Worldwide Technical Support and Product Information

ni.com

National Instruments Corporate Headquarters
11500 North Mopac Expressway Austin, Texas 78759-3504 USA Tel: 512 683 0100

Worldwide Offices
Australia 1800 300 800, Austria 43 0 662 45 79 90 0, Belgium 32 0 2 757 00 20, Brazil 55 11 3262 3599, Canada 800 433 3488, China 86 21 6555 7838, Czech Republic 420 224 235 774, Denmark 45 45 76 26 00, Finland 385 0 9 725 725 11, France 33 0 1 48 14 24 24, Germany 49 0 89 741 31 30, India 91 80 41190000, Israel 972 0 3 6393737, Italy 39 02 413091, Japan 81 3 5472 2970, Korea 82 02 3451 3400, Lebanon 961 0 1 33 28 28, Malaysia 1800 887710, Mexico 01 800 010 0793, Netherlands 31 0 348 433 466, New Zealand 0800 553 322, Norway 47 0 66 90 76 60, Poland 48 22 3390150, Portugal 351 210 311 210, Russia 7 095 783 68 51, Singapore 1800 226 5886, Slovenia 386 3 425 4200, South Africa 27 0 11 805 8197, Spain 34 91 640 0085, Sweden 46 0 8 587 895 00, Switzerland 41 56 200 51 51, Taiwan 886 02 2377 2222, Thailand 662 278 6777, United Kingdom 44 0 1635 523545

For further support information, refer to the Technical Support and Professional Services appendix. To comment on National Instruments documentation, refer to the National Instruments Web site at ni.com/info and enter the info code feedback.

© 2004–2006 National Instruments Corporation. All rights reserved.
Important Information

Warranty
The National Instruments PXI/PCI-7380 is warranted against defects in materials and workmanship for a period of one year from the date of shipment, as evidenced by receipts or other documentation. National Instruments will, at its option, repair or replace equipment that proves to be defective during the warranty period. This warranty includes parts and labor.

The media on which you receive National Instruments software are warranted not to fail to execute programming instructions, due to defects in materials and workmanship, for a period of 90 days from date of shipment, as evidenced by receipts or other documentation. National Instruments will, at its option, repair or replace software media that do not execute programming instructions if National Instruments receives notice of such defects during the warranty period. National Instruments does not warrant that the operation of the software shall be uninterrupted or error free.

A Return Material Authorization (RMA) number must be obtained from the factory and clearly marked on the outside of the package before any equipment will be accepted for warranty work. National Instruments will pay the shipping costs of returning to the owner parts which are covered by warranty.

National Instruments believes that the information in this document is accurate. The document has been carefully reviewed for technical accuracy. In the event that technical or typographical errors exist, National Instruments reserves the right to make changes to subsequent editions of this document without prior notice to holders of this edition. The reader should consult National Instruments if errors are suspected. In no event shall National Instruments be liable for any damages arising out of or related to this document or the information contained in it.

EXCEPT AS SPECIFIED HEREIN, NATIONAL INSTRUMENTS MAKES NO WARRANTIES, EXPRESS OR IMPLIED, AND SPECIFICALLY DISCLAIMS ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. CUSTOMER'S RIGHT TO RECOVER DAMAGES CAUSED BY FAULT OR NEGLIGENCE ON THE PART OF NATIONAL INSTRUMENTS SHALL BE LIMITED TO THE AMOUNT PAID BY THE CUSTOMER. NATIONWIDE INSURANCE WILL NOT BE LIABLE FOR DAMAGES RESULTING FROM LOSS OF DATA, PROFITS, USE OF PRODUCTS, OR INCIDENTAL OR CONSEQUENTIAL DAMAGES, EVEN IF ADVISED OF THE POSSIBILITY THEREOF. THIS LIMITATION OF THE LIABILITY OF NATIONAL INSTRUMENTS WILL APPLY REGARDLESS OF THE FORM OF ACTION, WHETHER IN CONTRACT OR TORT, INCLUDING NEGLIGENCE. ANY ACTION AGAINST NATIONAL INSTRUMENTS MUST BE BROUGHT WITHIN ONE YEAR AFTER THE CAUSE OF ACTION ACCRUES. NATIONAL INSTRUMENTS SHALL NOT BE LIABLE FOR ANY DELAY IN PERFORMANCE DUE TO CAUSES BEYOND ITS REASONABLE CONTROL. THE WARRANTY PROVIDED HEREIN DOES NOT COVER DAMAGES, DEFECTS, MALFUNCTIONS, OR SERVICE FAILURES CAUSED BY CUSTOMER'S FAILURE TO FOLLOW THE NATIONAL INSTRUMENTS INSTALLATION, OPERATION, MAINTENANCE INSTRUCTIONS; CUSTOMER'S MODIFICATION OF THE PRODUCT; CUSTOMER'S ABUSE, MISUSE, OR NEGLECT; AND POWER FAILURE OR SURGES, FIRE, FLOOD, ACCIDENT, ACTIONS OF THIRD PARTIES, OR OTHER EVENTS OUTSIDE REASONABLE CONTROL.

Copyright
Under the copyright laws, this publication may not be reproduced or transmitted in any form, electronic or mechanical, including photocopying, recording, storing in an information retrieval system, or translating, in whole or in part, without the prior written consent of National Instruments Corporation.

National Instruments respects the intellectual property of others, and we ask our users to do the same. NI software is protected by copyright and other intellectual property laws. Where NI software may be used to reproduce software or other materials belonging to others, you may use NI software only to reproduce materials that you may reproduce in accordance with the terms of any applicable license or other legal restriction.

Trademarks
National Instruments, NI, ni.com, and LabVIEW are trademarks of National Instruments Corporation. Refer to the Terms of Use section on ni.com/legal for more information about National Instruments trademarks.

Product and company names mentioned herein are trademarks or trade names of their respective companies.

Members of the National Instruments Alliance Partner Program are business entities independent from National Instruments and have no agency, partnership, or joint-venture relationship with National Instruments.

Patents
For patents covering National Instruments products, refer to the appropriate location: Help->Patents in your software, the patents.txt file on your CD, or ni.com/patents.

WARNING REGARDING USE OF NATIONAL INSTRUMENTS PRODUCTS
(1) NATIONAL INSTRUMENTS PRODUCTS ARE NOT DESIGNED WITH COMPONENTS AND TESTING FOR A LEVEL OF RELIABILITY SUITABLE FOR USE IN OR IN CONNECTION WITH SURGICAL IMPLANTS OR CRITICAL COMPONENTS IN ANY LIFE SUPPORT SYSTEMS WHOSE FAILURE TO PERFORM CAN REASONABLY BE EXPECTED TO CAUSE SIGNIFICANT INJURY TO A HUMAN.

(2) IN ANY APPLICATION, INCLUDING THE ABOVE, RELIABILITY OF OPERATION OF THE SOFTWARE PRODUCTS CAN BE IMPAIRED BY ADVERSE FACTORS, INCLUDING BUT NOT LIMITED TO FLUCTUATIONS IN ELECTRICAL POWER SUPPLY, COMPUTER HARDWARE MALFUNCTIONS, COMPUTER OPERATING SYSTEM SOFTWARE FITNESS, FITNESS OF COMPILERS AND DEVELOPMENT SOFTWARE USED TO DEVELOP AN APPLICATION, INSTALLATION ERRORS, SOFTWARE AND HARDWARE COMPATIBILITY PROBLEMS, MALFUNCTIONS OR FAILURES OF ELECTRONIC MONITORING OR CONTROL DEVICES, TRANSIENT FAILURES OF ELECTRONIC SYSTEMS (HARDWARE AND/OR SOFTWARE), UNANTICIPATED USES OR MISUSES, OR ERRORS ON THE PART OF THE USER OR APPLICATION DESIGNER (ADVERSE FACTORS SUCH AS THESE ARE HEREAFTER COLLECTIVELY TERMED “SYSTEM FAILURES”). ANY APPLICATION WHERE A SYSTEM FAILURE WOULD CREATE A RISK OF HARM TO PROPERTY OR PERSONS (INCLUDING THE RISK OF BODILY INJURY AND DEATH) SHOULD NOT BE RELIANT SOLELY UPON ONE FORM OF ELECTRONIC SYSTEM DUE TO THE RISK OF SYSTEM FAILURE. TO AVOID DAMAGE, INJURY, OR DEATH, THE USER OR APPLICATION DESIGNER MUST TAKE REASONABLY PRUDENT STEPS TO PROTECT AGAINST SYSTEM FAILURES, INCLUDING BUT NOT LIMITED TO BACK-UP OR SHUTDOWN MACHINES. BECAUSE EACH END-USER SYSTEM IS CUSTOMIZED AND DIFFERS FROM NATIONAL INSTRUMENTS TESTING PLATFORMS AND BECAUSE A USER OR APPLICATION DESIGNER IS ULTIMATELY RESPONSIBLE FOR VERIFYING AND VALIDATING THE SUITABILITY OF NATIONAL INSTRUMENTS PRODUCTS WHENEVER NATIONAL INSTRUMENTS PRODUCTS ARE INCORPORATED IN A SYSTEM OR APPLICATION, INCLUDING, WITHOUT LIMITATION, THE APPROPRIATE DESIGN, PROCESS AND SAFETY LEVEL OF SUCH SYSTEM OR APPLICATION.

ni.com/legal
Compliance

Compliance with FCC/Canada Radio Frequency Interference Regulations

Determining FCC Class
The Federal Communications Commission (FCC) has rules to protect wireless communications from interference. The FCC places digital electronics into two classes. These classes are known as Class A (for use in industrial-commercial locations only) or Class B (for use in residential or commercial locations). All National Instruments (NI) products are FCC Class A products. Depending on where it is operated, this Class A product could be subject to restrictions in the FCC rules. (In Canada, the Department of Communications (DOC), of Industry Canada, regulates wireless interference in much the same way.) Digital electronics emit weak signals during normal operation that can affect radio, television, or other wireless products. All Class A products display a simple warning statement of one paragraph in length regarding interference and undesired operation. The FCC rules have restrictions regarding the locations where FCC Class A products can be operated. Consult the FCC Web site at www.fcc.gov for more information.

FCC/DOC Warnings
This equipment generates and uses radio frequency energy and, if not installed and used in strict accordance with the instructions in this manual and the CE marking Declaration of Conformity*, may cause interference to radio and television reception. Classification requirements are the same for the Federal Communications Commission (FCC) and the Canadian Department of Communications (DOC).
Changes or modifications not expressly approved by NI could void the user’s authority to operate the equipment under the FCC Rules.

Class A
Federal Communications Commission
This equipment has been tested and found to comply with the limits for a Class A digital device, pursuant to part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference when the equipment is operated in a commercial environment. This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the instruction manual, may cause harmful interference to radio communications. Operation of this equipment in a residential area is likely to cause harmful interference in which case the user is required to correct the interference at their own expense.

Canadian Department of Communications
This Class A digital apparatus meets all requirements of the Canadian Interference-Causing Equipment Regulations. Cet appareil numérique de la classe A respecte toutes les exigences du Règlement sur le matériel brouilleur du Canada.

Compliance with EU Directives
Users in the European Union (EU) should refer to the Declaration of Conformity (DoC) for information* pertaining to the CE marking. Refer to the Declaration of Conformity (DoC) for this product for any additional regulatory compliance information. To obtain the DoC for this product, visit ni.com/certification, search by model number or product line, and click the appropriate link in the Certification column.

* The CE marking Declaration of Conformity contains important supplementary information and instructions for the user or installer.
Contents

About This Manual
Conventions ... ix
Related Documentation ... x

Chapter 1
Introduction
About the NI 7350 Controller ... 1-1
Features ... 1-1
Hardware .. 1-2
RTSI .. 1-2
What You Need to Get Started ... 1-2
Software Programming Choices .. 1-3
National Instruments Application Software .. 1-3
Optional Equipment .. 1-4
Motion I/O Connections ... 1-4

Chapter 2
Configuration and Installation
Software Installation .. 2-1
Controller Configuration .. 2-1
Safety Information ... 2-2
Hardware Installation .. 2-4
Connecting Brushless Servo Motors .. 2-5
Connecting the Hall Effect Sensors .. 2-6
Connecting the Motor Leads .. 2-10

Chapter 3
Hardware Overview
User Connectors .. 3-4

Chapter 4
Functional Overview
Dual Processor Architecture ... 4-1
Embedded Real-Time Operating System .. 4-1
Trajectory Generators ... 4-2
Analog Input and Output .. 4-2
Chapter 5
Signal Connections

Motion I/O Connectors
Motion Axis Signals
Limit and Home Inputs
Wiring Concerns
Limit and Home Input Circuit
Encoder Signals
Axis <1..8> Encoder Phase A/Phase B
Axis <1..8> Encoder Index
Wiring Concerns
Encoder Input Circuit
Trigger Inputs, Shutdown Input, and Breakpoint Outputs
Wiring Concerns
Trigger Input and Shutdown Input Circuits
Analog Inputs
Wiring Concerns
Other Motion I/O Connection
Interfacing With Optocouplers
Digital I/O Connector
PWM Features
RTSI Connector
RTSI Signal Considerations

Appendix A
Specifications

Appendix B
Cable Connector Descriptions

Appendix C
Input/Output Reset States
Appendix D
Technical Support and Professional Services

Glossary

Index
About This Manual

This manual describes the electrical and mechanical aspects of the National Instruments PXI/PCI-7350 motion controller and contains information concerning its installation and operation.

The NI 7350 controller is designed for PXI, CompactPCI, and PCI bus computers.

Conventions

This manual uses the following conventions:

<> Angle brackets that contain numbers separated by an ellipsis represent a range of values associated with a bit or signal name—for example, AO <3..0>.

» The » symbol leads you through nested menu items and dialog box options to a final action. The sequence File » Page Setup » Options directs you to pull down the File menu, select the Page Setup item, and select Options from the last dialog box.

♦ The ♦ symbol indicates that the following text applies only to a specific product, a specific operating system, or a specific software version.

This icon denotes a tip, which alerts you to advisory information.

This icon denotes a note, which alerts you to important information.

This icon denotes a caution, which advises you of precautions to take to avoid injury, data loss, or a system crash. When this symbol is marked on a product, refer to the Safety Information section of Chapter 2, Configuration and Installation, for information about precautions to take.

bold Bold text denotes items that you must select or click in the software, such as menu items and dialog box options. Bold text also denotes parameter names.

italic Italic text denotes variables, emphasis, a cross-reference, or an introduction to a key concept. Italic text also denotes text that is a placeholder for a word or value that you must supply.
About This Manual

Text in this font denotes text or characters that you should enter from the keyboard, sections of code, programming examples, and syntax examples. This font is also used for the proper names of disk drives, paths, directories, programs, subprograms, subroutines, device names, functions, operations, variables, filenames, and extensions.

Related Documentation

The following documents contain information you might find helpful as you read this manual:

- *NI-Motion Function Help*
- *NI-Motion VI Help*
- *NI-Motion User Manual*
- *Getting Started with NI-Motion for NI 73xx Motion Controllers*
- *PXI Specification, Revision 2.1*
- *PCI Local Bus Specification, Revision 2.2*
- The technical reference manual for the computer you are using
Introduction

This chapter includes information about the features of the National Instruments PXI/PCI-7350 controller and information about operating the device.

About the NI 7350 Controller

The NI 7350 controller features advanced motion control with easy-to-use software tools and add-on motion VI libraries for use with LabVIEW.

Features

The NI 7350 controller is a combination servo and stepper motor controller for PXI, CompactPCI, and PCI bus computers. It provides fully-programmable motion control for up to eight independent axes of motion. Coordinated motion is supported through multi-dimensional coordinate spaces. Each axis provides dedicated motion I/O for limit and home switches and additional I/O for general-purpose functions.

You can use the NI 7350 controller for point-to-point and straight-line vector moves. The NI 7350 also performs arbitrary and complex motion trajectories through circular interpolation and contouring.

Servo axes can control DC brushed or brushless servo motors, servo hydraulics, servo valves, and other servo devices, such as closed-loop piezo motor systems. Servo axes always operate in closed-loop mode. These axes use quadrature encoders or analog inputs for position and velocity feedback and provide analog command outputs with an industry-standard range of ±10 V.

Stepper axes control stepper motors in either open or closed-loop mode. They use quadrature encoders or analog inputs for position feedback (closed-loop only), and provide step/direction or clockwise (CW)/counterclockwise (CCW) digital command outputs. All stepper axes support full, half, and microstepping applications.
Hardware

The NI 7350 controller is a high performance controller that uses an advanced dual-processor for embedded real-time control. This powerful functionality provides high-speed communications while off-loading complex motion functions from the host PC for maximum command throughput and system performance.

The NI 7350 features motion profiles that are controlled with enhanced PID control loop/PIVff control loop high-speed servo update rates. The update rate depends on the number of axes enabled. Refer to Appendix A, Specifications, for more information.

Each axis has motion I/O for end-of-travel limit and home switch inputs, breakpoint (position compare) output, trigger (position capture) input, hall effect sensor input, and encoder feedback. The NI 7350 controller also has non-dedicated user I/O including 64 bits of digital I/O and eight analog inputs for ±10 V signals, joystick inputs, or analog sensor monitoring. Additionally, the NI 7350 analog inputs can provide feedback for loop closure.

RTSI

The NI 7350 controller supports the National Instruments Real-Time System Integration (RTSI) bus. The RTSI bus provides high-speed connectivity between National Instruments products, including image acquisition and data acquisition products. Using the RTSI bus, you can easily synchronize several functions to a common trigger (position capture) or timing event across multiple motion, image, or data acquisition devices.

What You Need to Get Started

To set up and use the NI 7350 controller, you must have the following items:

- NI PXI-7350 controller or NI PCI-7350 controller and documentation
- NI-Motion driver software and documentation
Software Programming Choices

The NI 7350 controller comes with a simple but powerful high-level application programming interface (API) that makes it easy to program. You can execute all setup and motion control functions by calling into a dynamically-linked library (DLL). You can use the full function set implementations for LabVIEW and LabWindows/CVI, or call the NI-Motion libraries from C and Visual Basic.

National Instruments Application Software

LabVIEW is based on the graphical programming language, G, and features interactive graphics and a state-of-the-art user interface. In LabVIEW, you can create 32-bit compiled programs and stand-alone executables for custom automation, data acquisition, test, measurement, and control solutions. National Instruments offers the NI-Motion VI Library, which is a series of virtual instruments (VIs) for using LabVIEW with National Instruments motion control hardware. The NI-Motion VI library implements the full API, along with a useful set of example programs.

ANSI C-based LabWindows/CVI also features interactive graphics and a state-of-the-art user interface. Using LabWindows/CVI, you can generate C code for custom data acquisition, test, measurement, and automation solutions. The NI-Motion software includes a series of example programs for using LabWindows/CVI with National Instruments motion control hardware.

NI Motion Assistant offers a point-and-click interface for creating motion control sequences quickly and easily. When you have created a motion task, you can use Motion Assistant to output the task in LabVIEW code or code recipes.
Optional Equipment

National Instruments offers a variety of products for use with the NI 7350 controller, including the following accessories:

- Cables and cable assemblies for motion and digital I/O
- Universal Motion Interface (UMI) wiring connectivity blocks with integrated motion signal conditioning and motion inhibit functionality
- Stepper and servo motor compatible drive amplifier units with integrated power supply and wiring connectivity
- Connector blocks and shielded and unshielded 68-pin screw terminal wiring aids
- RTSI bus cables for connection with other NI devices

For more specific information about these products, refer to the National Instruments catalog, the National Instruments Web site at ni.com, or call your National Instruments sales representative.

Motion I/O Connections

The external motion and digital I/O connectors on the NI 7350 controller are high-density, 68-pin female VHDCI connectors.

For custom cables, use the AMP mating connector (part number 787801-01).
Configuration and Installation

This chapter describes how to configure and install the National Instruments PXI/PCI-7350 controller.

Software Installation

Before installing the NI 7350 controller, install the NI-Motion software and, if appropriate, the NI-Motion VI libraries. For specific installation instructions, refer to *Getting Started with NI-Motion for NI 73xx Motion Controllers*, which is installed in the NI-Motion/Documentation folder where you installed NI-Motion. The default directory is *Program Files\National Instruments\NI-Motion*.

Note If you do not install the NI-Motion driver software before attempting to use the NI 7350, the system will not recognize the NI 7350 and you will be unable to configure or use the controller.

Controller Configuration

Because the motion I/O-related configuration of NI 7350 controller is performed entirely with software, it is not necessary to set jumpers for motion I/O configuration.

The PXI-7350 and PCI-7350 controllers are fully compatible with the industry standard *PXI Specification*, Revision 2.1 and the *PCI Local Bus Specification*, Revision 2.2, respectively. This compatibility allows you to configure the computer to automatically perform all bus-related configuration without user interaction. It is not necessary to configure jumpers for bus-related configuration.

Note When adding or removing a controller from a Windows 2000/XP system, you must be logged on with administrator-level access. After you have restarted the system, you may need to refresh Measurement & Automation Explorer (MAX) to view the new controller.
Caution The following section contains important safety information that you *must* follow when installing and using the NI 7350.

Do *not* operate the device in a manner not specified in this document. Misuse of the device can result in a hazard. You can compromise the safety protection built into the device if the device is damaged in any way. If the device is damaged, return it to National Instruments (NI) for repair.

Do *not* substitute parts or modify the device except as described in this document. Use the device only with the chassis, modules, accessories, and cables specified in the installation instructions. You *must* have all covers and filler panels installed during operation of the device.

Do *not* operate the device in an explosive atmosphere or where there may be flammable gases or fumes. If you must operate the device in such an environment, it must be in a suitably rated enclosure.

If you need to clean the device, use a soft, nonmetallic brush. Make sure that the device is completely dry and free from contaminants before returning it to service.

Operate the device only at or below Pollution Degree 2. Pollution is foreign matter in a solid, liquid, or gaseous state that can reduce dielectric strength or surface resistivity. The following is a description of pollution degrees:

- **Pollution Degree 1** means no pollution or only dry, nonconductive pollution occurs. The pollution has no influence.
- **Pollution Degree 2** means that only nonconductive pollution occurs in most cases. Occasionally, however, a temporary conductivity caused by condensation must be expected.
- **Pollution Degree 3** means that conductive pollution occurs, or dry, nonconductive pollution occurs that becomes conductive due to condensation.

Note The NI 7350 is intended for indoor use only.

You *must* insulate signal connections for the maximum voltage for which the device is rated. Do *not* exceed the maximum ratings for the device. Do *not* install wiring while the device is live with electrical signals. Do not remove or add connector blocks when power is connected to the system.
Remove power from signal lines before connecting them to or disconnecting them from the device.

Operate the device at or below the measurement category\(^1\) marked on the hardware label. Measurement circuits are subjected to working voltages\(^2\) and transient stresses (overvoltage) from the circuit to which they are connected during measurement or test. Measurement categories establish standard impulse withstand voltage levels that commonly occur in electrical distribution systems. The following is a description of measurement categories:

- Measurement Category I is for measurements performed on circuits not directly connected to the electrical distribution system referred to as MAINS\(^3\) voltage. This category is for measurements of voltages from specially protected secondary circuits. Such voltage measurements include signal levels, special equipment, limited-energy parts of equipment, circuits powered by regulated low-voltage sources, and electronics.

- Measurement Category II is for measurements performed on circuits directly connected to the electrical distribution system. This category refers to local-level electrical distribution, such as that provided by a standard wall outlet (for example, 115 AC voltage for U.S. or 230 AC voltage for Europe). Examples of Installation Category II are measurements performed on household appliances, portable tools, and similar devices/modules.

- Measurement Category III is for measurements performed in the building installation at the distribution level. This category refers to measurements on hard-wired equipment such as equipment in fixed installations, distribution boards, and circuit breakers. Other examples are wiring, including cables, bus bars, junction boxes, switches, socket outlets in the fixed installation, and stationary motors with permanent connections to fixed installations.

- Measurement Category IV is for measurements performed at the primary electrical supply installation (<1,000 V). Examples include electricity meters and measurements on primary overcurrent protection devices and on ripple control units.

\(^1\) Measurement categories, also referred to as installation categories, are defined in electrical safety standard IEC 61010-1.

\(^2\) Working voltage is the highest rms value of an AC or DC voltage that can occur across any particular insulation.

\(^3\) MAINS is defined as a hazardous live electrical supply system that powers equipment. Suitably rated measuring circuits may be connected to the MAINS for measuring purposes.
Hardware Installation

You can install the NI 7350 controller in any open compatible expansion slot in the computer. Appendix A, Specifications, lists the maximum power required for the NI 7350 controller.

The following instructions are for general installation. Refer to the computer user manual or technical reference manual for specific instructions and warnings.

Caution The NI 7350 controller is a sensitive electronic device shipped in an antistatic bag. Open only at an approved workstation and observe precautions for handling electrostatic-sensitive devices.

1. Power off and unplug the chassis.

Caution To protect yourself and the chassis from electrical hazards, the computer should remain unplugged until the installation is complete.

2. Choose an unused +3.3 V or +5 V peripheral slot and remove the filler panel.
3. Touch a metal part on the chassis to discharge any static electricity that might be on your clothes or body. Static electricity can damage the controller.
4. Insert the PXI controller into the chosen slot. Use the injector/ejector handle to fully insert the device into place.
5. Screw the front panel of the PXI controller to the front panel mounting rails of the chassis.
6. Visually verify the installation.

Caution Make sure you have correctly connected all safety devices before you power on the motion system. Safety devices include inhibits, limit switches, and emergency shut down circuits.

Caution Always power on the chassis containing the NI 7350 controller then initialize the controller before you power on the rest of the motion system. Power off in the reverse order.

7. Plug in and power on the chassis.
8. Initialize the controller.
PCI-7350

1. Power off and unplug the computer.

Caution To protect yourself and the computer from electrical hazards, the computer should remain unplugged until the installation is complete.

2. Open the computer case to expose access to the PCI expansion slots.
3. Choose an unused +3.3 V or +5 V PCI slot, and remove the corresponding expansion slot cover on the back panel of the computer.
4. Touch a metal part on the computer case to discharge any static electricity that might be on your clothes or body before handling the controller. Static electricity can damage the controller.
5. Gently rock the controller into the slot. The connection may be tight, but do not force the controller into place.
6. If required, screw the mounting bracket of the controller to the back panel rail of the computer.
7. Replace the cover.

Caution Make sure you have correctly connected all safety devices before you power on the motion system. Safety devices include inhibits, limit switches, and emergency shutdown circuits.

Caution Always power on the computer containing the NI 7350 controller then initialize the controller before you power on the rest of the motion system. Power off in the reverse order.

8. Plug in and power on the computer.
9. Initialize the controller.

Note When adding or removing a controller from a Windows 2000/XP system, you must be logged on with administrator-level access. After you have restarted the system, you may need to refresh MAX to view the new controller.

Connecting Brushless Servo Motors

The NI 7350 controller can connect to brushless servo drives that perform sinusoidal commutation or to drives that do not. When connecting to a drive that performs the sinusoidal commutation, only one DAC output is required per axis. For information about configuring the NI-Motion
software to work with this type of system, refer to the *NI-Motion User Manual*.

When connecting to a drive that does not perform the sinusoidal commutation, the NI 7350 commutates the first two phases and the servo drive determines the third. Therefore, two DAC outputs are required per axis. Refer to the *Measurement & Automation Explorer Help for Motion* for information about configuring the NI-Motion software for brushless servo motors.

Connecting the Hall Effect Sensors

Before the NI 7350 can calculate the commutation values, some form of initialization is necessary to determine the initial commutation phase angle of the brushless motor each time the controller is powered on, reset, or reconfigured.

One method of initialization is to connect Hall effect sensors to detect the commutation phase angle of the motor. You can specify how the system is configured in MAX.

Tip If you do not connect Hall effect sensors, you can set the commutation phase angle directly, or through a process called *shake and wake*. Shake and wake requires moving the motors to the 0º angle and setting the commutation phase angle to match.

It is important to correctly connect the Hall effect sensors to the controller so that the sensors accurately determine the commutation phase angle. Complete the following steps to connect the Hall effect sensors.

1. Locate the Hall effect sensor phase sequence diagram that applies to the motor you are using. The manufacturer of the motor should provide this diagram with the motor documentation.

Note The NI 7350 controller can use Hall effect sensors having three sensor outputs per motor. Each output is 120 degrees out of phase from the previous output.

2. Wire the Hall effect sensors based on the Hall effect sensor phase sequence diagram for the motor and Figures 2-1 and 2-2.

 Match the Hall effect sensor phase sequence diagram for the motor with one of the diagrams in Figures 2-1 and 2-2. The diagrams on the left represent the diagram supplied with the motor. The diagrams on the right represent the expected inputs to the UMI or NI 7350. The arrows in the middle show the correct path to wire the Hall effect sensor outputs into the UMI or NI 7350 inputs.
Figure 2-1. Type 1 Hall Sensor Wiring Diagrams
Figure 2-2. Type 2 Hall Sensor Wiring Diagrams
For example, if the diagram supplied with the motor matches the third Type 2 diagram, wire Hall effect sensor 1 to input 3 on the UMI or NI 7350, and then wire sensor 2 to input 1 and wire sensor 3 to input 2.

The Hall effect sensor inputs for Axes 1, 2, 5, and 6 are defined as follows:

- Axis 1 uses digital port 4, bits 2–4, with bit 2 as input 1.
- Axis 2 uses digital port 4, bits 5–7, with bit 5 as input 1.
- Axis 5 uses digital port 8, bits 2–4, with bit 2 as input 1.
- Axis 6 uses digital port 8, bits 5–7, with bit 5 as input 1.

Refer to Figure 5-7, 68-Pin Digital I/O Connector Pin Assignments (Ports 1–4), and Figure 5-8, 68-Pin Digital I/O Connector Pin Assignments (Ports 5–8), for detailed pinouts of the digital I/O connectors.

3. Configure the system in MAX. There are two base types of Hall effect sensor inputs. Set the NI-Motion software to the base sensor type you are using.

If the motor documentation matches any of the patterns in Figure 2-1, you are using Type 1, which matches the graph in Figure 2-3.

![Figure 2-3. Type 1 Hall Sensor Phasing Sequence Diagram](image)

If the motor documentation matches any of the patterns in Figure 2-2, you are using Type 2, which matches the graph in Figure 2-4.
Refer to the Measurement & Automation Explorer Help for Motion for information about configuring the NI-Motion software for brushless servo motors.

Connecting the Motor Leads

For the brushless motor to generate maximum torque, the motion system must output the commutation on the three motor phases correctly. Two of the phases are controlled by the NI 7350 controller, and the third phase is generated by the drive.

The primary output of the NI 7350 wires into the primary input of the drive. The secondary output wires into the secondary input of the drive. Use MAX to configure the NI 7350 for onboard sinusoidal commutation. MAX automatically assigns the primary and secondary outputs. Refer to the Measurement & Automation Explorer Help for Motion for more information.

When you wire the brushless motor to the drive, use the commutation diagram for the motor as a reference. The manufacturer of the motor typically provides this diagram with the motor documentation. The commutation diagram shows the expected value on each of the motor leads at each angle in the commutation phase, typically in 60-degree increments. Table 2-1 shows an example of a motor phasing commutation diagram, and Figure 2-5 shows the corresponding graphical representation.
Table 2-1. Motor Phasing Diagram

<table>
<thead>
<tr>
<th>Motor Lead</th>
<th>0º</th>
<th>60º</th>
<th>120º</th>
<th>180º</th>
<th>240º</th>
<th>300º</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>+</td>
<td>+</td>
<td>NC</td>
<td>–</td>
<td>–</td>
<td>NC</td>
</tr>
<tr>
<td>B</td>
<td>–</td>
<td>NC</td>
<td>+</td>
<td>+</td>
<td>NC</td>
<td>–</td>
</tr>
<tr>
<td>C</td>
<td>NC</td>
<td>–</td>
<td>–</td>
<td>NC</td>
<td>+</td>
<td>+</td>
</tr>
</tbody>
</table>

Table 2-2. Correct Wiring Diagram At 0º Commutation Phase

<table>
<thead>
<tr>
<th>Drive Motor Output</th>
<th>Brushless Motor Lead State</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>No Current (NC)</td>
</tr>
<tr>
<td>2</td>
<td>Positive Current</td>
</tr>
<tr>
<td>3</td>
<td>Negative Current</td>
</tr>
</tbody>
</table>

For example, if the motor has the phasing characteristics described in Table 2-1, wire the motor lead C to the motor output 1 on the drive. You wire the lead this way because the motor lead C calls for No Current at 0º Commutation Phase, and drive motor output 1 matches the No Current requirement. Similarly, wire motor lead A to motor output 2 and motor lead B to motor output 3 on the drive.
This chapter presents an overview of the National Instruments PXI/PCI-7350 controller hardware functionality.

Figures 3-1 and 3-2 illustrate the functional components of the NI PXI-7350.

![Diagram of PXI-7350](image)

Figure 3-1. PXI-7350 Parts Locator Diagram (Front Panel)
Figure 3-2. PXI-7350 Parts Locator Diagram (Back Panel)

<table>
<thead>
<tr>
<th></th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Assembly Number Label</td>
</tr>
<tr>
<td>2</td>
<td>Serial Number Label</td>
</tr>
<tr>
<td>3</td>
<td>Symbol Indicating CE Compliance</td>
</tr>
<tr>
<td>4</td>
<td>Identification Number (used in Australia)</td>
</tr>
</tbody>
</table>
Figures 3-3 and 3-4 show the NI PCI-7350 parts locator diagrams.

![Diagram of NI PCI-7350 parts locator diagrams](image)

1. 16-bit ADC
2. 16-bit DACs
3. RTSI Bus Connector
4. Field-Programmable Gate Arrays
5. DSP
6. 32-bit CPU
7. Nonvolatile FLASH Memory
8. 68-pin Digital I/O Connectors
9. 68-pin Motion I/O Connectors

Figure 3-3. PCI-7350 Parts Locator Diagram (Front Panel)
User Connectors

The two 68-pin motion I/O connectors provide all the signals for up to eight axes of closed-loop motion control, including encoder feedback, limit and home inputs, breakpoint (position compare) outputs, trigger (position capture) inputs, and analog-to-digital (A/D) converter signals. Refer to Chapter 5, *Signal Connections*, for details about the signals in the motion I/O connectors.

The two 68-pin digital I/O connectors provide 64 bits of user-configurable digital I/O, including 12 inputs for four Hall effect sensors. Refer to Chapter 5, *Signal Connections*, for details about the signals in the digital I/O connectors.
Figure 3-5 shows the four 68-pin I/O connectors on the NI 7350 motion controller.

The RTSI connector provides up to eight triggers and one PXI star trigger (PXI-7350 only) to facilitate synchronization between multiple RTSI-enabled National Instruments products. Typical applications of the RTSI bus include triggering an image acquisition or DAQ measurement based on motion events, or capturing current motion positions based on events external to the motion controller. You also can use the RTSI bus for general hardware-based communication between RTSI devices.
Functional Overview

This chapter provides an overview of the National Instruments PXI/PCI-7350 controller architecture and its capabilities.

Dual Processor Architecture

The NI 7350 controller can perform up to eight axes of simultaneous motion control in a preemptive, multitasking, real-time environment.

An advanced dual-processor architecture, 32-bit CPU, digital signal processor (DSP) for embedded real-time control, and custom FPGAs give the NI 7350 controller high-performance capabilities. The powerful function set provides high-speed communications while off-loading complex motion functions from the host PC for optimized system performance.

The NI 7350 controller uses the DSP for all closed-loop control, including position tracking, PID control closed-loop computation, and motion trajectory generation. The DSP chip is supported by a custom FPGA that performs the high-speed encoder interfacing, position capture and breakpoint (position compare) functions, motion I/O processing, and stepper pulse generation for hard real-time functionality.

The embedded CPU runs a multitasking real-time operating system and handles host communications, command processing, multi-axis interpolation, onboard program execution, error handling, general-purpose digital I/O, and overall motion system integration functions.

Embedded Real-Time Operating System

The embedded firmware is based upon an embedded real-time operating system (RTOS) kernel and provides optimum system performance in varying motion applications. Motion tasks are prioritized. Task execution order depends on the priority of each task, the state of the entire motion system, I/O or other system events, and the real-time clock.
The DSP chip is a separate processor that operates independently from the CPU but is closely synchronized through interprocessor communication. The NI 7350 is a true multiprocessing and multitasking embedded controller.

The architecture of the NI 7350 controller enables advanced motion features, such as enhanced PID functions and lowpass and notch filters. Refer to the Measurement & Automation Explorer Help for Motion for more information about these features.

Trajectory Generators

The NI 7350 controller trajectory generators calculate the instantaneous position command that controls acceleration and velocity while it moves the axis to its target position. Depending on how you configure the axis, this command is then sent to the PID servo loop or stepper pulse generator.

To implement infinite trajectory control, the NI 7350 controller has 16 trajectory generators implemented in the DSP chip (two per axis). Each generator calculates an instantaneous position each PID update period. While simple point-to-point moves require only one trajectory generator, two simultaneous generators are required for blended moves and infinite trajectory control processing.

Analog Input and Output

The NI 7350 controller has an 8-channel multiplexed, 16-bit ADC. The converted analog values are broadcast to both the DSP and CPU using a dedicated internal high-speed serial bus. The multiplexer scan rate provides high sampling rates required for feedback loop closure, joystick inputs, or monitoring analog sensors.

For analog output, the NI 7350 uses two four-channel 16-bit DACs that are updated each PID loop.

Both the analog input and output circuitry are factory-adjusted for excellent accuracy and performance. You can use an NI-Motion VI or function to read the current temperature of the NI 7350. Refer to either the *NI-Motion Function Help* or the *NI-Motion VI Reference Help* for information about the functions and/or VIs you use to read the current temperature of the NI 7350.
Onboard Sinusoidal Commutation

The NI 7350 controller provides onboard sinusoidal commutation for axes controlling brushless DC servo motors. This feature reduces overall system cost by allowing you to use less complex, and therefore less expensive, motor drives.

Flash Memory

Nonvolatile memory on the NI 7350 controller is implemented with flash ROM, which means the controller can electrically erase and reprogram its own ROM. Because all of the embedded firmware, including the RTOS, DSP code, and the FPGA configuration file of the NI 7350 is stored in flash memory, you can upgrade the onboard firmware contents in the field for support and new-feature enhancement.

Flash memory also allows objects, such as programs and data arrays, to be stored in non-volatile memory.

It is possible to save the entire configuration state of the controller to the flash memory. On the next power cycle, the controller automatically loads and returns the configuration to these new saved default values.

Use MAX to download new firmware or save configuration defaults to flash memory.

A flash memory download utility is included with the NI-Motion software that ships with the controller.

Axes and Motion Resources

The NI 7350 controller can control up to eight axes of motion. The axes can be completely independent, simultaneously started, or mapped in multidimensional groups called coordinate spaces. You also can simultaneously start coordinate spaces for multi-vector space coordinated motion control.

Axes

At a minimum, an axis consists of a trajectory generator, a PID (for servo axes) or stepper control block, and at least one output resource—either a DAC output (for servo axes) or a stepper pulse generator output. Servo axes must also have either an encoder or ADC channel feedback resource. In addition to an encoder feedback, brushless DC servo axes also can use Hall effect sensors for initial position feedback. Closed-loop stepper axes
also require a feedback resource, while open-loop stepper axes do not. Figures 4-1 and 4-2 show these axis configurations.

With the NI 7350 controller, you can map one or two feedback resources and one or two output resources to the axis.

A stepper axis has its primary output resource mapped to a stepper output. A servo axis has its primary output resource mapped to a DAC.

The NI 7350 controller supports axes with secondary output resources. Defining two output resources is useful when controlling axes with multiple motors, such as gantry systems in which two DAC outputs can be configured with different torque limits and/or offsets. The NI 7350 controller also can use two DAC output resources when controlling a brushless DC servo axis for sinusoidal commutation.

The NI 7350 controller also supports secondary feedback resources, or encoders, for axes defined as servo. Two feedback resources are used
when implementing dual-loop control, such as in backlash compensation, which reduces the number of encoders available for other axes.

Note Refer to the *NI-Motion User Manual* for more information about configuring axes.

Motion Resources

Encoder, DAC, ADC, and motion I/O resources that are not used by an axis are available for non-axis or non-motion-specific applications. You can directly control an unmapped DAC as a general-purpose analog output (±10 V). Similarly, you can use any ADC channel to measure potentiometers or other analog sensors.

If an encoder resource is not needed for axis control, you can use it for any number of other functions, including position or velocity monitoring, as a digital potentiometer encoder input, or as a master encoder input for master/slave (electronic gearing) applications.

Each axis also has an associated forward and reverse limit input, a home input, a high-speed capture trigger input, a position breakpoint output, and an inhibit output. These signals can be used for general-purpose digital I/O when they are not being used for their motion-specific purpose.

Note When a resource is mapped to an axis, all features and functions of the resource are available as part of the axis. Because resources are referenced by axis number after they are assigned to that axis, it is not necessary to remember or use the resource number directly when accessing these features.

Onboard Programs and Buffers

You can use the real-time operating system on the NI 7350 motion controller to run custom programs. This functionality allows you to offload tasks from the host processor and onto the motion controller. Onboard programs run at the lowest priority and are therefore reserved for non-time-critical background tasks. Each program is guaranteed at least 2 ms of time every 63 ms. You can adjust the guaranteed time from 2 ms to 20 ms using the Load Program Time Slice VI or function. Refer to the *Changing a Time Slice* section of Chapter 14, *Onboard Programs*, of the *NI-Motion User Manual* for more information and the impact of changing the onboard program time slice.

You can execute the NI-Motion function set from onboard programs. In addition, the onboard programs support basic math and data operation
functions for up to 120 general-purpose variables. Refer to the *NI-Motion User Manual* for more information.

The NI 7350 also features buffered operations for contouring, high-speed position captures, and breakpoints (position compare).

You can store and run onboard programs and buffers from RAM or save them to flash ROM. The NI 7350 controller has 128 KB of RAM that is divided into two 64 KB sectors and 256 KB of ROM that is divided into four 64 KB sectors for program and buffer storage. You can store and run programs and buffers from either RAM or ROM, but you cannot split programs between the two, and you cannot split programs or buffers between the two 64 KB ROM sectors.

Note Refer to the *NI-Motion User Manual* for detailed information about the onboard programming and buffer features.

Host Communications

The host computer communicates with the controller through a number of memory port addresses on the host bus. The host bus can be either PXI or PCI.

The primary bidirectional data transfer port supports FIFO data passing in both send and readback directions. The NI 7350 controller has both a command buffer for incoming commands and a return data buffer for returning data.

The communications status register provides bits for communications handshaking as well as real-time error reporting and general status feedback to the host PC. The move complete status register provides instantaneous motion status of all axes.

The host computer also has a read-only register for reading position and velocity. This feature allows you to read the position and velocity without utilizing the onboard CPU.
This chapter describes how to make input and output signal connections directly to the National Instruments PXI/PCI-7350 controller and briefly describes the associated I/O circuitry.

The NI 7350 controller has the following four connectors that handle all signals to and from the external motion system.

- Two 68-pin motion I/O connectors
- Two 68-pin digital I/O connectors

You can connect to the motion system with cables and accessories, varying from simple screw terminal blocks to enhanced UMI units and drives.

⚠️ **Caution** The NI 7350 does not provide isolation between circuits.

⚠️ **Caution** Power off all devices when connecting or disconnecting the NI 7350 controller motion I/O and auxiliary digital I/O cables. Failure to do so may damage the controller.

Motion I/O Connectors

The motion I/O connectors contain all the signals required to control up to eight axes of servo and stepper motion, including the following features:

- Motor command analog and stepper outputs
- Encoder feedback inputs
- Forward, home, and reverse limit inputs
- Breakpoint (position compare) outputs
- Trigger (position capture) inputs
- Inhibit outputs
- Controller shutdown input

The motion I/O connectors also contain up to eight channels of 16-bit A/D inputs for analog feedback or general-purpose analog input.
Figures 5-1 and 5-2 show the pin assignments for the two 68-pin motion I/O connectors on the NI 7350 controller. A signal description follows the connector pinout. In this chapter, lines above signal names indicate that the signal is active low.

Figure 5-1. 68-Pin Motion I/O Connector Pin Assignment for Axes 1–4
Figure 5-2. 68-Pin Motion I/O Connector Pin Assignment for Axes 5–8

<table>
<thead>
<tr>
<th>Pin</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Axis 5 Dir (CCW)</td>
</tr>
<tr>
<td>2</td>
<td>Digital Ground</td>
</tr>
<tr>
<td>3</td>
<td>Digital Ground</td>
</tr>
<tr>
<td>4</td>
<td>Axis 5 Home Switch</td>
</tr>
<tr>
<td>5</td>
<td>Trigger 5</td>
</tr>
<tr>
<td>6</td>
<td>Axis 5 Inhibit</td>
</tr>
<tr>
<td>7</td>
<td>Axis 6 Dir (CCW)</td>
</tr>
<tr>
<td>8</td>
<td>Digital Ground</td>
</tr>
<tr>
<td>9</td>
<td>Digital Ground</td>
</tr>
<tr>
<td>10</td>
<td>Axis 6 Home Switch</td>
</tr>
<tr>
<td>11</td>
<td>Trigger 6</td>
</tr>
<tr>
<td>12</td>
<td>Axis 6 Inhibit</td>
</tr>
<tr>
<td>13</td>
<td>Axis 7 Dir (CCW)</td>
</tr>
<tr>
<td>14</td>
<td>Digital Ground</td>
</tr>
<tr>
<td>15</td>
<td>Digital Ground</td>
</tr>
<tr>
<td>16</td>
<td>Axis 7 Home Switch</td>
</tr>
<tr>
<td>17</td>
<td>Trigger 7</td>
</tr>
<tr>
<td>18</td>
<td>Axis 7 Inhibit</td>
</tr>
<tr>
<td>19</td>
<td>Axis 8 Dir (CCW)</td>
</tr>
<tr>
<td>20</td>
<td>Digital Ground</td>
</tr>
<tr>
<td>21</td>
<td>Digital Ground</td>
</tr>
<tr>
<td>22</td>
<td>Axis 8 Home Switch</td>
</tr>
<tr>
<td>23</td>
<td>Trigger 8</td>
</tr>
<tr>
<td>24</td>
<td>Axis 8 Inhibit</td>
</tr>
<tr>
<td>25</td>
<td>Digital Ground</td>
</tr>
<tr>
<td>26</td>
<td>Breakpoint 5</td>
</tr>
<tr>
<td>27</td>
<td>Breakpoint 7</td>
</tr>
<tr>
<td>28</td>
<td>Digital Ground</td>
</tr>
<tr>
<td>29</td>
<td>Analog Output 5</td>
</tr>
<tr>
<td>30</td>
<td>Analog Output 7</td>
</tr>
<tr>
<td>31</td>
<td>Analog Output Ground</td>
</tr>
<tr>
<td>32</td>
<td>Analog Input 5</td>
</tr>
<tr>
<td>33</td>
<td>Analog Input 7</td>
</tr>
<tr>
<td>34</td>
<td>Analog Reference (Output)</td>
</tr>
<tr>
<td>35</td>
<td>Axis 5 Step (CW)</td>
</tr>
<tr>
<td>36</td>
<td>Axis 5 Encoder Phase A</td>
</tr>
<tr>
<td>37</td>
<td>Axis 5 Encoder Phase B</td>
</tr>
<tr>
<td>38</td>
<td>Axis 5 Encoder Index</td>
</tr>
<tr>
<td>39</td>
<td>Axis 5 Forward Limit Switch</td>
</tr>
<tr>
<td>40</td>
<td>Axis 5 Reverse Limit Switch</td>
</tr>
<tr>
<td>41</td>
<td>Axis 6 Step (CW)</td>
</tr>
<tr>
<td>42</td>
<td>Axis 6 Encoder Phase A</td>
</tr>
<tr>
<td>43</td>
<td>Axis 6 Encoder Phase B</td>
</tr>
<tr>
<td>44</td>
<td>Axis 6 Encoder Index</td>
</tr>
<tr>
<td>45</td>
<td>Axis 6 Forward Limit Switch</td>
</tr>
<tr>
<td>46</td>
<td>Axis 6 Reverse Limit Switch</td>
</tr>
<tr>
<td>47</td>
<td>Axis 7 Step (CW)</td>
</tr>
<tr>
<td>48</td>
<td>Axis 7 Encoder Phase A</td>
</tr>
<tr>
<td>49</td>
<td>Axis 7 Encoder Phase B</td>
</tr>
<tr>
<td>50</td>
<td>Axis 7 Encoder Index</td>
</tr>
<tr>
<td>51</td>
<td>Axis 7 Forward Limit Switch</td>
</tr>
<tr>
<td>52</td>
<td>Axis 7 Reverse Limit Switch</td>
</tr>
<tr>
<td>53</td>
<td>Axis 8 Step (CW)</td>
</tr>
<tr>
<td>54</td>
<td>Axis 8 Encoder Phase A</td>
</tr>
<tr>
<td>55</td>
<td>Axis 8 Encoder Phase B</td>
</tr>
<tr>
<td>56</td>
<td>Axis 8 Encoder Index</td>
</tr>
<tr>
<td>57</td>
<td>Axis 8 Forward Limit Switch</td>
</tr>
<tr>
<td>58</td>
<td>Axis 8 Reverse Limit Switch</td>
</tr>
<tr>
<td>59</td>
<td>Host +5 V</td>
</tr>
<tr>
<td>60</td>
<td>Breakpoint 6</td>
</tr>
<tr>
<td>61</td>
<td>Breakpoint 8</td>
</tr>
<tr>
<td>62</td>
<td>Shutdown</td>
</tr>
<tr>
<td>63</td>
<td>Analog Output 6</td>
</tr>
<tr>
<td>64</td>
<td>Analog Output 8</td>
</tr>
<tr>
<td>65</td>
<td>Reserved</td>
</tr>
<tr>
<td>66</td>
<td>Analog Input 6</td>
</tr>
<tr>
<td>67</td>
<td>Analog Input 8</td>
</tr>
<tr>
<td>68</td>
<td>Analog Input Ground</td>
</tr>
</tbody>
</table>
Table 5-1 describes the signals on the motion I/O connector.

Table 5-1. Motion I/O Signal Connections

<table>
<thead>
<tr>
<th>Signal Name</th>
<th>Reference</th>
<th>Direction</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Digital Ground</td>
<td>—</td>
<td>—</td>
<td>Reference for digital I/O</td>
</tr>
<tr>
<td>Axis <1..8> Dir (CCW)</td>
<td>Digital Ground</td>
<td>Output</td>
<td>Motor direction or counterclockwise control</td>
</tr>
<tr>
<td>Axis <1..8> Step (CW)</td>
<td>Digital Ground</td>
<td>Output</td>
<td>Motor step or clockwise control</td>
</tr>
<tr>
<td>Axis <1..8> Encoder Phase A</td>
<td>Digital Ground</td>
<td>Input</td>
<td>Closed-loop only—phase A encoder input</td>
</tr>
<tr>
<td>Axis <1..8> Encoder Phase B</td>
<td>Digital Ground</td>
<td>Input</td>
<td>Closed-loop only—phase B encoder input</td>
</tr>
<tr>
<td>Axis <1..8> Encoder Index</td>
<td>Digital Ground</td>
<td>Input</td>
<td>Closed-loop only—index encoder input</td>
</tr>
<tr>
<td>Axis <1..8> Home Switch</td>
<td>Digital Ground</td>
<td>Input</td>
<td>Home switch</td>
</tr>
<tr>
<td>Axis <1..8> Forward Limit Switch</td>
<td>Digital Ground</td>
<td>Input</td>
<td>Forward limit switch</td>
</tr>
<tr>
<td>Axis <1..8> Reverse Limit Switch</td>
<td>Digital Ground</td>
<td>Input</td>
<td>Reverse limit switch</td>
</tr>
<tr>
<td>Axis <1..8> Inhibit</td>
<td>Digital Ground</td>
<td>Output</td>
<td>Drive inhibit</td>
</tr>
<tr>
<td>Trigger <1..8></td>
<td>Digital Ground</td>
<td>Input</td>
<td>High-speed position capture trigger input <1..8></td>
</tr>
<tr>
<td>Breakpoint <1..8></td>
<td>Digital Ground</td>
<td>Output</td>
<td>Position breakpoint output <1..8</td>
</tr>
<tr>
<td>Host +5 V</td>
<td>Digital Ground</td>
<td>Output</td>
<td>+5 V—host computer +5 V supply</td>
</tr>
<tr>
<td>Analog Input Ground</td>
<td>—</td>
<td>—</td>
<td>Reference for analog inputs</td>
</tr>
<tr>
<td>Analog Input <1..8></td>
<td>Analog Input Ground</td>
<td>Input</td>
<td>16-bit analog input</td>
</tr>
<tr>
<td>Analog Output <1..8></td>
<td>Analog Output Ground</td>
<td>Output</td>
<td>16-bit analog output</td>
</tr>
<tr>
<td>Analog Output Ground</td>
<td>—</td>
<td>—</td>
<td>Reference for analog outputs</td>
</tr>
<tr>
<td>Shutdown</td>
<td>Digital Ground</td>
<td>Input</td>
<td>Controlled device shutdown</td>
</tr>
<tr>
<td>Analog Reference (output)</td>
<td>Analog Output Ground</td>
<td>Output</td>
<td>+7.5 V—analog reference level</td>
</tr>
</tbody>
</table>
Motion Axis Signals

The following signals control the servo amplifier or stepper drive.

- **Analog Output <1..8>**—These 16-bit DAC outputs are typically the servo command outputs for each axis. They can drive the industry-standard ±10 V output, and can be software limited to any positive or negative voltage range desired. These outputs also feature a software-programmable voltage offset.

 Although typically used as the command output of an axis control loop, unused DACs also can function as independent analog outputs for general-purpose control.

- **Analog Reference**—For convenience, a 7.5 V (nominal) analog reference voltage is available. You can use this output as a low-current supply to sensors that require a stable reference.

 Note The analog reference output is an output signal only and must not be connected to an external reference voltage. Connect the common of the external reference to the Analog Input Ground pin for proper A/D reference and improved voltage measurement.

- **Analog Output Ground**—To help keep digital noise separate from the analog DAC outputs, there is a separate return connection. Use this analog ground connection as the reference for the DAC outputs when connecting to servo amplifiers instead of the Digital Ground (digital I/O reference).

- **Axis <1..8> Step (CW) and Dir (CCW)**—These signals are the stepper command outputs for each axis. The NI 7350 controller supports both industry standards for stepper command signals—step and direction, or independent clockwise (CW) and counterclockwise (CCW) pulse outputs.

 The output configuration and signal polarity is software programmable for compatibility with various third-party drives, as follows:

 - When step and direction mode is configured, each commanded step (or microstep) produces a pulse on the step output. The direction output signal level indicates the command direction of motion, either forward or reverse.

 - CW and CCW modes produce pulses (steps) on the CW output for forward-commanded motion and pulses on the CCW output for reverse-commanded motion.

 In either case, you can set the active polarity of both outputs to active low or active high. For example, with step and direction, you can make a logic high correspond to either forward or reverse direction.
You can choose to drive the Step (CW) and Dir (CCW) outputs by using either Totem Pole mode or Open Collector mode. In Totem Pole mode, the output buffer can both sink and source current, which is appropriate for most applications. In Open Collector mode, the output buffer can only sink current. By default, Step (CW) and Dir (CCW) outputs are set to Totem Pole mode.

⚠️ **Caution** Do not connect these outputs to anything other than a +5 V circuit. The output buffers will fail if subjected to voltages in excess of +5.5 V.

- **Axis <1..8> Inhibit**—Use the inhibit output signals to control the enable/inhibit function of a servo amplifier or stepper drive. When properly connected and configured, the inhibit function causes the connected motor to be de-energized and its shaft turns freely.

You can set the inhibits to either Totem Pole or Open Collector mode. In Totem Pole mode, the inhibits can both sink and source current. In Open Collector mode, the output buffer can only sink current. By default, inhibits are set to Open Collector mode.

Whereas the industry standard for inhibits is active low, these outputs have programmable polarity and can be set to active high for increased flexibility.

Inhibit output signals can be activated automatically upon a Kill Motion command or any motion error that causes a kill motion condition, such as a following-error trip.

You also can use the inhibit outputs of unused axes as general-purpose outputs. However, for safety considerations, National Instruments recommends that you use the inhibit outputs for all active axes.

Limit and Home Inputs

The following signals control limit and home inputs:

- **Axis <1..8> Forward Limit Input**
- **Axis <1..8> Home Input**
- **Axis <1..8> Reverse Limit Input**

These inputs are typically connected to limit switches located at physical ends of travel and/or at a specific home position. You can use software to enable and disable limit and home inputs at any time. When enabled, an active transition on a limit or home input causes a full torque halt stop of the associated axis. In addition, an active forward or reverse limit input impedes future commanded motion in that direction for as long as the signal is active.
Limit and home inputs are digitally filtered and must remain active for at least 1 ms to be recognized. Refer to Appendix A, Specifications, for more information. You can use MAX to disable digital filtering for limit and home inputs. Active signals should remain active to prevent motion from proceeding further into the limit. Pulsed limit signals stop motion, but they do not prevent further motion in that direction if another move is started.

The input polarity of these signals is software programmable for active low or active high.

You can use software disabled limit and home inputs as general-purpose inputs. You can read the status of these inputs at any time and set and change their polarity as required.

Limit and home inputs are a per-axis enhancement on the NI 7350 controller and are not required for basic motion control. These inputs are part of a system solution for complete motion control.

Caution National Instruments recommends using limits for personal safety, as well as to protect the motion system.

Wiring Concerns

For the end of travel limits to function correctly, the forward limit must be located at the forward or positive end of travel, and the reverse limit at the negative end of travel.

Caution Failure to follow these guidelines may result in motion that stops at, but then travels through, a limit, potentially damaging the motion system. Limits that are wired incorrectly may prevent motion from occurring at all.

Keep limit and home switch signals and their ground connections wired separately from the motor drive/amplifier signal and encoder signal connections.

Caution Wiring these signals near each other can cause faulty motion system operation that is due to signal noise and crosstalk.

Limit and Home Input Circuit

Limit and home inputs have an onboard pull-up resistor. If left floating, the inputs are interpreted as a high logic level.
Caution Excessive input voltages can cause erroneous operation and/or component failure. Verify that the input voltage is within the specification range.

Encoder Signals

The NI 7350 controller offers up to eight channels of single-ended quadrature encoder inputs. All National Instruments power drives and UMI accessories provide built-in circuitry that converts differential encoder signals to single-ended encoder signals. Each channel consists of a Phase A, Phase B, and Index input, as described in the following sections.

Axis <1..8> Encoder Phase A/Phase B

The encoder inputs provide position and velocity feedback for absolute and relative positioning of axes in any motion system configuration.

If an encoder resource is not needed for axis control, it is available for other functions including position monitoring, digital potentiometer encoder inputs, or as a master encoder input for master/slave (electronic gearing) applications.

The encoder channels (Axis <1..8> Encoder Phase A/Phase B) are implemented in an FPGA and provide advanced features, such as high-speed position capture inputs and position breakpoint outputs. The encoders have a maximum count frequency of 20 MHz.

An encoder input channel converts quadrature signals on Phase A and Phase B into 32-bit up/down counter values. Quadrature signals are generated by optical, magnetic, laser, or electronic devices that provide two signals, Phase A and Phase B, that are 90° out of phase. The leading phase, A or B, determines the direction of motion. The four transition states of the relative signal phases provide distinct pulse edges that cause count up or count down pulses in the direction determined by the leading phase.

A typical encoder with a specification of N ($N =$ number) lines per unit of measure, which can be revolutions or linear distance, produces $4 \times N$ quadrature counts per unit of measure. The count is the basic increment of position in National Instruments motion systems.

Note If your encoder does not supply resolution in quadrature counts per revolution, determine quadrature counts per revolution by multiplying the encoder resolution, in encoder lines or periods, by 4. The encoder resolution is the number of encoder lines between consecutive encoder indexes, such as marker or Z-bit. If the encoder does not have an index output, the resolution is referred to as lines per revolution, or lines per unit of
Axis <1..8> Encoder Index

The Index input is primarily used to establish a reference position. This function uses the number of counts per revolution or the linear distance to initiate a search move that locates the index position. When a valid index signal transition occurs during a find reference routine, the position of the index signal is captured accurately. Use this captured position to establish a reference zero position for absolute position control or any other motion system position reference required.

The default MAX settings guarantee that the find index routine completes successfully if the encoder generates a high index pulse when phases A and B are low and the encoder is connected through an NI UMI or drive accessory. Figure 5-3 shows the default encoder phasing diagram at the inputs to an NI UMI or drive accessory.

You can set the index reference criteria in MAX to change the pattern of phases A and B for the index search. You also can set the encoder polarity for phases A, B, and I in MAX.

Wiring Concerns

The encoder inputs are connected to quadrature decoder/counter circuits. It is very important to minimize noise at this interface. Excessive noise on these encoder input signals may result in loss of counts or extra counts and erroneous closed-loop motion operation. Verify the encoder connections before powering up the system.
Caution Wire encoder signals and their ground connections separately from all other connections. Wiring these signals near the motor drive/amplifier or other signals can cause positioning errors and faulty operation.

National Instruments strongly recommends you use encoders with differential line drive outputs for all applications. You must use differential encoders if the encoder cable length is longer than 3.05 m (10 ft). Shielded, 24 AWG wire is the minimum recommended size for the encoder cable. Cables with twisted pairs and an overall shield are recommended for optimized noise immunity.

All National Instruments power drives and UMI accessories provide built-in circuitry that converts differential encoder signals to single-ended encoder signals.

Caution Unshielded cables can cause noise to corrupt the encoder signals, resulting in lost or additional counts and reduced motion system accuracy.

Encoder Input Circuit

The Phase A, Phase B, and Index encoder inputs all have an onboard pull-up resistor, and are interpreted as high logic level if left floating. Both phases A and B are required for proper encoder counter operation, and the signals must support the 90° phase difference within system tolerance. The encoder and Index signals are conditioned by a software-programmable digital filter inside the FPGA. The Index signal is optional but highly recommended and is required for initialization functionality with the Find Reference function.

Trigger Inputs, Shutdown Input, and Breakpoint Outputs

The NI 7350 controller offers additional high-performance encoder features. The encoder channels have high-speed position capture trigger inputs and position breakpoint outputs. These signals are useful for high-speed synchronization of motion with actuators, sensors, and other parts of the complete motion system.

- **Trigger Input <1..8>**—When enabled, an active transition on a high-speed position capture input causes instantaneous position capture of the corresponding encoder count value. You can use this high-speed position capture functionality for applications ranging from simple position tagging of sensor data to complex camming systems with advance/retard positioning and registration. An available NI 7350 controller position mode is to move an axis relative to a captured position.
The polarity of the trigger (position capture) input is programmable in software as active low, or active high, rising edge or falling edge. You also can use a trigger (position capture) input as a latching general-purpose digital input by simply ignoring the captured position.

- **Shutdown Input**—When enabled in software, the shutdown input signal can be used to kill all motion by asserting the controller inhibits, setting the analog outputs to 0 V, and stopping any stepper pulse generation. To activate shutdown, the signal must transition from a low to high state.

- **Breakpoint <1..8>**—You can program a breakpoint (position compare) output to transition when the associated encoder value equals the breakpoint (position compare) position. You can use a breakpoint (position compare) output to directly control actuators or as a trigger to synchronize data acquisition or other functions in the motion control system.

 You can program breakpoints as either absolute, relative, periodic, or buffered positions. Breakpoint (position compare) outputs can be preset to a known state so that the transition when the breakpoint (position compare) occurs can be low to high, high to low, toggle, or pulse.

 You can set the breakpoint (position compare) outputs to Totem Pole mode or Open Collector mode. In Totem Pole mode, the output buffer can both sink and source current, which is appropriate for most applications. In Open Collector mode, the output buffer can only sink current. By default, breakpoint (position compare) outputs are set to Totem Pole mode.

 You can directly set and reset breakpoint (position compare) outputs to use them as general-purpose digital outputs.

Wiring Concerns

⚠️ **Caution** Keep trigger (position capture) input, shutdown input, and breakpoint (position compare) output signals and their ground connections wired separately from the motor drive/amplifier signal and encoder signal connections. Wiring these signals near each other can cause faulty operation.

⚠️ **Caution** Excessive input voltages can cause erroneous operation and/or component failure.
Trigger Input and Shutdown Input Circuits

Trigger (position capture) input and shutdown input circuits have onboard pull-up resistors, and are interpreted as high logic level if left floating.

Analog Inputs

The NI 7350 controller has the following ADC input signals:

- **Analog Input <1..8>**—The NI 7350 controller includes an eight-channel multiplexed, 16-bit ADC capable of measuring ±10 V, ±5 V, 0–10 V, and 0–5 V inputs.

 You can configure each ADC channel for motion feedback, simple A/D conversion, or both.

 You can read the digital value of analog voltage on any of the ADC channels of the controller by using the Read ADC function. Table 5-2 shows the range of values read back and the voltage resolution for each setting. The voltage resolution is in microvolts per least significant bit (μV/LSB).

<table>
<thead>
<tr>
<th>Input Range</th>
<th>Binary Values</th>
<th>Resolution</th>
</tr>
</thead>
<tbody>
<tr>
<td>±10 V</td>
<td>-32,768 to 32,767</td>
<td>305 μV/LSB</td>
</tr>
<tr>
<td>±5 V</td>
<td>-32,768 to 32,767</td>
<td>153 μV/LSB</td>
</tr>
<tr>
<td>0–10 V</td>
<td>0 to 65,535</td>
<td>153 μV/LSB</td>
</tr>
<tr>
<td>0–5 V</td>
<td>0 to 65,535</td>
<td>76 μV/LSB</td>
</tr>
</tbody>
</table>

When configured as analog feedback, an analog sensor acts like a limited range absolute position device with a full-scale position range. You can map any ADC channel as feedback to any axis.

You can enable and disable individual ADC channels in software. Disable unused ADC channels for the highest multiplexer scan rate performance. Properly enabled, the scan rate is high enough to support analog feedback at the highest PID sample rate.

- **Analog Input Ground**—To help keep digital noise out of the analog input, a separate return connection is available. Use this reference ground connection and not Digital Ground (digital I/O reference) or Analog Output Ground as the reference for the analog inputs.
Wiring Concerns

For proper use of each ADC input channel, the analog signal should be a floating source with the positive terminal connected to the channel input and the negative terminal connected to analog input ground. Figure 5-4 shows a simplified schematic diagram of this connection.

![Figure 5-4. Analog Input Connectivity](image)

Other Motion I/O Connection

The NI 7350 controller provides the host +5 V signal, which is the internal +5 V supply of the host computer. This signal is typically used to detect when the host computer is powered on and to shut down external motion system components when the host computer is powered off or disconnected from the motion accessory.

⚠️ Caution The host +5 V signal is limited and should not be used to power any external devices, except those intended in the host bus monitor circuits on the UMI and drive products.

Interfacing With Optocouplers

Many motor drive manufacturers offer opto-isolated inputs for Step (CW)/Dir (CCW) and other motion control signals. The NI 7350 is well-suited to drive most of these inputs directly when you connect the controller output signal to the positive side of the optocoupler input and connect the controller GND to the negative side of the optocoupler input. This method works if the optocoupler is designed to work with a 5 V signal, requires less than 16 mA, and the NI 7350 output is configured for Totem Pole output mode. Figure 5-5 shows a typical optocoupler wiring example.
In some rare circumstances, the optocoupler will not work with a 5 V signal, or it requires more current than the maximum current level the controller can provide. In this case, connect the controller output to the negative side of the optocoupler input, connect the positive side of the input to a supply as specified by the drive manufacturer, and configure the controller output for Open Collector mode. Figure 5-6 shows this special case wiring example.

Caution If the optocoupler input does not include its own current-limiting resistor, you must provide an external resistor in series with the NI 7350 output. To prevent damage to the NI 7350 controller or other motion hardware, use a resistor that limits the current to a value below the maximum specifications of the controller and other hardware.
Digital I/O Connector

The general-purpose digital I/O lines on the NI 7350 controller are available on two separate 68-pin digital I/O connectors. Figures 5-7 and 5-8 show the pin assignments for these connectors.

<table>
<thead>
<tr>
<th>Pin</th>
<th>Assignment</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Digital Ground</td>
</tr>
<tr>
<td>2</td>
<td>Digital Ground</td>
</tr>
<tr>
<td>3</td>
<td>Digital Ground</td>
</tr>
<tr>
<td>4</td>
<td>Digital Ground</td>
</tr>
<tr>
<td>5</td>
<td>Digital Ground</td>
</tr>
<tr>
<td>6</td>
<td>Reserved</td>
</tr>
<tr>
<td>7</td>
<td>Digital Ground</td>
</tr>
<tr>
<td>8</td>
<td>Digital Ground</td>
</tr>
<tr>
<td>9</td>
<td>Digital Ground</td>
</tr>
<tr>
<td>10</td>
<td>Port 1:bit 0</td>
</tr>
<tr>
<td>11</td>
<td>Port 1:bit 2</td>
</tr>
<tr>
<td>12</td>
<td>Port 1:bit 3</td>
</tr>
<tr>
<td>13</td>
<td>Port 1:bit 4</td>
</tr>
<tr>
<td>14</td>
<td>Port 1:bit 5</td>
</tr>
<tr>
<td>15</td>
<td>Port 1:bit 6</td>
</tr>
<tr>
<td>16</td>
<td>Port 1:bit 7</td>
</tr>
<tr>
<td>17</td>
<td>Port 2:bit 0</td>
</tr>
<tr>
<td>18</td>
<td>Port 2:bit 1</td>
</tr>
<tr>
<td>19</td>
<td>Port 2:bit 2</td>
</tr>
<tr>
<td>20</td>
<td>Port 2:bit 3</td>
</tr>
<tr>
<td>21</td>
<td>Port 2:bit 4</td>
</tr>
<tr>
<td>22</td>
<td>Port 2:bit 5</td>
</tr>
<tr>
<td>23</td>
<td>Port 2:bit 6</td>
</tr>
<tr>
<td>24</td>
<td>Port 2:bit 7</td>
</tr>
<tr>
<td>25</td>
<td>Port 3:bit 0</td>
</tr>
<tr>
<td>26</td>
<td>Port 3:bit 1</td>
</tr>
<tr>
<td>27</td>
<td>Port 3:bit 2</td>
</tr>
<tr>
<td>28</td>
<td>Port 3:bit 3</td>
</tr>
<tr>
<td>29</td>
<td>Port 3:bit 4</td>
</tr>
<tr>
<td>30</td>
<td>Port 3:bit 5</td>
</tr>
<tr>
<td>31</td>
<td>Digital Ground</td>
</tr>
<tr>
<td>32</td>
<td>Digital Ground</td>
</tr>
<tr>
<td>33</td>
<td>Digital Ground</td>
</tr>
<tr>
<td>34</td>
<td>Digital Ground</td>
</tr>
</tbody>
</table>

Figure 5-7. 68-Pin Digital I/O Connector Pin Assignments (Ports 1–4)
The 64-bit digital I/O ports are configured in hardware as up to eight 8-bit digital I/O ports. The bits in a port are typically controlled and read with byte-wide bitmapped commands.
Bits 2–7 in DIO ports 4 and 8 are dual-purpose bits that can be used for either general-purpose I/O or Hall sensor feedback during system configuration and initialization, but not both. When you set these bits to provide Hall sensor feedback, they are reserved for this activity and cannot be used for general-purpose I/O until you reinitialize the motion system.

All digital I/O lines have programmable direction and polarity.

The DPull(P1:P4) and DPull(P5:P8) pins control the state of the digital input pins at power-up.

Connecting DPull(P1:P4) to +5 V or leaving it unconnected configures all pins in ports 1–4 for 10 kΩ pull-ups. Connecting DPull(P1:P4) to ground configures these ports for 10 kΩ pull-downs.

Connecting DPull(P5:P8) to +5 V or leaving it unconnected configures all pins in ports 5–8 for 10 kΩ pull-ups. Connecting DPull(P5:P8) to ground configures these ports for 10 kΩ pull-downs.

PWM Features

The NI 7350 controller provides two pulse width modulation (PWM) outputs on the digital I/O connector for ports 1–4. The PWM outputs generate periodic waveforms whose period and duty cycles can be independently controlled through software commands. You can compare PWM to a digital representation of an analog value, because the duty cycle is directly proportional to the desired output value. PWM outputs are typically used for transmitting an analog value through an optocoupler. A simple lowpass filter turns a PWM signal back into its corresponding analog value. If appropriate, you can use an external clock source connected to the PCLK input instead of the internal source as the clock for the PWM generators.

Note These signals are configured in software and are in no way associated with the PID servo control loop. Refer to the Measurement & Automation Explorer Help for Motion, the NI-Motion Function Help, or the NI-Motion VI Help for more information.
Chapter 5 Signal Connections

RTSI Connector

The PXI-7350 uses the PXI chassis backplane to connect to other RTSI-capable devices.

The PCI-7350 uses a ribbon cable to connect to other RTSI-capable PCI devices.

RTSI Signal Considerations

The NI 7350 controller allows you to use up to eight RTSI trigger lines as sources for trigger inputs, or as destinations for breakpoint (position compare) outputs and encoder signals. The RTSI trigger lines also can serve as a generic digital I/O port. The RTSI star trigger line, which is available only on the PXI-7350, can be used only for a trigger input. Breakpoint (position compare) outputs are output-only signals that generate an active high pulse of 200 ns duration across RTSI.

Encoder and Index signals are output-only signals across RTSI that are the digitally-filtered versions of the raw signals coming into the controller. If you are using the RTSI bus for motion I/O or generic digital I/O, all signals are passed through unaltered.
Specifications

This appendix lists the hardware and software performance specifications for the PXI/PCI-7350 controller. Hardware specifications are typical at 25 °C, unless otherwise stated.

Servo Performance

PID update rate range....................... 62.5µs/sample to 5 ms/sample
 Max PID update rate....................... 62.5 µs per 2 axes
 8-axis PID update rate............... 250 µs total

Trajectory update rate Same as PID update rate

Multi-axis synchronization <1 update sample

Position accuracy
 Encoder feedback........................ ±1 quadrature count
 Analog feedback ±1 LSB

Double-buffered trajectory parameters
 Absolute position range ±2^{31} counts
 Max relative move size ±2^{31} counts
 Velocity range 1 to ±20,000,000 counts/s
 RPM range\(^1\)........................ ±1,200,000 revolutions/min
 Acceleration/deceleration\(^2\) 244 to 512,000,000 counts/s\(^2\)
 at a PID update rate of 250 µs
 RPS/s range\(^1\) ±256,000 revolutions/s\(^2\)
 S-Curve time range 1 to 32,767 samples
 Following error range 0 to 32,767 counts
 Gear ratio ±32,767:1 to ±1:32,767

\(^1\) Assumes a 2,000-count encoder.
\(^2\) Refer to the *NI-Motion User Manual* for more information.
Appendix A Specifications

Servo control loop modesPID, PIVff, S-Curve, Dual Loop
PID (Kp, Ki, and Kd) gains0 to 32,767
Integration limit (Ilim)0 to 32,767
Derivative sample period (Td)1 to 63 samples
Feedforward (Aff, Vff) gains0 to 32,767
Velocity feedback (Kv) gain0 to 32,767

Servo command analog outputs
Voltage range.................................±10 V
Resolution.................................16 bits (0.000305 V/LSB)
Programmable torque (velocity) limits
 Positive limit±10 V (–32,768 to +32,767)
 Negative limit±10 V (–32,768 to +32,767)
Programmable offset±10 V (–32,768 to +32,767)

Stepper Performance

Trajectory update rate range62.5 to 500 µs/sample
Max update rate62.5 µs per 2 axes
8-axis update rate250 µs total

Multi-axis synchronization<1 update sample

Position accuracy
Open-loop stepper1 full, half, or microstep
Encoder feedback±1 quadrature count
Analog feedback±1 LSB

Double-buffered trajectory parameters
Position range±2^{31} steps
Max relative move size±2^{31} steps
Velocity range 1 to 8,000,000 steps/s
RPM range\(^1\) ±1,200,000 revolutions/min
Acceleration/deceleration\(^2\)244 to 512,000,000 steps/s\(^2\)
 at a PID update rate of 250 µs
RPS/s range\(^1\) ±256,000 revolutions/s\(^2\)

\(^1\) Assumes a 2,000-count encoder.
\(^2\) Refer to the NI-Motion User Manual for more information.
Appendix A Specifications

S-curve time range 1 to 32,767 samples
Following error range 0 to 32,767 counts
Gear ratio ±32,767:1 to ±1:32,767

Stepper outputs
Max pulse rate 8 MHz (full, half, and microstep)
Max pulse width 6.5 μs at <40 kHz
Min pulse width 40 ns at >4 MHz
Step output mode Step and direction or CW/CCW
Voltage range 0 to 5 V
 Output low voltage 0.6 V at 64 mA sink
 Output high voltage Totem Pole: 2V at 16 mA source;
 open collector: built-in 3.3 kΩ pull-up to +5 V
Polarity Programmable, active high
 or active low

System Safety
Watchdog timer function Resets board to startup state
Watchdog timeout 63 or 256 ms, programmable
Shutdown input
Voltage range 0 to 5 V
 Input low voltage 0.8 V
 Input high voltage 2 V
Built-in pull-up resistor 3.3 kΩ to +5 V
Polarity Rising edge
Control Disable all axes and
 command outputs; resets I/O
to default states
Host +5 V max current
sourced from controller 100 mA at 5 V

Motion I/O
Encoder inputs Quadrature, incremental,
 single-ended
Max count rate 20 MHz
Min pulse width..........................Programmable; depends on digital filter settings
Voltage range............................0 to 5 V
 Input low voltage....................0.8 V
 Input high voltage....................2 V
Built-in pull-up resistor................3.3 kΩ to +5 V
Min index pulse width..................Programmable; depends on digital filter settings

Forward, reverse, and home inputs
Number of inputs......................3 per axis, up to 24
Voltage range............................0 to 5 V
 Input low voltage....................0.8 V
 Input high voltage....................2 V
Built-in pull-up resistor................3.3 kΩ to +5 V
PolarityProgrammable, active high or active low
Min pulse width
 Limit filters enabled1 ms
 Limit filters disabled50 ns
ControlIndividual enable/disable, stop on input, prevent motion, Find Reference

Trigger (position capture) inputs
Number of inputs......................Up to 8 (Encoders 1 through 8)
Voltage range............................0 to 5 V
 Input low voltage....................0.8 V
 Input high voltage....................2 V
Built-in pull-up resistor................3.3 kΩ to +5 V
PolarityProgrammable, active high or active low
Min pulse width.......................100 ns
Max capture latency...................100 ns
Capture accuracy1 count
Max capture rate (non-buffered)150 Hz
Max buffered capture rate\(^1\) 2 kHz per axis

Breakpoint (position compare) outputs
Number of outputs Up to 8 (Encoders 1 through 8)
Voltage range 0 to 5 V
Output low voltage 0.6 V at 64 mA sink
Output high voltage Totem Pole: 2 V at 16 mA source;
 open collector: built-in 3.3 kΩ
 pull-up to +5 V
Polarity Programmable, active high
 or active low
Max trigger rate (non-buffered)...... 150 Hz
Max buffered trigger rate\(^1\) 2 kHz per axis
Max periodic rate 4 MHz per axis
Minimum pulse width
(pulse mode only) 200 ns

Inhibit/enable output
Number of outputs 1 per axis, up to 8
Voltage range 0 to 5 V
Output low voltage 0.6 V at 64 mA sink
Output high voltage Totem Pole: 2 V at 16 mA source;
 open collector: built-in 3.3 kΩ
 pull-up to +5 V
Polarity Programmable, active high
 or active low
Control MustOn/MustOff or automatic
 when axis off

Analog inputs
Control Assigned to axis for analog
feedback or general-purpose
analog input
Number of inputs Up to 8, multiplexed,
single-ended
Multiplexer scan rate 25 μs per enabled ADC

\(^1\) Assumes a PID update rate of 250 μs, 2 kHz per axis for PID rates between 62.5 and 250 μs, and 1 kHz per axis for PID rates greater than 250 μs. This value is not to exceed 8 kHz total for all ongoing buffered breakpoint (position compare) and trigger (position capture) operation.
Input coupling.................................DC
Input impedance100 MΩ min
Voltage range (programmable)........±10 V, ±5 V, 0–10 V, 0–5 V
Bandwidth.....................................234 kHz
Resolution....................................16 bits, no missing codes
MonotonicityGuaranteed
Absolute accuracy
all ranges....................................0.5% of full-scale

System noise
±10 V..220 μVrms, typical
±5 V...120 μVrms, typical
0–10 V.......................................130 μVrms, typical
0–5 V...60 μVrms, typical

Maximum working voltage±11 V

Overvoltage protection
Powered on....................................±25 V
Powered off...................................±15 V

Analog outputs
Number of outputs.........................Up to 8, single-ended
Output coupling.............................DC
Voltage range................................±10 V
Output current..............................±5 mA
Minimum load2 kΩ at full-scale
Resolution....................................16 bits, no missing codes
MonotonicityGuaranteed
Absolute accuracy0.5% of full-scale
Noise..100 μVrms Max
Protection.....................................Short-circuit to ground
Settling time.................................15 μs, full-scale step
Analog reference output voltage7.5 V (nominal)
Analog reference output current5 mA

Onboard temperature sensor accuracy.....±4 °C
Digital I/O

Ports ... Up to 8 8-bit ports
Line direction Individual bit programmable

Inputs
Voltage range 0 to 5 V
Input low voltage 0.8 V
Input high voltage 2.0 V
Polarity .. Programmable, active high or active low

Built-in pull-up resistor 10 kΩ, configurable pull-up to +5 V or pull-down to GND

Outputs
Voltage range 0 to 5 V
Output low voltage 0.45 V at 24 mA
Output high voltage 2.4 V at 24 mA
Max total DIO current
Source from controller 1 A
Polarity Programmable, active high or active low

PWM outputs
Number of PWM outputs 2
Max PWM frequency 50 kHz
Resolution 8-bit
Duty cycle range 0 to (255/256)%
Clock sources Internal or external

RTSI

Trigger lines 8

PXI Star Trigger (PXI-7350 only) 1
Appendix A Specifications

Maximum Power Requirements

<table>
<thead>
<tr>
<th>Voltage</th>
<th>Current (±% of nominal)</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>+3.3 V</td>
<td>±10%</td>
<td>2 A</td>
</tr>
<tr>
<td>+5 V</td>
<td>±5%</td>
<td>2 A</td>
</tr>
<tr>
<td>+12 V</td>
<td>±5%</td>
<td>30 mA</td>
</tr>
<tr>
<td>–12 V</td>
<td>±10%</td>
<td>0 mA</td>
</tr>
<tr>
<td>Power consumption</td>
<td></td>
<td>18 W</td>
</tr>
</tbody>
</table>

Physical

Dimensions (Not Including Connectors)

- **PXI-7350**: 16 cm × 10 cm (6.3 in. × 3.9 in.)
- **PCI-7330**: 17.5 cm × 9.9 cm (6.9 in. × 3.9 in.)

Connectors

- **Motion I/O connectors**: 2 68-pin female high-density VHDCI type
- **32-bit digital I/O connectors**: 2 68-pin female high-density VHDCI type
- **RTSI connector (PCI-7350 only)**: 37-pin male for ribbon cable

Weight

- **PXI-7350**: 170 g (6 oz)
- **PCI-7350**: 113 g (4 oz)
Maximum Working Voltage

Channel-to-earth................................. 11 V, Installation Category I
(signal voltage plus
common-mode voltage)

Channel-to-channel............................. 22 V, Installation Category I
(signal voltage plus
common-mode voltage)

⚠️ Caution These values represent the maximum allowable voltage between any accessible signals on the controller. To determine the acceptable voltage range for a particular signal, refer to the individual signal specifications.

Environment

Operating temperature....................... 0 to 55 °C

Storage temperature –20 to 70 °C

Humidity .. 10 to 90% RH, noncondensing

Maximum altitude 2,000 m

Pollution Degree 2

Safety

This product is designed to meet the requirements of the following standards of safety for electrical equipment for measurement, control, and laboratory use:

- IEC 61010-1, EN 61010-1
- UL 61010-1, CAN/CSA-C22.2 No. 61010-1

⚠️ Note For UL and other safety certifications, refer to the product label or visit ni.com/certification, search by model number or product line, and click the appropriate link in the Certification column.
Electromagnetic Compatibility

This product is designed to meet the requirements of the following standards of EMC for electrical equipment for measurement, control, and laboratory use:

- EN 61326 EMC requirements; Minimum Immunity
- EN 55011 Emissions; Group 1, Class A
- CE, C-Tick, ICES, and FCC Part 15 Emissions; Class A

Note: For EMC compliance, operate this device according to product documentation.

CE Compliance

This product meets the essential requirements of applicable European Directives, as amended for CE marking, as follows:

- 73/23/EEC; Low-Voltage Directive (safety)
- 89/336/EEC; Electromagnetic Compatibility Directive (EMC)

Note: Refer to the Declaration of Conformity (DoC) for this product for any additional regulatory compliance information. To obtain the DoC for this product, visit ni.com/certification, search by model number or product line, and click the appropriate link in the Certification column.

Waste Electrical and Electronic Equipment (WEEE)

EU Customers: At the end of their life cycle, all products must be sent to a WEEE recycling center. For more information about WEEE recycling centers and National Instruments WEEE initiatives, visit ni.com/environment/weee.htm.
Cable Connector Descriptions

This appendix describes the connector pinout for the cables that connect to the PXI/PCI-7350 controller.

Figures B-1 and B-2 show the pin assignments for the stepper 50-pin motion connectors, while Figures B-3 and B-4 show the pin assignments for the servo 50-pin motion connectors. These connectors are available when you use the SH68-C68-S shielded cable assembly and the 68M-50F step/servo bulkhead cable adapter. You can order the cable assembly and cable adapter from ni.com. The following list includes part numbers for each of these products:

- 2m SHC68-C68-S Cable (part number 186380-02)
- 0.5m SHC68-C68-S Cable (part number 186380-0R5)
- 68M-50F Extended I/O Cable Adapter (part number 184670-02)
| Axis 1 Dir (CCW) | 1 2 | Axis 1 Step (CW) |
| Digital Ground | 3 4 | Axis 1 Encoder Phase A |
| Digital Ground | 5 6 | Axis 1 Encoder Phase B |
| Axis 1 Home Switch | 7 8 | Axis 1 Encoder Index |
| Trigger/Breakpoint 1 | 9 10 | Axis 1 Forward Limit Switch |
| Axis 1 Inhibit | 11 12 | Axis 1 Reverse Limit Switch |
| Axis 2 Dir (CCW) | 13 14 | Axis 2 Step (CW) |
| Digital Ground | 15 16 | Axis 2 Encoder Phase A |
| Digital Ground | 17 18 | Axis 2 Encoder Phase B |
| Axis 2 Home Switch | 19 20 | Axis 2 Encoder Index |
| Trigger/Breakpoint 2 | 21 22 | Axis 2 Forward Limit Switch |
| Axis 2 Inhibit | 23 24 | Axis 2 Reverse Limit Switch |
| Axis 3 Dir (CCW) | 25 26 | Axis 3 Step (CW) |
| Digital Ground | 27 28 | Axis 3 Encoder Phase A |
| Digital Ground | 29 30 | Axis 3 Encoder Phase B |
| Axis 3 Home Switch | 31 32 | Axis 3 Encoder Index |
| Trigger/Breakpoint 3 | 33 34 | Axis 3 Forward Limit Switch |
| Axis 3 Inhibit | 35 36 | Axis 3 Reverse Limit Switch |
| Axis 4 Dir (CCW) | 37 38 | Axis 4 Step (CW) |
| Digital Ground | 39 40 | Axis 4 Encoder Phase A |
| Digital Ground | 41 42 | Axis 4 Encoder Phase B |
| Axis 4 Home Switch | 43 44 | Axis 4 Encoder Index |
| Trigger/Breakpoint 4 | 45 46 | Axis 4 Forward Limit Switch |
| Axis 4 Inhibit | 47 48 | Axis 4 Reverse Limit Switch |
| Digital Ground | 49 50 | Host +5 V |

Figure B-1. 50-Pin Stepper Connector Pin Assignment (Axes 1–4)
Figure B-2. 50-Pin Stepper Connector Pin Assignment (Axes 5–8)

<table>
<thead>
<tr>
<th>Pin Number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Axis 5 Dir (CCW)</td>
</tr>
<tr>
<td>2</td>
<td>Axis 5 Step (CW)</td>
</tr>
<tr>
<td>3</td>
<td>Digital Ground</td>
</tr>
<tr>
<td>4</td>
<td>Axis 5 Encoder Phase A</td>
</tr>
<tr>
<td>5</td>
<td>Digital Ground</td>
</tr>
<tr>
<td>6</td>
<td>Axis 5 Encoder Phase B</td>
</tr>
<tr>
<td>7</td>
<td>Axis 5 Home Switch</td>
</tr>
<tr>
<td>8</td>
<td>Axis 5 Encoder Index</td>
</tr>
<tr>
<td>9</td>
<td>Trigger/Breakpoint 5</td>
</tr>
<tr>
<td>10</td>
<td>Axis 5 Inhibit</td>
</tr>
<tr>
<td>11</td>
<td>Axis 5 Reverse Limit Switch</td>
</tr>
<tr>
<td>12</td>
<td>Axis 5 Forward Limit Switch</td>
</tr>
<tr>
<td>13</td>
<td>Axis 6 Dir (CCW)</td>
</tr>
<tr>
<td>14</td>
<td>Axis 6 Step (CW)</td>
</tr>
<tr>
<td>15</td>
<td>Digital Ground</td>
</tr>
<tr>
<td>16</td>
<td>Axis 6 Encoder Phase A</td>
</tr>
<tr>
<td>17</td>
<td>Digital Ground</td>
</tr>
<tr>
<td>18</td>
<td>Axis 6 Encoder Phase B</td>
</tr>
<tr>
<td>19</td>
<td>Axis 6 Home Switch</td>
</tr>
<tr>
<td>20</td>
<td>Axis 6 Encoder Index</td>
</tr>
<tr>
<td>21</td>
<td>Trigger/Breakpoint 6</td>
</tr>
<tr>
<td>22</td>
<td>Axis 6 Inhibit</td>
</tr>
<tr>
<td>23</td>
<td>Axis 6 Reverse Limit Switch</td>
</tr>
<tr>
<td>24</td>
<td>Axis 6 Forward Limit Switch</td>
</tr>
<tr>
<td>25</td>
<td>Axis 7 Dir (CCW)</td>
</tr>
<tr>
<td>26</td>
<td>Axis 7 Step (CW)</td>
</tr>
<tr>
<td>27</td>
<td>Digital Ground</td>
</tr>
<tr>
<td>28</td>
<td>Axis 7 Encoder Phase A</td>
</tr>
<tr>
<td>29</td>
<td>Digital Ground</td>
</tr>
<tr>
<td>30</td>
<td>Axis 7 Encoder Phase B</td>
</tr>
<tr>
<td>31</td>
<td>Axis 7 Home Switch</td>
</tr>
<tr>
<td>32</td>
<td>Axis 7 Encoder Index</td>
</tr>
<tr>
<td>33</td>
<td>Trigger/Breakpoint 7</td>
</tr>
<tr>
<td>34</td>
<td>Axis 7 Inhibit</td>
</tr>
<tr>
<td>35</td>
<td>Axis 7 Reverse Limit Switch</td>
</tr>
<tr>
<td>36</td>
<td>Axis 7 Forward Limit Switch</td>
</tr>
<tr>
<td>37</td>
<td>Axis 8 Dir (CCW)</td>
</tr>
<tr>
<td>38</td>
<td>Axis 8 Step (CW)</td>
</tr>
<tr>
<td>39</td>
<td>Digital Ground</td>
</tr>
<tr>
<td>40</td>
<td>Axis 8 Encoder Phase A</td>
</tr>
<tr>
<td>41</td>
<td>Digital Ground</td>
</tr>
<tr>
<td>42</td>
<td>Axis 8 Encoder Phase B</td>
</tr>
<tr>
<td>43</td>
<td>Axis 8 Home Switch</td>
</tr>
<tr>
<td>44</td>
<td>Axis 8 Encoder Index</td>
</tr>
<tr>
<td>45</td>
<td>Trigger/Breakpoint 8</td>
</tr>
<tr>
<td>46</td>
<td>Axis 8 Inhibit</td>
</tr>
<tr>
<td>47</td>
<td>Axis 8 Reverse Limit Switch</td>
</tr>
<tr>
<td>48</td>
<td>Axis 8 Forward Limit Switch</td>
</tr>
<tr>
<td>49</td>
<td>Digital Ground</td>
</tr>
<tr>
<td>50</td>
<td>Host +5 V</td>
</tr>
</tbody>
</table>

© National Instruments Corporation

B-3

NI 7350 User Manual
Figure B-3. 50-Pin Servo Connector Pin Assignment (Axes 1–4)
Digital Ground	3 4	Axis 5 Encoder Phase A
Digital Ground	5 6	Axis 5 Encoder Phase B
Axis 5 Home Switch	7 8	Axis 5 Encoder Index
Trigger/Breakpoint 5	9 10	Axis 5 Forward Limit Switch
Axis 5 Inhibit	11 12	Axis 5 Reverse Limit Switch
Analog Output Ground	13 14	Analog Output 6
Digital Ground	15 16	Axis 6 Encoder Phase A
Digital Ground	17 18	Axis 6 Encoder Phase B
Axis 6 Home Switch	19 20	Axis 6 Encoder Index
Trigger/Breakpoint 6	21 22	Axis 6 Forward Limit Switch
Axis 6 Inhibit	23 24	Axis 6 Reverse Limit Switch
Analog Output Ground	25 26	Analog Output 7
Digital Ground	27 28	Axis 7 Encoder Phase A
Digital Ground	29 30	Axis 7 Encoder Phase B
Axis 7 Home Switch	31 32	Axis 7 Encoder Index
Trigger/Breakpoint 7	33 34	Axis 7 Forward Limit Switch
Axis 7 Inhibit	35 36	Axis 7 Reverse Limit Switch
Analog Output Ground	37 38	Analog Output 8
Digital Ground	39 40	Axis 8 Encoder Phase A
Digital Ground	41 42	Axis 8 Encoder Phase B
Axis 8 Home Switch	43 44	Axis 8 Encoder Index
Trigger/Breakpoint 8	45 46	Axis 8 Forward Limit Switch
Axis 8 Inhibit	47 48	Axis 8 Reverse Limit Switch
Digital Ground	49 50	Host +5 V

Figure B-4. 50-Pin Servo Connector Pin Assignment (Axes 5–8)
Input/Output Reset States

This appendix lists the various states of the NI PXI/PCI-7350 hardware during reset.

<table>
<thead>
<tr>
<th>Signal Names</th>
<th>Direction</th>
<th>From Power On Until Device Initialization</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Mode</td>
</tr>
<tr>
<td>Motion I/O Connector</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inhibit <1..8></td>
<td>Output</td>
<td>Open collector</td>
</tr>
<tr>
<td>Breakpoint <1..8></td>
<td>Output</td>
<td>Totem Pole</td>
</tr>
<tr>
<td>Step <1..8></td>
<td>Output</td>
<td>Totem Pole</td>
</tr>
<tr>
<td>Direction <1..8></td>
<td>Output</td>
<td>Totem Pole</td>
</tr>
<tr>
<td>Digital I/O Connector</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Digital I/O Ports <1..8></td>
<td>Input</td>
<td>—</td>
</tr>
</tbody>
</table>

Table C-1. I/O States During Reset
Technical Support and Professional Services

Visit the following sections of the National Instruments Web site at ni.com for technical support and professional services:

- **Support**—Online technical support resources at ni.com/support include the following:
 - **Self-Help Resources**—For answers and solutions, visit the award-winning National Instruments Web site for software drivers and updates, a searchable KnowledgeBase, product manuals, step-by-step troubleshooting wizards, thousands of example programs, tutorials, application notes, instrument drivers, and so on.
 - **Free Technical Support**—All registered users receive free Basic Service, which includes access to hundreds of Application Engineers worldwide in the NI Developer Exchange at ni.com/exchange. National Instruments Application Engineers make sure every question receives an answer.
 For information about other technical support options in your area, visit ni.com/services or contact your local office at ni.com/contact.

- **Training and Certification**—Visit ni.com/training for self-paced training, eLearning virtual classrooms, interactive CDs, and Certification program information. You also can register for instructor-led, hands-on courses at locations around the world.

- **System Integration**—If you have time constraints, limited in-house technical resources, or other project challenges, National Instruments Alliance Partner members can help. To learn more, call your local NI office or visit ni.com/alliance.

- **Declaration of Conformity (DoC)**—A DoC is our claim of compliance with the Council of the European Communities using the manufacturer’s declaration of conformity. This system affords the user protection for electronic compatibility (EMC) and product safety. You can obtain the DoC for your product by visiting ni.com/certification.
• **Calibration Certificate**—If your product supports calibration, you can obtain the calibration certificate for your product at ni.com/calibration.

If you searched ni.com and could not find the answers you need, contact your local office or NI corporate headquarters. Phone numbers for our worldwide offices are listed at the front of this manual. You also can visit the Worldwide Offices section of ni.com/niglobal to access the branch office Web sites, which provide up-to-date contact information, support phone numbers, email addresses, and current events.
Glossary

A

<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>absolute mode</td>
<td>A move mode that treats the target position loaded as position relative to zero (0) while making a move.</td>
</tr>
<tr>
<td>absolute position</td>
<td>Position relative to zero.</td>
</tr>
<tr>
<td>acceleration/deceleration</td>
<td>A measurement of the change in velocity as a function of time.</td>
</tr>
<tr>
<td>active high</td>
<td>A signal is active when its value is high (1).</td>
</tr>
<tr>
<td>active low</td>
<td>A signal is active when its value is low (0).</td>
</tr>
<tr>
<td>ADC</td>
<td>analog-to-digital converter</td>
</tr>
<tr>
<td>address</td>
<td>Character code that identifies a specific location (or series of locations) in memory or on a host PC bus system.</td>
</tr>
<tr>
<td>amplifier</td>
<td>The device that delivers power to operate the motor in response to low-level control signals. In general, the amplifier is designed to operate with a particular motor type. For example, you cannot use a stepper drive to operate a DC brush motor.</td>
</tr>
<tr>
<td>Analog Input <1..8></td>
<td>16-bit analog ADC input.</td>
</tr>
<tr>
<td>Analog Output <1..8></td>
<td>DAC voltage output.</td>
</tr>
<tr>
<td>API</td>
<td>application programming interface</td>
</tr>
<tr>
<td>axis</td>
<td>Unit that controls a motor or any similar motion or control device.</td>
</tr>
<tr>
<td>Axis <1..8> Dir (CCW)</td>
<td>Axis 1 through 8 direction output or counterclockwise direction control.</td>
</tr>
<tr>
<td>Axis <1..8> Forward Limit Input</td>
<td>Axis 1 through 8 forward limit switch.</td>
</tr>
<tr>
<td>Axis <1..8> Home Input</td>
<td>Axis 1 through 8 home input.</td>
</tr>
</tbody>
</table>
Glossary

Axis <1..8> Inhibit
Axis 1 through 8 inhibit output.

Axis <1..8> Reverse Limit Input
Axis 1 through 8 reverse limit input.

Axis <1..8> Step (CW)
Axis 1 through 8 stepper pulse output or clockwise direction control.

B

b
— One binary digit, either 0 or 1.

base address
Memory address that serves as the starting address for programmable or I/O bus registers. All other addresses are located by adding to the base address.

binary
A number system with a base of 2.

bit
The smallest unit of memory, or the smallest unit of data used in a digital operation; a contraction of binary and digit. A bit can assume values of 0 to 1 (off or on).

buffer
Temporary storage for acquired or generated data (software).

bus
The group of conductors that interconnect individual circuitry in a computer. Typically, a bus is the expansion vehicle to which I/O or other devices are connected.

C

CCW
counterclockwise—Implies direction of motor rotation.

closed-loop
A motion system that uses a feedback device to provide position and velocity data for status reporting and accurately controlling position and velocity.

common
Reference signal for digital I/O.

CPU
central processing unit

crosstalk
An unwanted signal on one channel due to an input on a different channel.

CSR
communications status register

CW
clockwise—Implies direction of motor rotation.
<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>DAC</td>
<td>digital-to-analog converter</td>
</tr>
<tr>
<td>DAQ</td>
<td>data acquisition</td>
</tr>
<tr>
<td>dedicated</td>
<td>Assigned to a particular function.</td>
</tr>
<tr>
<td>DGND</td>
<td>Digital ground signal.</td>
</tr>
<tr>
<td>digital I/O port</td>
<td>Group of digital input/output signals.</td>
</tr>
<tr>
<td>DIP</td>
<td>dual inline package</td>
</tr>
<tr>
<td>DLL</td>
<td>dynamic link library—Provides the API for the motion control boards.</td>
</tr>
<tr>
<td>drive</td>
<td>Electronic signal amplifier that converts motor control command signals into higher-voltage signals suitable for driving motors.</td>
</tr>
<tr>
<td>DSP</td>
<td>digital signal processor</td>
</tr>
<tr>
<td>encoder</td>
<td>A device that translates mechanical motion into electrical signals; used for monitoring position or velocity in a closed-loop system.</td>
</tr>
<tr>
<td>encoder resolution</td>
<td>The number of encoder lines between consecutive encoder indexes (marker or Z-bit). If the encoder does not have an index output, the encoder resolution can be referred to as lines per revolution.</td>
</tr>
<tr>
<td>F</td>
<td>farad</td>
</tr>
<tr>
<td>FIFO</td>
<td>first-in, first-out</td>
</tr>
<tr>
<td>filter parameters</td>
<td>Indicates the control loop parameter gains (PID gains) for a given axis.</td>
</tr>
<tr>
<td>filtering</td>
<td>A type of signal conditioning that filters unwanted signals from the signal being measured.</td>
</tr>
<tr>
<td>flash ROM</td>
<td>Type of electrically reprogrammable read-only memory.</td>
</tr>
</tbody>
</table>
following error trip point The difference between the instantaneous commanded trajectory position and the feedback position. If the following error increases beyond the maximum allowable value entered—referred to as the following error trip point—the motor trips on following error and is killed, preventing the axis from running away.

FPGA field programmable gate array

freewheel Condition of a motor when power is de-energized and the motor shaft is free to turn with only frictional forces to impede it.

full-step A stepper motor mode. For a two phase motor, full-step mode is done by energizing both windings or phases simultaneously.

G

Gnd/GND ground

H

half-step A stepper motor mode. For a two phase motor, half-step mode is done by alternately energizing two windings and then only one. In half step mode, alternate steps are strong and weak but there is significant improvement in low-speed smoothness over the full-step mode.

hex hexadecimal

home switch (input) A physical position determined by the mechanical system or designer as the reference location for system initialization. Frequently, the home position is also regarded as the zero position in an absolute position frame of reference.

host computer The computer the motion control board is plugged into.

I

index The marker between consecutive encoder revolutions.

IRQ interrupt request—A signal from a hardware device or a CPU peripheral device requesting the CPU’s attention.
<table>
<thead>
<tr>
<th>K</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>k</td>
<td>kilo—The standard metric prefix for 1,000, or 10^3, used with units of measure such as volts, hertz, and meters.</td>
</tr>
<tr>
<td>K</td>
<td>kilo—The prefix for 1,024, or 2^{10}, used with byte (B) in quantifying data or computer memory.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>L</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>LIFO</td>
<td>last-in, first-out</td>
</tr>
<tr>
<td>limit switch/ end-of-travel position (input)</td>
<td>Sensors that alert the control electronics that the physical end of travel is being approached and that the motion should stop.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>M</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>MCS</td>
<td>move complete status—A status bit on the motion controller that indicates that the current move is finished. The status depends on various factors that you can configure using software.</td>
</tr>
<tr>
<td>microstep</td>
<td>Proportional control of energy in the coils of a stepper motor that allow the motor to move to or stop at locations other than the fixed magnetic/mechanical pole positions determined by the motor specifications. This capability facilitates the subdivision of full mechanical steps on a stepper motor into finer microstep locations that greatly smooth motor running operation and increase the resolution or number of discrete positions that a stepper motor can attain in each revolution.</td>
</tr>
<tr>
<td>modulo position</td>
<td>Treat the position as if it is within the range of total quadrature counts per revolution for an axis.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>N</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>noise</td>
<td>An undesirable electrical signal—noise comes from external sources such as the AC power line, motors, generators, transformers, fluorescent lights, soldering irons, CRT displays, computers, electrical storms, welders, radio transmitters, and internal sources such as semiconductors, resistors, and capacitors. Noise corrupts signals you are trying to send or receive.</td>
</tr>
</tbody>
</table>
Glossary

O
open collector A method of output capable of sinking current, but not sourcing current.
open-loop A motion control system where no external sensors (feedback devices) are used to provide position or velocity correction signals.

P
PCI peripheral component interconnect—A high-performance expansion bus architecture originally developed by Intel to replace ISA and EISA. PCI is achieving widespread acceptance as a standard for PCs and workstations; it offers a theoretical maximum transfer rate of 132 MB/s.
PID control loop proportional-integral-derivative control loop—A control method in which the controller output is proportional to the error, the error time history, and the rate at which the error is changing. The error is the difference between the observed and the commanded values of a variable that is under control action.
PIV ff control loop proportional-integral-velocity feed forward control loop—A control method that operates with zero derivative gain and either velocity feedback or a velocity block amplifier.
port (1) A communications connection on a computer or a remote controller; (2) A digital port, consisting of eight lines of digital input and/or output.
position breakpoint Position breakpoint for an encoder can be set in absolute or relative quadrature counts. When the encoder reaches a position breakpoint, the associated breakpoint (position compare) output immediately transitions.
power cycling Turning the host computer off and then back on, which causes a reset of the motion control board.
PWM pulse width modulation—A method of controlling the average current in a motor phase winding by varying the on-time (duty cycle) of transistor switches.
PXI PCI eXtensions for Instrumentation—A rugged, open system for modular instrumentation based on CompactPCI, with special mechanical, electrical, and software features. The PXIbus standard was originally developed by National Instruments in 1997, and is now managed by the PXIbus Systems Alliance.
Q
quadrature counts Encoder line resolution multiplied by four.

R
relative breakpoint (position compare) Sets the position breakpoint for an encoder in relative quadrature counts.
relative position Destination or target position for motion specified with respect to the current location regardless of its value.
relative position mode Treat the target position loaded as position relative to current position while making a move.
ribbon cable A flat cable in which the conductors are side by side.
RPM revolutions per minute—Units for velocity.
RPSPS or RPS/S revolutions per second squared—Units for acceleration and deceleration.
RTR ready to receive—A status bit on the controller indicating that the controller is ready to communicate with the host system.

S
servo Specifies an axis that controls a servo motor.
s-curve profile An s-curve acceleration/deceleration profile eases to a start and smoothly accelerates to top speed. Deceleration is equally smooth.
sinusoidal commutation A method of controlling current in the windings of a brushless servo motor by using the pattern of a sine wave to shape the smooth delivery of current to three motor inputs, each 120° out of phase from the next.
stepper Specifies an axis that controls a stepper motor.

T
toggle Changing state from high to low, back to high, and so on.
torque A force tending to produce rotation.
Glossary

<table>
<thead>
<tr>
<th>Term</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Totem Pole</td>
<td>A method of output capable of sinking and sourcing current.</td>
</tr>
<tr>
<td>trapezoidal profile</td>
<td>A typical motion trajectory, where a motor accelerates up to the programmed velocity using the programmed acceleration, traverses at the programmed velocity, then decelerates at the programmed acceleration to the target position.</td>
</tr>
<tr>
<td>trigger (position capture)</td>
<td>Any event that causes or starts some form of data capture.</td>
</tr>
<tr>
<td>VCC</td>
<td>Positive voltage supply.</td>
</tr>
<tr>
<td>velocity mode</td>
<td>This operation mode moves the axis continuously at a specified velocity.</td>
</tr>
<tr>
<td>watchdog</td>
<td>Timer task that shuts down (resets) the motion control board if any serious error occurs.</td>
</tr>
<tr>
<td>word</td>
<td>Standard number of bits that a processor or memory manipulates at one time, typically 8-bit, 16-bit, or 32-bit.</td>
</tr>
</tbody>
</table>
Index

Symbols
+5 V signal. See Host +5 V signal

Numerics
7350 controller
 configuration, 2-1
 digital I/O connector
 axes 1–4 (figure), 5-15
 axes 5–8 (figure), 5-16
 digital I/O connectors, overview, 3-4
 features, 1-1
 hardware, 1-2
 hardware overview, 3-1
 installation, 2-4
 motion I/O connector
 axes 1–4 (figure), 5-2
 axes 5–8 (figure), 5-3
 motion I/O connectors, overview, 3-4
National Instruments application software, 1-3
 optional equipment, 1-4
 parts locator diagrams
 back panel, 3-2, 3-4
 connectors, 3-5
 front panel, 3-1, 3-3
 processor architecture, 4-1
 requirements for getting started, 1-2
 RTSI, 1-2
 safety information, 2-2
 software installation, 2-1
 software programming choices, 1-3

A
 analog feedback, 4-2
 Analog Input <1..8> signal
 analog input voltage ranges (table), 5-12
 description (table), 5-4
 purpose and use, 5-12
 Analog Input Ground signal
 description (table), 5-4
 purpose and use, 5-12
 analog inputs, 4-2
 signal descriptions, 5-12
 wiring concerns, 5-13
 Analog Output <1..8> signal
 description (table), 5-4
 purpose and use, 5-5
 Analog Output Ground signal
 description (table), 5-4
 purpose and use, 5-5
 analog outputs, 4-2
 Analog Reference signal
 description (table), 5-4
 purpose and use, 5-5
 axes
 overview, 4-3
 servo axis resources (figure), 4-4
 stepper axis resources (figure), 4-4
 Axis <1..8> Dir (CCW) signal
 compatibility with third-party drives, 5-6
 description (table), 5-4
 purpose and use, 5-5
 Axis <1..8> Encoder Index signal
 description (table), 5-4
 purpose and use, 5-9
 Axis <1..8> Encoder Phase A signal
 description (table), 5-4
 purpose and use, 5-8
 Axis <1..8> Encoder Phase B signal
 description (table), 5-4
 purpose and use, 5-8
Axis <1..8> Forward Limit Switch signal
description (table), 5-4
purpose and use, 5-6
Axis <1..8> Home Switch signal
description (table), 5-4
purpose and use, 5-6
Axis <1..8> Inhibit signal
description (table), 5-4
purpose and use, 5-6
Axis <1..8> Reverse Limit Switch signal
description (table), 5-4
purpose and use, 5-6
Axis <1..8> Step (CW) signal
compatibility with third-party drives, 5-6
description (table), 5-4
purpose and use, 5-5

B
breakpoint (position compare)
concepts, 4-5
examples, 5-18
breakpoint (position compare) outputs
overview, 5-11
wiring concerns, 5-11
Breakpoint <1..8> signal
description (table), 5-4
purpose and use, 5-11
brushless servo motors, connecting, 2-5
buffers, 4-5

C
cable connectors
50-pin servo connector pin assignments
axes 1–4 (figure), B-4
axes 5–8 (figure), B-5
50-pin stepper connector pin assignments
axes 1–4 (figure), B-2
axes 5–8 (figure), B-3
cables, custom, 1-4
calibration certificate (NI resources), D-2
CE compliance specifications, A-10
command buffer, 4-6
communications status register (CSR), 4-6
communications, host, 4-6
configuration, 2-1
connectors
cable connectors
50-pin servo connector pin assignments, axes 1–4
(figure), B-4
50-pin servo connector pin assignments, axes 5–8
(figure), B-5
50-pin stepper connector pin assignments, axes 1–4
(figure), B-2
50-pin stepper connector pin assignments, axes 5–8
(figure), B-3
custom cables, 1-4
digital I/O connector axes 1–4
(figure), 5-15
digital I/O connector axes 5–8
(figure), 5-16
user connectors, 3-4
conventions used in the manual, ix
custom cables, 1-4

D
DAC, resources, 4-4
Declaration of Conformity (NI resources), D-1
diagnostic tools (NI resources), D-1
Digital Ground signal (table), 5-4
digital I/O connectors, 3-4, 5-15
68-pin connector axes 1–4 pin assignments (figure), 5-15
68-pin connector axes 5–8 pin assignments (figure), 5-16
description, 5-17
parts locator diagram, 3-5
PWM features, 5-17
specifications, A-7
documentation
 conventions used in manual, ix
 NI resources, D-1
 related documentation, x
 drivers (NI resources), D-1

E
 electromagnetic compatibility specifications, A-10
 embedded real-time operating system (RTOS), 4-1
 encoder signals
 Encoder <1..8> Index, 5-9
 Encoder <1..8> Phase A/Phase B, 5-8
 input circuit, 5-10
 signal descriptions, 5-8
 wiring concerns, 5-9
 environment specifications, A-9
 equipment, optional, 1-4
 examples (NI resources), D-1

F
 flash memory, 4-3
 functional overview, 4-1
 analog feedback, 4-2
 axes, 4-3
 buffers, 4-5
 dual processor architecture, 4-1
 embedded real-time operating system (RTOS), 4-1
 flash memory, 4-3
 host communications, 4-6
 motion resources, 4-5
 onboard programs, 4-5
 trajectory generators, 4-2

H
 Hall effect sensors
 connecting, 2-6
 Type 1 wiring diagrams, 2-7
 Type 2 wiring diagrams, 2-8
 hardware
 7350 controller, 1-2
 configuration, 2-1
 connecting brushless servo motors, 2-5
 connectors, 3-4
 digital I/O connectors, 3-4
 features, 1-1
 I/O states during reset, C-1
 installation
 connecting brushless servo motor leads, 2-10
 connecting Hall effect sensors, 2-6
 procedure, 2-4
 motion I/O connectors, 3-4
 overview, 3-1
 parts locator diagrams
 back panel, 3-2, 3-4
 connectors, 3-5
 front panel, 3-1, 3-3
 safety information, 2-2
 help technical support, D-1
 high-speed capture, 4-5
 Host +5 V signal
 description (table), 5-4
 purpose and use, 5-13
 host communications, 4-6

I
 I/O states, C-1
 installation
 category, 2-3
 hardware, 2-4
 software, 2-1
 instrument drivers (NI resources), D-1
Index

K
KnowledgeBase, D-1

L
LabVIEW software, 1-3
limit and home inputs
 Axis <1..8> Forward Limit Input, 5-6
 Axis <1..8> Home Input, 5-6
 Axis <1..8> Reverse Limit Input, 5-6
input circuit, 5-7
signal descriptions, 5-6
wiring concerns, 5-7

M
memory
 buffer storage, 4-5
 flash, 4-3
motion axis signals
 Analog Output <1..8>, 5-5
 Analog Output Ground, 5-5
 Axis <1..8> Dir (CCW), 5-5
 Axis <1..8> Inhibit, 5-6
 Axis <1..8> Step (CW), 5-5
motion I/O connectors, 3-4
 68-pin connector axes 1–4 pin assignments (figure), 5-2
 68-pin connector axes 5–8 pin assignments (figure), 5-3
encoder signals
 signal descriptions, 5-12
 wiring concerns, 5-13
custom cables, 1-4

N
National Instruments
 application software, 1-3
 support and services, D-1
NI-Motion VI Library, 1-3

O
onboard programs, 4-5
 Open-Collector mode, wiring diagram, 5-14
optional equipment, 1-4
optocouplers
 interfacing with, 5-13
 Open-Collector output mode (wiring diagram), 5-14
 Totem Pole output mode (wiring diagram), 5-14

P
parts locator diagrams
 7350 back panel, 3-2, 3-4
 7350 connectors, 3-5
 7350 front panel, 3-1, 3-3

limit and home inputs
 input circuit, 5-7
 signal descriptions, 5-6
 wiring concerns, 5-7
motion axis signals, 5-5
parts locator diagram, 3-5
signal connections, 5-4
specifications, A-3
trigger (position capture) inputs, shutdown inputs, and breakpoint (position compare) outputs
 circuits, 5-12
 signal descriptions, 5-10
 wiring concerns, 5-11
motion resources, 4-5

NI 7350 User Manual

ni.com
Index

physical specifications, A-8
power requirement specifications, A-8
processor, 4-1
programming examples (NI resources), D-1
pulse width modulation output, digital I/O connector, 5-17
PWM features, digital I/O connector, 5-17

R
related documentation, x
requirements for getting started, 1-2
resources
ADC, 4-5
DAC, 4-5
motion I/O, 4-5
return data buffer (RDB), 4-6
RTOS (embedded real-time operating system), 4-1
RTSI
7350 controller, 1-2
connector, 3-1, 3-3
signal considerations, 5-18
specifications, A-7
triggers, 3-5, A-7

S
safety information, 2-2
safety specifications, A-3, A-9
servo axis resources (figure), 4-4
servo performance specifications, A-1
shutdown input, wiring concerns, 5-11
Shutdown signal
description (table), 5-4
purpose and use, 5-11
signal connections. See digital I/O connector, motion I/O connector, and RTSI
sinusoidal commutation, 2-6
onboard, 4-3
resources, 4-4
software
installation, 2-1
National Instruments application software, 1-3
NI resources, D-1
onboard programs, 4-5
programming choices, 1-3
specifications
CE compliance, A-10
digital I/O connectors, A-7
electromagnetic compatibility, A-10
environment, A-9
motion I/O, A-3
physical, A-8
power requirements (max), A-8
RTSI trigger lines, A-7
safety, A-3, A-9
servo performance, A-1
stepper performance, A-2
working voltage (max), A-9
stepper axis resources (figure), 4-4
stepper performance specifications, A-2
support technical, D-1

T
technical support, D-1
Totem Pole mode, wiring diagram, 5-14
training and certification (NI resources), D-1
trajectory generators, 4-2
trigger (position capture) inputs
overview, 5-10
wiring concerns, 5-11
Trigger <1..8> signal
description (table), 5-4
purpose and use, 5-10
troubleshooting (NI resources), D-1

V
voltage specifications (working max), A-9

© National Instruments Corporation I-5 NI 7350 User Manual
Index

W
Web resources, D-1
wiring concerns
 analog inputs, 5-13
 breakpoint (position compare) outputs, 5-11
 encoder signals, 5-9
 limit and home inputs, 5-7
 optocoupler wiring, 5-13
 Totem Pole mode, 5-14
 trigger (position capture) inputs, 5-11