
LabVIEWTM FPGA
Course Manual

Course Software Version 2009
August 2009 Edition
Part Number 372510C-01
LabVIEW FPGA Course Manual

Copyright
© 2003–2009 National Instruments Corporation. All rights reserved.
Under the copyright laws, this publication may not be reproduced or transmitted in any form, electronic or mechanical, including
photocopying, recording, storing in an information retrieval system, or translating, in whole or in part, without the prior written consent
of National Instruments Corporation.

National Instruments respects the intellectual property of others, and we ask our users to do the same. NI software is protected by
copyright and other intellectual property laws. Where NI software may be used to reproduce software or other materials belonging to
others, you may use NI software only to reproduce materials that you may reproduce in accordance with the terms of any applicable
license or other legal restriction.

For components used in USI (Xerces C++, ICU, HDF5, b64, Stingray, and STLport), the following copyright stipulations apply. For a
listing of the conditions and disclaimers, refer to either the USICopyrights.chm or the Copyrights topic in your software.

Xerces C++. This product includes software that was developed by the Apache Software Foundation (http://www.apache.org/).
Copyright 1999 The Apache Software Foundation. All rights reserved.

ICU. Copyright 1995–2009 International Business Machines Corporation and others. All rights reserved.

HDF5. NCSA HDF5 (Hierarchical Data Format 5) Software Library and Utilities
Copyright 1998, 1999, 2000, 2001, 2003 by the Board of Trustees of the University of Illinois. All rights reserved.

b64. Copyright © 2004–2006, Matthew Wilson and Synesis Software. All Rights Reserved.

Stingray. This software includes Stingray software developed by the Rogue Wave Software division of Quovadx, Inc.
Copyright 1995–2006, Quovadx, Inc. All Rights Reserved.

STLport. Copyright 1999–2003 Boris Fomitchev

Trademarks
National Instruments, NI, ni.com, and LabVIEW are trademarks of National Instruments Corporation. Refer to the Terms of Use section
on ni.com/legal for more information about National Instruments trademarks.

FireWire® is the registered trademark of Apple Inc. Other product and company names mentioned herein are trademarks or trade
names of their respective companies.
Members of the National Instruments Alliance Partner Program are business entities independent from National Instruments and have
no agency, partnership, or joint-venture relationship with National Instruments.

Patents
For patents covering National Instruments products/technology, refer to the appropriate location: Help»Patents in your software,
the patents.txt file on your media, or the National Instruments Patent Notice at ni.com/legal/patents.

Sam
ple

Worldwide Technical Support and Product Information
ni.com

National Instruments Corporate Headquarters
11500 North Mopac Expressway Austin, Texas 78759-3504 USA Tel: 512 683 0100

Worldwide Offices
Australia 1800 300 800, Austria 43 662 457990-0, Belgium 32 (0) 2 757 0020, Brazil 55 11 3262 3599, Canada 800 433 3488,
China 86 21 5050 9800, Czech Republic 420 224 235 774, Denmark 45 45 76 26 00, Finland 358 (0) 9 725 72511,
France 01 57 66 24 24, Germany 49 89 7413130, India 91 80 41190000, Israel 972 3 6393737, Italy 39 02 41309277,
Japan 0120-527196, Korea 82 02 3451 3400, Lebanon 961 (0) 1 33 28 28, Malaysia 1800 887710, Mexico 01 800 010 0793,
Netherlands 31 (0) 348 433 466, New Zealand 0800 553 322, Norway 47 (0) 66 90 76 60, Poland 48 22 328 90 10,
Portugal 351 210 311 210, Russia 7 495 783 6851, Singapore 1800 226 5886, Slovenia 386 3 425 42 00,
South Africa 27 0 11 805 8197, Spain 34 91 640 0085, Sweden 46 (0) 8 587 895 00, Switzerland 41 56 2005151,
Taiwan 886 02 2377 2222, Thailand 662 278 6777, Turkey 90 212 279 3031, United Kingdom 44 (0) 1635 523545

For further support information, refer to the Additional Information and Resources appendix. To comment on National Instruments
documentation, refer to the National Instruments Web site at ni.com/info and enter the info code feedback.

Sam
ple

© National Instruments Corporation iii LabVIEW FPGA Course Manual

Contents

Student Guide
A. Course Description ...vii
B. What You Need to Get Started ...vii
C. Installing the Course Software..viii
D. Course Goals...viii
E. Course Conventions ..ix

Lesson 1
Introduction to LabVIEW FPGA

A. Introduction to FPGA Technology ...1-2
B. LabVIEW FPGA System..1-3
C. Comparison with DAQmx ..1-5
D. LabVIEW FPGA Applications ...1-8

Lesson 2
LabVIEW FPGA Basics

A. Evaluate System Requirements ..2-2
B. FPGA System Architectures ...2-3
C. Reconfigurable I/O (RIO) Platforms ..2-4
D. System Configuration ...2-7
E. Creating a LabVIEW FPGA Project...2-13

Lesson 3
FPGA Programming Basics

A. Introduction...3-2
B. Defining FPGA Logic in LabVIEW...3-5
C. Developing the FPGA VI ...3-7
D. Interactive Front Panel Communication ...3-11
E. Selecting an Execution Mode ...3-12
F. Compiling the FPGA VI ...3-14
G. Basic Optimizations ..3-24

Lesson 4
FPGA I/O

A. Introduction...4-2
B. Configuring FPGA I/O ...4-3
C. I/O Types ..4-5
D. Integer Math..4-7
E. Fixed-Point Math ..4-8
F. CompactRIO ...4-19
G. Error Handling ..4-20

Sam
ple

Contents

LabVIEW FPGA Course Manual iv ni.com

Lesson 5
Timing an FPGA VI

A. Timing Express VIs ..5-2
B. Implementing Loop Execution Rates ...5-3
C. Creating Delays Between Events..5-6
D. Measuring Time Between Events ...5-7
E. Benchmarking Loop Periods ..5-8

Lesson 6
Data Sharing on FPGA

A. Parallel Loops ...6-2
B. Shared Resources ..6-4
C. Variables ...6-5
D. Memory Nodes ...6-8
E. Race Conditions ..6-17
F. FPGA FIFOs ...6-23
G. Comparison of Data Sharing Methods..6-32

Lesson 7
Single-Cycle Timed Loops

A. Dataflow in FPGA ..7-2
B. Single-Cycle Timed Loop...7-3
C. FPGA Clocks ..7-5
D. Single-Cycle Timed Loop Errors..7-8
E. Optimizing Code within a While Loop...7-12

Lesson 8
Basic Host Integration – PC/Real-Time

A. Windows-Based Host Integration...8-2
B. Developing a Windows-Based Host VI..8-3
C. Introduction to Real-Time ..8-7
D. Developing an RT Host VI ...8-9
E. Developing a Windows-based VI ...8-10
F. Prepare RT Host For Final Application..8-11

Lesson 9
DMA Data Transfers

A. LabVIEW FPGA and Host Communication ..9-2
B. DMA FIFOs..9-3
C. Lossless Data Transfer..9-13
D. Interleaving ...9-16

Sam
ple

Contents

© National Instruments Corporation v LabVIEW FPGA Course Manual

Lesson 10
Modular Programming and Code Reuse

A. Review of SubVIs ...10-2
B. Using SubVIs on the FPGA..10-4
C. Reentrancy and Non-reentrancy in FPGA ..10-4
D. Control Types for Passing to subVIs ..10-5
E. Testing FPGA SubVIs ..10-6
F. LabVIEW FPGA IPNet ..10-6

Appendix A
Pipelining

A. Pipelining ..A-2

Appendix B
Additional Information and Resources

Course Evaluation

Sam
ple

© National Instruments Corporation 4-1 LabVIEW FPGA Course Manual

4
FPGA I/O

In this lesson, you will learn how to add FPGA I/O to your LabVIEW
project and use it on the block diagram. You will also learn about the
differences between performing I/O on an R Series device and on a
CompactRIO chassis and the differences between integer and fixed-point
data. Using I/O Nodes, you will learn how to access both analog and digital
data.

Topics
A. Introduction

B. Configuring FPGA I/O

C. I/O Types

D. Integer Math

E. Fixed-Point Math

F. CompactRIO

G. Error Handling

Sam
ple

Lesson 4 FPGA I/O

LabVIEW FPGA Course Manual 4-2 ni.com

A. Introduction
Inputs and outputs on FPGA targets allow you to connect the FPGA target
to other devices, such as sensors and actuators. FPGA I/O resources are
fixed elements of the FPGA targets that you use to transfer data among the
different parts of the system. On some FPGA targets, FPGA I/O resources
correspond to lines on front panel connectors, PXI backplanes, or
Real-Time System Integration (RTSI) connectors. On other FPGA targets,
FPGA I/O resources are nodes inside FPGAs that connect the part of the
FPGA designed by National Instruments with the part of the FPGA you
design. Each FPGA I/O resource has a specific type, such as digital or
analog. An FPGA target might have multiple resources of the same or
different types. You can create FPGA I/O items, determine the I/O resources
on the FPGA target that you want to use, and then assign unique names to
the I/O resources you use.

Note Refer to the specific FPGA target hardware documentation for information about
supported features and I/O functionality on the FPGA target you use.

Several I/O example VIs are available in the NI Example Finder in Toolkits
and Modules»FPGA»CompactRIO»Basic IO and Toolkits and
Modules»FPGA»CompactRIO»FPGA Fundamentals.

Use the following terms when working with FPGA I/O Nodes:

• Terminal—Represents a hardware connection on a CompactRIO
module.

• I/O Resource—Specifies a logical representation in LabVIEW FPGA
of a hardware terminal.

• I/O Name—Specifies a name assigned by the developer to a particular
I/O resource that normally describes the function of the resource.
Assigning a different I/O resource to an I/O name updates all instances
of the I/O name within the project.

The FPGA VI configures the FPGA circuit. When the FPGA circuit is
activated, it performs the I/O operations in hardware. For example, if you
configure an FPGA I/O node to read a digital line, the FPGA I/O node reads
the line and returns the result. Consequently the FPGA can react to the input
with the speed and determinism available in the FPGA target hardware.

You can put inputs and outputs, analog and digital, all in the same node on
the block diagram. You can use target-specific properties and methods on
the FPGA I/O items with the FPGA I/O Property Node and the FPGA I/O
Method Node, respectively.

Sam
ple

Lesson 4 FPGA I/O

© National Instruments Corporation 4-3 LabVIEW FPGA Course Manual

B. Configuring FPGA I/O
In order to access I/O on the FPGA, you must first add I/O to your project.
Depending on the FPGA target you are working with, there are different
ways to add FPGA I/O to a LabVIEW project. If you are using a
CompactRIO target, you can choose to detect modules when your add your
chassis to the project. Autodetection of modules ensures that all FPGA I/O
resources are added to the project. When you add the chassis to your project,
the Discover C Series Modules dialog box shown in Figure 4-1 appears.

Figure 4-1. Discover C Series Modules Dialog Box

Click Discover to automatically detect the modules and add I/O resources
to the project. If you choose not to automatically detect modules, add them
manually by right-clicking the FPGA target and selecting New»C Series
Modules.

When using an R Series target, you can manually add I/O resources to your
project to ensure that you add only the resources that you intend to use. This
significantly reduces the number of items in the Project Explorer window.
Right-click the FPGA target in the Project Explorer and select New»FPGA
I/O to launch the New FPGA I/O dialog box, show in Figure 4-2. Select I/O
in the left pane of the New FPGA I/O dialog box and click Add to add the
I/O resource to the project. Rename I/O resources by clicking the default
name and entering a meaningful name for your application.Sam

ple

Lesson 4 FPGA I/O

LabVIEW FPGA Course Manual 4-4 ni.com

Figure 4-2. Discover C Series Modules Dialog Box

After you add I/O resources to your project, you can access them in VIs
developed under the FPGA target. You can access FPGA I/O resources by
opening the FPGA I/O palette. Table 4-1 describes the objects available in
that palette.

You place an FPGA I/O Node on the block diagram from the palette or by
dragging an FPGA I/O item from the Project Explorer.

If you add the FPGA I/O Node from the Functions palette, you must
configure it by right-clicking, selecting Select FPGA I/O, and making the
appropriate choices for configuration. The Select FPGA I/O submenu

Table 4-1. FPGA I/O Palette Objects

Palette Object Description

FPGA I/O Constant Specifies an FPGA I/O item on the block diagram.

FPGA I/O Method Invokes a method on an I/O item or hardware under and FPGA target
in the Project Explorer window.

FPGA I/O Node Performs specific FPGA I/O operations on FPGA targets.

FPGA I/O Property Gets or sets one or more properties on an I/O item or hardware under
an FPGA target in the Project Explorer window.

Sam
ple

Lesson 4 FPGA I/O

© National Instruments Corporation 4-5 LabVIEW FPGA Course Manual

displays the FPGA I/O items that appear in the Project Explorer tree. You
can also click the FPGA I/O Node and use the shortcut menu to add new
FPGA I/O items or select from FPGA I/O items you previously added to the
project.

C. I/O Types
There are two basic FPGA I/O types in LabVIEW FPGA hardware:
digital I/O and analog I/O.

In addition to these basic two FPGA I/O types, there are also CompactRIO
modules for motion control and CAN. Refer to the LabVIEW Help for more
information on those modules.

Digital
Digital lines are basic digital I/O. Digital lines are bi-directional on all
R Series devices and some CompactRIO modules. Refer to the
documentation for your specific device for more information about
digital enable and digital data functionality.

FPGA targets might organize digital I/O resources as individual lines or as
groups of lines called ports. A digital line I/O uses the Boolean data type.
Ports use a data type that is dependent on the target. Ports for most I/O are
a group of 8 bits, but others can be 16 or 32 bits. One bit is used for each
line. Some FPGA targets provide access to digital I/O resources as only
lines or ports. Other FPGA targets allow you to access the same physical
lines as individual lines and as ports.

You can use digital input and output resources to configure the I/O resource
and control the direction of dataflow. If you use a digital resource to write
an output signal, you must disable the output before you can use the same
resource to read an input signal. Use the FPGA I/O Method Node with the
Set Output Enable method to disable the output line.

If you use the FPGA I/O Node to write a digital output, the FPGA I/O Node
writes the data and enables the terminal for output. You also can use the
FPGA I/O Method Node with the Set Output Data method to write data
without enabling the output. Use the FPGA I/O Method Node with the Set
Output Enable method to enable the digital terminal, which allows the data
to be driven out. Use the Set Output Data method before the Set Output
Enable method to specify the state of the digital resource when you enable
the output. For example, you might have one portion of the block diagram
continuously generating an internal signal. Use the FPGA I/O Method Node
with the Set Output Enable method in another portion of the block diagram
to independently control when the internal signal is actually driven out to an
external device.

Sam
ple

Lesson 4 FPGA I/O

LabVIEW FPGA Course Manual 4-6 ni.com

The FPGA devices do not have built-in counter hardware. All counters must
be programmed into the FPGA itself. The count register can be 32, 16, or
8 bits, depending on the type of integer selected for the counter indicator.
The loop period also determines the minimum detectable pulse width. An
example counter is shown in Figure 4-3.

Figure 4-3. 16 bit Rising Edge Counter

The example shown in Figure 4-3 has the following specifications:

• About 10 ticks per iteration

• 250 ns to guarantee a high or low read

• 500 ns period = 2 MHz signals.

It can read a signal at a maximum of 2 MHz. It is important to benchmark
your counter before using it in a final application. Refer to Toolkits and
Modules»FPGA»Compact RIO/R Series»FPGA Fundamentals»
Counters in the NI Example Finder for related examples.

Analog
There are two analog I/O data types available for use, depending on your
FPGA target. If you use an R Series target, the analog I/O data type is either
an I16 or an I32, depending on the device. These devices return uncalibrated
data. If you use a CompactRIO target, then the default data type is
fixed-point and the data has been calibrated. You can, however, choose to
configure the module to return raw integer data as well.

No matter the type of target, floating-point data cannot be used. This limits
the types of operations you can perform on the FPGA. If you must perform
floating-point analysis, you should pass the data to a host VI. More
information about passing data between the FPGA and the host can be found
in Lesson 8, Basic Host Integration – PC/Real-Time.

Sam
ple

Lesson 4 FPGA I/O

© National Instruments Corporation 4-7 LabVIEW FPGA Course Manual

D. Integer Math
If you configure an FPGA I/O Node to read an analog input, the FPGA I/O
Node might initiate a conversion, wait for the result, and then return the
binary representation of the voltage as a signed integer. The analog input
process and the size of the resulting data type varies by FPGA target.
For many FPGA targets, you create the FPGA VI to use the binary
representation for operations within the FPGA VI. You also can pass the
binary representation back to the RT host VI and convert the binary
representation to a voltage or other physical quantity.

If you configure the FPGA I/O Node to write an analog output, the FPGA
I/O Node might write the binary representation of the voltage to the
digital-to-analog converter (DAC), which sets the analog output voltage.
The size of the data type varies by FPGA target. You can generate voltage
information in two sources-the RT host VI or the FPGA VI. Typically, the
RT host VI converts the voltage to an appropriate binary representation
before writing the value to the FPGA VI. If the FPGA VI determines the
voltage, typically the FPGA VI performs the calculations using the
appropriate binary representations. In both cases, the DAC produces a
voltage that corresponds to the binary representation.

Most of the math functions on the Numeric palette support both integer and
fixed-point data types. Notable exceptions include the Divide, Reciprocal
and Square Root functions, which will only work on the FPGA target if you
are using fixed-point data.

It is possible to achieve some of the functionality of the Divide function for
integer data if you make use of the Scale by Power of 2 and Quotient &
Remainder functions. You use these functions to perform simple scaling of
data, as shown in Figure 4-4.

Figure 4-4. R Series Scaling on FPGA

Sam
ple

Lesson 4 FPGA I/O

LabVIEW FPGA Course Manual 4-8 ni.com

In this example of scaling data in LabVIEW FPGA, we want to scale the
data by .70. To get this scaling very close, we multiply the analog input by
a scaling factor of 11500, then divide it by 214 by using the Scale by the
Power of 2 function with the Bit Shift (n input of the function) set to –14.
This results in a the data from Connector0/AI0 being multiplied by 0.7019.

Additionally, you can divide numbers using the quotient and remainder
function, however, this can use many slices when implemented.

Converting Binary Representations
When you configure the FPGA I/O Node to read an analog input, the FPGA
I/O Node initiates a conversion, waits for the result, and returns the binary,
uncalibrated representation of the voltage as a signed 32-bit integer (I32).
The analog input process and the size of the resultant data type varies by
FPGA target.

The equation that converts the binary representation to a physical quantity
depends on the FPGA target and transducer. Avoid executing this
calculation in the FPGA VI because the R Series FPGA supports only
integer operations, and performing the calculation consumes space on the
FPGA.

It is good practice to convert and calibrate the I/O values in a host VI.

E. Fixed-Point Math
The fixed-point data type is a numeric data type that represents a set of
rational numbers using binary digits, or bits. Unlike the floating-point data
type, which allows the total number of bits LabVIEW uses to represent
numbers to vary, you can configure fixed-point numbers to always use a
specific number of bits. Hardware and targets that only can store and process
data with a limited or fixed number of bits then can store and process the
numbers. You can specify the range and precision of fixed-point numbers.
You can specify any size between 1 and 64 bits, inclusive, for a fixed-point
number. You can configure fixed-point numbers as signed or unsigned.

Note To represent a rational number using the fixed-point data type, the denominator of
the rational number must be a power of 2, because the binary number system is a base-2
number system.

Use the fixed-point data type when you do not need the dynamic
functionality of floating-point representation, or when you want to work
with a target that does not support floating-point arithmetic, such as an
FPGA target.

Sam
ple

Lesson 4 FPGA I/O

© National Instruments Corporation 4-9 LabVIEW FPGA Course Manual

The fixed-point data type provides some of the flexibility of the
floating-point data type but also maintains the size and speed advantages of
integer arithmetic. By default, each operation on the fixed-point data type
generates a fixed-point result that is large enough to hold all possible output
values specified by the input types.

Note FPGA Signal Generation VIs and some functions do not support the fixed-point
data type.

Caution If you wire a fixed-point number to an integer, you might lose fractional bits.

The range of a fixed-point data type describes the minimum value,
maximum value and delta (the smallest change in data). These three values
are determined by the sign encoding, word length, and integer word length
of the fixed-point data.

Encoding, Word Length, and Integer Word Length
The sign encoding, word length, and integer word length are the three
parameters that define the values that can be represented by a fixed-point
number. These parameters are all user-defined and can be modified by
right-clicking on a fixed-point constant, control, or function and selecting
Properties.

• Sign encoding—The setting that specifies whether the fixed-point value
is signed or unsigned. If you select signed, the sign bit is always the first
bit in the bit string that represents the data.

• Word length—The total number of bits in the bit string that LabVIEW
uses to represent all possible values of the fixed-point data. LabVIEW
accepts a maximum word length of 64 bits. Certain targets might limit
data to smaller word lengths. If you open a VI on a target and the VI
contains fixed-point data with larger word lengths than the target can
accept, the VI contains broken wires. Refer to the documentation for a
target to determine the maximum word length the target accepts.

• Integer word length—The number of integer bits in the bit string that
LabVIEW uses to represent all possible values of the fixed-point data,
or, given an initial position to the left or right of the most significant bit,
the number of bits to shift the binary point to reach the most significant
bit. The integer word length can be larger than the word length, and can
be positive or negative.

Sam
ple

Lesson 4 FPGA I/O

LabVIEW FPGA Course Manual 4-10 ni.com

When performing calculations with fixed-point data, it is important to track
the configuration of the fixed-point data as the data is manipulated. Most
operations result in a different configuration of fixed-point data at the output
than the input. The easiest way to view the configuration of the fixed-point
data, as well as the minimum, maximum and delta values, is to turn on the
Context Help and click on the a wire, control, or indicator. Figure 4-5
displays the data type of a particular wire.

Figure 4-5. Fixed Point Context Help

Numeric Representation of Fixed-Point Numbers
The maximum and minimum values of a fixed-point number are dependent
upon the sign encoding, word length, and integer word length of the number.
The delta of the number is based on the difference between the word length
and the integer word length.

Table 4-2. Numeric Representation Examples

Representation Delta Minimum Value Maximum Value

U8 1 0 255

I8 1 –128 127

FXP <+,8,7> 0.5 0 127.5

FXP <+,8,6> 0.25 0 63.75

FXP <±,8,7> 0.5 –64 63.5

FXP <±,8,6> 0.25 –32 31.75

FXP <+,8,0> 0.0039 0 0.9961

Sam
ple

Lesson 4 FPGA I/O

© National Instruments Corporation 4-11 LabVIEW FPGA Course Manual

When the fixed-point number is unsigned, it is represented as <+,X,Y>. For
an unsigned fixed-point number, the maximum value of the fixed-point data
is 2Y – 1/(2(X–Y)) and the delta is 1/(2(X–Y)). The minimum value that can be
represented is zero. For example:

<+,8,6> is an unsigned 8-bit number with six integer bits and two decimal
bits. The maximum value that can be represented is 26 – 1/(2(8–6)) = 64 – ¼ =
63.75 and the delta is 1/(2(8–6)) = 0.25.

When the fixed-point number is signed, it is represented as <±,X,Y>. In this
case, the maximum value of the fixed-point data is 2Y–1 – 1/(2(X–Y)). The
delta is still represented as 1/(2(X–Y)). The minimum value that can be
represented is –2Y–1. For example:

<±,8,6> is a signed 8-bit number with six integer bits. The maximum
value that can be represented is 26–1 – 1/(2(8–6)) = 31.75 and the delta is
1/(2(8–6)) = 0.25. The minimum value that can be represented is –26–1 = –32.

Note The difference between the maximum and minimum values for a signed
fixed-point number is the same as the difference between the maximum and minimum
values for an unsigned fixed-point number with the same word and integer word lengths.
The delta also does not change.

If the integer word length is larger than the word length, LabVIEW does not
store the integer bits that exceed the word length. For <+,8,10>, the two least
significant bits would not be stored. The maximum value that can be
represented by this number is 210 – 1/(2(8–10)) = 1020 and the delta is
1/(2(8–10)) = 4.

If the integer word length is negative, LabVIEW does not store any integer
bits and also does not store the number of fractional bits equal to the
negative number, starting from the binary point. Thus, for <+,8,–2>, the
maximum value that can be represented is 2–2 – 1/(2(8+2)) = 0.2490234375
and the delta is 1/(2(8+2)) = 9.765625E-4.

Fixed-Point Configuration
You can configure a fixed-point number in a numeric control, constant, or
indicator.

After you configure a fixed-point control, constant, or indicator, that object
cannot display a number that does not conform to the settings you specify.
If the object you configure is an indicator, LabVIEW coerces any input
value to the indicator to conform to the fixed-point configuration settings of
the indicator.

Sam
ple

Lesson 4 FPGA I/O

LabVIEW FPGA Course Manual 4-12 ni.com

Configuring Controls
Complete the following steps to configure a fixed-point number in a
numeric control.

1. Right-click the control and select Properties from the shortcut menu to
display the Numeric Properties dialog box.

Figure 4-6. Fixed-Point Control Configuration

2. On the Data Type page, click the data type icon in the Representation
section and select FXP (Fixed-point) from the shortcut menu. The
Fixed-Point Configuration section displays default values for the
Encoding and Range options.

3. Complete the following steps to configure the Range of the fixed-point
number.

a. Select Signed or Unsigned to specify whether you want to represent
a signed or unsigned number.

b. In the Word length field, specify the total number of bits you want
to use to represent the value of the fixed-point number.

c. In the Integer word length field, specify the number of integer bits
you want to use to represent the value of the fixed-point number.

Sam
ple

Lesson 4 FPGA I/O

© National Instruments Corporation 4-13 LabVIEW FPGA Course Manual

4. (Optional) Place a checkmark in the Include overflow status checkbox
to include an overflow status in the fixed-point number.

5. Click OK to close the dialog box and apply the configuration settings.

Configuring Constants
Complete the following steps to configure a fixed-point number in a
numeric constant.

1. Right-click the constant and select Properties from the shortcut menu
to display the Numeric Constant Properties dialog box.

2. On the Data Type page, remove the checkmark from the Adapt to
entered data checkbox.

Note When you select Adapt to entered data, LabVIEW displays any value you enter
with the shortest possible word length and integer word length. You must remove the
checkmark from this checkbox if you want to make changes to the Fixed-Point
Configuration settings.

3. Click the data type icon in the Representation section and select FXP
(Fixed-point) from the shortcut menu. The Fixed-Point Configuration
section displays default values for the Range and Encoding options.

4. Complete the following steps to configure the Range of the fixed-point
number.

a. Select Signed or Unsigned to specify whether you want to represent
a signed or unsigned number.

b. In the Word length field, specify the total number of bits you want
to use to represent the value of the fixed-point number.

c. In the Integer word length field, specify the number of integer bits
you want to use to represent the value of the fixed-point number.

5. (Optional) Place a checkmark in the Include overflow status checkbox
to include an overflow status in the fixed-point number.

6. Click OK to close the dialog box and apply the configuration settings.

Configuring Indicators
Complete the following steps to configure a fixed-point number in a
numeric indicator.

1. Right-click the indicator and select Properties from the shortcut menu
to display the Numeric Properties dialog box.

2. On the Data Type page, click the data type icon in the Representation
section and select FXP (Fixed-point) from the shortcut menu. The
Fixed-Point Configuration section displays default values for the Range
and Encoding options.

Sam
ple

Lesson 4 FPGA I/O

LabVIEW FPGA Course Manual 4-14 ni.com

3. Place a checkmark in the Adapt to source checkbox if you want the
value to inherit the fixed-point configuration settings of an input
fixed-point value. If you select this option, skip to step 6.

4. (Optional) Complete the following steps to configure the Range of the
fixed-point number.

a. In the Minimum field, enter the minimum value to which you want
the fixed-point number to conform.

b. In the Maximum field, enter the maximum value to which you want
the fixed-point number to conform.

c. In the Desired delta field, enter the increment between numbers
within the Range.

5. (Optional) Place a checkmark in the Include overflow status checkbox
to include an overflow status in the fixed-point number.

6. Click OK to close the dialog box and apply the configuration settings.

Fixed-Point Arithmetic
When performing arithmetic on integer data, the output data type matches
the input data types. However, when you add two values that are the
maximum values allowed for that data type, the result will not be accurate.
For example, adding together two U16 integers with a value of 65535 should
result in a value of 131070. However, that value is outside of the range of
values allowed by a U16, so the result is an inaccurate output.

For fixed-point arithmetic, the output of the function is configured to
accommodate the largest possible result based on the inputs. The size of the
output is limited to 64 bits, which is a limitation of the data type. LabVIEW
propagates the range of values along each wire in the diagram, not
fixed-point representation. This allows LabVIEW to reduce resources when
possible. For terminals and other points when representation is necessary,
the representation is then calculated to be as small as possible without losing
data.

In the following sections, we examine four arithmetic functions: addition,
subtraction, multiplication, and division. Because LabVIEW propagates
ranges, the formulas in the following sections are helpful guidelines for
calculating the representation of an output value, but are not the formulas
that LabVIEW uses.

Addition
When using the Add function, the two inputs should have the same
fixed-point configuration. If they have different configurations, then one or
both of the inputs will be coerced to a configuration that can accommodate
the full range of both inputs. For the output, the word length and integer

Sam
ple

Lesson 4 FPGA I/O

© National Instruments Corporation 4-15 LabVIEW FPGA Course Manual

word length are each increased by one and the sign encoding matches the
setting of the inputs. Thus, if the inputs are each configured as <±,A,B>,
then the output will be configured as <±,A+1,B+1>. Figure 4-7 shows an
example of addition of fixed point data.

Figure 4-7. Fixed-Point Addition

For the output, integer word length increases by one to accommodate the
maximum value. Since the integer word length increases, the word length
must also increase so that no accuracy is lost. Thus, <±,10,6> + <±,10,6> =
<±,11,7>

To add two fixed-point values with different configurations, you must use
the longer integer word length from the two inputs for the output, and you
must add together the longer word length and the longer decimal word
length (word length - integer word length) to determine the word length of
the output. This is done to ensure that no accuracy is lost.

For example, adding fixed-point values with configurations of <±,10,7> and
<±,10,6> requires that the output have 7 integer bits (from <±,10,7>) and
4 decimal bits (from <±,10,6>), resulting in both inputs being coerced to
<±,11,7>. For the output, <±,11,7> + <±,11,7> = <±,12,8>

If one input is signed and the other is unsigned, then the word length and
integer word length will increase by one more bit.

Subtraction
When using the Subtract function, the two inputs should have the same
fixed-point configuration, as described for addition. Also, as with addition,
the input word length and integer word length each be increase by one for
the output. Unlike addition, the output is always signed, regardless of
whether or not the inputs were signed. Thus, if the inputs are each
configured as <+,A,B>, then the output is configured as <±,A+1,B+1>.
Figure 4-8 shows an example of subtraction of fixed point data.

Sam
ple

Lesson 4 FPGA I/O

LabVIEW FPGA Course Manual 4-16 ni.com

Figure 4-8. Fixed-Point Subtraction

As with addition, if the inputs have different configurations, they are
coerced to a common configuration that accommodates both data types.

Multiplication
When using the Multiply function, the two inputs are not required to have
the same fixed-point configuration. For the integer value of the output to
accommodate the largest possible value of each operand, the integer word
length must increase to match the sum of the integer word lengths of the
inputs. For the resolution of the output to accommodate the highest
resolution of both inputs, the decimal word length must also increase. Thus,
the word length of the output must increase to match the sum of the word
lengths of the inputs. If either input is signed, then the output is signed.
Otherwise, the output is unsigned. Thus, if the inputs are each configured as
<±,A,B> and <+,C,D>, then the output is configured as <±,A+C,B+D>.
Figure 4-9 shows an example of multiplication of fixed point data.

Figure 4-9. Fixed-Point Multiplication

Division
When using the Divide function, the two inputs are not required to have the
same fixed-point configuration. For the output, the word length and integer
word length are calculated differently depending on whether or not the
inputs are signed.

• Signed: <±,A,B> + <±,C,D> = <±,A+C+1,B+C–D+1>

• Unsigned: <+,A,B> + <+,C,D> = <+,A+C, B+C–D>

Sam
ple

Lesson 4 FPGA I/O

© National Instruments Corporation 4-17 LabVIEW FPGA Course Manual

An example of both signed and unsigned fixed-point division is shown in
Figure 4-10.

Figure 4-10. Fixed-Point Division

Configuring Fixed-Point Functions
Functions that support the fixed-point data type (add, subtract, multiply, and
so on) include modes to handle the overflow and rounding. In the Properties
dialog box for the function, you select the overflow and rounding modes.
Right-click a function and select Properties from the shortcut menu to
display the Properties dialog box.

Figure 4-11. Fixed-Point Function Configuration

Sam
ple

Lesson 4 FPGA I/O

LabVIEW FPGA Course Manual 4-18 ni.com

The Properties dialog box contains the following three options that are
specific to configuring a fixed-point function:

• Adapt to Source—Sets the configuration settings for the output value
to adapt to the input values you wire to the function. For fixed-point
data, LabVIEW automatically sets the Fixed-Point Configuration
settings to avoid data loss, if possible.

• Rounding Mode—Determines how the function handles quantization
conditions.

• Overflow Mode—Determines how the function handles overflow
conditions.

Rounding occurs when the precision of the input value or the result of an
operation is greater than the precision of the output type. The rounding
modes affect the logic generated within the FPGA as follows:

• Truncate—Removes fractional bits and therefore does not require any
additional hardware resources. However, this mode produces the largest
mean error for most data streams. This mode is the default for integer
operations.

• Round-Half-Up (Asymmetric)—Adds to the least significant bit and
therefore requires an adder that is the width of the output type.

• Round-Half-Even—Requires the most hardware resources and has the
slowest timing of the three rounding modes. However, this mode returns
the most statistically correct results for most data streams and is
therefore the default rounding mode for the fixed-point data type.
Although this mode requires only a modest amount of additional
hardware compared to the Round-Half-Up (Asymmetric) mode, the
length of the longest combinatorial path is longer, which reduces the
maximum clock frequency for the path.

Overflow occurs when the result of an operation is outside the range of
values that the output type can represent. The overflow modes affect the
logic generated within the FPGA as follows:

• Saturate—Requires additional hardware resources to determine if the
input value is within the desired range of the output type. Saturate is the
default overflow mode. If you specify a desired range other than the
default minimum and maximum, the Saturate mode performs a full
comparison between the desired range and input value, which might
require additional clock cycles to complete. If you do not specify a
desired range, the Saturate mode checks all bits above the most
significant bit of the output type to ensure the output did not overflow.

• Wrap—Requires fewer hardware resources than the Saturate mode.

Sam
ple

Lesson 4 FPGA I/O

© National Instruments Corporation 4-19 LabVIEW FPGA Course Manual

Figure 4-12. Mismatched Fixed-Point Data

If you select the Saturate, Round-Half-Up (Asymmetric), or
Round-Half-Even modes and the output can handle the overflow or
rounding, the operation does not require additional hardware resources.
If a coercion dot does not appear on the block diagram, the output can
handle the overflow or rounding without additional hardware resources.
If a coercion dot does appear, then there is a risk of data loss.

For more information about fixed-point data and fixed-point arithmetic,
refer to the following LabVIEW Help topics:

• Numeric Data

• Configuring Fixed-Point Numbers

• Numeric Data Types Table

F. CompactRIO
One of the differentiating characteristics of CompactRIO is the high degree
of customization that can be achieved using modules that fit your specific
needs. Each CompactRIO module has different functional features and
specifications. Similarly, the input/output for each module has its own
features.

Different modules return data in different fixed-point data types.
Differences in configuration are due to differences in the hardware for each
module. Hardware differences result in variations in accuracy and range for
the data that is generated or obtained. Some modules enable you to
configure their I/O nodes to return data that is both calibrated and scaled.

Sam
ple

Lesson 4 FPGA I/O

LabVIEW FPGA Course Manual 4-20 ni.com

All modules share certain common properties, like Module ID, Serial
Number, and Vendor ID. Some modules, however, have their own unique
properties. For example, the NI 9233 has a Data Rate property that allows
the user to programmatically configure the sample rate of the device. Some
modules even have their own methods that can be called. For example, the
NI 9263 analog output module has three methods: Update, Wait For Update,
and Write Data. The NI 9233, however, does not have any module-specific
methods associated with it.

Different modules have different timing and sampling capabilities. For
example, the NI 9211 acquires a single sample per cycle at its set data rate.
The NI 9233 is able to acquire a single sample from each of its channels at
a user-defined sample rate.

It is important to understand the features and specifications of the
CompactRIO modules you use. Refer to the LabVIEW Help for
module-specific information.

G. Error Handling
To add standard LabVIEW error in and error out parameters to a function,
you can right-click the FPGA I/O Node on the block diagram and select
Show Error Terminals. If an error occurs, you might receive incorrect
data. Add error parameters to be sure the data you receive is valid. FPGA
targets might report errors differently. Refer to the specific FPGA target
hardware documentation for information about how specific FPGA targets
report errors.

Adding error in and error out parameters increases the amount of space the
function uses on the FPGA target. The error in and error out parameters also
slows execution on the FPGA target. So, use them as a general rule, but if
you have difficulty with either the size or the speed of the FPGA application,
remove them after carefully testing your code.

If FPGA resources are limited, there are number of optimizations related to
the use of error clusters that you can perform.

• If you are using the error wire for dataflow, remove the error wires and
use a Sequence Structure instead. The Sequence Structure has a minimal
cost when used in FPGA.

• Show error terminals only for modules whose functions are critical to
system operation.

• Show terminals only once per module if multiple calls are made to the
module. The exception to this rule is modules that have specific errors.
Checking once allows you to check for general errors.

Sam
ple

Lesson 4 FPGA I/O

© National Instruments Corporation 4-21 LabVIEW FPGA Course Manual

• Do not pass error clusters through the program or display the error
cluster on the front panel.

• Unbundle source and/or code items and handle the errors immediately.

Some types of FPGA I/O errors must be handled in all cases.

• All safety-critical I/O operations should be monitored for errors.

• Some modules have specific error codes associated with them. For
example, the NI CAN modules generate an error if a timeout occurs. The
NI 9802 generates an error if it attempts to open a file that cannot be
found.

• If the module being used has been removed or is not secure, an error is
generated.

Sam
ple

Lesson 4 FPGA I/O

LabVIEW FPGA Course Manual 4-22 ni.com

Self Review Quiz

1. Match each FPGA I/O term to the definition that best fits.

2. What is the default data type of the result of adding two signed
fixed-point numbers with a word length of 20 and an integer word length
of 10?

a. <±, 40, 20>

b. <+, 20, 10>

c. <±, 21, 11>

d. <+, 30, 30>

3. Which of the following are parameters used to define the range of values
that are represented by a fixed-point number?

a. Terminal

b. Sign Encoding

c. Word Length

d. Integer Word Length

4. Match each FPGA I/O term to the definition that best fits it.

Terminal A name assigned by the developer to a
particular I/O Resource.

I/O Resource A hardware connection on a CompactRIO
module.

I/O Name A logical representation in LabVIEW FPGA
of a terminal.

NI PCI-7831R R Series board Integer

NI 9233 CompactRIO module Fixed-point

Sam
ple

Lesson 4 FPGA I/O

© National Instruments Corporation 4-23 LabVIEW FPGA Course Manual

Self Review Quiz Answers

1. Match each FPGA I/O term to the definition that best fits.

2. What is the default data type of the result of adding two signed
fixed-point numbers with a word length of 20 and an integer word length
of 10?

a. <±, 40, 20>—This answer would have been correct if the values
were being multiplied.

b. <+, 20, 10>

c. <±, 21, 11>—Since the inputs have the same data type, the integer
word length and word length are each increased by one.

d. <+, 30, 30>

3. Which of the following are parameters used to define the range of values
that are represented by a fixed-point number?

a. Terminal

b. Sign Encoding—Determines whether the value is signed or
unsigned.

c. Word Length—Determines the number of bits used to represent the
number.

d. Integer Word Length—Determines the number of bits used to
represent the integer portion of the number.

4. Match each FPGA I/O term to the definition that best fits it.

Terminal A hardware connection on a CompactRIO
module.

I/O Resource A logical representation in LabVIEW
FPGA of a terminal.

I/O Name A name assigned by the developer to a
particular I/O Resource.

NI PCI-7831R R Series board Integer

NI 9233 CompactRIO module Fixed-point

Sam
ple

© National Instruments Corporation 4-1 LabVIEW FPGA Course Exercises

4
FPGA I/O

Exercise 4-1 R Series I/O

Goal
Use I/O in LabVIEW FPGA to acquire analog and digital data from a
simulated R Series device.

Scenario
You must design an application to access the analog and digital I/O of an
R Series device using FPGA I/O nodes. Since you do not have an R Series
device on-hand, you must simulate the PCI-7831R that will be used in the
final application.

Design
Assign unique names to the I/O channels that you acquire data from to make
your block diagram more readable. Design a VI that acquires data from
those channels and displays them.

Implementation
1. Create a new project with a PCI-7831R board as the FPGA Target. You

created a similar project in Exercise 2-3.

2. Select File»Save Project and save the project as R-Series
IO.lvproj in the <Exercises>\LabVIEW FPGA\R-Series IO\
directory.

3. Set the project to execute the VI on the development computer with
simulated I/O.

❑ Right-click the FPGA target and select Execute VI on»
Development Computer with Simulated I/O.

❑ Click OK.

Note For this exercise, we use the default setting Use Random Data for FPGA I/O
Read. The other option, Use Custom VI for FPGA I/O, can be used if you have a
separate VI that you would like to use to simulate the I/O.

Sam
ple

Lesson 4 FPGA I/O

LabVIEW FPGA Course Exercises 4-2 ni.com

4. Add AI0 and DIOPORT0 from Connector0 to the FPGA Target.

❑ Right-click on the FPGA Target and select New»FPGA I/O.

❑ In the New FPGA I/O dialog box, expand Connector0.

❑ Add AI0 and DIOPORT0.

❑ Click OK. You should now see a Connector0 virtual folder
containing two FPGA I/O items in your Project Explorer.

5. Assign unique names to the FPGA I/O resources. The use of unique
names for FPGA I/O resources will result in more readable block
diagrams.

❑ Right-click Connector0/AI0 and select Rename. Name the item
Simulated Analog In.

❑ Rename Connector0/DIOPORT0 as Simulated Digital
Port In.

6. Create a new VI on the FPGA Target.

❑ Right-click the target and select New»VI.

❑ Save the VI as R-Series IO.vi in the <Exercises>\LabVIEW
FPGA\R-Series IO\ directory.

Sam
ple

Lesson 4 FPGA I/O

© National Instruments Corporation 4-3 LabVIEW FPGA Course Exercises

7. Verify that your Project Explorer window resembles Figure 4-1.

Figure 4-1. R Series Project with FPGA I/O

8. Build the Block Diagram shown in Figure 4-2.

Figure 4-2. R-Series I/O.vi Block Diagram

❑ Add the FPGA I/O node to the block diagram

– Drag Simulated Analog In from the Project Explorer window
to the block diagram.

– Expand the node to include Simulated Digital Port In.

❑ Right-click the I/O Item outputs and create indicators for each.

Sam
ple

Lesson 4 FPGA I/O

LabVIEW FPGA Course Exercises 4-4 ni.com

❑ Add a Number to Boolean Array function and create an indicator
for its output. This VI converts the raw numeric that is returned
by Simulated Digital Port In into a Boolean array, which better
represents the state of each digital line of the port.

❑ Wire the diagram and name the indicators as shown.

9. Arrange the Front Panel shown in Figure 4-3.

Figure 4-3. R-Series I/O.vi Front Panel

❑ Expand Digital Port In (Boolean) to show all digital lines for the
port.

10. Save the VI.

Testing
1. Run the VI.

Since the FPGA is running on the development computer with simulated
I/O, the three indicators will contain random data.

Note that Simulated Digital Port In (Boolean) presents the same data as
Simulated Digital Port In (Raw), but in binary form with array index 0
representing the least significant bit.

2. Save and close the VI and project.

End of Exercise 4-1Sam
ple

Lesson 4 FPGA I/O

© National Instruments Corporation 4-5 LabVIEW FPGA Course Exercises

Exercise 4-2 CompactRIO I/O

Goal
Use I/O in LabVIEW FPGA to acquire analog thermocouple data from two
channels of an NI 9211 module. Find the difference in the values returned
by these two channels.

Scenario
You must develop an application to access the analog thermocouple data
acquired on two channels of the NI 9211 module inserted into slot 1 of your
cRIO-9074 chassis. You will then calculate the difference between the data
acquired from each channel.

Design
Assign unique names to the I/O channels that you acquire data from to
make your block diagram more readable. Name the analog channels
Thermocouple 0 and Thermocouple 1. Calculate the difference between the
two channels and display that data as Thermocouple Difference.

Implementation
1. Create a new project with a cRIO-9074 as the FPGA Target. You created

a similar project in Exercise 2-4.

2. Select File»Save Project and save the project as
CompactRIO IO.lvproj in the <Exercises>\LabVIEW FPGA\
CompactRIO IO\ directory.

3. Create a new VI on the FPGA Target.

❑ Save the VI as CompactRIO IO.vi in the <Exercises>\
LabVIEW FPGA\CompactRIO IO\ directory.

4. Rename Mod1/TC0 and Mod1/TC1 to Thermocouple 0 and
Thermocouple 1, respectively.

❑ Expand Mod 1 and right-click on Mod1/TC0. Select Rename and
enter Thermocouple 0.

❑ Right-click on Mod1/TC1. Select Rename and enter
Thermocouple 1.

Sam
ple

Lesson 4 FPGA I/O

LabVIEW FPGA Course Exercises 4-6 ni.com

The Project Window should now resemble Figure 4-4.

Figure 4-4. CompactRIO Project with FPGA I/O

5. Build the Block Diagram shown in Figure 4-5.

Figure 4-5. CompactRIO IO Block Diagram

Sam
ple

Lesson 4 FPGA I/O

© National Instruments Corporation 4-7 LabVIEW FPGA Course Exercises

❑ Create a While Loop.

❑ Add the FPGA I/O node to the block diagram

– Drag Thermocouple 0 from the Project Explorer window to the
block diagram.

– Expand the node to include Thermocouple 1.

❑ Right-click the I/O Item outputs and create indicators for each.

❑ Add a Subtract function. Wire the I/O Item outputs from the FPGA
I/O node to the X and Y inputs of the Subtract function

❑ Right-click and create an indicator for the Subtract function. Name
this indicator Thermocouple Difference.

❑ Create a control to stop execution of the While Loop.

– Right-click the conditional terminal of the While Loop and
select Create»Control.

6. Observe the effect of the Subtract function on the fixed-point data type.

❑ Open the Context Help and select Thermocouple 0, then
Thermocouple 1. Record the data type for each.

Thermocouple 0 ________________________________

Thermocouple 1 ________________________________

❑ Select Thermocouple Difference. Note that the data type does not
match the thermocouple data type. The word length and integer
word length have both changed for this indicator. Record the data
type.

Thermocouple Difference_________________________Sam
ple

Lesson 4 FPGA I/O

LabVIEW FPGA Course Exercises 4-8 ni.com

7. Arrange the Front Panel shown in Figure 4-6.

Figure 4-6. CompactRIO IO Front Panel

8. Save the VI.

Testing
1. Compile and run the VI on the FPGA.

2. Touch one of the thermocouples and observe the effect on the
Thermocouple Difference.

Note This data is calibrated, but it has not been scaled to Fahrenheit or Centigrade
scales. You will perform this conversion later in Exercise 8-2.

Note The indicators update very quickly because the While Loop is executing as
quickly as it can. You will learn more about timing your loop execution in Lesson 5,
Timing an FPGA VI.

3. Save and Close the VI and project.

End of Exercise 4-2

Sam
ple

	01Title
	LabVIEW FPGABookTOC
	04Lesson04
	04Lesson04EX

