The National Instruments USB-6008/6009 devices provide eight single-ended analog input (AI) channels, two analog output (AO) channels, 12 DIO channels, and a 32-bit counter with a full-speed USB interface. This user guide describes how to use these devices.

For specifications, refer to the *NI USB-6008 Device Specifications* and the *NI USB-6009 Device Specifications* available at ni.com/manuals.

The following table compares the NI USB-6008 and NI USB-6009 devices.

<table>
<thead>
<tr>
<th>Feature</th>
<th>NI USB-6008</th>
<th>NI USB-6009</th>
</tr>
</thead>
<tbody>
<tr>
<td>AI resolution</td>
<td>12 bits differential, 11 bits single-ended</td>
<td>14 bits differential, 13 bits single-ended</td>
</tr>
<tr>
<td>Maximum AI sample rate, single channel(^1)</td>
<td>10 kS/s</td>
<td>48 kS/s</td>
</tr>
<tr>
<td>Maximum AI sample rate, multiple channels (aggregate)(^1)</td>
<td>10 kS/s</td>
<td>48 kS/s</td>
</tr>
<tr>
<td>DIO configuration</td>
<td>Open collector(^2)</td>
<td>Each channel individually programmable as open collector or active drive(^2)</td>
</tr>
</tbody>
</table>

The following figure shows key functional components of the NI USB-6008/6009.

\(^1\) System-dependent.

\(^2\) This document uses NI-DAQmx naming conventions. Open-drain is called open collector and push-pull is called active drive.
Safety Guidelines

The following section contains important safety information that you must follow when installing and using the NI USB-6008/6009.

⚠️ **Caution** Operate the NI USB-6008/6009 only as described in these operating instructions. Misuse of the device can result in a hazard. You can compromise the safety protection built into the device if the device is damaged in any way. If the device is damaged, contact National Instruments for repair.

⚠️ **Caution** Do not substitute parts or modify the device except as described in this user guide. Use the device only with the accessories specified in the installation instructions.
Caution Do not operate the device in an explosive atmosphere or where there may be flammable gases or fumes. If you must operate the device in such an environment, it must be in a suitably rated enclosure.

Electromagnetic Compatibility Guidelines

This product was tested and complies with the regulatory requirements and limits for electromagnetic compatibility (EMC) stated in the product specifications. These requirements and limits provide reasonable protection against harmful interference when the product is operated in the intended operational electromagnetic environment.

This product is intended for use in industrial locations. However, harmful interference may occur in some installations, when the product is connected to a peripheral device or test object, or if the product is used in residential or commercial areas. To minimize interference with radio and television reception and prevent unacceptable performance degradation, install and use this product in strict accordance with the instructions in the product documentation.

Furthermore, any changes or modifications to the product not expressly approved by National Instruments could void your authority to operate it under your local regulatory rules.

Caution To ensure the specified EMC performance, operate this product only with shielded cables and accessories.

Caution This product may become more sensitive to electromagnetic disturbances in the operational environment when test leads are attached or when the product is connected to a test object.

Caution Emissions that exceed the regulatory requirements may occur when this product is connected to a test object.

Note Changes or modifications to the product not expressly approved by National Instruments could void your authority to operate the product under your local regulatory rules.

Unpacking the Kit

Caution To prevent electrostatic discharge (ESD) from damaging the device, ground yourself using a grounding strap or by holding a grounded object, such as your computer chassis.

1. Touch the antistatic package to a metal part of the computer chassis.
2. Remove the device from the package and inspect the device for loose components or any other sign of damage.

Caution Never touch the exposed pins of connectors.
3. Unpack any other items and documentation from the kit.
Store the device in the antistatic package when the device is not in use.

Setting Up the NI USB-6008/6009

Complete the following steps to get started with the NI USB-6008/6009.

1. Install the application software (if applicable), as described in the installation instructions that accompany your software.
2. Install NI-DAQmx.

 Note The NI-DAQmx software is included on the disk shipped with your kit and is available for download at ni.com/support. The documentation for NI-DAQmx is available after installation from Start>All Programs>National Instruments>NI-DAQmx. Other NI documentation is available from ni.com/manuals.

3. Install the 16-position screw terminal plugs by inserting them into the connector jacks, as shown in the following figure.

 Figure 2. Signal Label Application Diagram

4. Affix the provided signal labels to the screw terminal connector plugs. You can choose labels with pin numbers, signal names, or blank labels, as shown in the following figure.

 NI USB-6008/6009 devices are supported by NI-DAQmx 7.5 and later.
Choose one of the labels, align the correct label with the terminals printed on the top panel of your device and apply the label, as shown in the previous figure.

Figure 3. NI USB-6008/6009 Signal Labels

1. User-Defined Custom Label
2. Terminal Number Label
3. Digital I/O Label
4. Analog Input Differential Signal Name Label
5. Analog Input Single-Ended Signal Name Label

Note After you label the screw terminal connector plugs, you must only insert them into the matching connector jack, as indicated by the overlay label on the device.

5. Plug one end of the USB cable into the NI USB-6008/6009 and the other end into an available USB port on the computer.

6. Double-click the **NI MAX** icon on the desktop to open Measurement & Automation Explorer (MAX).

7. Expand **My System»Devices and Interfaces** and verify that the NI USB-6008/6009 is listed. If your device does not appear, press <F5> to refresh the view in MAX. If your device is still not recognized, refer to ni.com/support/daqmx for troubleshooting information.

8. Self-test your device in MAX by right-clicking **NI USB-6008** or **NI USB-6009** and selecting **Self-Test**. Self-test performs a brief test to determine successful device installation. When the self-test finishes, a message indicates successful verification or if an error occurred. If an error occurs, refer to ni.com/support/daqmx.

Caution To ensure the specified EMC performance, operate this product only with shielded cables and accessories.

9. Connect the wires (16 AWG to 28 AWG) of a shielded, multiconductor cable to screw terminals by stripping 6.35 mm (0.25 in) of insulation, inserting the wires into the screw terminals, and securely tightening the screws with the flathead screwdriver to a torque of 0.22 N·m to 0.25 N·m (2.0 lb·in. to 2.2 lb·in.). Refer to the **Pinout and Signal Descriptions** section for an image of the NI USB-6008/6009 pinout.

If using a shielded cable, connect the cable shield to a nearby GND terminal.

Note For information about sensors, go to ni.com/sensors. For information about IEEE 1451.4 TEDS smart sensors, go to ni.com/teds.

10. Run a Test Panel in MAX by right-clicking **NI USB-6008** or **NI USB-6009** and selecting **Test Panels**.
Click **Start** to test the device functions, or **Help** for operating instructions. Click **Close** to exit the test panel.

Using the NI USB-6008/6009 in an Application

You can use the DAQ Assistant through many NI application software programs to configure virtual and measurement channels. The following table lists DAQ Assistant tutorial locations for NI applications.

<table>
<thead>
<tr>
<th>NI Application</th>
<th>Tutorial Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>LabVIEW</td>
<td>Go to Help » LabVIEW Help. Next, go to Getting Started with LabVIEW » Getting Started with DAQ » Taking an NI-DAQmx Measurement in LabVIEW.</td>
</tr>
<tr>
<td>LabWindows™/CVI™</td>
<td>Go to Help » Contents. Next, go to Using LabWindows/CVI » Data Acquisition » Taking an NI-DAQmx Measurement in LabWindows/CVI.</td>
</tr>
<tr>
<td>LabVIEW SignalExpress</td>
<td>Go to Help » Taking an NI-DAQmx Measurement in SignalExpress.</td>
</tr>
</tbody>
</table>

Refer to the *Where to Go from Here* section for information about programming examples for NI-DAQmx and NI-DAQmx Base.

Features

The NI USB-6008/6009 features a USB connector, USB cable strain relief, two screw terminal connector plugs for I/O, and an LED indicator, as shown in the following figure.
USB Connector and USB Cable Strain Relief

The NI USB-6008/6009 features a USB connector for full-speed USB interface. You can provide strain relief for the USB cable by threading a zip tie through the USB cable strain relief ring and tightening around a looped USB cable, as shown in the following figure.

LED Indicator

The NI USB-6008/6009 device has a green LED indicator that indicates device status, as listed in the following table. When the device is connected to a USB port, the LED blinks steadily to indicate that the device is initialized and is receiving power from the connection.
Table 3. LED State/Device Status

<table>
<thead>
<tr>
<th>LED State</th>
<th>Device Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Not lit</td>
<td>Device not connected or in suspend</td>
</tr>
<tr>
<td>On, not blinking</td>
<td>Device connected but not initialized, or the computer is in standby mode. In order for the device to be recognized, the device must be connected to a computer that has NI-DAQmx installed on it.</td>
</tr>
<tr>
<td>Single-blink</td>
<td>Operating normally</td>
</tr>
</tbody>
</table>

Screw Terminal Connector Plugs

The NI USB-6008/6009 ships with one detachable screw terminal connector plug for analog signals and one detachable screw terminal connector plug for digital signals. These screw terminal connectors provide 16 connections that use 16 AWG to 28 AWG wire. Refer to step 4 of the Setting Up the NI USB-6008/6009 section for information about selecting labels for the screw terminal connector plugs. Refer to the Pinout and Signal Descriptions section for the device pinout and signal descriptions.

You can order additional connectors and labels for your device. Refer to the Cables and Accessories section for ordering information.

Firmware

The firmware on the NI USB-6008/6009 refreshes whenever the device is connected to a computer with NI-DAQmx. NI-DAQmx automatically uploads the compatible firmware version to the device. The firmware version may be upgraded when new versions of NI-DAQmx release.

Cables and Accessories

The following table contains information about cables and accessories available for the NI USB-6008/6009. For a complete list of accessories and ordering information, refer to the pricing section of the NI USB-6008 or NI USB-6009 product page at ni.com.
Table 4. NI USB-6008/6009 Cables and Accessories

<table>
<thead>
<tr>
<th>Accessory</th>
<th>Part Number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>USB-6008/6009 Accessory Kit</td>
<td>779371-01</td>
<td>Four additional screw-terminal connectors, connector labels, and a screwdriver</td>
</tr>
<tr>
<td>USB-6000 Series Prototyping Accessory</td>
<td>779511-01</td>
<td>Unshielded breadboarding accessory for custom-defined signal conditioning and prototyping. You can use up to two accessories per device.</td>
</tr>
<tr>
<td>Hi-Speed USB Cable</td>
<td>184125-01, 184125-02</td>
<td>1 m and 2 m lengths</td>
</tr>
</tbody>
</table>

Caution For compliance with Electromagnetic Compatibility (EMC) requirements, this product must be operated with shielded cables and accessories. If unshielded cables or accessories are used, the EMC specifications are no longer guaranteed unless all unshielded cables and/or accessories are installed in a shielded enclosure with properly designed and shielded input/output ports.

Pinout and Signal Descriptions

The following figure shows the pinout of the NI USB-6008/6009. Analog input signal names are listed as single-ended analog input name, AI x, and then differential analog input name, (AI x+/−). Refer to the following table for a detailed description of each signal.
Figure 6. NI USB-6008/6009 Pinout

![NI USB-6008/6009 Pinout Diagram](image)

Table 5. Signal Descriptions

<table>
<thead>
<tr>
<th>Signal Name</th>
<th>Reference</th>
<th>Direction</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>GND</td>
<td>—</td>
<td>—</td>
<td>Ground—The reference point for the single-ended analog input measurements, analog output voltages, digital signals, +5 VDC supply, and +2.5 VDC at the I/O connector, and the bias current return point for differential mode measurements.</td>
</tr>
<tr>
<td>AI <0..7></td>
<td>Varies</td>
<td>Input</td>
<td>Analog Input Channels 0 to 7—For single-ended measurements, each signal is an analog input voltage channel. For differential measurements, AI 0 and AI 4 are the positive and negative inputs of differential analog input channel 0. The following signal pairs also form differential input channels: AI <1, 5>, AI <2, 6>, and AI <3, 7>. Refer to the Analog Input section for more information.</td>
</tr>
</tbody>
</table>
Table 5. Signal Descriptions (Continued)

<table>
<thead>
<tr>
<th>Signal Name</th>
<th>Reference</th>
<th>Direction</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AO <0, 1></td>
<td>GND</td>
<td>Output</td>
<td>Analog Output Channels 0 and 1—Supplies the voltage output of AO channel 0 or AO channel 1. Refer to the Analog Output section for more information.</td>
</tr>
<tr>
<td>P0.<0..7></td>
<td>GND</td>
<td>Input or Output</td>
<td>Port 0 Digital I/O Channels 0 to 7—You can individually configure each signal as an input or output. Refer to the Digital I/O section for more information.</td>
</tr>
<tr>
<td>P1.<0..3></td>
<td>GND</td>
<td>Input or Output</td>
<td>Port 1 Digital I/O Channels 0 to 3—You can individually configure each signal as an input or output. Refer to the Digital I/O section for more information.</td>
</tr>
<tr>
<td>PFI 0</td>
<td>GND</td>
<td>Input</td>
<td>PFI 0—This pin is configurable as either a digital trigger or an event counter input. Refer to the PFI 0 section for more information.</td>
</tr>
<tr>
<td>+2.5 V</td>
<td>GND</td>
<td>Output</td>
<td>+2.5 V External Reference—Provides a reference for wrap-back testing. Refer to the +2.5 V External Reference section for more information.</td>
</tr>
<tr>
<td>+5 V</td>
<td>GND</td>
<td>Output</td>
<td>+5 V Power Source—Provides +5 V power up to 200 mA. Refer to the +5 V Power Source section for more information.</td>
</tr>
</tbody>
</table>

Analog Input

The NI USB-6008/6009 has eight analog input channels that you can use for four differential analog input measurements or eight single-ended analog input measurements.

The following figure shows the analog input circuitry of the NI USB-6008/6009.
The main blocks featured in the NI USB-6008/6009 analog input circuitry are as follows:

- **MUX**—The NI USB-6008/6009 has one analog-to-digital converter (ADC). The multiplexer (MUX) routes one AI channel at a time to the PGA.

- **PGA**—The programmable-gain amplifier provides input gains of 1, 2, 4, 5, 8, 10, 16, or 20 when configured for differential measurements and gain of 1 when configured for single-ended measurements. The PGA gain is automatically calculated based on the voltage range selected in the measurement application.

- **ADC**—The analog-to-digital converter (ADC) digitizes the AI signal by converting the analog voltage into digital code.

- **AI FIFO**—The NI USB-6008/6009 can perform both single and multiple analog-to-digital conversions of a fixed or infinite number of samples. A first-in-first-out (FIFO) buffer holds data during AI acquisitions to ensure that no data is lost.

Analog Input Modes and Signal Sources

You can configure the AI channels on the NI USB-6008/6009 to take differential or referenced single-ended (RSE) measurements. The following table summarizes the recommended analog input mode(s) for floating signal sources and ground-references signal sources. Refer to the table in the Pinout and Signal Descriptions section for more information about I/O configurations for single-ended or differential measurements.
Table 6. Analog Input Configurations

<table>
<thead>
<tr>
<th>Analog Input Mode</th>
<th>Floating Signal Sources (Not Connected to Building Ground)</th>
<th>Ground-Referenced Signal Sources</th>
</tr>
</thead>
</table>
| Examples | • Ungrounded thermocouples
 | • Signal conditioning with isolated outputs
 | • Battery devices | Plug-in instruments with non-isolated outputs | |
| **Differential (DIFF)** | **Signal Source** ![Diagram of Differential Connection](image1) | **Signal Source** ![Diagram of Differential Connection](image2) |
| **Referenced Single-Ended (RSE)** | **Signal Source** ![Diagram of RSE Connection](image3) | **Signal Source** ![Diagram of RSE Connection with Ground Loop](image4) |

Floating Signal Sources

A floating signal source is not connected to the building ground system, but has an isolated ground-reference point. Some examples of floating signal sources are outputs of transformers, thermocouples, battery-powered devices, optical isolators, and isolation amplifiers. An instrument or device that has an isolated output is a floating signal source.

Refer to *Field Wiring and Noise Considerations for Analog Signals* for more information. To access this document, go to ni.com/info and enter the Info Code rdfwn3.

When to Use Differential Connections with Floating Signal Sources

Use DIFF input connections for any channel that meets any of the following conditions:

- Your application requires input ranges other than ±10 V.
- The input signal is low level and requires greater accuracy.
The leads connecting the signal to the device are greater than 3 m (10 ft).
The input signal requires a separate ground-reference point or return signal.
The signal leads travel through noisy environments.
Two analog channels, AI+ and AI-, are available for the signal.

DIFF signal connections reduce noise pickup and increase common-mode noise rejection. DIFF signal connections also allow input signals to float within the working voltage of the device.

Refer to the Taking Differential Measurements section for more information about differential connections.

When to Use Referenced Single-Ended (RSE) Connections with Floating Signal Sources

Only use RSE input connections if the input signal meets all of the following conditions:

- The input signal can share a common reference point, GND, with other signals that use RSE.
- Your application permits the use of the ±10 V input range.
- The leads connecting the signal to the device are less than 3 m (10 ft).

DIFF input connections are recommended for greater signal integrity for any input signal that does not meet the preceding conditions.

In the single-ended modes, more electrostatic and magnetic noise couples into the signal connections than in DIFF configurations. The coupling is the result of differences in the signal path. Magnetic coupling is proportional to the area between the two signal conductors. Electrical coupling is a function of how much the electric field differs between the two conductors.

With this type of connection, the PGA rejects both the common-mode noise in the signal and the ground potential difference between the signal source and the device ground.

Refer to the Taking Referenced Single-Ended Measurements section for more information about RSE connections.

Ground-Referenced Signal Sources

A ground-referenced signal source is a signal source connected to the building system ground. It is already connected to a common ground point with respect to the device, assuming that the computer is plugged into the same power system as the source. Non-isolated outputs of instruments and devices that plug into the building power system fall into this category.

The difference in ground potential between two instruments connected to the same building power system is typically between 1 mV and 100 mV, but the difference can be much higher if power distribution circuits are improperly connected. If a grounded signal source is incorrectly measured, this difference can appear as measurement error. Follow the connection instructions
for grounded signal sources to eliminate this ground potential difference from the measured signal.

Refer to *Field Wiring and Noise Considerations for Analog Signals* for more information. To access this document, go to ni.com/info and enter the Info Code rdfwn3.

When to Use Differential Connections with Ground-Reference Signal Sources

Use DIFF input connections for any channel that meets any of the following conditions:

- Your application requires input ranges other than ±10 V.
- The input signal is low level and requires greater accuracy.
- The leads connecting the signal to the device are greater than 3 m (10 ft).
- The input signal requires a separate ground-reference point or return signal.
- The signal leads travel through noisy environments.
- Two analog channels, AI+ and AI-, are available for the signal.

DIFF signal connections reduce noise pickup and increase common-mode noise rejection. DIFF signal connections also allow input signals to float within the working voltage of the device.

Refer to the *Taking Differential Measurements* section for more information about differential connections.

When to Use Referenced Single-Ended (RSE) Connections with Ground-Referenced Signal Sources

Do not use RSE connections with ground-referenced signal sources. Use differential connections instead.

As shown in the table in the *Analog Input Modes and Signal Sources* section, there can be a potential difference between GND and the ground of the sensor. In RSE mode, this ground loop causes measurement errors.

Taking Differential Measurements

For differential signals, connect the positive lead of the signal to the AI+ terminal, and the negative lead to the AI- terminal.

![Figure 8. Connecting a Differential Voltage Signal](image-url)
The differential input mode can measure ±20 V signals in the ±20 V range. However, the maximum voltage on any one pin is ±10 V with respect to GND. For example, if AI 1 is +10 V and AI 5 is -10 V, then the measurement returned from the device is +20 V.

Figure 9. Example of a Differential 20 V Measurement

Connecting a signal greater than ±10 V on either pin results in a clipped output.

Figure 10. Exceeding ±10 V on AI Returns Clipped Output

Taking Referenced Single-Ended Measurements

To connect referenced single-ended (RSE) voltage signals to the NI USB-6008/6009, connect the positive voltage signal to an AI terminal, and the ground signal to a GND terminal, as shown in the following figure.
When no signals are connected to the analog input terminal, the internal resistor divider may cause the terminal to float to approximately 1.4 V when the analog input terminal is configured as RSE. This behavior is normal and does not affect the measurement when a signal is connected.

Digital Trigger

You can configure PFI 0 as a digital trigger input for analog input tasks. Refer to the *Using PFI 0 as a Digital Trigger* section for more information.

Analog Output

The NI USB-6008/6009 has two independent analog output channels that can generate outputs from 0 V to 5 V. All updates of analog output channels are software-timed. GND is the ground-reference signal for the analog output channels.

The following figure shows the circuitry of one analog output channel on the NI USB-6008/6009.

Figure 12. Circuitry of One Analog Output Channel

The main block featured in the NI USB-6008/6009 analog output circuitry is the digital-to-analog converter (DAC), which converts digital codes to analog voltages. There is one DAC for each analog output line.
Connecting Analog Output Loads

To connect loads to the NI USB-6008/6009, connect the positive lead of the load to the AO terminal, and connect the ground of the load to a GND terminal, as shown in the following figure.

Figure 13. Connecting a Load

Minimizing Glitches on the Output Signal

When you use a DAC to generate a waveform, you may observe glitches in the output signal. These glitches are normal; when a DAC switches from one voltage to another, it produces glitches due to released charges. The largest glitches occur when the most significant bit of the DAC code changes. You can build a lowpass deglitching filter to remove some of these glitches, depending on the frequency and nature of the output signal. For more information about minimizing glitches, refer to the KnowledgeBase document, *Reducing Glitches on the Analog Output of MIO DAQ Devices*. To access this document, go to ni.com/info and enter the Info Code exszek.

Digital I/O

The NI USB-6008/6009 has 12 digital lines on two ports, Port 0 has eight lines, P0.<0..7>, and Port 1 has four lines, P1.<0..3>. GND is the ground-reference signal for the digital I/O ports. You can individually program all lines as inputs or outputs.

The following figure shows P0.<0..7> connected to example signals configured as digital inputs and digital outputs. You can configure P1.<0..3> similarly.
1. P0.0 configured as an open collector digital output driving an LED
2. P0.2 configured as an active drive digital output driving an LED
3. P0.4 configured as a digital input receiving a TTL signal from a gated inverter
4. P0.7 configured as a digital input receiving a 0 V or 5 V signal from a switch

Caution Exceeding the maximum input voltage ratings or maximum output ratings can damage the device and the computer. National Instruments is not liable for any damage resulting from such signal connections. Refer to the *NI USB-6008 Device Specifications* or *NI USB-6009 Device Specifications* for more information.

Source/Sink Information

The default configuration of the NI USB-6008/6009 digital I/O ports is open collector, allowing 5 V operation, with an onboard 4.7 kΩ pull-up resistor. An external user-provided pull-up resistor can be added to increase the source current drive up to a 8.5 mA limit per line, as shown in the following figure.⁴

⁴ This document uses NI-DAQmx naming conventions. Open-drain is called open collector and push-pull is called active drive.
The NI USB-6009 ports can also be configured as active drive using the NI-DAQmx API, allowing 3.3 V operation with a source/sink current limit of ±8.5 mA. For more information about how to set the DIO configuration, refer to the KnowledgeBase document, *How Do I Configure My NI Device to be Open-Drain (Open Collector) or Push-Pull (Active Drive)?*. To access this document, go to ni.com/info and enter the Info Code ex52sp.

Determining the Value of the User-Provided Pull-Up Resistor

Complete the following steps to determine the value of the user-provided pull-up resistor:

1. Place an ammeter in series with the load.
2. Place a variable resistor between the digital output line and the +5 V supply.
3. Set P0.0 to high.
4. Adjust the variable resistor until the ammeter current reads as the intended current. The intended current must be less than 8.5 mA.
5. Remove the ammeter and variable resistor from your circuit.
6. Measure the resistance of the variable resistor. The measured resistance is the ideal value of the pull-up resistor.
7. Select a static resistor value for your pull-up resistor that is greater than or equal to the ideal resistance.
8. Reconnect the load circuit and the pull-up resistor.
I/O Protection
To protect the NI USB-6008/6009 against overvoltage, undervoltage, and overcurrent conditions, as well as ESD events, you should avoid these fault conditions by using the following guidelines:

• If you configure a DIO line as an output, do not connect it to any external signal source, ground signal, or power supply.
• If you configure a DIO line as an output, understand the current requirements of the load connected to these signals. Do not exceed the specified current output limits of the DAQ device.
National Instruments has several signal conditioning solutions for digital applications requiring high current drive.
• If you configure a DIO line as an input, do not drive the line with voltages outside of its normal operating range. The DIO lines have a smaller operating range than the AI signals.
• Treat the DAQ device as you would treat any static-sensitive device. Always properly ground yourself and the equipment when handling the DAQ device or connecting to it.

Power-On States
At system startup and reset, the hardware sets all DIO lines to high-impedance inputs. The DAQ device does not drive the signal high or low. Each line has a weak pull-up resistor connected to it.

Static DIO
Each of the NI USB-6008/6009 DIO lines can be used as a static DI or DO line. You can use static DIO lines to monitor or control digital signals. All samples of static DI lines and updates of DO lines are software-timed.

PFI 0
PFI 0 is configurable as either a digital trigger input or an event counter input.

Using PFI 0 as a Digital Trigger
When an analog input task is defined, you can configure PFI 0 as a digital trigger input. When the digital trigger is enabled, the AI task waits for a rising or falling edge on PFI 0 before starting the acquisition. To use AI Start Trigger (ai/StartTrigger) with a digital source, specify PFI 0 as the source and select a rising or falling edge.

Using PFI 0 as an Event Counter
You can configure PFI 0 as a source for counting digital edges. In this mode, falling-edge events are counted using a 32-bit counter. For more information about event timing
requirements, refer to the *NI USB-6008 Device Specifications* and *NI USB-6009 Device Specifications* documents available on ni.com/manuals.

External Reference and Power Source

The NI USB-6008/6009 creates an external reference and supplies a power source. All voltages are relative to ground (GND).

+2.5 V External Reference

The NI USB-6008/6009 creates a high-purity reference voltage supply for the ADC using a multi-state regulator, amplifier, and filter circuit. You can use the resulting +2.5 V reference voltage as a signal for self-test.

+5 V Power Source

The NI USB-6008/6009 supplies a 5 V, 200 mA output. You can use this source to power external components.

⚠️ **Note** When the device is in USB suspend, the output is disabled.

Where to Go from Here

This section lists where you can find example programs for the NI USB-6008/6009 and relevant documentation.

Example Programs

NI-DAQmx and NI-DAQmx Base software include example programs to help you get started programming with the NI USB-6008/6009. Modify example code and save it in an application, or use examples to develop a new application, or add example code to an existing application.

NI-DAQmx

To locate NI software examples, go to ni.com/info and enter the Info Code daqmxexp.

To run examples without the device installed, use an NI-DAQmx simulated device. For more information, in Measurement & Automation Explorer (MAX), select Help»Help Topics»NI-DAQmx»MAX Help for NI-DAQmx and search for simulated devices.

NI-DAQmx Base

NI-DAQmx Base examples are accessible from Start»All Programs»National Instruments»NI-DAQmx Base Examples.
Related Documentation

Each application software package and driver includes information about writing applications for taking measurements and controlling measurement devices. The following references to documents assume you have NI-DAQmx 9.3 or later, and where applicable, version 8.5 or later of the NI application software.

NI USB-6008/6009

The *NI USB-6008/6009 Quick Start* included with the NI USB-6008/6009 describes how to install NI-DAQmx software, install the device, and confirm that your device is operating properly.

The *NI USB-6008 Device Specifications* and *NI USB-6009 Device Specifications* contain device specifications and are available at ni.com/manuals.

NI-DAQmx

The *NI-DAQmx Readme* is available from the Windows Start menu and lists which application software, devices, and ADEs are supported by this version of NI-DAQmx.

The *NI-DAQmx Help* is available from the Windows Start menu and contains API overviews, general information about measurement concepts, key NI-DAQmx concepts, and common applications that are applicable to all programming environments.

NI-DAQmx Base (Linux/Mac OS X/LabVIEW PDA 8.x)

The *Getting Started with NI-DAQmx Base* document describes how to install the NI-DAQmx Base software, the NI-DAQmx Base-supported DAQ device, and how to confirm that the device is operating properly on your Windows, Linux, or Mac machine. In Windows, select **Start»All Programs»National Instruments»NI-DAQmx Base»Documentation»Getting Started with NI-DAQmx Base**.

The *NI-DAQmx Base Readme* lists devices supported in different versions of NI-DAQmx Base. In Windows, select **Start»All Programs»National Instruments»NI-DAQmx Base»DAQmx Base Readme**.

The *NI-DAQmx Base VI Reference Help* contains VI reference and general information about measurement concepts. In LabVIEW, select **Help»NI-DAQmx Base VI Reference Help**.

The *NI-DAQmx Base C Function Reference Help* contains C reference and general information about measurement concepts. In Windows, select **Start»All Programs»National Instruments»NI-DAQmx Base»Documentation»C Function Reference Help**.

Note All NI-DAQmx Base documentation for Linux is installed at `/usr/local/natinst/nidaqmxbase/documentation`.
All NI-DAQmx Base documentation for Mac OS X is installed at /Applications/National Instruments/NI-DAQmx Base/documentation.

LabVIEW

Refer to ni.com/gettingstarted for more information about LabVIEW.

Use the LabVIEW Help, available by selecting Help » LabVIEW Help in LabVIEW, to access information about LabVIEW programming concepts, step-by-step instructions for using LabVIEW, and reference information about LabVIEW VIs, functions, palettes, menus, and tools. Refer to the following locations on the Contents tab of the LabVIEW Help for information about NI-DAQmx:

- VI and Function Reference » Measurement I/O VIs and Functions » DAQmx - Data Acquisition VIs and Functions—Describes the LabVIEW NI-DAQmx VIs and functions.
- Property and Method Reference » NI-DAQmx Properties—Contains the property reference.
- Taking Measurements—Contains the conceptual and how-to information you need to acquire and analyze measurement data in LabVIEW, including common measurements, measurement fundamentals, NI-DAQmx key concepts, and device considerations.

LabWindows/CVI

The Data Acquisition section of the LabWindows/CVI Help contains Taking an NI-DAQmx Measurement in LabWindows/CVI, which includes step-by-step instructions for creating a measurement task using the DAQ Assistant. In LabWindows/CVI, select Help » Contents, and then select Using LabWindows/CVI » Data Acquisition. This book also contains information about accessing detailed information through the NI-DAQmx Help.

Measurement Studio

If you program your NI-DAQmx-supported device in Measurement Studio using Visual C# or Visual Basic .NET, you can interactively create channels and tasks by launching the DAQ Assistant from MAX or from within Visual Studio. You can use Measurement Studio to generate the configuration code based on your task or channel. Refer to the DAQ Assistant Help for additional information about generating code.

Help. For information related to developing with NI-DAQmx, refer to the following topics within the *NI Measurement Studio Help*:

- For step-by-step instructions on how to create an NI-DAQmx application using the Measurement Studio Application Wizard and the DAQ Assistant, refer to *Walkthrough: Creating a Measurement Studio NI-DAQmx Application*.
- For help with NI-DAQmx methods and properties, refer to `NationalInstruments.DAQmx Namespace` and `NationalInstruments.DAQmx.ComponentModel Namespace`.
- For conceptual help with NI-DAQmx, refer to *Using the Measurement Studio NI-DAQmx .NET Library* and *Developing with Measurement Studio NI-DAQmx*.
- For general help with programming in Measurement Studio, refer to *Getting Started with the Measurement Studio Class Libraries*.

To create an application in Visual Basic .NET or Visual C#, follow these general steps:

1. In Visual Studio, select **File** » **New** » **Project** to launch the New Project dialog box.
2. In the Project types pane, expand the **Visual Basic** or **Visual C#** node, depending on which language you want to create the project in, and select **Measurement Studio**.
3. Choose a project type. You add DAQ tasks as a part of this step.

ANSI C without NI Application Software

The *NI-DAQmx Help* contains API overviews and general information about measurement concepts. Select **Start** » **All Programs** » **National Instruments** » **NI-DAQmx** » **NI-DAQmx Help**.

The *NI-DAQmx C Reference Help* describes the NI-DAQmx Library functions, which you can use with National Instruments data acquisition devices to develop instrumentation, acquisition, and control applications. Select **Start** » **All Programs** » **National Instruments** » **NI-DAQmx** » **Text-Based Code Support** » **NI-DAQmx C Reference Help**.

.NET Languages without NI Application Software

With the Microsoft .NET Framework, you can use NI-DAQmx to create applications using Visual C# and Visual Basic .NET without Measurement Studio. Refer to the *NI-DAQmx Readme* for specific versions supported.

Training Courses

If you need more help getting started developing an application with NI products, NI offers training courses. To enroll in a course or obtain a detailed course outline, refer to ni.com/training.

Technical Support on the Web

For additional support, refer to ni.com/support or ni.com/examples.

Note You can download these documents at ni.com/manuals.
Many DAQ specifications and user guides/manuals are available as PDFs. You must have Adobe Reader 7.0 or later (PDF 1.6 or later) installed to view the PDFs. Refer to the Adobe Systems Incorporated website at www.adobe.com to download Adobe Reader. Refer to the National Instruments Product Manuals Library at ni.com/manuals for updated documentation resources.

Worldwide Support and Services

The National Instruments website is your complete resource for technical support. At ni.com/support, you have access to everything from troubleshooting and application development self-help resources to email and phone assistance from NI Application Engineers.

Visit ni.com/services for NI Factory Installation Services, repairs, extended warranty, and other services.

Visit ni.com/register to register your National Instruments product. Product registration facilitates technical support and ensures that you receive important information updates from NI.

A Declaration of Conformity (DoC) is our claim of compliance with the Council of the European Communities using the manufacturer’s declaration of conformity. This system affords the user protection for electromagnetic compatibility (EMC) and product safety. You can obtain the DoC for your product by visiting ni.com/certification. If your product supports calibration, you can obtain the calibration certificate for your product at ni.com/calibration.

National Instruments corporate headquarters is located at 11500 North Mopac Expressway, Austin, Texas, 78759-3504. National Instruments also has offices located around the world. For telephone support in the United States, create your service request at ni.com/support or dial 1 866 ASK MYNI (275 6964). For telephone support outside the United States, visit the Worldwide Offices section of ni.com/niglobal to access the branch office websites, which provide up-to-date contact information, support phone numbers, email addresses, and current events.

Refer to the NI Trademarks and Logo Guidelines at ni.com/trademarks for information on National Instruments trademarks. Other product and company names mentioned herein are trademarks or trade names of their respective companies. For patents covering National Instruments products/technology, refer to the appropriate location: Help-Patents in your software, the patents.txt file on your media, or the National Instruments Patent Notice at ni.com/patents. You can find information about end-user license agreements (EULAs) and third-party legal notices in the readme file for your NI product. Refer to the Export Compliance Information at ni.com/legal/export-compliance for the National Instruments global trade compliance policy and how to obtain relevant HTS codes, ECCNs, and other import/export data. NI MAKES NO EXPRESS OR IMPLIED WARRANTIES AS TO THE ACCURACY OF THE INFORMATION CONTAINED HEREIN AND SHALL NOT BE LIABLE FOR ANY ERRORS. U.S. Government Customers: The data contained in this manual was developed at private expense and is subject to the applicable limited rights and restricted data rights as set forth in FAR 52.227-14, DFAR 252.227-7014, and DFAR 252.227-7015.

© 2004—2015 National Instruments. All rights reserved.

371303N-01 Jul15