 1 ms

Isolated Outputs
Channels
 NI 1712 ... 1
 NI 1732/1752/1754 2
Output type ... Sinking/sourcing, independently configurable
External load power supply range 19 V to 30 V
Output current .. 100 mA, maximum per channel
Max toggle rate ... 10 kHz

Quadrature Encoder (NI 1732/1752/1754 Only)
Encoder type ... Differential, RS-422; phase A/phase B, no index
Max toggle rate ... 1 MHz

Physical Characteristics
Lens mount ... C-mount
Camera housing ... Painted die-cast aluminium
Appendix A Specifications

Dimensions ...11.77 cm × 8.58 cm × 5.06 cm
 (4.63 in. × 3.38 in. × 1.99 in.)
Weight ...525 g (18.52 oz)

Environmental

The NI Smart Camera is intended for indoor use only.

Operating temperature
 Ambient temperature0 to 45 °C
 Maximum camera housing temperature ...65 °C
Storage temperature-15 to 45 °C
Humidity ...10% to 90% RH, noncondensing
IP rating ...40
Pollution degree ..2
Operating shock (IEC 60068-2-27)50 g, 3 ms half sine, 18 shocks at 6 orientations;
 30 g, 11 ms half sine, 18 shocks at 6 orientations
Operating vibration
 Random (IEC 60068-2-34)10 Hz to 500 Hz, 10 Grms, 100 min per axis
 Swept sine (IEC 60068-2-6)10 Hz to 500 Hz, 10 g

Approved at altitudes up to 2,000 m.

Safety

The NI Smart Camera meets the requirements of the following standards for safety and electrical equipment for measurement, control, and laboratory use:
 • IEC 61010-1, EN 61010-1
 • UL 61010-1, CSA 61010-1

Note For UL and other safety certifications, refer to the product label or visit ni.com/certification, search by model number or product line, and click the appropriate link in the Certification column.

Electromagnetic Compatibility

The NI Smart Camera meets the following standards of EMC for electrical equipment for measurement, control, and laboratory use:
 • EN 61326 EMC requirements; Minimum Immunity
 • EN 55011 Emissions; Group 1, Class A
 • CE, C-Tick, ICES, and FCC Part 15 Emissions; Class A

Note For full EMC compliance, operate this device with shielded cabling.
CE Compliance

The NI Smart Camera meets the essential requirements of applicable European Directives, as amended for CE marking, as follows:

- 2006/95/EC; Low-Voltage Directive (safety)
- 2004/108/EC; Electromagnetic Compatibility Directive (EMC)

Note Refer to the Declaration of Conformity (DoC) for this product for any additional regulatory compliance information. To obtain the DoC for this product, visit ni.com/certification, search by model number or product line, and click the appropriate link in the Certification column.

Environmental Management

NI is committed to designing and manufacturing products in an environmentally responsible manner. NI recognizes that eliminating certain hazardous substances from our products is beneficial to the environment and to NI customers.

For additional environmental information, refer to the Minimize Our Environmental Impact web page at ni.com/environment. This page contains the environmental regulations and directives with which NI complies, as well as other environmental information not included in this document.

Waste Electrical and Electronic Equipment (WEEE)

EU Customers At the end of the product life cycle, all products must be sent to a WEEE recycling center. For more information about WEEE recycling centers, National Instruments WEEE initiatives, and compliance with WEEE Directive 2002/96/EC on Waste and Electronic Equipment, visit ni.com/environment/weee.

电子信息产品污染控制管理办法（中国RoHS）

中国客户 National Instruments 符合中国电子信息产品中限制使用某些有害物质指令（RoHS）。关于 National Instruments 中国 RoHS 合规信息，请登录 ni.com/environment/rohs_china。（For information about China RoHS compliance, go to ni.com/environment/rohs_china）
Troubleshooting

This appendix provides instructions for troubleshooting the NI Smart Camera.

Configuration Problems

The NI Smart Camera Does Not Appear in MAX or Vision Builder AI

Possible causes and solutions:

• The smart camera may not be powered. Verify that there is power to the smart camera and that both the smart camera and the development computer are properly connected to the network. The POWER LED should be lit green and the ACTIVITY/LINK LED should flash green when refreshing the list of devices in MAX or Vision Builder AI.

• The smart camera may have been configured on another network subnet and then moved to the current network subnet. Reconfigure the smart camera on the current network. Refer to the Subnet Considerations section of Chapter 1, Hardware Overview and Installation, for more information.

• Another device on the network is using the IP address assigned to the smart camera. This can happen when you assign the same static IP to two devices, you assign a static IP that is in the range of the IP address available for DHCP use on your network, or the DHCP server assigns the same IP address to another device. Either remove or reconfigure the other device, or reconfigure the smart camera to use a different IP address by moving the IP RESET DIP switch to the ON position and reapplying power or restarting the smart camera. Refer to the IP RESET Switch section of Chapter 7, LED Indicators and DIP Switches, for more information.

• You are experiencing firewall issues. If you are having difficulty detecting the system and setting up the NI Smart Camera on your network, you must configure the firewall to open the TCP/UDP ports used by the smart camera and the host machine. Refer to the Firewall Configuration section of Chapter 1, Hardware Overview and Installation, for more information about TCP/UDP ports.

• The cable you are using may be inappropriate for the speed of your network, causing network communication dropout. While 1,000 Mbps communication over short cables lengths can be achieved with the CAT5 cable commonly used for 10 and 100 Mbps, CAT5e and CAT6 cables are more reliable and recommended for 1,000 Mbps links. The smart camera has the ability to perform auto-crossover, allowing the use of straight or crossover Ethernet cables, independent of the connection configuration.
The NI Smart Camera Restarts Unexpectedly

Possible causes and solutions:

• The smart camera is configured to acquire an IP address from a DHCP server, but no DHCP server is available on the network. When the smart camera is configured to acquire an IP address from a DHCP server, it waits for up to 60 seconds for the IP address to be acquired successfully. If the smart camera does not receive an IP address within 60 seconds, it restarts and attempts to acquire an IP address again. After three unsuccessful attempts to acquire an IP address from a DHCP server, the smart camera restarts and enters an unconfigured state. In the unconfigured state, the smart camera has an IP address of 0.0.0.0 and only limited software loads.

In the unconfigured state, the smart camera has network connectivity. If the smart camera is on the same subnet as the host computer, then refreshing the list of remote devices in MAX or Vision Builder AI will cause the smart camera to appear with an IP address of 0.0.0.0. Use MAX or Vision Builder AI to reconfigure the smart camera IP address, then restart the smart camera.

Refer to the Network Connection section of Chapter 1, Hardware Overview and Installation, for more information about assigning an IP address to the smart camera.

• The smart camera has detected an error in the software configuration and automatically restarted into safe mode, independent of the state of the SAFE MODE DIP switch. This usually occurs when an attempt to upgrade the software is interrupted or if system files are deleted from the smart camera by the user. Reinstall software on the smart camera. Refer to Chapter 2, Software Overview, for information about installing software on the smart camera.

• The smart camera experienced two consecutive software exceptions. The smart camera automatically restarts after an exception. After the second exception, the smart camera remains in the exception state, alerting you to resolve the problem. To correct this issue, reinstall software on the smart camera. Refer to the Chapter 2, Software Overview, for information about installing software on the smart camera or contact National Instruments for assistance.

• In the event that the Direct Drive lighting controller detects an abnormal load condition, such as a short circuit on the LED+ output, the smart camera stops image acquisition and returns an error. The Direct Drive stops providing current to the light, and the smart camera may restart. Ensure that your lighting wire connections are correct and/or reconfigure your lighting settings in MAX or Vision Builder AI.

• The voltage drop of the light may have exceeded the maximum voltage or minimum voltage requirements of the smart camera. The voltage drop of a light can vary significantly with environmental conditions, such as temperature, current, and strobe time. Verify that the voltage drop across the LED+ and LED- terminals is within the specified range of the smart camera. Your light may need to be reconfigured by the manufacturer to bring the voltage drop within the specified range of the smart camera. Refer to Appendix A, Specifications, for more information.
• The smart camera ran out of memory. The reason may be that acquired images are still in memory. When developing applications with LabVIEW, use the IMAQ Dispose VI to destroy an image and free the space it occupied in memory. This VI is required for each image created in an application to free the memory allocated to the IMAQ Create VI. Execute the IMAQ Dispose VI only when the image is no longer needed in your application. You can configure the IMAQ Dispose VI to free memory for each call to the IMAQ Create VI or just once for all images created using the IMAQ Create VI.

Run-Time Problems

The NI Smart Camera is Unresponsive and Blinks the IMG ACQ and FAIL LEDs

The smart camera maximum internal temperature was exceeded. Complete the following steps to verify that the ambient and enclosure temperatures are within specifications.

1. Measure the ambient temperature and verify that it is within specifications.

 Note If the smart camera is mounted within an enclosure, the ambient temperature of the camera is the temperature inside the enclosure, which can be notably warmer than the ambient temperature outside the enclosure.

2. Measure the smart camera housing temperature at the location indicated in Figure 8-1, Measuring the NI Smart Camera Housing Temperature, and verify that it is within specifications.

 You must remove power, bring the temperature within specifications, and reapply power to the smart camera to recover from this condition. Refer to the Thermal Considerations section of Chapter 8, Thermal Considerations and Mounting, for information about measuring the temperature of the smart camera. Refer to Appendix A, Specifications, for complete temperature specifications.

Lighting Problems

The Light Does Not Illuminate When Using the Direct Drive Controller

In the event that your light does not illuminate, verify the following:

• That your NI Smart Camera supports the Direct Drive lighting controller. Refer to the Direct Drive Lighting Controller section of Chapter 4, Connecting Lighting and External Devices, for a list of smart cameras that support the Direct Drive lighting controller.

• The light is wired with the correct polarity, LED+ pin to the anode and LED- pin to cathode.
Appendix B Troubleshooting

• You have properly configured the maximum light settings in MAX or Vision Builder AI. For safety reasons, the default configuration of the smart camera does not enable lighting until you configure the maximum lighting current settings that are appropriate for your light.

• You have enabled the Direct Drive lighting controller in MAX or Vision Builder AI.

• The smart camera is receiving a trigger if you have configured the smart camera for triggering in MAX or Vision Builder AI. This can be verified by checking that the IMG ACQ LED on the smart camera illuminates when a trigger is provided on the TrigIn+/IsoIn(0)+ and TrigIn-/IsoIn(0)- pins. If you are not receiving a trigger, refer to the No Trigger is Received troubleshooting section.

• There is a short circuit wiring condition. If the smart camera detects a short circuit wiring condition, it will disable the Direct Drive until the condition is cleared and the acquisition is reinitialized.

In the event that the Direct Drive lighting controller detects an abnormal load condition, such as a short circuit on the LED+ output, the smart camera stops image acquisition and returns an error. The Direct Drive stops providing current to the light, and the smart camera may restart. Ensure that your lighting wire connections are correct and/or reconfigure your lighting settings in MAX or Vision Builder AI.

• You have requested an amount of current within the specified range of the smart camera and within the maximum lighting current settings you configured in MAX or Vision Builder AI. If your application requests more current than either of these two options, the smart camera disables the Direct Drive until an allowable current level is requested and the acquisition is reinitialized.

• If you are strobing, the on time required to illuminate for your requested exposure time plus the lighting turn-on time does not exceed the maximum allowed strobe duration. Refer to Chapter 6, Image Acquisition, for more information.

• If you are strobing, the duty cycle does not exceed the maximum allowed duty cycle at your requested frame rate. Refer to Chapter 6, Image Acquisition, for more information.

• The on voltage of the light is within the specifications of the Direct Drive lighting controller. Refer to Appendix A, Specifications, for more information.

• The voltage drop of the light may have exceeded the maximum voltage or minimum voltage requirements of the smart camera. The voltage drop of a light can vary significantly with environmental conditions, such as temperature, current, and strobe time. Verify that the voltage drop across the LED+ and LED- terminals is within the specified range of the smart camera. Your light may need to be reconfigured by the manufacturer to bring the voltage drop within the specified range of the smart camera. Refer to Appendix A, Specifications, for more information.
There is No External Lighting Strobe

Possible causes and solutions:

- If you have configured the NI Smart Camera for triggering in MAX or Vision Builder AI, verify that the smart camera is receiving a trigger. This can be verified by checking that the IMG ACQ LED on the smart camera illuminates when a trigger is provided on the TrigIn+/IsoIn(0)+ and TrigIn-/IsoIn(0)- pins. If you are not receiving a trigger, refer to the No Trigger is Received troubleshooting section.

- If you are using the 24 V strobe output, verify that there is enough time between frames for the strobe output to fully turn off before being re-enabled. The required time will vary with the load conditions, but is typically a few milliseconds. If a faster response is necessary, use the 5 V strobe output.

- Make sure that you have enabled the corresponding external lighting strobe in MAX or Vision Builder AI. Complete one of the following procedures to enable the correct lighting strobe.

MAX

1. Launch MAX.
2. In the Configuration tree, expand Devices and Interfaces.
4. Expand the smart camera you are using.
5. Select the channel you are using.
6. Select the Lighting tab.
7. Select the appropriate strobe from the External Strobe Generation control.

Vision Builder AI

1. Launch Vision Builder AI.
2. In the Acquire Image (Smart Camera) step, select the Lighting tab.
3. Select the appropriate strobe from the External Strobe Generation control.

Triggering Problems

No Trigger is Received

If you are not receiving a trigger, verify the following:

- The trigger is wired to the TrigIn+/IsoIn(0)+ and TrigIn-/IsoIn(0)- signals.
- If TrigIn/IsoIn(0) and IsoIn(1) are both being used, that the devices they are connected to are either both sinking (NPN) or both sourcing (PNP).
- The trigger is connected correctly based on the type of sensor it is—sourcing or sinking. Refer to the Isolated Inputs section of Chapter 4, Connecting Lighting and External Devices, for information about connecting isolated inputs.
Appendix B Troubleshooting

- The sensor power supply is of appropriate voltage for interfacing to NI Smart Camera isolated inputs. Refer to the *Isolated Inputs* section of Chapter 4, *Connecting Lighting and External Devices*, for information about isolated inputs. Refer to Appendix A, *Specifications*, for complete specifications.
- You configured the device in MAX or Vision Builder AI to expect a trigger. Refer to the *External Trigger* section of Chapter 6, *Image Acquisition*, for information about configuring an external trigger.

LED Error Indications

STATUS LED Error Conditions

The NI Smart Camera indicates specific error conditions by flashing the STATUS LED a specific number of times. Refer to the *Understanding the LED Indicators* section of Chapter 7, *LED Indicators and DIP Switches*, for the STATUS LED flashing sequences and the corresponding error condition.

POWER LED is Not Lit When the NI Smart Camera is Powered On

If the power supply is properly connected to the smart camera, but the POWER LED does not light up, check that the power supply is 24 V $\pm 20\%/\mp 15\%$ and within the specifications outlined in Appendix A, *Specifications*. Verify that the power supply can supply enough current for the smart camera model in use. Using a power supply that is not within these specifications might result in an unresponsive or unstable system and could damage the smart camera.

⚠️ **Caution** The 24 V external lighting strobe is an unregulated output dependent on the range of the power supply provided to the smart camera. If the power provided to the smart camera is $\pm 20\%/\mp 15\%$ with $\pm 5\%$ AC ripple, the output could be as high as 30 V. If the provided power exceeds the input voltage specifications of the third-party lighting controller, do not connect the 24 V lighting strobe output to the controller to prevent damage to the controller. Use a power supply with tolerances that meet the requirements of the controller, or use the 5 V external lighting strobe.
Log in to your National Instruments ni.com User Profile to get personalized access to your services. Visit the following sections of ni.com for technical support and professional services:

- **Support**—Technical support at ni.com/support includes the following resources:
 - **Self-Help Technical Resources**—For answers and solutions, visit ni.com/support for software drivers and updates, a searchable KnowledgeBase, product manuals, step-by-step troubleshooting wizards, thousands of example programs, tutorials, application notes, instrument drivers, and so on. Registered users also receive access to the NI Discussion Forums at ni.com/forums. NI Applications Engineers make sure every question submitted online receives an answer.
 - **Standard Service Program Membership**—This program entitles members to direct access to NI Applications Engineers via phone and email for one-to-one technical support, as well as exclusive access to self-paced online training modules at ni.com/self-paced-training. All customers automatically receive a one-year membership in the Standard Service Program (SSP) with the purchase of most software products and bundles including NI Developer Suite. NI also offers flexible extended contract options that guarantee your SSP benefits are available without interruption for as long as you need them. Visit ni.com/ssp for more information.

For information about other technical support options in your area, visit ni.com/services, or contact your local office at ni.com/contact.

- **Training and Certification**—Visit ni.com/training for training and certification program information. You can also register for instructor-led, hands-on courses at locations around the world.

- **System Integration**—If you have time constraints, limited in-house technical resources, or other project challenges, National Instruments Alliance Partner members can help. To learn more, call your local NI office or visit ni.com/alliance.

- **Declaration of Conformity (DoC)**—A DoC is our claim of compliance with the Council of the European Communities using the manufacturer’s declaration of conformity. This system affords the user protection for electromagnetic compatibility (EMC) and product safety. You can obtain the DoC for your product by visiting ni.com/certification.

You also can visit the Worldwide Offices section of ni.com/niglobal to access the branch office Web sites, which provide up-to-date contact information, support phone numbers, email addresses, and current events.
Glossary

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Prefix</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>p</td>
<td>pico</td>
<td>10^{-12}</td>
</tr>
<tr>
<td>n</td>
<td>nano</td>
<td>10^{-9}</td>
</tr>
<tr>
<td>μ</td>
<td>micro</td>
<td>10^{-6}</td>
</tr>
<tr>
<td>m</td>
<td>milli</td>
<td>10^{-3}</td>
</tr>
<tr>
<td>k</td>
<td>kilo</td>
<td>10^3</td>
</tr>
<tr>
<td>M</td>
<td>mega</td>
<td>10^6</td>
</tr>
<tr>
<td>G</td>
<td>giga</td>
<td>10^9</td>
</tr>
</tbody>
</table>

A

active pixels The number of light-sensitive pixels on a CCD sensor.

B

black level The value that corresponds to true black in the image.

C

CCD Charge Coupled Device. A chip that converts light into electronic signals.

E

edge count A specified number of assertions, rising, falling, or both, in a signal.

exposure time The amount of time that light is allowed to strike the imaging sensor to produce an image.
Glossary

<table>
<thead>
<tr>
<th>Letter</th>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>F</td>
<td>falling edge</td>
<td>The digital signal transition from the high state to the low state.</td>
</tr>
<tr>
<td></td>
<td>field of view</td>
<td>The area of inspection that the camera can acquire.</td>
</tr>
<tr>
<td></td>
<td>fps</td>
<td>Frames per second.</td>
</tr>
<tr>
<td>G</td>
<td>gain</td>
<td>The amount of increase in signal power, voltage, or current expressed as the ratio of output to input.</td>
</tr>
<tr>
<td></td>
<td>IEEE</td>
<td>Institute of Electrical and Electronics Engineers. A standard-setting body.</td>
</tr>
<tr>
<td></td>
<td>I/O</td>
<td>Input/output. The transfer of data to/from a computer system involving communications channels, operator interface devices, or data acquisition and control interfaces.</td>
</tr>
<tr>
<td>L</td>
<td>LED</td>
<td>Light-emitting diode.</td>
</tr>
<tr>
<td></td>
<td>lookup table</td>
<td>Maps pixel values in a source image to other values in a transformed image.</td>
</tr>
<tr>
<td>M</td>
<td>MAX</td>
<td>Measurement & Automation Explorer. A controlled, centralized configuration environment that allows you to configure all of your NI devices.</td>
</tr>
<tr>
<td>Acronym</td>
<td>Definition</td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>------------</td>
<td></td>
</tr>
<tr>
<td>NI-IMAQ</td>
<td>Driver software for National Instruments image acquisition devices and NI 17xx Smart Cameras. NI-IMAQ is installed as part of NI Vision Acquisition Software.</td>
<td></td>
</tr>
<tr>
<td>open collector</td>
<td>An output mechanism that grounds or does not ground a connection to a powered device. An open collector output cannot supply voltage.</td>
<td></td>
</tr>
<tr>
<td>opto-coupled</td>
<td>Optically coupled.</td>
<td></td>
</tr>
<tr>
<td>optically coupled</td>
<td>An input mechanism that provides current protection by using a light emitter to transmit signals to a light receiver, which then enables a signal current.</td>
<td></td>
</tr>
<tr>
<td>pixel pitch</td>
<td>The distance between the centers of adjacent pixels in either the horizontal or vertical direction.</td>
<td></td>
</tr>
<tr>
<td>PLC</td>
<td>Programmable Logic Controller. An industrial computer used for factory automation, process control, and manufacturing systems.</td>
<td></td>
</tr>
<tr>
<td>pulse train</td>
<td>A signal consisting of a series of continuous pulses.</td>
<td></td>
</tr>
<tr>
<td>reference card</td>
<td>An object of a solid, neutral color (typically gray) in the image which functions as a reference during image correction.</td>
<td></td>
</tr>
<tr>
<td>rising edge</td>
<td>The digital signal transition from the low state to the high state.</td>
<td></td>
</tr>
<tr>
<td>RS-232</td>
<td>Standard electrical interface for serial data communications.</td>
<td></td>
</tr>
</tbody>
</table>
Glossary

S

sensor resolution
The number of columns and rows of CCD pixels in the camera sensor.

sensor size
The size of the active area of an image sensor.

sinking
A device that requires a powered signal as an input.

sourcing
A device that provides a powered signal.

spectral response
The ability of a sensor to detect light expressed as a value between 0 and 1 for a given wavelength.

subnet
A set of systems whose IP addresses are configured such that they can communicate directly with one another. Data will not flow through an intermediate router.

SXGA sensor
Super eXtended Graphics Array. SXGA may refer to multiple resolutions. SXGA sensors used with NI 17xx Smart Cameras feature a resolution of 1,280 × 960 pixels.

syntax
Set of rules to which statements must conform in a particular programming language.

T

TCP
Transmission Control Protocol. A set of standard protocols for communicating across a single network or interconnected set of networks. TCP is for high-reliability transmissions.

trigger
Any event that causes or starts some form of data capture.

trigger delay
The time between the active edge of a trigger and the assertion of a lighting strobe.

U

UXGA sensor
Video Graphics Array sensor. Image sensor that features a resolution of 1,600 × 1,200 pixels.
VDC
Volts direct current.

VGA sensor
Video Graphics Array sensor. Image sensor that features a resolution of 640 × 480 pixels.

Virtual Instrument (VI)
Virtual Instrument. A combination of hardware and/or software elements, typically used with a PC, that has the functionality of a classic stand-alone instrument.

white level
The point at which values in the red, green, and blue color planes converge to produce white.

working distance
The distance from the front of the camera lens to the object under inspection.
Index

Numerics
24 V strobe output, 4-5
 enabling, 4-6
5 V TTL strobe output, 4-5
 enabling, 4-6

A
acquiring images, 6-1, 6-2
 external trigger, 6-2
 fixed-frame-rate mode, 6-2
 free-run mode, 6-2
 internal timing, 6-2
ACTIVITY/LINK LED, 3-5
assigning an IP address, 1-6

B
binning, 5-3

C
communicating with the console, 4-10
configuring DIP switches, 7-4
connecting
 external devices, 4-1
 external lighting controller, 4-5
 isolated output to a sinking external
 load, 4-9
 sinking output sensors to isolated
 inputs, 4-8
 to a quadrature encoder, 4-10
 to serial devices, 4-10
connecting, lighting devices, 4-1
connectors, 3-1
 I/O, 3-3
 overview, 3-1
 power, 3-3
CONSOLE DIP switch, 7-6
conventions used in the manual, xi

D
Declaration of Conformity, NI resources, C-1
device initialization, 7-2
DHCP server, 1-6
diagnostic tools (NI resources), C-1
Direct Drive
 connecting a light, 4-5
 lighting files, 4-3
 selecting a light, 4-4
documentation
 conventions used in manual, xi
 NI resources, C-1
 related documentation, xi
 drivers, NI resources, C-1

E
Ethernet LEDs, 3-4
 ACTIVITY/LINK LED, 3-5
 SPEED LED, 3-5
examples, NI resources, C-1
exposure, 6-1, 6-5
external trigger, 6-2

F
FAIL LED, 7-4
firewall configuration, 1-7
fixed-frame-rate mode, 6-2
frame rate, 6-5
 maximum, 6-5
free-run mode, 6-2

G
gain, 5-4

H
hardware binarization, 5-4
help, technical support, C-1
Index

I
I/O connector, 3-3
image readout duration, 6-7
image sensor
 binning, 5-3
 field of view, 5-1
 gain, 5-4
 hardware binarization, 5-4
 maintenance, 5-5
 spectral response, 5-2
image, acquisition, 6-1
IMG ACQ LED, 7-4
instrument drivers (NI resources), C-1
IP address
 assigning, 1-6
 configuring for LabVIEW, 2-5
 configuring with Vision Builder AI, 2-2
 using a DHCP server, 1-6
IP, RESET DIP switch, 7-5

K
KnowledgeBase, C-1

L
LabVIEW
 acquiring an image, 2-6
 configuring the IP address, 2-5
 documents, xii
 installing software on the smart camera, 2-6
 smart camera configuration, 2-4
LED indicators, 7-1
lighting
 files, 4-3
 turn-on time, 6-4
LUT (lookup table) See hardware binarization

M
mounting information, 8-1

N
National Instruments support and services, C-1
network connection, 1-5
NI 17xx
 binning, 5-3
 communicating with the console, 4-10
 connecting
 an external lighting controller, 4-5
 an isolated output to a sinking external load, 4-9
 sinking output sensors to isolated inputs, 4-8
 to a quadrature encoder, 4-10
 device initialization, 7-2
 dimensions, 8-2
 Ethernet LEDs, 3-4
 hardware, binarization, 5-4
 lighting files, 4-3
 models, 1-2
 partial scan mode, 5-3
 power requirements, 1-5
 protecting against inductive loads, 4-9
 selecting a light, 4-4
 thermal considerations, 8-1
 troubleshooting, B-1
NI Vision Acquisition Software, documents, xiii
NI Vision Builder for Automated Inspection
 acquiring an image, 2-3
 configuring the IP address, 2-2
 documents, xii
 installing on the smart camera, 2-3
 smart camera configuration, 2-2
NI Vision Development Module, documents, xii
NI-IMAQdx, documents, xiii
NO APP DIP switch, 7-5
P
partial scan mode, 5-3
PASS LED, 7-4
POWER LED, 7-2
power requirements, 3-3
power, requirements, 1-5
POWER-I/O connector, 3-2
pin descriptions, 3-2
programming examples, NI resources, C-1
protecting against inductive loads, 4-9
Q
quadrature encoder, 4-10
R
related documentation, xi
S
SAFE MODE DIP switch, 7-4
selecting a light, 4-4
software
 LabVIEW, smart camera
 configuration, 2-4
 NI Vision Builder for Automated
 Inspection, smart camera
 configuration, 2-2
software, NI resources, C-1
SPEED LED, 3-5
STATUS LED, 7-2
 indications, 7-3
support, technical, C-1
SXGA sensor, 5-1
T
technical support, C-1
thermal considerations, 8-1
training and certification, NI resources, C-1
trigger synchronization variability, 6-4
troubleshooting, B-1
 configuration problems, B-1
 firewall problems, B-1
 LED error indications, B-6
 lighting problems, B-3
 network problems, B-1
U
understanding LED indicators, 7-1
V
VGA sensor, 5-1
W
Web resources, C-1