Important Information

Warranty

The NI 7811R/7813R/7830R/7831R/7833R/7841R/7842R/7851R/7852R/7853R/7854R is warranted against defects in materials and
workmanship for a period of one year from the date of shipment, as evidenced by receipts or other documentation. National Instruments will,
at its option, repair or replace equipment that proves to be defective during the warranty period. This warranty includes parts and labor.

The media on which you receive National Instruments software are warranted not to fail to execute programming instructions, due to defects in
materials and workmanship, for a period of 90 days from date of shipment, as evidenced by receipts or other documentation. National Instruments
will, at its option, repair or replace software media that do not execute programming instructions if National Instruments receives notice of such defects
during the warranty period. National Instruments does not warrant that the operation of the software shall be uninterrupted or error free.

A Return Material Authorization (RMA) number must be obtained from the factory and clearly marked on the outside of the package before any
equipment will be accepted for warranty work. National Instruments will pay the shipping costs of returning to the owner parts which are covered by
warranty.

National Instruments believes that the information in this document is accurate. The document has been carefully reviewed for technical accuracy. In
the event that technical or typographical errors exist, National Instruments reserves the right to make changes to subsequent editions of this document
without prior notice to holders of this edition. The reader should consult National Instruments if errors are suspected. In no event shall National
Instruments be liable for any damages arising out of or related to this document or the information contained in it.

Except as specified herein, National Instruments makes no warranties, express or implied, and specifically disclaims any warranty of
merchantability or fitness for a particular purpose. Customer’s right to recover damages caused by fault or negligence on the part of National
Instruments shall be limited to the amount therefore paid by the customer. National Instruments will not be liable for damages resulting
from loss of data, profits, use of products, or incidental or consequential damages, even if advised of the possibility thereof. This limitation of
the liability of National Instruments will apply regardless of the form of action, whether in contract or tort, including negligence. Any action against
National Instruments must be brought within one year after the cause of action accrues. National Instruments shall not be liable for any delay in
performance due to causes beyond its reasonable control. The warranty provided herein does not cover damages, defects, malfunctions, or service
failures caused by owner’s failure to follow the National Instruments installation, operation, or maintenance instructions; owner’s modification of the
product; owner’s abuse, misuse, or negligent acts; and power failure or surges, fire, flood, accident, actions of third parties, or other events outside
reasonable control.

Copyright

Under the copyright laws, this publication may not be reproduced or transmitted in any form, electronic or mechanical, including photocopying,
recording, storing in an information retrieval system, or translating, in whole or in part, without the prior written consent of National Instruments
Corporation.

National Instruments respects the intellectual property of others, and we ask our users to do the same. NI software is protected by copyright and other
intellectual property laws. Where NI software may be used to reproduce software or other materials belonging to others, you may use NI software only
to reproduce materials that you may reproduce in accordance with the terms of any applicable license or other legal restriction.

Trademarks

National Instruments, NI, ni.com, and LabVIEW are trademarks of National Instruments Corporation. Refer to the Terms of Use section
on ni.com/legal for more information about National Instruments trademarks.

Other product and company names mentioned herein are trademarks or trade names of their respective companies.

Members of the National Instruments Alliance Partner Program are business entities independent from National Instruments and have no agency,
partnership, or joint-venture relationship with National Instruments.

Patents

For patents covering National Instruments products/technology, refer to the appropriate location: Help>Patents in your software,
the patents.txt file on your media, or the National Instruments Patent Notice at ni.com/patents.

WARNING REGARDING USE OF NATIONAL INSTRUMENTS PRODUCTS

(1) NATIONAL INSTRUMENTS PRODUCTS ARE NOT DESIGNED WITH COMPONENTS AND TESTING FOR A LEVEL OF
RELIABILITY SUITABLE FOR USE IN OR IN CONNECTION WITH SURGICAL IMPLANTS OR AS CRITICAL COMPONENTS IN
ANY LIFE SUPPORT SYSTEMS WHOSE FAILURE TO PERFORM CAN REASONABLY BE EXPECTED TO CAUSE SIGNIFICANT
INJURY TO A HUMAN.

(2) IN ANY APPLICATION, INCLUDING THE ABOVE, RELIABILITY OF OPERATION OF THE SOFTWARE PRODUCTS CAN BE
IMPAIRED BY ADVERSE FACTORS, INCLUDING BUT NOT LIMITED TO FLUCTUATIONS IN ELECTRICAL POWER SUPPLY,
COMPUTER HARDWARE MALFUNCTIONS, COMPUTER OPERATING SYSTEM SOFTWARE FITNESS, FITNESS OF COMPILES
AND DEVELOPMENT SOFTWARE USED TO DEVELOP AN APPLICATION, INSTALLATION ERRORS, SOFTWARE AND HARDWARE
COMPATIBILITY PROBLEMS, MALFUNCTIONS OR FAILURES OF ELECTRONIC MONITORING OR CONTROL DEVICES,
TRANSIENT FAILURES OF ELECTRONIC SYSTEMS (HARDWARE AND/or SOFTWARE), UNANTICIPATED USES OR MISUSES, OR
ERRORS ON THE PART OF THE USER OR APPLICATIONS DESIGNER (ADVERSE FACTORS SUCH AS THESE ARE HEREAFTER
COLLECTIVELY TERMED “SYSTEM FAILURES”). ANY APPLICATION WHERE A SYSTEM FAILURE WOULD CREATE A RISK OF
HARM TO PROPERTY OR PERSONS (INCLUDING THE RISK OF BODILY INJURY AND DEATH) SHOULD NOT BE RELIANT SOLELY
UPON ONE FORM OF ELECTRONIC SYSTEM DUE TO THE RISK OF SYSTEM FAILURE, TO AVOID DAMAGE, INJURY, OR DEATH.
THE USER OR APPLICATION DESIGNER MUST TAKE REASONABLY PRUDENT STEPS TO PROTECT AGAINST SYSTEM FAILURES,
INCLUDING BUT NOT LIMITED TO BACK-UP OR SHUT DOWN MECHANISMS. BECAUSE EACH END USER SYSTEM IS
CUSTOMIZED AND DIFFERS FROM NATIONAL INSTRUMENTS’ TESTING PLATFORMS AND BECAUSE A USER OR APPLICATION DESIGNER IS
ULTIMATELY RESPONSIBLE FOR VERIFYING AND VALIDATING THE SUITABILITY OF NATIONAL INSTRUMENTS PRODUCTS WHENEVER
NATIONAL INSTRUMENTS PRODUCTS ARE INCORPORATED IN A SYSTEM OR APPLICATION, INCLUDING, WITHOUT
LIMITATION, THE APPROPRIATE DESIGN, PROCESS AND SAFETY LEVEL OF SUCH SYSTEM OR APPLICATION.
Contents

About This Manual
Conventions ... ix
Related Documentation ... ix
Software Documentation ... x
Device-Specific Documentation ... xi
Additional Resources ... xi

Chapter 1
Introduction
About the Reconfigurable I/O Device ... 1-1
Using PXI with CompactPCI .. 1-2
Overview of Reconfigurable I/O ... 1-3
 Reconfigurable I/O Concept .. 1-3
 Flexible Functionality ... 1-4
 User-Defined I/O Resources .. 1-4
 Device-Embedded Logic and Processing ... 1-4
Reconfigurable I/O Architecture .. 1-5
Reconfigurable I/O Applications .. 1-6
Software Development .. 1-6
 LabVIEW FPGA Module ... 1-6
 LabVIEW Real-Time Module .. 1-7
Cables and Accessories .. 1-8
 Custom Cabling .. 1-8

Chapter 2
Hardware Overview of the NI 78xxR
NI 7811R Overview ... 2-3
NI 7813R Overview ... 2-3
NI 7830R Overview ... 2-3
NI 7831R/7833R Overview ... 2-4
NI 784xR Overview ... 2-4
NI 785xR Overview ... 2-4
Analog Input (NI 783xR/784xR/785xR Only) ... 2-4
 Input Modes ... 2-5
 Input Range ... 2-5
Connecting Analog Input Signals ... 2-6
Contents

Types of Signal Sources ... 2-8
 Floating Signal Sources ... 2-8
 Ground-Referenced Signal Sources ... 2-8
Input Modes ... 2-8
 Differential Connection Considerations (DIFF Input Mode) ... 2-10
 Differential Connections for Ground-Referenced Signal Sources 2-11
 Differential Connections for Nonreferenced or Floating Signal Sources 2-12
Single-Ended Connection Considerations ... 2-13
 Single-Ended Connections for Floating Signal Sources
 (RSE Input Mode) ... 2-14
 Single-Ended Connections for Grounded Signal Sources
 (NRSE Input Mode) .. 2-15
Common-Mode Signal Rejection Considerations ... 2-16
Analog Output .. 2-16
Connecting Analog Output Signals .. 2-17
Digital I/O ... 2-17
Connecting Digital I/O Signals .. 2-17
RTSI Trigger Bus ... 2-21
PXI Local Bus (NI PXI-781xR/783xR Only) .. 2-21
Switch Settings (NI 781xR/783xR Only) ... 2-23
+5 V Power Source ... 2-26
 Device Fuse Replacement (NI 784xR/785xR Only) ... 2-27
PCI Express Device Disk Drive Power Connector ... 2-28
 When to Use the Disk Drive Power Connector .. 2-28
 Disk Drive Power Connector Installation ... 2-29
Field Wiring Considerations (NI 783xR/784xR/785xR Only) .. 2-30

Chapter 3

Calibration (NI 783xR/784xR/785xR Only)
Loading Calibration Constants .. 3-1
Self-Calibration ... 3-1
External Calibration ... 3-2

Appendix A

Connecting I/O Signals

Appendix B

Using the SCB-68 Shielded Connector Block
Appendix C
Technical Support and Professional Services

Glossary
About This Manual

This manual describes the electrical and mechanical aspects of the National Instruments 781xR/783xR/784xR/785xR devices and contains information about programming and using the devices.

Conventions

The following conventions appear in this manual:

- This icon denotes a note, which alerts you to important information.
- This icon denotes a caution, which advises you of precautions to take to avoid injury, data loss, or a system crash. When this symbol is marked on a product, refer to the Read Me First: Safety and Electromagnetic Compatibility document for information about precautions to take.
- When symbol is marked on a product, it denotes a warning advising you to take precautions to avoid electrical shock.
- When symbol is marked on a product, it denotes a component that may be hot. Touching this component may result in bodily injury.

NI 78xR

NI 781xR, 783xR, NI 784xR, and NI 785xR refer to all PCI, PCI Express, and PXI R Series devices.

Related Documentation

The following documents contain information that you may find helpful as you use this help file. Your documentation needs may vary depending on the hardware and software you use for your application.

Note Most R Series manuals are available as PDFs. You must have Adobe Reader with Search and Accessibility 5.0.5 or later installed to view the PDFs. Refer to the Adobe Systems Incorporated Web site at www.adobe.com to download Adobe Reader. Refer to ni.com/manuals for updated documentation resources.
Software Documentation

- LabVIEW FPGA documentation
 - *Getting Started with LabVIEW FPGA 8.x*—This KnowledgeBase, available at ni.com/kb, provides links to the top resources that can be used to assist in getting started with programming in LabVIEW FPGA.
 - *FPGA Module* book in the *LabVIEW Help*—Select Help>Search the LabVIEW Help in LabVIEW to view the LabVIEW Help. Browse the *FPGA Module* book in the Contents tab for information about using the FPGA Module to create VIs that run on the NI 78xxR device.
 - *LabVIEW FPGA Module Release and Upgrade Notes*—Contains information about installing the LabVIEW FPGA Module, describes new features, and provides upgrade information. To access this document, refer to ni.com/manuals. In LabVIEW 8.0 or later, you can also view the LabVIEW Manuals directory that contains this document by selecting Start>All Programs>National Instruments>LabVIEW>LabVIEW Manuals.

- LabVIEW Real-Time documentation
 - *Getting Started with the LabVIEW Real-Time Module*—Provides exercises to teach you how to develop a real-time project and VIs, from setting up RT targets to building, debugging, and deploying real-time applications. This document provides references to the LabVIEW Help and other Real-Time Module documents for more information as you create the real-time application. To access this document, refer to ni.com/manuals. In LabVIEW 8.0 or later, you can also view the LabVIEW Manuals directory that contains this document by selecting Start>All Programs>National Instruments>LabVIEW>LabVIEW Manuals.
 - *LabVIEW Real-Time Module Release and Upgrade Notes*—Includes information about system requirements, installation, configuration, new features and changes, and compatibility issues for the LabVIEW Real-Time Module. To access this document, refer to ni.com/manuals. In LabVIEW 8.0 or later, you can also view the LabVIEW Manuals
directory that contains this document by selecting Start»
All Programs»National Instruments»LabVIEW»LabVIEW Manuals.

Device-Specific Documentation

- **Getting Started with R Series Multifunction RIO**—This document explains how to install and configure NI 781xR/783xR/784xR/785xR, and contains a tutorial that demonstrates how to begin taking a measurement using LabVIEW FPGA. This document is available at ni.com/manuals.

- **NI R Series Multifunction RIO Specifications**—Lists the specifications of the NI 781xR/783xR/784xR/785xR R Series devices. This document is available at ni.com/manuals.

Additional Resources

The following documents contain information you might find helpful:

- NI Developer Zone tutorial, *Field Wiring and Noise Considerations for Analog Signals*, at ni.com/zone
- **PICMG CompactPCI 2.0 R3.0**
- **PXI Hardware Specification Revision 2.1**
- **PXI Software Specification Revision 2.1**
- **National Instruments Example Finder**—LabVIEW contains an extensive library of VIs and example programs for use with R Series devices. To access the NI Example Finder, open LabVIEW and select Help»Find Examples, then select Hardware Input and Output»R Series.

- **LabVIEW FPGA IPNet**—Offers resources for browsing, understanding, and downloading LabVIEW FPGA functions or IP (Intellectual Property). Use this resource to acquire IP that you need for your application, download examples to help learn programming techniques, and explore the depth of IP offered by the LabVIEW FPGA platform. To access the LabVIEW FPGA IPNet, visit ni.com/ipnet.
Introduction

This chapter describes the NI 781xR/783xR/784xR/785xR, the concept of the Reconfigurable I/O (RIO) device, optional software and equipment for using the NI 78xxR, and safety information about the NI 78xxR.

About the Reconfigurable I/O Device

Table 1-1 lists an overview of the NI 78xxR R Series Multifunction RIO devices.

<table>
<thead>
<tr>
<th>Device</th>
<th>I/O Channels</th>
<th>FPGA</th>
<th>AI Sample Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>NI PCI/PXI-7811R</td>
<td>160 DIO</td>
<td>Virtex-II XC2V1000</td>
<td>—</td>
</tr>
<tr>
<td>NI PCI/PXI-7813R</td>
<td>160 DIO</td>
<td>Virtex-II XC2V3000</td>
<td>—</td>
</tr>
<tr>
<td>NI PCI/PXI-7830R</td>
<td>4 AI, 4 AO, 56 DIO</td>
<td>Virtex-II XC2V1000</td>
<td>200 kS/s</td>
</tr>
<tr>
<td>NI PCI/PXI-7831R</td>
<td>8 AI, 8 AO, 96 DIO</td>
<td>Virtex-II XC2V1000</td>
<td>200 kS/s</td>
</tr>
<tr>
<td>NI PCI/PXI-7833R</td>
<td>8 AI, 8 AO, 96 DIO</td>
<td>Virtex-II XC2V3000</td>
<td>200 kS/s</td>
</tr>
<tr>
<td>NI PCIe/PXI-7841R</td>
<td>8 AI, 8 AO, 96 DIO</td>
<td>Virtex-5 LX30</td>
<td>200 kS/s</td>
</tr>
<tr>
<td>NI PCIe/PXI-7842R</td>
<td>8 AI, 8 AO, 96 DIO</td>
<td>Virtex-5 LX50</td>
<td>200 kS/s</td>
</tr>
<tr>
<td>NI PCIe/PXI-7851R</td>
<td>8 AI, 8 AO, 96 DIO</td>
<td>Virtex-5 LX30</td>
<td>750 kS/s</td>
</tr>
<tr>
<td>NI PCIe/PXI-7852R</td>
<td>8 AI, 8 AO, 96 DIO</td>
<td>Virtex-5 LX50</td>
<td>750 kS/s</td>
</tr>
<tr>
<td>NI PXI-7853R</td>
<td>8 AI, 8 AO, 96 DIO</td>
<td>Virtex-5 LX85</td>
<td>750 kS/s</td>
</tr>
<tr>
<td>NI PXI-7854R</td>
<td>8 AI, 8 AO, 96 DIO</td>
<td>Virtex-5 LX110</td>
<td>750 kS/s</td>
</tr>
</tbody>
</table>

A user-reconfigurable FPGA (Field-Programmable Gate Array) controls the digital I/O lines on the NI 781xR, and the digital and analog I/O lines on the NI 783xR/784xR/785xR. The FPGA on the R Series device allows you to define the functionality and timing of the device. You can change the functionality of the FPGA on the R Series device in LabVIEW using the LabVIEW FPGA Module to create and download a custom virtual
instrument (VI) to the FPGA. Using the FPGA Module, you can graphically design the timing and functionality of the R Series device. If you only have LabVIEW but not the FPGA Module, you cannot create new FPGA VIs, but you can create VIs that run on Windows or a LabVIEW Real-Time (RT) target to control existing FPGA VIs.

Some applications require tasks such as real-time, floating-point processing or datalogging while performing I/O and logic on the R Series device. You can use the LabVIEW Real-Time Module to perform these additional applications while communicating with and controlling the R Series device.

The R Series device contains Flash memory to store a startup VI for automatic loading of the FPGA when the system is powered on.

The NI 78xxR uses the Real-Time System Integration (RTSI) bus to easily synchronize several measurement functions to a common trigger or timing event. R Series PCI devices access the RTSI bus through a RTSI cable connected between devices. R Series PXI devices access the RTSI bus through the PXI trigger lines implemented on the PXI backplane.

Refer to the NI R Series Multifunction RIO Specifications, available at ni.com/manuals, for detailed device specifications.

Using PXI with CompactPCI

Using PXI-compatible products with standard CompactPCI products is an important feature provided by PXI Hardware Specification Revision 2.1 and PXI Software Specification Revision 2.1. If you use a PXI-compatible plug-in card in a standard CompactPCI chassis, you cannot use PXI-specific functions, but you still can use the basic plug-in card functions. For example, the RTSI bus on the R Series device is available in a PXI chassis but not in a CompactPCI chassis.

The CompactPCI specification permits vendors to develop sub-buses that coexist with the basic PCI interface on the CompactPCI bus. Compatible operation is not guaranteed between CompactPCI devices with different sub-buses nor between CompactPCI devices with sub-buses and PXI. The standard implementation for CompactPCI does not include these sub-buses. The R Series device works in any standard CompactPCI chassis adhering to the PICMG CompactPCI 2.0 R3.0 core specification.
Chapter 1 Introduction

PXI-specific features are implemented on the J2 connector of the CompactPCI bus. Table 1-2 lists the J2 pins used by the NI PXI-78xxR. The NI 78xxR is compatible with any CompactPCI chassis with a sub-bus that does not drive these lines. Even if the sub-bus is capable of driving these lines, the R Series device is still compatible as long as those pins on the sub-bus are disabled by default and are never enabled.

⚠️ **Caution** Damage can result if the J2 lines are driven by the sub-bus.

Table 1-2. Pins Used by the NI PXI-78xxR

<table>
<thead>
<tr>
<th>NI PXI-78xxR Signal</th>
<th>PXI Pin Name</th>
<th>PXI J2 Pin Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>PXI_Trig<0..7></td>
<td>PXI Trigger<0..7></td>
<td>A16, A17, A18, B16, B18, C18, E16, E18</td>
</tr>
<tr>
<td>PXI_Clk10</td>
<td>PXI Clock 10 MHz</td>
<td>E17</td>
</tr>
<tr>
<td>PXI_Star</td>
<td>PXI Star Trigger</td>
<td>D17</td>
</tr>
<tr>
<td>PXI_Lbl<0..12>*</td>
<td>LBL<0..12></td>
<td>A1, A19, C1, C19, C20, D1, D2, D15, D19, E1, E2, E19, E20</td>
</tr>
<tr>
<td>PXI_Lbr<0..12>*</td>
<td>LBR<0..12></td>
<td>A2, A3, A20, A21, B2, B20, C3, C21, D3, D21, E3, E15, E21</td>
</tr>
</tbody>
</table>

* NI PXI-781xR/783xR only

Overview of Reconfigurable I/O

This section explains reconfigurable I/O and describes how to use the LabVIEW FPGA Module to build high-level functions in hardware.

Refer to Chapter 2, *Hardware Overview of the NI 78xxR*, for descriptions of the I/O resources on the NI 78xxR.

Reconfigurable I/O Concept

R Series Multifunction RIO devices are based on a reconfigurable FPGA core surrounded by fixed I/O resources for analog and digital input and output. You can configure the behavior of the reconfigurable FPGA to match the requirements of the measurement and control system. You can implement this user-defined behavior as an FPGA VI to create an application-specific I/O device.
Flexible Functionality

Flexible functionality allows the NI 78xxR to match individual application requirements and to mimic the functionality of fixed I/O devices. For example, you can configure an R Series device in one application for three 32-bit quadrature encoders and then reconfigure the R Series device in another application for eight 16-bit event counters.

You also can use the R Series device with the LabVIEW Real-Time Module in timing and triggering applications, such as control and hardware-in-the-loop (HIL) simulations. For example, you can configure the R Series device for a single timed loop in one application and then reconfigure the device in another application for four independent timed loops with separate I/O resources.

User-Defined I/O Resources

You can create your own custom measurements using the fixed I/O resources. For example, one application might require an event counter that increments when a rising edge appears on any of three digital input lines. With an NI 783xR/784xR/785xR R Series device, another application might require a digital line to be asserted after an analog input exceeds a programmable threshold. You can implement these behaviors in the hardware for fast, deterministic performance.

Device-Embedded Logic and Processing

You can implement LabVIEW logic and processing in the FPGA of the R Series device. Typical logic functions include Boolean operations, comparisons, and basic mathematical operations. You can implement multiple functions efficiently in the same design, operating sequentially or in parallel. You also can implement more complex algorithms such as control loops. You are limited only by the size of the FPGA.
Reconfigurable I/O Architecture

Figure 1-1 shows an FPGA connected to fixed I/O resources and a bus interface. The fixed I/O resources include A/D converters (ADCs), D/A converters (DACs), and digital I/O lines.

![Figure 1-1. High-Level FPGA Functional Overview](image)

Software accesses the R Series device through the bus interface, and the FPGA connects the bus interface and the fixed I/O to make possible timing, triggering, processing, and custom I/O measurements using the LabVIEW FPGA Module.

The FPGA logic provides timing, triggering, processing, and custom I/O measurements. Each fixed I/O resource used by the application uses a small portion of the FPGA logic that controls the fixed I/O resource. The bus interface also uses a small portion of the FPGA logic to provide software access to the device.

The remaining FPGA logic is available for higher-level functions such as timing, triggering, and counting. The functions use varied amounts of logic.

You can place useful applications in the FPGA. How much FPGA space your application requires depends on your need for I/O recovery, I/O, and logic algorithms.
The FPGA does not retain the VI when the R Series device is powered off, so you must reload the VI each time you power on the device. You can load the VI from onboard Flash memory or from software over the bus interface. One advantage to using Flash memory is that the VI can start executing almost immediately after power up, instead of waiting for the computer to completely boot and load the FPGA VI. Refer to the *LabVIEW Help* for more information about how to store your VI in Flash memory.

Reconfigurable I/O Applications

You can use the LabVIEW FPGA Module to create or acquire new VIs for your application. The FPGA Module allows you to define custom functionality for the R Series device using a subset of LabVIEW functionality. Refer to the R Series examples, available in LabVIEW by selecting Help»Find Examples, and then selecting Hardware Input and Output»R Series, for examples of FPGA VIs.

Software Development

You can use LabVIEW with the LabVIEW FPGA Module to program the NI 78xxR. To develop real-time applications that control the NI 78xxR, use LabVIEW with the LabVIEW Real-Time Module.

LabVIEW FPGA Module

The LabVIEW FPGA Module enables you to use LabVIEW to create VIs that run on the FPGA of the R Series target device. Use the FPGA Module VIs and functions to control the I/O, timing, and logic of the R Series device and to generate interrupts for synchronization. Select Help»Search the LabVIEW Help to view the LabVIEW Help. In the LabVIEW Help, use the Contents tab to browse to the FPGA Interface book for more information about the FPGA Interface functions.

You can use Interactive Front Panel Communication to communicate directly with the FPGA VI running on the FPGA target. You can use Programmatic FPGA Interface Communication to programmatically control and communicate with FPGA VIs from host VIs.

Use the FPGA Interface functions when you target LabVIEW for Windows or an RT target to create host VIs that wait for interrupts and control the FPGA by reading and writing the FPGA VI running on the R Series device.
Note If you use the R Series device without the FPGA Module, you can use the RIO Device Setup utility, available by selecting Start>All Programs>National Instruments>NI-RIO>RIO Device Setup to download precompiled FPGA VIs to the Flash memory of the R Series device. This utility installs with NI-RIO. You also can use the utility to configure the analog input mode, to synchronize the clock on the R Series device to the PXI clock (for NI PXI-78xxR only), and to configure when the VI loads from Flash memory. For more information about using the RIO Device Setup utility, refer to the RIO Device Setup Help, found at Start>All Programs>National Instruments>NI-RIO>RIO Device Setup Help.

LabVIEW Real-Time Module

The LabVIEW Real-Time Module extends the LabVIEW development environment to deliver deterministic, real-time performance.

You can write host VIs that run in Windows or on RT targets to communicate with FPGA VIs that run on the NI 78xxR. You can develop real-time VIs with LabVIEW and the LabVIEW Real-Time Module, and then download the VIs to run on a hardware target with a real-time operating system. The LabVIEW Real-Time Module allows you to use the NI 78xxR in RT Series PXI systems being controlled in real time by a VI.

The NI 781xxR is designed as a single-point DIO complement to the LabVIEW Real-Time Module. The NI 783xxR/784xxR/785xxR is designed as a single-point AI, AO, and DIO complement to the LabVIEW Real-Time Module. Refer to the LabVIEW Help, available by selecting Help>Search the LabVIEW Help, for more information about the LabVIEW Real-Time Module.
Cables and Accessories

National Instruments offers a variety of products you can use with R Series devices, including cables, connector blocks, and other accessories, as shown in Table 1-3.

Table 1-3. R Series Connectivity Options

<table>
<thead>
<tr>
<th>Cable</th>
<th>Connector</th>
<th>Accessory</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SHC68-68-RMIO</td>
<td>—</td>
<td>0</td>
<td>NI SCB-68 High-performance shielded cable wired specifically for signal connection from the RMIO connector* to the NI SCB-68 terminal block to provide higher signal integrity and noise immunity.</td>
</tr>
<tr>
<td>SHC68-68-RDIO</td>
<td>0, 1, 2, 3</td>
<td>1, 2†</td>
<td>NI SCB-68 High-performance shielded cable wired specifically for signal connection from the RDIO connector* to the NI SCB-68 terminal block to provide higher signal integrity and noise immunity.</td>
</tr>
<tr>
<td>SH68-C68-S</td>
<td>0, 1, 2, 3</td>
<td>1, 2†</td>
<td>NI SCB-68 Basic shielded cable for signal connection from the RMIO or RDIO connector to the NI SCB-68 terminal block for noise reduction.</td>
</tr>
</tbody>
</table>

* For a diagram of the twisted pairs in the SHC68-68-RMIO and SHC68-68-RDIO cables and the signals to which they correspond, go to ni.com/info and enter the info code rdrmio.

† NI 7830R does not have Connector 2.

Refer to Appendix A, Connecting I/O Signals, for more information about using these cables and accessories to connect I/O signals to the NI 78xR. Refer to ni.com/products or contact the sales office nearest to you for the most current cabling options.
Custom Cabling

NI offers a variety of cables for connecting signals to the NI 78xxR. If you need to develop a custom cable, a nonterminated shielded cable is available from NI. The SHC68-NT-S connects to the NI 78xxR VHDCI connectors on one end of the cable. The other end of the cable is not terminated. This cable ships with a wire list identifying the wires that correspond to each NI 78xxR pin. You can use this cable to quickly connect the NI 78xxR signals that you need to the connector of your choice. Refer to Appendix A, Connecting I/O Signals, for the NI 78xxR connector pinouts.
This chapter presents an overview of the hardware functions and I/O connectors on the NI 78xxR.

Figure 2-1 shows a block diagram for the NI 781xR. Figure 2-2 shows a block diagram for the NI 7830R. Figure 2-3 shows a block diagram for the NI 7831R/7833R/784xR/785xR.
Chapter 2 Hardware Overview of the NI 78xxR

Figure 2-2. NI 7830R Block Diagram
NI 7811R Overview

The NI 7811R has 160 bidirectional DIO lines and a Virtex-II XC2V1000 FPGA.

NI 7813R Overview

The NI 7813R has 160 bidirectional DIO lines and a Virtex-II XC2V3000 FPGA.

NI 7830R Overview

The NI 7830R has four independent, 16-bit AI channels; four independent, 16-bit AO channels; 56 bidirectional DIO lines that you can configure individually for input or output; and a Virtex-II XC2V1000 FPGA.
NI 7831R/7833R Overview

The NI 7831R/7833R each have eight independent, 16-bit AI channels; eight independent, 16-bit AO channels; 96 bidirectional DIO lines that you can configure individually for input or output; and a Virtex-II XC2V3000 FPGA.

NI 784xR Overview

The NI 784xR each have eight independent, 16-bit AI channels; eight independent, 16-bit AO channels; and 96 bidirectional DIO lines that you can configure individually for input or output. The NI PXI-7841R has a Virtex-5 LX30 FPGA, and the NI PXI-7842R has a Virtex-5 LX50 FPGA.

NI 785xR Overview

The NI 785xR each have eight independent, 16-bit AI channels; eight independent, 16-bit AO channels; and 96 bidirectional DIO lines that you can configure individually for input or output. The NI PXI-7851R has a Virtex-5 LX30 FPGA, the NI PXI-7852R has a Virtex-5 LX50 FPGA, the NI PXI-7853R has a Virtex-5 LX85 FPGA, and the NI PXI-7854R has a Virtex-5 LX110 FPGA.

Analog Input (NI 783xR/784xR/785xR Only)

You can sample NI 783xR/784xR/785xR AI channels simultaneously or at different rates. The input mode is software configurable, and the input range is fixed at ±10 V. The converters return data in two’s complement format. Table 2-1 shows the ideal output code returned for a given AI voltage.

<table>
<thead>
<tr>
<th>Input Description</th>
<th>AI Voltage</th>
<th>Output Code (Hex) (Two’s Complement)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Full-scale range –1 LSB</td>
<td>9.999695</td>
<td>7FFF</td>
</tr>
<tr>
<td>Full-scale range –2 LSB</td>
<td>9.999390</td>
<td>7FFE</td>
</tr>
<tr>
<td>Midscale</td>
<td>0.000000</td>
<td>0000</td>
</tr>
</tbody>
</table>
Table 2-1. Ideal Output Code and AI Voltage Mapping (Continued)

<table>
<thead>
<tr>
<th>Input Description</th>
<th>AI Voltage</th>
<th>Output Code (Hex) (Two’s Complement)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Negative full-scale range +1 LSB</td>
<td>–9.999695</td>
<td>8001</td>
</tr>
<tr>
<td>Negative full-scale range</td>
<td>–10.000000</td>
<td>8000</td>
</tr>
<tr>
<td>Any input voltage</td>
<td>Output Code</td>
<td>—</td>
</tr>
</tbody>
</table>

Input Modes

The NI 783xR/784xR/785xR input mode is software configurable. The input channels support three input modes—differential (DIFF), referenced single ended (RSE), and nonreferenced single ended (NRSE). The selected input mode applies to all the input channels. Table 2-2 describes the three input modes.

Table 2-2. Available Input Modes for the NI 783xR/784xR/785xR

<table>
<thead>
<tr>
<th>Input Mode</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DIFF</td>
<td>When the NI 783xR/784xR/785xR is configured in DIFF input mode, each channel uses two AI lines. The positive input pin connects to the positive terminal of the onboard instrumentation amplifier. The negative input pin connects to the negative input of the instrumentation amplifier.</td>
</tr>
<tr>
<td>RSE</td>
<td>When the NI 783xR/784xR/785xR is configured in RSE input mode, each channel uses only its positive AI pin. This pin connects to the positive terminal of the onboard instrumentation amplifier. The negative input of the instrumentation amplifier connects internally to the AI ground (AIGND).</td>
</tr>
<tr>
<td>NRSE</td>
<td>When the NI 783xR/784xR/785xR is configured in NRSE input mode, each channel uses only its positive AI pin. This pin connects to the positive terminal of the onboard instrumentation amplifier. The negative input of the instrumentation amplifier on each AI channel connects internally to the AISENSE input pin.</td>
</tr>
</tbody>
</table>

Input Range

The NI 783xR/784xR/785xR AI range is fixed at ±10 V.
Connecting Analog Input Signals

The AI signals for the NI 783xR/784xR/785xR are AI<0..n>+, AI<0..n>-,, AIGND, and AISENSE. For the NI 7830R, n=4. For the NI 7831R/7833R/784xR/785xR, n=8. The AI<0..n>+ and AI<0..n>- signals are connected to the eight AI channels of the NI 783xR/784xR/785xR. For all input modes, the AI<0..n>++ signals are connected to the positive input of the instrumentation amplifier on each channel. The signal connected to the negative input of the instrumentation amplifier depends on how you configure the input mode of the device.

In differential input mode, signals connected to AI<0..n>– are routed to the negative input of the instrumentation amplifier for each channel. In RSE input mode, the negative input of the instrumentation amplifier for each channel is internally connected to AIGND. In NRSE input mode, the AISENSE signal is connected internally to the negative input of the instrumentation amplifier for each channel. In DIFF and RSE input modes, AISENSE is not used.

Caution Exceeding the differential and common-mode input ranges distorts the input signals. Exceeding the maximum input voltage rating can damage the NI 783xR/784xR/785xR and the computer. NI is not liable for any damage resulting from such signal connections. The maximum input voltage ratings are listed in Table A-2, *NI 78xxR I/O Signal Summary*.

AIGND is a common AI signal that is routed directly to the ground tie point on the NI 783xR/784xR/785xR. You can use this signal for a general analog ground tie point to the NI 783xR/784xR/785xR if necessary.
Connection of AI signals to the NI 783xR/784xR/785xR depends on the input mode of the AI channels you are using and the type of input signal source. With different input modes, you can use the instrumentation amplifier in different ways. Figure 2-4 shows a diagram of the NI 783xR/784xR/785xR instrumentation amplifier.

![Diagram of NI 783xR/784xR/785xR Instrumentation Amplifier](image)

\[V_m = [V_{in+} - V_{in-}] \]

Figure 2-4. NI 783xR/784xR/785xR Instrumentation Amplifier

The instrumentation amplifier applies common-mode voltage rejection and presents high input impedance to the AI signals connected to the NI 783xR/784xR/785xR. Input multiplexers on the device route signals to the positive and negative inputs of the instrumentation amplifier. The instrumentation amplifier converts two input signals to a signal that is the difference between the two input signals. The amplifier output voltage is referenced to the device ground. The NI 783xR/784xR/785xR ADC measures this output voltage when it performs A/D conversions.

You must reference all signals to ground either at the source device or at the NI 783xR/784xR/785xR. If you have a floating source, reference the signal to ground by using RSE input mode or the DIFF input mode with bias resistors. Refer to the Differential Connections for Nonreferenced or Floating Signal Sources section of this chapter for more information about these input modes. If you have a grounded source, do not reference the signal to AIGND. You can avoid this reference by using DIFF or NRSE input modes.
Types of Signal Sources

When configuring the input channels and making signal connections, you must first determine whether the signal sources are floating or ground referenced. The following sections describe these two signal types.

Floating Signal Sources

A floating signal source is not connected to the building ground system but instead has an isolated ground-reference point. Some examples of floating signal sources are outputs of transformers, thermocouples, battery-powered devices, optical isolator outputs, and isolation amplifiers. An instrument or device that has an isolated output is a floating signal source.

You must connect the ground reference of a floating signal to the NI 783xR/784xR/785xR AIGND through a bias resistor to establish a local or onboard reference for the signal. Otherwise, the measured input signal varies as the source floats out of the common-mode input range.

Ground-Referenced Signal Sources

A ground-referenced signal source is connected to the building system ground, so it is already connected to a common ground point with respect to the NI 783xR/784xR/785xR, assuming that the computer is plugged into the same power system. Instruments or devices with nonisolated outputs that plug into the building power system are ground referenced signal sources.

The difference in ground potential between two instruments connected to the same building power system is typically between 1 and 100 mV. This difference can be much higher if power distribution circuits are improperly connected. If a grounded signal source is improperly measured, this difference might appear as a measurement error. The connection instructions for grounded signal sources are designed to eliminate this ground potential difference from the measured signal.

Input Modes

The following sections discuss single-ended and differential measurements and considerations for measuring both floating and ground-referenced signal sources.
Figure 2-5 summarizes the recommended input mode for both types of signal sources.

<table>
<thead>
<tr>
<th>Signal Source Type</th>
<th>Input</th>
<th>Floating Signal Source (Not Connected to Building Ground)</th>
<th>Grounded Signal Source</th>
<th>Examples</th>
<th>Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Ungrounded Thermocouples</td>
<td>• Plug-in Instruments with Nonisolated Outputs</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Signal Conditioning with Isolated Outputs</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Battery Devices</td>
<td></td>
</tr>
<tr>
<td>Differential (DIFF)</td>
<td></td>
<td></td>
<td></td>
<td>See text for information on bias resistors.</td>
<td></td>
</tr>
<tr>
<td>Single-Ended—Ground Referenced (RSE)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Single-Ended—Nonreferenced (NRSE)</td>
<td></td>
<td></td>
<td></td>
<td>See text for information on bias resistors.</td>
<td></td>
</tr>
</tbody>
</table>

Figure 2-5. Summary of Analog Input Connections
Differential Connection Considerations (DIFF Input Mode)

In DIFF input mode, the NI 783xR/784xR/785xR measures the difference between the positive and negative inputs. DIFF input mode is ideal for measuring ground-referenced signals from other devices. When using DIFF input mode, the input signal connects to the positive input of the instrumentation amplifier and its reference signal, or return, connects to the negative input of the instrumentation amplifier.

Use differential input connections for any channel that meets any of the following conditions:

- The input signal is low level (less than 1 V).
- The leads connecting the signal to the NI 783xR/784xR/785xR are greater than 3 m (10 ft).
- The input signal requires a separate ground-reference point or return signal.
- The signal leads travel through noisy environments.

Differential signal connections reduce noise pickup and increase common-mode noise rejection. Differential signal connections also allow input signals to float within the common-mode limits of the instrumentation amplifier.
Differential Connections for Ground-Referenced Signal Sources

Figure 2-6 shows how to connect a ground-referenced signal source to a channel on the NI 783xR/784xR/785xR configured in DIFF input mode.

With this connection type, the instrumentation amplifier rejects both the common-mode noise in the signal and the ground potential difference between the signal source and the NI 783xR/784xR/785xR ground, shown as V_{cm} in Figure 2-6. In addition, the instrumentation amplifier can reject common-mode noise pickup in the leads connecting the signal sources to the device. The instrumentation amplifier can reject common-mode signals when V_{+m} and V_{-m} (input signals) are both within their specified input ranges. Refer to the *NI R Series Multifunction RIO Specifications*, available at ni.com/manuals, for more information about input ranges.
Differential Connections for Nonreferenced or Floating Signal Sources

Figure 2-7 shows how to connect a floating signal source to a channel on the NI 783xR/784xR/785xR configured in DIFF input mode.

Figure 2-7. Differential Input Connections for Nonreferenced Signals

Figure 2-7 shows two bias resistors connected in parallel with the signal leads of a floating signal source. If you do not use the resistors and the source is truly floating, the source might not remain within the common-mode signal range of the instrumentation amplifier, causing erroneous readings. You must reference the source to AIGND by connecting the positive side of the signal to the positive input of the instrumentation amplifier and connecting the negative side of the signal to AIGND and to the negative input of the instrumentation amplifier without resistors. This connection works well for DC-coupled sources with low source impedance, less than 100 Ω.

For larger source impedances, this connection leaves the differential signal path significantly out of balance. Noise that couples electrostatically onto the positive line does not couple onto the negative line because it is connected to ground. Hence, this noise appears as a differential-mode signal instead of a common-mode signal, and the instrumentation amplifier does not reject it. In this case, instead of directly connecting the negative
line to AIGND, connect it to AIGND through a resistor that is about 100 times the equivalent source impedance. The resistor puts the signal path nearly in balance. About the same amount of noise couples onto both connections, which yields better rejection of electrostatically coupled noise. Also, this input mode does not load down the source, other than the very high-input impedance of the instrumentation amplifier.

You can fully balance the signal path by connecting another resistor of the same value between the positive input and AIGND, as shown in Figure 2-7. This fully balanced input mode offers slightly better noise rejection but has the disadvantage of loading down the source with the series combination (sum) of the two resistors. If, for example, the source impedance is 2 kΩ and each of the two resistors is 100 kΩ, the resistors load down the source with 200 kΩ and produce a –1% gain error.

Both inputs of the instrumentation amplifier require a DC path to ground for the instrumentation amplifier to work. If the source is AC coupled (capacitively coupled), the instrumentation amplifier needs a resistor between the positive input and AIGND. If the source has low-impedance, choose a resistor that is large enough not to significantly load the source but small enough not to produce significant input offset voltage as a result of input bias current, typically 100 kΩ to 1 MΩ. In this case, connect the negative input directly to AIGND. If the source has high output impedance, balance the signal path as previously described using the same value resistor on both the positive and negative inputs. Loading down the source causes some gain error.

Single-Ended Connection Considerations

When an NI 783xR/784xR/785xR AI signal is referenced to a ground that can be shared with other input signals, it forms a single-ended connection. The input signal connects to the positive input of the instrumentation amplifier and the ground connects to the negative input of the instrumentation amplifier.

You can use single-ended input connections for any input signal that meets the following conditions:

- The input signal is high-level (>1 V).
- The leads connecting the signal to the NI 783xR/784xR/785xR are less than 3 m (10 ft).
- The input signal can share a common reference point with other signals.
Use DIFF input connections for greater signal integrity for any input signal that does not meet the preceding conditions.

You can configure the NI 783xR/784xR/785xR channels in software for RSE or NRSE input modes. Use the RSE input mode for floating signal sources. In this case, the NI 783xR/784xR/785xR provides the reference ground point for the external signal. Use the NRSE input mode for ground-referenced signal sources. In this case, the external signal supplies its own reference ground point and the NI 783xR/784xR/785xR should not supply one.

In single-ended input modes, electrostatic and magnetic noise couples into the signal connections more than in differential input modes. The coupling is the result of differences in the signal path. Magnetic coupling is proportional to the area between the two signal conductors. Electrical coupling is a function of how much the electric field differs between the two conductors.

Single-Ended Connections for Floating Signal Sources (RSE Input Mode)

Figure 2-8 shows how to connect a floating signal source to a channel on the NI 783xR/784xR/785xR configured for RSE input mode.
Single-Ended Connections for Grounded Signal Sources (NRSE Input Mode)

To measure a grounded signal source with a single-ended input mode, you must configure the NI 783xR/784xR/785xR in the NRSE input mode. Then connect the signal to the positive input of the NI 783xR/784xR/785xR instrumentation amplifier and connect the signal local ground reference to the negative input of the instrumentation amplifier. The ground point of the signal should be connected to AISENSE. Any potential difference between the NI 783xR/784xR/785xR ground and the signal ground appears as a common-mode signal at both the positive and negative inputs of the instrumentation amplifier. The instrumentation amplifier rejects this difference. If the input circuitry of a NI 783xR/784xR/785xR is referenced to ground in RSE input mode, this difference in ground potentials appears as an error in the measured voltage.

Figure 2-9 shows how to connect a grounded signal source to a channel on the NI 783xR/784xR/785xR configured for NRSE input mode.

![Diagram](image)

Figure 2-9. Single-Ended Input Connections for Ground-Referenced Signals
Common-Mode Signal Rejection Considerations

Figure 2-6 and Figure 2-9 show connections for signal sources that are already referenced to some ground point with respect to the NI 783xR/784xR/785xR. In these cases, the instrumentation amplifier can reject any voltage caused by ground potential differences between the signal source and the device. With differential input connections, the instrumentation amplifier can reject common-mode noise pickup in the leads connecting the signal sources to the device. The instrumentation amplifier can reject common-mode signals when V_{+in} and V_{-in} (input signals) are both within their specified input ranges. Refer to the NI R Series Multifunction RIO Specifications, available at ni.com/manuals, for more information about input ranges.

Analog Output

The bipolar output range of the NI 783xR/784xR/785xR AO channels is fixed at ±10 V. Some applications require that the AO channels power on to known voltage levels. To set the power-on levels, you can configure the NI 783xR/784xR/785xR to load and run a VI when the system powers on. The VI can set the AO channels to the desired voltage levels. The VI interprets data written to the DAC in two’s complement format. Table 2-3 shows the ideal AO voltage generated for a given input code.

Table 2-3. Ideal Output Voltage and Input Code Mapping

<table>
<thead>
<tr>
<th>Output Description</th>
<th>AO Voltage</th>
<th>Input Code (Hex)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Full-scale range –1 LSB</td>
<td>9.999695</td>
<td>7FFF</td>
</tr>
<tr>
<td>Full-scale range –2 LSB</td>
<td>9.999390</td>
<td>7FFE</td>
</tr>
<tr>
<td>Midscale</td>
<td>0.000000</td>
<td>0000</td>
</tr>
<tr>
<td>Negative full-scale range, +1 LSB</td>
<td>–9.999695</td>
<td>8001</td>
</tr>
<tr>
<td>Negative full-scale range</td>
<td>–10.000000</td>
<td>8000</td>
</tr>
<tr>
<td>Any output voltage</td>
<td>—</td>
<td>$AO, Voltage\times 32,768$</td>
</tr>
</tbody>
</table>

Note If your VI does not set the output value for an AO channel, then the AO channel voltage output will be undefined.
Connecting Analog Output Signals

The AO signals are AO <0..n> and AOGND.

AO <0..n> are the AO channels. AOGND is the ground reference signal for the AO channels.

Figure 2-10 shows how to make AO connections to the NI 783xR/784xR/785xR.

![Figure 2-10. Analog Output Connections](image)

Digital I/O

You can configure the NI 78xxR DIO lines individually for either input or output. When the system powers on, the DIO lines are at high impedance. To set another power-on state, you can configure the NI 78xxR to load a VI when the system powers on. The VI can then set the DIO lines to any power-on state.

Connecting Digital I/O Signals

The DIO signals on the NI 78xxR RDIO connectors are DGND and DIO<0..39>. The DIO signals on the NI 783xR/784xR/785xR RMIO connector are DGND and DIO<0..15>. The DIO<0..n> signals make up the DIO port and DGND is the ground reference signal for the DIO port. The NI 781xR has four RDIO connectors for a total of 160 DIO lines. The
NI 7830R has one RMIO and one RDIO connector for a total of 56 DIO lines. The NI 7831R/7833R/784xR/785xR has one RMIO and two RDIO connectors for a total of 96 DIO lines.

Refer to Figure A-1, *NI 781xR Connector Pin Assignments and Locations*, for the connector locations and the I/O connector pin assignments on the NI 781xR. Refer to Figure A-2, *NI 783xR/784xR/785xR Connector Pin Assignments and Locations*, for the connector locations and the I/O connector pin assignments on the NI 783xR/784xR/785xR.

The DIO lines on the NI 78xxR are TTL-compatible. When configured as inputs, they can receive signals from 5 V TTL, 3.3 V LVTTTL, 5 V CMOS, and 3.3 V LVCMOS devices. When configured as outputs, they can send signals to 5 V TTL, 3.3 V LVTTTL, and 3.3 V LVCMOS devices. Because the digital outputs provide a nominal output swing of 0 to 3.3 V (3.3 V TTL), the DIO lines cannot drive 5 V CMOS logic levels. To interface to 5 V CMOS devices, you must provide an external pull-up resistor to 5 V. This resistor pulls up the 3.3 V digital output from the NI 78xxR to 5 V CMOS logic levels. Refer to the *NI R Series Multifunction RIO Specifications*, available at ni.com/manuals, for detailed DIO specifications.

Caution Exceeding the maximum input voltage ratings, listed in Table A-2, *NI 78xxR I/O Signal Summary*, can damage the NI 78xxR and the computer. NI is not liable for any damage resulting from such signal connections.

Caution Do not short the DIO lines of the NI 78xxR directly to power or to ground. Doing so can damage the NI 78xxR by causing excessive current to flow through the DIO lines.

You can connect multiple NI 78xxR digital output lines in parallel to provide higher current sourcing or sinking capability. If you connect multiple digital output lines in parallel, your application must drive all of these lines simultaneously to the same value. If you connect digital lines together and drive them to different values, excessive current can flow through the DIO lines and damage the NI 78xxR. Refer to the *NI R Series Multifunction RIO Specifications*, available at ni.com/manuals, for more information about DIO specifications. Figure 2-11 shows signal connections for three typical DIO applications.
Figure 2-11. Example Digital I/O Connections

Figure 2-11 shows DIO<0..3> configured for digital input and DIO<4..7> configured for digital output. Digital input applications include receiving TTL, LVTTL, CMOS, or LVCMOS signals and sensing external device states, such as the state of the switch shown in Figure 2-11. Digital output applications include sending TTL or LVCMOS signals and driving external devices, such as the LED shown in Figure 2-11.

The NI 78xxR SHC68-68-RDIO cable contains individually shielded bundles that route each digital signal on an individually shielded pair of wires, and each signal is twisted with its own wire to digital ground.

*3.3 V CMOS
†Use a pull-up resistor when driving 5 V CMOS devices.
The SHC68-68-RDIO was designed specifically for R Series devices and is the NI-recommended cable for digital applications. If you are using the SH68-C68-S cable, however, please note the following considerations.

The SH68-C68-S shielded cable contains 34 twisted pairs of conductors. To maximize the digital I/O available on the NI 78xxR, some of the DIO lines are twisted with power or ground and some DIO lines are twisted with other DIO lines. To obtain maximum signal integrity, place edge-sensitive or high-frequency digital signals on the DIO lines that are paired with power or ground. Because the DIO lines that are twisted with other DIO lines can couple noise onto each other, use these lines for static signals or non-edge-sensitive, low-frequency digital signals. Examples of high-frequency or edge-sensitive signals include clock, trigger, pulse-width modulation (PWM), encoder, and counter signals. Examples of static signals or non-edge-sensitive, low-frequency signals include LEDs, switches, and relays. Table 2-4 summarizes these guidelines.

Table 2-4. DIO Signal Guidelines for the NI 78xxR

<table>
<thead>
<tr>
<th>Device</th>
<th>Digital Lines</th>
<th>SH68-C68-S Shielded Cable Signal Pairing</th>
<th>Recommended Types of Digital Signals</th>
</tr>
</thead>
<tbody>
<tr>
<td>NI 781xR</td>
<td>DIO<0..27></td>
<td>DIO line paired with power or ground</td>
<td>All types—high-frequency or low-frequency signals, edge-sensitive or non-edge-sensitive signals</td>
</tr>
<tr>
<td></td>
<td>DIO<28..39></td>
<td>DIO line paired with another DIO line</td>
<td>Static signals or non-edge-sensitive, low-frequency signals</td>
</tr>
<tr>
<td>NI 783xR,</td>
<td>Connector 0, DIO<0..7>;</td>
<td>DIO line paired with power or ground</td>
<td>All types—high-frequency or low-frequency signals, edge-sensitive or non-edge-sensitive signals</td>
</tr>
<tr>
<td>NI 784xR,</td>
<td>Connector 1, DIO<0..27>;</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NI 785xR</td>
<td>Connector 2, DIO<0..27></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Connector 0, DIO<8..15>;</td>
<td>DIO line paired with another DIO line</td>
<td>Static signals or non-edge-sensitive, low-frequency signals</td>
<td></td>
</tr>
<tr>
<td>Connector 1, DIO<28..39>;</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Connector 2, DIO<28..39></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
RTSI Trigger Bus

The NI 78xxR can send and receive triggers through the RTSI trigger bus. The RTSI bus provides eight shared trigger lines that connect to all the devices on the bus. In PXI, the trigger lines are shared between all the PXI slots in a bus segment. In PCI, the RTSI bus is implemented through a ribbon cable connected to the RTSI connector on each device that needs to access the RTSI bus.

You can use the RTSI trigger lines to synchronize the NI 78xxR to any other device that supports RTSI triggers. On the NI PCI-781xR/783xR and NI PCIe-784xR/785xR, the RTSI trigger lines are labeled RTSI/RTSI<0..6> and RTSI/RTSI7. On the NI PXI-78xxR, the RTSI trigger lines are labeled PXI/PXI_Trig<0..7>. In addition, the NI PXI-78xxR can use the PXI star trigger line to send or receive triggers from a device plugged into Slot 2 of the PXI chassis. The PXI star trigger line on the NI PXI-78xxR is PXI/PXI_Star.

The NI 78xxR can configure each RTSI trigger line either as an input or an output signal. Because each trigger line on the RTSI bus is connected in parallel to all the other RTSI devices on the bus, only one device should drive a particular RTSI trigger line at a time. For example, if one NI PXI-78xxR is configured to send out a trigger pulse on PXI/PXI_Trig0, the remaining devices on that PXI bus segment must have PXI/PXI_Trig0 configured as an input.

⚠️ Caution Do not drive the same RTSI trigger bus line with the NI 78xxR and another device simultaneously. Such signal driving can damage both devices. NI is not liable for any damage resulting from such signal driving.

For more information on using and configuring triggers, select Help> Search the LabVIEW Help in LabVIEW to view the LabVIEW Help. Refer to the PXI Hardware Specification Revision 2.1 and PXI Software Specification Revision 2.1 at www.pxi.org for more information about PXI triggers.

PXI Local Bus (NI PXI-781xR/783xR Only)

The NI PXI-781xR/783xR can communicate with other PXI devices using the PXI local bus. The PXI local bus is a daisy-chained bus that connects each PXI peripheral slot with its adjacent peripheral slot on either side. For example, the right local bus lines from a PXI peripheral slot connect to the left local bus lines of the adjacent slot on the right. Each local bus is 13 lines
Chapter 2 Hardware Overview of the NI 78xxR

wide. All of these lines connect to the FPGA on the NI PXI-781xR/783xR. The PXI local bus right lines on the NI PXI-781xR/783xR are PXI/PXI_Lbr<0..12>. The PXI local bus left lines on the NI PXI-781xR/783xR are PXI/PXI_Lbl<0..12>.

The NI PXI-781xR/783xR can configure each PXI local bus line either as an input or an output signal. Only one device can drive the same physical local bus line at a time. For example, if the NI PXI-781xR/783xR is configured to drive a signal on PXI/PXI_Lbr 0, the device in the slot immediately to the right must have its PXI/PXI_Lbl 0 line configured as an input.

⚠️ Caution Do not drive the same PXI local bus line with the NI PXI-781xR/783xR and another device simultaneously. Such signal driving can damage both devices. NI is not liable for any damage resulting from such signal driving.

The NI PXI-781xR/783xR local bus lines are only compatible with 3.3 V signaling LVTTL and LVCMOS levels.

⚠️ Caution Do not enable the local bus lines on an adjacent device if the device drives anything other than 0–3.3V LVTTL signal levels on the NI PXI-781xR/783xR. Enabling the lines in this way can damage the NI PXI-781xR/783xR. NI is not liable for any damage resulting from enabling such lines.

The left local bus lines from the left peripheral slot of a PXI backplane (Slot 2) are routed to the star trigger lines of up to 13 other peripheral slots in a two-segment PXI system. This configuration provides a dedicated, delay-matched trigger signal between the first peripheral slot and the other peripheral slots for precise trigger timing signals. For example—as shown in Figure 2-12—an NI PXI-781xR/783xR in Slot 2 can send an independent trigger signal to each device plugged into Slots <3..15> using the PXI/PXI_Lbl<0..12>. Each device receives its trigger signal on its own dedicated star trigger line.

⚠️ Caution Do not configure the NI 781xR/783xR and another device to drive the same physical star trigger line simultaneously. Such signal driving can damage the NI 781xR/783xR and the other device. NI is not liable for any damage resulting from such signal driving.
Refer to the PXI Hardware Specification Revision 2.1 and PXI Software Specification Revision 2.1 at www.pxi.org for more information about PXI triggers.

Switch Settings (NI 781xR/783xR Only)

Refer to Figure 2-13 for the location of switches on the NI PCI-781xR and Figure 2-14 for the location of switches on the NI PXI-781xR. Refer to Figure 2-15 for the location of switches on the NI PCI-783xR and Figure 2-16 for the location of switches on the NI PXI-783xR. For normal operation, SW1 is in the OFF position. To prevent a VI stored in Flash memory from loading to the FPGA at power up, move SW1 to the ON position, as shown in Figure 2-17.

Note SW2 and SW3 are not connected.
Figure 2-13. Switch Location on the NI PCI-781xR

Figure 2-14. Switch Location on the NI PXI-781xR
Figure 2-15. Switch Location on the NI PCI-783xR

Figure 2-16. Switch Location on the NI PXI-783xR
Complete the following steps to prevent a VI stored in Flash memory from loading to the FPGA:

1. Power off and unplug the PXI/CompactPCI chassis or PCI computer.
2. Remove the NI 781xR/783xR from the PXI/CompactPCI chassis or PCI computer.
3. Move SW1 to the ON position, as shown in Figure 2-17b.
4. Reinsert the NI 781xR/783xR into the PXI/CompactPCI chassis or PCI computer. Refer to the Installing the Hardware section of the Getting Started with R Series Multifunction RIO document for installation instructions.
5. Plug in and power on the PXI/CompactPCI chassis or PCI computer.

After completing this procedure, a VI stored in Flash memory does not load to the FPGA at power-on. You can use software to configure the NI 78xxR, if necessary. To return to the defaults of loading from Flash memory, repeat the previous procedure but return SW1 to the OFF position in step 3. You can use this switch to enable/disable the ability to load from Flash memory. In addition to this switch, you must configure the NI 78xxR with the software to autoload an FPGA VI.

Note When the NI 781xR/783xR is powered on with SW1 in the ON position, the analog circuitry does not return properly calibrated data. Move the switch to the ON position only while you are using software to reconfigure the NI 781xR/783xR for the desired power-up behavior. Afterward, return SW1 to the OFF position.

+5 V Power Source

The +5 V terminals on the I/O connector supply +5 V referenced to DGND. Use these terminals to power external circuitry.

Newer revision NI 781xR/783xR devices have a traditional fuse to protect the supply from overcurrent conditions. This fuse is not customer-replaceable; if the fuse permanently opens, return the device to NI for repair.
Older revision NI 781xR/783xR devices have a self-resetting fuse to protect the supply from overcurrent conditions. This fuse resets automatically within a few seconds after the overcurrent condition is removed. For more information about the self-resetting fuse and precautions to take to avoid improper connection of +5 V and ground terminals, refer to the KnowledgeBase document, *Self-Resetting Fuse Additional Information*, by going to ni.com/info and entering the info code pptc.

(NI 784xR/785xR Devices) All NI 784xR/785xR devices have a user-replaceable socketed fuse to protect the supply from overcurrent conditions. When an overcurrent condition occurs, check your cabling to the +5 V terminals and replace the fuse as described in the *Device Fuse Replacement (NI 784xR/785xR Only)* section.

Caution *Never* connect the +5 V power terminals to analog or digital ground or to any other voltage source on the NI 78xxR device or any other device. Doing so can damage the device and the computer. NI is *not* liable for damage resulting from such a connection.

The power rating on most devices is +4.75 to +5.25 VDC at 1 A.

Refer to the *NI R Series Multifunction RIO Specifications* document, available at ni.com/manuals, to obtain the power rating for your device.

Device Fuse Replacement (NI 784xR/785xR Only)

NI 784xR/785xR devices have a replaceable fuse, Littelfuse part number 0453004, that protects the device from overcurrent through the power connector.

To replace a blown fuse in the NI 784xR/785xR, complete the following steps:

1. Power down and unplug the computer or PXI chassis.
2. Remove the PCI/PCI Express device from the expansion slot on the computer, or the PXI device from the PXI slot in the PXI chassis.
3. Replace the blown fuse while referring to Figure 2-18 for the fuse locations.

![Figure 2-18. NI 784xR/785xR Replacement Fuse Location (Littelfuse Part Number 0453004)](image)

4. Reinstall the PCI, PCI Express, or PXI device into the computer or PXI chassis.

PCI Express Device Disk Drive Power Connector

(NI PCIe-784xR/785xR Devices) The disk drive power connector is a four-pin hard drive connector on PCI Express devices that, when connected, increases the current the device can supply on the +5 V terminal.

When to Use the Disk Drive Power Connector

PCI Express R Series devices without the disk drive power connector installed perform identically to other R Series devices for most applications and with most accessories. For most applications, it is not necessary to install the disk drive power connector.

However, you should install the disk drive power connector in either of the following situations:

- You need more power than listed in the device specifications
- You are using an R Series accessory with no external power supply, such as the cRIO-9151

Refer to the specifications document for your device for more information about PCI Express power requirements and power limits.
Disk Drive Power Connector Installation

Before installing the disk drive power connector, you must install and set up the R Series PCI Express device as described in the *Getting Started with R Series Multifunction RIO* document. Complete the following steps to install the disk drive power connector.

1. Power off and unplug the computer.
2. Remove the computer cover.
3. Attach the PC disk drive power connector to the disk drive power connector on the device, as shown in Figure 2-19.

Note The power available on the disk drive power connectors in a computer can vary. For example, consider using a disk drive power connector that is not in the same power chain as the hard drive.

![Diagram of disk drive power connectors](image)

Figure 2-19. Connecting to the Disk Drive Power Connector

4. Replace the computer cover, and plug in and power on the computer.
5. Use the NI 78xxR Calibration Utility to run a self-calibration on the NI PCIe-784xR/785xR device. Refer to the *Self-Calibration* section of Chapter 3, *Calibration (NI 783xR/784xR/785xR Only)*, for more information.

Note Connecting or disconnecting the disk drive power connector can affect the analog performance of your device. To compensate for this, NI recommends that you self-calibrate after connecting or disconnecting the disk drive power connector.
Field Wiring Considerations
(NI 783xR/784xR/785xR Only)

Environmental noise can seriously affect the measurement accuracy of the device if you do not take proper care when running signal wires between signal sources and the device. The following recommendations mainly apply to AI signal routing to the device, as well as signal routing in general.

Take the following precautions to minimize noise pickup and maximize measurement accuracy:

- Use differential AI connections to reject common-mode noise.
- Use individually shielded, twisted-pair wires to connect AI signals to the device. With this type of wire, the signals attached to the positive and negative inputs are twisted together and then covered with a shield. You then connect this shield only at one point to the signal source ground. This kind of connection is required for signals traveling through areas with large magnetic fields or high electromagnetic interference.
- Route signals to the device carefully. Keep cabling away from noise sources. The most common noise source in a PXI DAQ system is the video monitor. Keep the monitor and the analog signals as far apart as possible.

Use the following recommendations for all signal connections to the NI 783xR/784xR/785xR:

- Separate NI 783xR/784xR/785xR signal lines from high-current or high-voltage lines. These lines can induce currents in or voltages on the NI 783xR/784xR/785xR signal lines if they run in parallel paths at a close distance. To reduce the magnetic coupling between lines, separate them by a reasonable distance if they run in parallel or run the lines at right angles to each other.
- Do not run signal lines through conduits that also contain power lines.
- Protect signal lines from magnetic fields caused by electric motors, welding equipment, breakers, or transformers by running them through special metal conduits.

Refer to the NI Developer Zone tutorial, Field Wiring and Noise Considerations for Analog Signals, at ni.com/zone for more information.
Calibration
(NI 783xR/784xR/785xR Only)

Calibration is the process of determining and/or adjusting the accuracy of an instrument to minimize measurement and output voltage errors. On the NI 783xR/784xR/785xR, onboard calibration DACs (CalDACs) correct these errors. Because the analog circuitry handles calibration, the data read from the AI channels or written to the AO channels in the FPGA VI is already calibrated.

Three levels of calibration are available for the NI 783xR/784xR/785xR to ensure the accuracy of its analog circuitry. The first level, loading calibration constants, is the fastest, easiest, and least accurate. The intermediate level, internal self-calibration, is the preferred method of assuring accuracy in your application. The last level, external calibration, is the slowest, most difficult, and most accurate.

Loading Calibration Constants

The NI 783xR/784xR/785xR is factory calibrated before shipment at approximately 25 °C to the levels indicated in the device specifications. Refer to the NI R Series Multifunction RIO Specifications, available at ni.com/manuals, for more information calibration levels. The onboard nonvolatile Flash memory stores the calibration constants for the device. Calibration constants are the values that were written to the CalDACs to achieve calibration in the factory. The NI 783xR/784xR/785xR hardware reads these constants from the Flash memory and loads them into the CalDACs at power-on. This occurs before you load a VI into the FPGA.

Self-Calibration

With self-calibration, the NI 783xR/784xR/785xR can internally measure and correct almost all of its calibration-related errors without any external signal connections. NI provides software to perform an self-calibration. This internal self-calibration process, which generally takes less than two minutes, is the preferred method of assuring accuracy in your
application. Self-calibration minimizes the effects of any offset and gain drifts, particularly those due to changes in temperature. During the self-calibration process, the AI and AO channels are compared to the NI 783xR/784xR/785xR onboard voltage reference. The offset and gain errors in the analog circuitry are calibrated out by adjusting the CalDACs to minimize these errors.

Note The NI 78xxR Calibration Utility does not support NI 781xR devices.

If you have NI-RIO installed, you can find the self-calibration utility at Start> All Programs > National Instruments > NI-RIO > Calibrate 78xxR Device. *Device* is the NI PXI-783xR/784xR/785xR or NI PCIe-783xR device.

Immediately after self-calibration, the only significant residual calibration error is gain error due to time and temperature drift of the onboard voltage reference. You can minimize gain errors by performing an external calibration. If you are primarily taking relative measurements, then you can ignore a small amount of gain error and self-calibration is sufficient.

The Flash memory on the NI 783xR/784xR/785xR stores the results of a self-calibration so the CalDACs automatically load with the newly calculated calibration constants the next time the NI 783xR/784xR/785xR is powered on.

External Calibration

An external calibration refers to calibrating your device with a known external reference rather than relying on the onboard reference. The NI 783xR/784xR/785xR has an onboard calibration reference to ensure the accuracy of self-calibration. The reference voltage is measured at the factory and stored in the Flash memory for subsequent self-calibrations. Externally calibrate the device annually or more often if you use it at extreme temperatures.

During the external calibration process, the onboard reference value is re-calculated. This compensates for any time or temperature drift-related errors in the onboard reference that might have occurred since the last calibration. You can save the results of the external calibration process to Flash memory so that the NI 783xR/784xR/785xR loads the new calibration constants the next time it is powered on. The device uses the newly measured onboard reference level for subsequent self-calibrations.
To externally calibrate your device, use an external reference several times more accurate than the device itself. For more information on externally calibrating your NI 783xR/784xR/785xR device, refer to the NI 783xR/784xR/785xR Calibration Procedure for NI-RIO, found on ni.com/manuals.
Connecting I/O Signals

This appendix describes how to make input and output signal connections to the NI 78xxR I/O connectors.

Figure A-1 shows the I/O connector pin assignments and locations for NI PCI-7811R/7813R and NI PXI-7811R/7813R.

Figure A-2 shows the I/O connector pin assignments and locations for NI PCI-7830R/7831R/7833R, NI PCIe-7841R/7842R/7851R/7852R, and the NI PXI-7830R/7831R/7833R/7841R/7842R/7851R/7852R/7853R/7854R.

Note The NI PXI-7830R and NI PCI-7830R do not have Connector 2 (RDIO).
Figure A-1. NI 781xR Connector Pin Assignments and Locations
Figure A-2. NI 783xR/784xR/785xR Connector Pin Assignments and Locations

1 No Connect on the NI 7830R
To access the signals on the I/O connectors, you must connect a cable from the I/O connector to a signal accessory. Plug the small VHDCI connector end of the cable into the appropriate I/O connector and connect the other end of the cable to the appropriate signal accessory.

Table A-1. I/O Connector Signal Descriptions

<table>
<thead>
<tr>
<th>Signal Name</th>
<th>Reference</th>
<th>Direction</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>+5V</td>
<td>DGND</td>
<td>Output</td>
<td>+5 VDC Source—These pins supply 5 V from the computer power supply. For more information on the +5V terminals, refer to the +5 V Power Source section in Chapter 2, Hardware Overview of the NI 78xRxR.</td>
</tr>
<tr>
<td>Analog Signals (NI 783xR/784xR/785xR Only)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AI<0..7>++</td>
<td>AIGND</td>
<td>Input</td>
<td>Positive input for Analog Input channels 0 through 7.</td>
</tr>
<tr>
<td>AI<0..7>−</td>
<td>AIGND</td>
<td>Input</td>
<td>Negative input for Analog Input channels 0 through 7.</td>
</tr>
<tr>
<td>AIINESENSE</td>
<td>AIGND</td>
<td>Input</td>
<td>Analog Input Sense—This pin serves as the reference node for AI <0..7> when the device is configured for NRSE mode.</td>
</tr>
<tr>
<td>AO<0..7></td>
<td>AIGND</td>
<td>Output</td>
<td>Analog Output channels 0 through 7. Each channel can source or sink up to 2.5 mA.</td>
</tr>
<tr>
<td>AOGND</td>
<td>—</td>
<td>—</td>
<td>Analog Output Ground—The analog output voltages are referenced to this node. All three ground references—AIGND, AOGND, and DGND—are connected to each other on the NI 783xR/784xR/785xR.</td>
</tr>
<tr>
<td>Digital Signals (All NI 78xxR Devices)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DGND</td>
<td>—</td>
<td>—</td>
<td>Digital Ground—These pins supply the reference for the digital signals at the I/O connector and the 5 V supply. All three ground references—AIGND, AOGND, and DGND—are connected to each other on the NI 783xR/784xR/785xR.</td>
</tr>
<tr>
<td>DIO<0..39> Connector <0..3> (NI 781xR)</td>
<td>DGND</td>
<td>Input or Output</td>
<td>Digital I/O signals.</td>
</tr>
</tbody>
</table>
Caution Connections that exceed any of the maximum ratings of input or output signals on the NI 78xxR can damage the NI 78xxR and the computer. Maximum input ratings for each signal are in the *Protection* column of Table A-2. NI is *not* liable for any damage resulting from such signal connections.

Table A-2. NI 78xxR I/O Signal Summary

<table>
<thead>
<tr>
<th>Signal Name</th>
<th>Signal Type and Direction</th>
<th>Impedance Input/Output</th>
<th>Protection (Volts) On/Off</th>
<th>Source (mA at V)</th>
<th>Sink (mA at V)</th>
<th>Rise Time</th>
<th>Bias</th>
</tr>
</thead>
<tbody>
<tr>
<td>+5V</td>
<td>DO</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Analog Signals (NI 783xR/784xR/785xR Only)</td>
<td></td>
<td></td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>±2 nA</td>
<td></td>
</tr>
<tr>
<td>AI<0..7>++</td>
<td>AI</td>
<td>10 GΩ in parallel with 100 pF</td>
<td>42/35</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>±2 nA</td>
</tr>
<tr>
<td>AI<0..7>--</td>
<td>AI</td>
<td>10 GΩ in parallel with 100 pF</td>
<td>42/35</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>±2 nA</td>
</tr>
<tr>
<td>AIGND</td>
<td>AO</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>AISENSE</td>
<td>AI</td>
<td>10 GΩ in parallel with 100 pF</td>
<td>42/35</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>±2 nA</td>
</tr>
<tr>
<td>AO<0..7></td>
<td>AO</td>
<td>1.25 Ω</td>
<td>Short circuit to ground</td>
<td>2.5 at 10</td>
<td>2.5 at –10</td>
<td>10 V/μs</td>
<td>—</td>
</tr>
<tr>
<td>AOGND</td>
<td>AO</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Digital Signals (All NI 78xxR Devices)</td>
<td></td>
<td></td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>DIO<0..39></td>
<td>DIO</td>
<td>—</td>
<td>–0.5 to +7.0 (NI 783xR)</td>
<td>4.0 at 2.4</td>
<td>4.0 at 0.4</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Connector <0..3> (NI 781xR)</td>
<td></td>
<td></td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>DIO<0..15></td>
<td>DIO</td>
<td>—</td>
<td>–20 to 20 (NI 784xR/NI 785xR)</td>
<td>4.0 at 2.4</td>
<td>4.0 at 0.4</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Connector 0 (NI 783xR, NI 784xR, and NI 785xR)</td>
<td></td>
<td></td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>DIO<0..39></td>
<td>DIO</td>
<td>—</td>
<td>–20 to 20 (NI 784xR/NI 785xR)</td>
<td>4.0 at 2.4</td>
<td>4.0 at 0.4</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Connector <1..2> (NI 783xR, NI 784xR, and NI 785xR)</td>
<td></td>
<td></td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td></td>
</tr>
</tbody>
</table>

AI = Analog Input AO = Analog Output DIO = Digital Input/Output DO = Digital Output
Connecting to 5B and SSR Analog Signal Conditioning (NI 783xR/784xR/785xR Only)

NI provides cables that allow you to connect signals from the NI 783xR/784xR/785xR directly to 5B backplanes for analog signal conditioning and SSR backplanes for digital signal conditioning.

The NSC68-262650 cable connects the signals on the NI 783xR/784xR/785xR RMIO connector directly to 5B and SSR backplanes. This cable has a 68-pin male VHDCI connector on one end that plugs into the NI 783xR/784xR/785xR RMIO connector. The other end of this cable provides two 26-pin female headers plus one 50-pin female header.

One of the 26-pin headers contains all the NI 783xR/784xR/785xR analog input signals. You can plug this connector directly into a 5B backplane for analog input signal conditioning. The NI 783xR/784xR/785xR AI<0..<n> correspond to the 5B backplane channels <0..<n> in sequential order. Configure the AI channels to use the NRSE input mode when using 5B signal conditioning.

The other 26-pin header contains all the NI 783xR/784xR/785xR analog output signals. You can plug this connector directly into a 5B backplane for AO signal conditioning. The NI 783xR/784xR/785xR AO<0..<n> correspond to the 5B backplane channels <0..<n> in sequential order.

The 50-pin header contains the 16 DIO lines available on the NI 783xR/784xR/785xR RMIO connector. You can plug this header directly into an SSR backplane for digital signal conditioning. DIO lines <0..<15> correspond to the 5B backplane Slots <0..<15> in sequential order.

The 5B connector pinouts are compatible with 8-channel 5B08 backplanes and 16-channel 5B01 backplanes. The NI 7830R can accept analog input from the first four channels of a 16-channel backplane. The NI 7831R/7833R/784xR/785xR can accept analog input from the first eight channels of a 16-channel backplane. The SSR connector pinout is compatible with 8-, 16-, 24-, and 32-channel SSR backplanes. You can connect to an SSR backplane containing a number of channels unequal to the 16 DIO lines available on the 50-pin header. In this case, you have access to only the channels that exist on both the SSR backplane and the NSC68-262650 cable 50-pin header.
Figure A-3 shows the connector pinouts when using the NSC68-262650 cable.

<table>
<thead>
<tr>
<th>AO 0–7 Connector Pin Assignment</th>
<th>AI 0–7 Connector Pin Assignment</th>
<th>DIO 0–15 Connector Pin Assignment</th>
</tr>
</thead>
<tbody>
<tr>
<td>No Connect</td>
<td>No Connect</td>
<td>No Connect</td>
</tr>
<tr>
<td>AO0 1 2 No Connect</td>
<td>AI0+ 1 2 AI0−</td>
<td>DIO15 17 18 No Connect</td>
</tr>
<tr>
<td>AO1 5 6 AOGND1</td>
<td>AI1+ 5 6 AIGND1</td>
<td>DIO14 19 20 No Connect</td>
</tr>
<tr>
<td>AO2 7 8 No Connect</td>
<td>AI2+ 7 8 AI2−</td>
<td>DIO13 21 22 No Connect</td>
</tr>
<tr>
<td>AOGND2 9 10 No Connect</td>
<td>AIGND2 9 10 AI3−</td>
<td>DIO12 23 24 No Connect</td>
</tr>
<tr>
<td>AO3 11 12 AOGND3</td>
<td>AI3+ 11 12 AIGND3</td>
<td>DIO11 25 26 No Connect</td>
</tr>
<tr>
<td>AO4 13 14 No Connect</td>
<td>AI4+ 13 14 AI4−</td>
<td>DIO10 27 28 No Connect</td>
</tr>
<tr>
<td>AOGND4 15 16 No Connect</td>
<td>AIGND4 15 16 AI5−</td>
<td>DIO9 29 30 No Connect</td>
</tr>
<tr>
<td>AO5 17 18 AOGND5</td>
<td>AI5+ 17 18 AIGND5</td>
<td>DIO8 31 32 No Connect</td>
</tr>
<tr>
<td>AO6 19 20 No Connect</td>
<td>AI6+ 19 20 AI6−</td>
<td>DIO7 33 34 No Connect</td>
</tr>
<tr>
<td>AOGND6 21 22 No Connect</td>
<td>AIGND6 21 22 AI7−</td>
<td>DIO6 35 36 DGND</td>
</tr>
<tr>
<td>AO7 23 24 AOGND7</td>
<td>AI7+ 23 24 AIGND7</td>
<td>DIO5 37 38 DGND</td>
</tr>
<tr>
<td>No Connect 25 26 No Connect</td>
<td>AISENSE 25 26 No Connect</td>
<td>DIO4 39 40 DGND</td>
</tr>
</tbody>
</table>

Connecting to SSR Digital Signal Conditioning

NI provides cables that allow you to connect signals from the NI 78.xxR directly to SSR backplanes for digital signal conditioning.

The NSC68-5050 cable connects the signals on the NI 78.xxR RDIO connectors directly to SSR backplanes for digital signal conditioning. This cable has a 68-pin male VHDCI connector on one end that plugs into the NI 78.xxR RDIO connectors. The other end of this cable provides two 50-pin female headers.
You can plug each of these 50-pin headers directly into an 8-, 16-, 24-, or 32-channel SSR backplane for digital signal conditioning. One of the 50-pin headers contains DIO<0..23> from the NI 78xxR RDIO connector. These lines correspond to Slots <0..23> on an SSR backplane in sequential order. The other 50-pin header contains DIO<24..39> from the NI 78xxR RDIO connector. These lines correspond to Slots <0..15> on an SSR backplane in sequential order. You can connect to an SSR backplane containing a number of channels unequal to the number of lines on the NSC68-5050 cable header. In this case, you have access only to the channels that exist on both the SSR backplane and the NSC68-5050 cable header you are using.

Figure A-4 shows the connector pinouts when using the NSC68-5050 cable.

<table>
<thead>
<tr>
<th>DIO23</th>
<th>1</th>
<th>2</th>
<th>No Connect</th>
<th>DIO23</th>
<th>1</th>
<th>2</th>
<th>No Connect</th>
</tr>
</thead>
<tbody>
<tr>
<td>DIO22</td>
<td>3</td>
<td>4</td>
<td>No Connect</td>
<td>DIO22</td>
<td>3</td>
<td>4</td>
<td>No Connect</td>
</tr>
<tr>
<td>DIO21</td>
<td>5</td>
<td>6</td>
<td>No Connect</td>
<td>DIO21</td>
<td>5</td>
<td>6</td>
<td>No Connect</td>
</tr>
<tr>
<td>DIO20</td>
<td>7</td>
<td>8</td>
<td>No Connect</td>
<td>DIO20</td>
<td>7</td>
<td>8</td>
<td>No Connect</td>
</tr>
<tr>
<td>DIO19</td>
<td>9</td>
<td>10</td>
<td>No Connect</td>
<td>DIO19</td>
<td>9</td>
<td>10</td>
<td>No Connect</td>
</tr>
<tr>
<td>DIO18</td>
<td>11</td>
<td>12</td>
<td>No Connect</td>
<td>DIO18</td>
<td>11</td>
<td>12</td>
<td>No Connect</td>
</tr>
<tr>
<td>DIO17</td>
<td>13</td>
<td>14</td>
<td>No Connect</td>
<td>DIO17</td>
<td>13</td>
<td>14</td>
<td>No Connect</td>
</tr>
<tr>
<td>DIO16</td>
<td>15</td>
<td>16</td>
<td>No Connect</td>
<td>DIO16</td>
<td>15</td>
<td>16</td>
<td>No Connect</td>
</tr>
<tr>
<td>DIO15</td>
<td>17</td>
<td>18</td>
<td>No Connect</td>
<td>DIO15</td>
<td>17</td>
<td>18</td>
<td>No Connect</td>
</tr>
<tr>
<td>DIO14</td>
<td>19</td>
<td>20</td>
<td>DGND</td>
<td>DIO14</td>
<td>19</td>
<td>20</td>
<td>DGND</td>
</tr>
<tr>
<td>DIO13</td>
<td>21</td>
<td>22</td>
<td>DGND</td>
<td>DIO13</td>
<td>21</td>
<td>22</td>
<td>DGND</td>
</tr>
<tr>
<td>DIO12</td>
<td>23</td>
<td>24</td>
<td>DGND</td>
<td>DIO12</td>
<td>23</td>
<td>24</td>
<td>DGND</td>
</tr>
<tr>
<td>DIO11</td>
<td>25</td>
<td>26</td>
<td>DGND</td>
<td>DIO11</td>
<td>25</td>
<td>26</td>
<td>DGND</td>
</tr>
<tr>
<td>DIO10</td>
<td>27</td>
<td>28</td>
<td>DGND</td>
<td>DIO10</td>
<td>27</td>
<td>28</td>
<td>DGND</td>
</tr>
<tr>
<td>DIO09</td>
<td>29</td>
<td>30</td>
<td>DGND</td>
<td>DIO09</td>
<td>29</td>
<td>30</td>
<td>DGND</td>
</tr>
<tr>
<td>DIO08</td>
<td>31</td>
<td>32</td>
<td>DGND</td>
<td>DIO08</td>
<td>31</td>
<td>32</td>
<td>DGND</td>
</tr>
<tr>
<td>DIO07</td>
<td>33</td>
<td>34</td>
<td>DGND</td>
<td>DIO07</td>
<td>33</td>
<td>34</td>
<td>DGND</td>
</tr>
<tr>
<td>DIO06</td>
<td>35</td>
<td>36</td>
<td>DGND</td>
<td>DIO06</td>
<td>35</td>
<td>36</td>
<td>DGND</td>
</tr>
<tr>
<td>DIO05</td>
<td>37</td>
<td>38</td>
<td>DGND</td>
<td>DIO05</td>
<td>37</td>
<td>38</td>
<td>DGND</td>
</tr>
<tr>
<td>DIO04</td>
<td>39</td>
<td>40</td>
<td>DGND</td>
<td>DIO04</td>
<td>39</td>
<td>40</td>
<td>DGND</td>
</tr>
<tr>
<td>DIO03</td>
<td>41</td>
<td>42</td>
<td>DGND</td>
<td>DIO03</td>
<td>41</td>
<td>42</td>
<td>DGND</td>
</tr>
<tr>
<td>DIO02</td>
<td>43</td>
<td>44</td>
<td>DGND</td>
<td>DIO02</td>
<td>43</td>
<td>44</td>
<td>DGND</td>
</tr>
<tr>
<td>DIO01</td>
<td>45</td>
<td>46</td>
<td>DGND</td>
<td>DIO01</td>
<td>45</td>
<td>46</td>
<td>DGND</td>
</tr>
<tr>
<td>DIO00</td>
<td>47</td>
<td>48</td>
<td>DGND</td>
<td>DIO00</td>
<td>47</td>
<td>48</td>
<td>DGND</td>
</tr>
<tr>
<td>+5V</td>
<td>49</td>
<td>50</td>
<td>DGND</td>
<td>+5V</td>
<td>49</td>
<td>50</td>
<td>DGND</td>
</tr>
</tbody>
</table>

Figure A-4. Connector Pinouts when Using the NSC68-5050 Cable
Using the SCB-68 Shielded Connector Block

This appendix describes how to connect input and output signals to the NI 78xxR with the SCB-68 shielded connector block.

The SCB-68 has 68 screw terminals for I/O signal connections. To use the SCB-68 with the NI 78xxR, you must configure the SCB-68 as a general-purpose connector block. Refer to Figure B-1 for the general-purpose switch configuration.

After configuring the SCB-68 switches, you can connect the I/O signals to the SCB-68 screw terminals. Refer to Appendix A, "Connecting I/O Signals," for the connector pin assignments for the NI 78xxR. After connecting I/O signals to the SCB-68 screw terminals, you can connect the SCB-68 to the with the SHC68-68-RMIO (for Connector 0 on the NI 783xR/784xR/785xR) or SHC68-68-RDIO (Connector <0..3> on the NI 781xR and Connector <1..2> on the NI 783xR/784xR/785xR) shielded cables.

Figure B-1. General-Purpose Switch Configuration for the SCB-68 Terminal Block
Technical Support and Professional Services

Visit the following sections of the award-winning National Instruments Web site at ni.com for technical support and professional services:

- **Support**—Technical support at ni.com/support includes the following resources:
 - **Self-Help Technical Resources**—For answers and solutions, visit ni.com/support for software drivers and updates, a searchable KnowledgeBase, product manuals, step-by-step troubleshooting wizards, thousands of example programs, tutorials, application notes, instrument drivers, and so on. Registered users also receive access to the NI Discussion Forums at ni.com/forums. NI Applications Engineers make sure every question submitted online receives an answer.
 - **Standard Service Program Membership**—This program entitles members to direct access to NI Applications Engineers via phone and email for one-to-one technical support as well as exclusive access to on-demand training modules via the Services Resource Center. NI offers complementary membership for a full year after purchase, after which you may renew to continue your benefits.

 For information about other technical support options in your area, visit ni.com/services, or contact your local office at ni.com/contact.

- **Training and Certification**—Visit ni.com/training for self-paced training, eLearning virtual classrooms, interactive CDs, and Certification program information. You also can register for instructor-led, hands-on courses at locations around the world.

- **System Integration**—If you have time constraints, limited in-house technical resources, or other project challenges, National Instruments Alliance Partner members can help. To learn more, call your local NI office or visit ni.com/alliance.
• **Declaration of Conformity (DoC)**—A DoC is our claim of compliance with the Council of the European Communities using the manufacturer’s declaration of conformity. This system affords the user protection for electromagnetic compatibility (EMC) and product safety. You can obtain the DoC for your product by visiting ni.com/certification.

• **Calibration Certificate**—If your product supports calibration, you can obtain the calibration certificate for your product at ni.com/calibration.

If you searched ni.com and could not find the answers you need, contact your local office or NI corporate headquarters. Phone numbers for our worldwide offices are listed at the front of this manual. You also can visit the Worldwide Offices section of ni.com/niglobal to access the branch office Web sites, which provide up-to-date contact information, support phone numbers, email addresses, and current events.
Glossary

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Prefix</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>p</td>
<td>pico</td>
<td>10^{-12}</td>
</tr>
<tr>
<td>n</td>
<td>nano</td>
<td>10^{-9}</td>
</tr>
<tr>
<td>µ</td>
<td>micro</td>
<td>10^{-6}</td>
</tr>
<tr>
<td>m</td>
<td>milli</td>
<td>10^{-3}</td>
</tr>
<tr>
<td>k</td>
<td>kilo</td>
<td>10^{3}</td>
</tr>
<tr>
<td>M</td>
<td>mega</td>
<td>10^{6}</td>
</tr>
<tr>
<td>G</td>
<td>giga</td>
<td>10^{9}</td>
</tr>
</tbody>
</table>

Numbers/Symbols

° Degrees.
>
Greater than.
≥
Greater than or equal to.
< Less than.
≤ Less than or equal to.
– Negative of, or minus.
Ω Ohms.
/ Per.
% Percent.
± Plus or minus.
+ Positive of, or plus.
\sqrt{ } Square root of.
+5V +5 VDC source signal.
Glossary

A
A
Amperes.
A/D
Analog-to-digital.
AC
Alternating current.
ADC
Analog-to-digital converter—An electronic device, often an integrated circuit, that converts an analog voltage to a digital number.
AI
Analog input.
AI<in>
Analog input channel signal.
AIGND
Analog input ground signal.
AISENSE
Analog input sense signal.
AO
Analog output.
AO<out>
Analog output channel signal.
AOGND
Analog output ground signal.

B
bipolar
A signal range that includes both positive and negative values (for example, –5 to +5 V).

C
C
Celsius.
CalDAC
Calibration DAC.
CH
Channel—Pin or wire lead to which you apply or from which you read the analog or digital signal. Analog signals can be single-ended or differential. For digital signals, you group channels to form ports. Ports usually consist of either four or eight digital channels.

cm
Centimeter.
<table>
<thead>
<tr>
<th>Glossary</th>
</tr>
</thead>
<tbody>
<tr>
<td>CMOS</td>
</tr>
<tr>
<td>CMRR</td>
</tr>
<tr>
<td>common-mode voltage</td>
</tr>
<tr>
<td>CompactPCI</td>
</tr>
<tr>
<td>D</td>
</tr>
<tr>
<td>D/A</td>
</tr>
<tr>
<td>DAC</td>
</tr>
<tr>
<td>DAQ</td>
</tr>
<tr>
<td>dB</td>
</tr>
<tr>
<td>DC</td>
</tr>
<tr>
<td>DGND</td>
</tr>
<tr>
<td>DIFF</td>
</tr>
<tr>
<td>DIO</td>
</tr>
<tr>
<td>DIO<i/o></td>
</tr>
<tr>
<td>DMA</td>
</tr>
<tr>
<td>DNL</td>
</tr>
<tr>
<td>DO</td>
</tr>
</tbody>
</table>
Glossary

E

EEPROM Electrically erasable programmable read-only memory—ROM that can be erased with an electrical signal and reprogrammed.

F

FPGA Field-Programmable Gate Array.
FPGA VI A configuration that is downloaded to the FPGA and that determines the functionality of the hardware.

G

glitch An unwanted signal excursion of short duration that is usually unavoidable.

H

h Hour.
HIL Hardware-in-the-loop.
Hz Hertz.

I

I/O Input/output—The transfer of data to/from a computer system involving communications channels, operator interface devices, and/or data acquisition and control interfaces.
INL Relative accuracy.

L

LabVIEW Laboratory Virtual Instrument Engineering Workbench. LabVIEW is a graphical programming language that uses icons instead of lines of text to create programs.
LSB Least significant bit.
Glossary

M
m
meter.

max
maximum.

min
minimum.

MIO
multifunction I/O.

monotonicity
A characteristic of a DAC in which the analog output always increases as the values of the digital code input to it increase.

mux
multiplexer—A switching device with multiple inputs that sequentially connects each of its inputs to its output, typically at high speeds, in order to measure several signals with a single analog input channel.

N
noise
An undesirable electrical signal—Noise comes from external sources such as the AC power line, motors, generators, transformers, fluorescent lights, CRT displays, computers, electrical storms, welders, radio transmitters, and internal sources such as semiconductors, resistors, and capacitors. Noise corrupts signals you are trying to send or receive.

NRSE
nonreferenced single-ended mode—All measurements are made with respect to a common (NRSE) measurement system reference, but the voltage at this reference can vary with respect to the measurement system ground.

O
OUT
output pin—a counter output pin where the counter can generate various TTL pulse waveforms.
Glossary

P

PCI Peripheral Component Interconnect—A high-performance expansion bus architecture originally developed by Intel to replace ISA and EISA. It is achieving widespread acceptance as a standard for PCs and work-stations. PCI offers a theoretical maximum transfer rate of 132 MB/s.

PCI Express Peripheral Component Interconnect Express—A version of PCI that maintains the PCI software usage model and replaces the physical bus with a high-speed serial bus serving multiple lanes.

Port (1) A communications connection on a computer or a remote controller. (2) A digital port, consisting of four or eight lines of digital input and/or output.

Pu Pull-up.

PWM Pulse-width modulation.

PXI PCI eXtensions for Instrumentation—An open specification that builds off the CompactPCI specification by adding instrumentation-specific features.

R

RAM Random-access memory—The generic term for the read/write memory that is used in computers. RAM allows bits and bytes to be written to it as well as read from. Various types of RAM are DRAM, EDO RAM, SRAM, and VRAM.

Resolution The smallest signal increment that can be detected by a measurement system. Resolution can be expressed in bits, in proportions, or in percent of full scale. For example, a system has 12-bit resolution, one part in 4,096 resolution, and 0.0244% of full scale.

RIO Reconfigurable I/O.

RMS Root mean square.

RSE Referenced single-ended mode—All measurements are made with respect to a common reference measurement system or a ground. Also called a grounded measurement system.

RTSI Real-time system integration bus—The timing and triggering bus that connects multiple devices directly. This allows for hardware synchronization across devices.
Glossary

S

s Seconds.
S Samples.
S/s Samples per second—Used to express the rate at which a DAQ board samples an analog signal.
signal conditioning The manipulation of signals to prepare them for digitizing.
slew rate The voltage rate of change as a function of time. The maximum slew rate of an amplifier is often a key specification to its performance. Slew rate limitations are first seen as distortion at higher signal frequencies.

T

THD Total harmonic distortion—The ratio of the total rms signal due to harmonic distortion to the overall rms signal, in decibel or a percentage.
thermocouple A temperature sensor created by joining two dissimilar metals. The junction produces a small voltage as a function of the temperature.
TTL Transistor-transistor logic.
two’s complement Given a number x expressed in base 2 with n digits to the left of the radix point, the (base 2) number 2n – x.

V

V Volts.
VDC Volts direct current.
VHDCI Very high density cabled interconnect.
VI Virtual instrument—Program in LabVIEW that models the appearance and function of a physical instrument.
V_{IH} Volts, input high.
V_{IL} Volts, input low.
Glossary

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{OH}</td>
<td>Volts, output high.</td>
</tr>
<tr>
<td>V_{OL}</td>
<td>Volts, output low.</td>
</tr>
<tr>
<td>V_{rms}</td>
<td>Volts, root mean square.</td>
</tr>
</tbody>
</table>

W

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>waveform</td>
<td>Multiple voltage readings taken at a specific sampling rate.</td>
</tr>
</tbody>
</table>