Version:

Last Modified: January 12, 2018

Estimates the Inverse Chebyshev filter order.

The type of filter that this node estimates.

Name | Description |
---|---|

Lowpass | Estimates a lowpass filter. |

Highpass | Estimates a highpass filter. |

Bandpass | Estimates a bandpass filter. |

Bandstop | Estimates a bandstop filter. |

**Default: **Lowpass

Band edge frequencies of the filter, in Hz.

First passband edge frequency in Hz.

**Default: **0.2

First stopband edge frequency in Hz.

**Default: **0.3

Second passband edge frequency in Hz. The node ignores this input for lowpass and highpass filters.

**Default: **0

Second stopband edge frequency, in Hz. The node ignores this input for lowpass and highpass filters.

**Default: **0

Ripple level in the passband and stopband of the filter.

Ripple level in the passband.

**Default: **0.1

Ripple level in the stopband.

**Default: **60

Error conditions that occur before this node runs.

The node responds to this input according to standard error behavior.

Standard Error Behavior

Many nodes provide an **error in** input and an **error out** output so that the node can respond to and communicate errors that occur while code is running. The value of **error in** specifies whether an error occurred before the node runs. Most nodes respond to values of **error in** in a standard, predictable way.

**Default: **No error

The sampling frequency in Hz.

This value must be greater than zero.

**Default: **1.0 Hz, which is the normalized sampling frequency

Minimum order value that the filter requires to meet the specifications you set.

Low cutoff frequency. The cutoff frequency corresponds to the edge frequency of the stopband.

High cutoff frequency. The cutoff frequency corresponds to the edge frequency of the stopband.

Error information.

The node produces this output according to standard error behavior.

Standard Error Behavior

**error in** input and an **error out** output so that the node can respond to and communicate errors that occur while code is running. The value of **error in** specifies whether an error occurred before the node runs. Most nodes respond to values of **error in** in a standard, predictable way.

Stopband attenuation in decibels.

This node uses the following equations to estimate the order of an Inverse Chebyshev filter:

$N=\lceil \frac{\mathrm{acosh}({\epsilon}_{s}/{\epsilon}_{p})}{\mathrm{acosh}({\mathrm{\Omega}}_{s}/{\mathrm{\Omega}}_{p})}\rceil $

${\epsilon}_{p}=\sqrt{{10}^{{A}_{p}/10}-1}$

${\epsilon}_{s}=\sqrt{{10}^{{A}_{s}/10}-1}$

where

*N*is the estimated order*A*_{p}is the passband ripple in dB*A*_{s}is the stopband ripple in dB- $\lceil \rceil $ means Round Toward + Infinity

The following table lists the equations for calculating ${\mathrm{\Omega}}_{p}$ and ${\mathrm{\Omega}}_{s}$ for different types of filters:

Filter Type | Equation |
---|---|

Lowpass filter | ${\mathrm{\Omega}}_{p}={\mathrm{\Omega}}_{p1}$ ${\mathrm{\Omega}}_{s}={\mathrm{\Omega}}_{s1}$ |

Highpass filter | ${\mathrm{\Omega}}_{p}=1/{\mathrm{\Omega}}_{p1}$ ${\mathrm{\Omega}}_{s}={1/\mathrm{\Omega}}_{s1}$ |

Bandpass filter | $\begin{array}{c}{\mathrm{\Omega}}_{p}={\mathrm{\Omega}}_{p2}-{\mathrm{\Omega}}_{p1}\end{array}$ $\begin{array}{c}{\mathrm{\Omega}}_{s}=\mathrm{min}\left(|{\mathrm{\Omega}}_{s1}-\frac{{\mathrm{\Omega}}_{p1}{\mathrm{\Omega}}_{p2}}{{\mathrm{\Omega}}_{s1}}|,|{\mathrm{\Omega}}_{s2}-\frac{{\mathrm{\Omega}}_{p1}{\mathrm{\Omega}}_{p2}}{{\mathrm{\Omega}}_{s2}}|\right)\end{array}$ |

Bandstop filter | $\begin{array}{c}{\mathrm{\Omega}}_{p}=\mathrm{max}\left(\left|\frac{1}{{\mathrm{\Omega}}_{p1}-\frac{{\mathrm{\Omega}}_{s1}{\mathrm{\Omega}}_{s2}}{{\mathrm{\Omega}}_{p1}}}\right|,\left|\frac{1}{{\mathrm{\Omega}}_{p2}-\frac{{\mathrm{\Omega}}_{s1}{\mathrm{\Omega}}_{s2}}{{\mathrm{\Omega}}_{p2}}}\right|\right)\end{array}$ $\begin{array}{c}{\mathrm{\Omega}}_{s}=\frac{1}{{\mathrm{\Omega}}_{s2}-{\mathrm{\Omega}}_{s1}}\end{array}$ |

where the various $\mathrm{\Omega}$ values equal as follows:

${\mathrm{\Omega}}_{p1}=\mathrm{tan}(\pi *\frac{\mathrm{lower\; pass\; frequency}}{\mathrm{sampling\; frequency}})$

${\mathrm{\Omega}}_{p2}=\mathrm{tan}(\pi *\frac{\mathrm{higher\; pass\; frequency}}{\mathrm{sampling\; frequency}})$

${\mathrm{\Omega}}_{s1}=\mathrm{tan}(\pi *\frac{\mathrm{lower\; stop\; frequency}}{\mathrm{sampling\; frequency}})$

${\mathrm{\Omega}}_{s2}=\mathrm{tan}(\pi *\frac{\mathrm{higher\; stop\; frequency}}{\mathrm{sampling\; frequency}})$

**Where This Node Can Run: **

Desktop OS: Windows

FPGA: Not supported

Web Server: Not supported in VIs that run in a web application