

Product Flyer

NI Ettus USRP Software Defined Radios

Table of Contents

- 03 NI Ettus USRP Software Defined Radios
- 04 NI Ettus Research SDR Hardware
- **06** Software Overview
- **08** Take Advantage of the Power of FPGA
- **09** NI Hardware Services

NI Ettus USRP Software Defined Radios

USRP X4xx, USRP-2974, USRP-295X, USRP-294X, USRP-293X, USRP-292X, USRP-290X

FIGURE 1
NI Ettus USRP Family

Key Features

- 1 MHz to 8.4 GHz frequency ranges
- Up to 1.6 GHz/channel of bandwidth
- Up to eight transmit and eight receive channels per radio
- Local oscillator import/export synchronization
- GPS disciplined oscillator (GPSDO)
- Development tools such as NI LabVIEW, open-source UHD, GNU Radio, MathWorks® MATLAB® software
- OS support in Windows, Linux, and Mac OS
- FPGA development using LabVIEW FPGA and RF network on chip (RFNoC) framework
- Onboard ARM and x86 processor available on some models
- Communication interfaces such as USB, gigabit Ethernet, and PCI Express

Software Defined Radios for Any Use Case

NI USRP is a suite of fully user-programmable software defined radios (SDRs) that combine general-purpose processors, field-programmable gate arrays (FPGAs), and RF front ends so that you rapidly can design, prototype, and deploy wireless systems. From low-cost to high-performance, to rugged deployable and multichannel, the NI USRP is the most popular and versatile SDR available.

Software is central to SDRs, and the NI USRP product line's roots lie in the designs of Ettus Research, acquired by NI in 2009. Whether you are a longtime LabVIEW programmer or you prefer open-source development tools, use the NI USRP product line to rapidly get up and going to build your custom wireless application. The NI USRP supports the popular GNU Radio framework with its open-source driver, USRP Hardware Driver (UHD).

Beyond software flexibility, with the NI USRP product line, you can take simulated inline digital signal processor (DSP) code and target it to the FPGA for real-time processing. You can do this with a prebuilt digital infrastructure using both LabVIEW FPGA and the powerful RFNoC framework compatible with popular open-source workflows.

NI Ettus Research SDR Hardware

From DC to 8.4 GHz, up to 1.6 GHz of real-time bandwidth, powerful DSP-focused FPGAs, and form factors ranging from handheld devices to high-channel-count systems, NI SDRs can meet your needs from design to deployment. Ettus Research provides detailed product information for B Series, N Series, E Series, and X Series devices at ettus.com.

NI Ettus USRP X440

The latest in performance in the X4 Series lineup, USRP X440 contains a Zynq UltraScale+ RFSoC, 8x8 MIMO, and up to 1.6 GHz per channel of bandwidth. It supports open-source software only.

NI Ettus USRP X410

The high-performance USRP X410 features a wide frequency range of 1 MHz to 7.2 GHz and a bandwidth of 400 MHz. Capable of 4x4 MIMO and including a powerful Zynq UltraScale+ RFSoC, the USRP X410 supports both LabVIEW and open-source software.

NI X310 Series/USRP RIO

These high-performance PCI Express, 10 gigabit Ethernet devices include a powerful Kintex-7 FPGA, a 2x2 MIMO transceiver, and up to 160 MHz of bandwidth. They support both LabVIEW and open-source software.

NI B Series/USRP 290x

Cost-effective USB SDRs with a wide frequency range, these compact-form-factor devices offer up to 56 MHz of streaming bandwidth and support both LabVIEW and open-source software.

NI E Series

Conduction-cooled, portable, and stand-alone SDRs, these contain a Zynq System-on-Chip (SoC), a 2x2 MIMO transceiver, and 56 MHz of bandwidth. Compatible with open-source software only.

NI N Series

These high-performance, stand-alone SDRs contain a Zynq SoC, 2x2 MIMO, and up to 128x128 phase synchronous systems. They offer 200 MHz of bandwidth and are compatible with open-source software only.

Stand-Alone SDR

High-performing SDRs with an onboard processor and FPGA for stand-alone applications, these offer up to 160 MHz of bandwidth and MIMO capability. They support both LabVIEW and open-source software.

NI USRP Model	Ettus Research Model	Frequency Range	Bandwidth	Transmitter/ Receiver Channels	Features	
USRP X440 USRP X410		30 MHz to 4 GHz	Up to 1.6 GHz	8 TX/8 RX		
		1 MHz to 7.2 GHz	400 MHz	4 TX/4 RX	Wideband, Multichannel	
NI USRP-2974	_	10 MHz to 6 GHz	160 MHz	2 TX/2 RX	Stand-Alone, Intel Core i7 Processor	
NI USRP-2955	X310 + TwinRX + GPSDO	10 MHz to 6 GHz	80 MHz	0 TX/4 RX		
NI USRP-2954	X310 + UBX + GPSDO	30 MHz to 6 GHz	160 MHz	2 TX/2 RX	Configurable RF Front End Programmable FPGA	
NI USRP-2945	X310 + TwinRX	10 MHz to 6 GHz	80 MHz	0 TX/4 RX		
NI USRP-2944	X310 + UBX	10 MHz to 6 GHz	160 MHz	2 TX/2 RX	11 6/1	
_	X310 + OBX	10 MHz to 8.4 GHz	160 MHz	2 TX/2 RX		
_	N321 / N320	3 MHz to 6 GHz	200 MHz	2 TX/2 RX	Stand-Alone,	
_	N310	10 MHz to 6 GHz	100 MHz	4 TX/4 RX	Wide-Bandwidth, Multichannel-Sync-	
_	N300	10 MHz to 6 GHz	100 MHz	2 TX/2 RX	Ready (N32x)	
NI USRP-2901	B210	70 MHz to 6 GHz	56 MHz	2 TX/2 RX	Low SWaP-C, Highly Portable	
NI USRP-2900	B200	70 MHz to 6 GHz	56 MHz	1 TX/1 RX		
USRP B206mini-i		70 MHz to 6 GHz	56 MHz	1 TX/1 RX	Low SWaP-C, Highly Portable	
_	E320	70 MHz to 6 GHz	56 MHz	2 TX/2 RX	Stand-Alone, Low SWaP, Embedded Deployable	

TABLE 1
The NI and Ettus Research USRP Family

Part Description	OctoClock-G CDA-2990	OctoClock CDA-2990	Board Mounted GPSDO (TCXO) Recommended for USRP B200/B210	Board Mounted GPSDO (OCXO) Recommended for USRP X300/X310
Part Number	784306-01	784305-01	783454-01	783173-01
USRP X4xx	✓	✓		
USRP X3xx	✓	✓		✓
USRP N3xx	✓	✓		
USRP 294x	✓	✓		✓
USRP 295x	✓	✓		Included
USRP B2xx	√	✓	√	

TABLE 2

Clocking Accessories

Software Overview

Your Choice of Development Software

Regardless of your development tool preferences, NI Ettus USRPs work with the broadest range of software workflows on the market. You can choose between two drivers—NI-USRP or USRP Hardware Driver (UHD)—based on your preferred development tools. Both drivers are developed and maintained by NI's R&D organization.

With NI-USRP, you can program your NI Ettus USRP with LabVIEW, NI's flagship intuitive development environment, to rapidly develop measurement systems. You can program both the host and FPGA in a single development environment using the NI LabVIEW dataflow programming style. The abstracted design environment helps accelerate the design of wireless systems and makes FPGA programming accessible to those without HDL design expertise. If you have third-party IP that you want to incorporate, such as MathWorks® MATLAB® software or VHDL code, you can import this IP directly from LabVIEW.

UHD works with all NI Ettus USRPs, and NI publishes it under open-source licenses. It facilitates application development on USRPs in C/C++ and offers cross-platform support for several industry-standard development environments and frameworks, such as GNU Radio, Python, and MathWorks MATLAB and Simulink® software. As an active leader in open-source SDR communities such as the GNU Radio Foundation, NI consistently works to further wireless communications research through the open-source ecosystem.

	NI-USRP	UHD	
	Windows	Windows	
Operating System	Linux	Linux	
	LINUX	Mac OS	
		GNU Radio	
User	LabVIEW 20XX	C/C++	
Host		MATLAB®/Simulink®/Wireless Testbench™	
		Python	
		RFNoC (Open-Source FPGA Framework)	
FDC A	LabVIEW FPGA Module	VHDL	
FPGA		Verilog	
		HDL Coder	

TABLE 3
NI-USRP and UHD Drivers Overview

Programming the Host

For applications with lower data streaming rates, or when data can be processed offline instead of in real time, using a host computer for signal processing is a good fit. NI Ettus USRPs can be programmed using either the NI-USRP driver with LabVIEW or UHD with text-based and open-source programming languages like Python, C++, and GNU Radio.

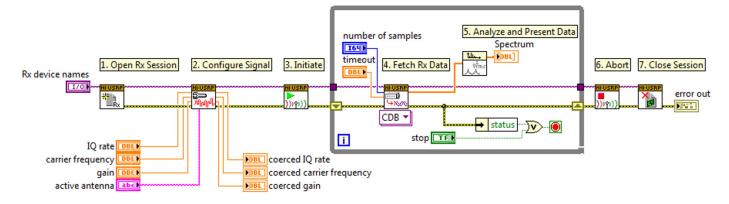


FIGURE 2 NI-USRP APIs for LabVIEW

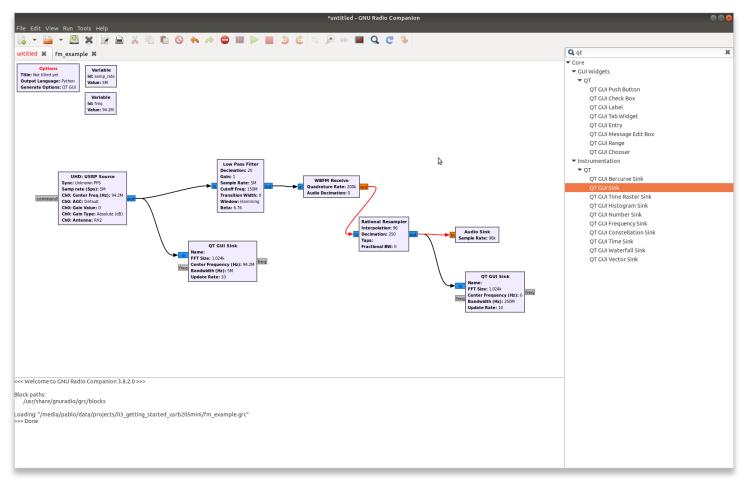


FIGURE 3

GNU Radio Companion API with UHD

Take Advantage of the Power of FPGA

As bandwidths widen and latency requirements grow more stringent, the ability to implement digital signal processing algorithms that run in real time is essential. Many NI Ettus USRP models feature a user-programmable FPGA to enable real-time signal processing.

The FPGA on an NI Ettus USRP can be programmed in several different ways. LabVIEW FPGA along with the NI-USRP driver gives users access to pin level programming with a graphical user interface.

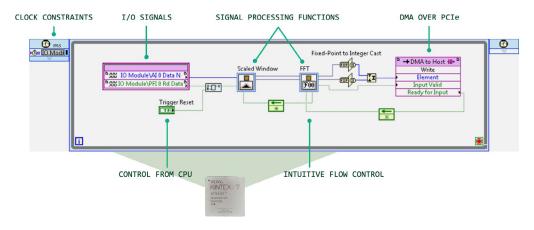


FIGURE 4
LabVIEW FPGA Graphical Abstraction of FPGA IP Integration

NI Ettus USRPs are also all supported with the RF Network on Chip (RFNoC) framework. RFNoC is a prebuilt framework that gives you the infrastructure you need to build an SDR application with the FPGA—without having to develop the digital infrastructure—programmed with VHSIC Hardware Description Language and Verilog Hardware Description Languages with plug-ins for GNU Radio.

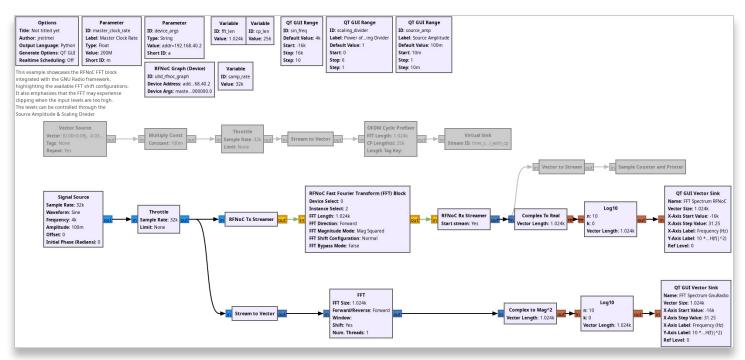


FIGURE 5

GNU Radio Companion API Example with RFNoC FPGA IP Blocks

NI Hardware Services

All NI hardware includes a one-year warranty for basic repair coverage and calibration in adherence to NI specifications prior to shipment. PXI systems also include basic assembly and a functional test. NI offers additional entitlements to improve uptime and lower maintenance costs with service programs for hardware. Learn more at ni.com/services/hardware.

	Hardware	Standard	Premium	Description
Duration at Point of Sale	1 year; included	3 years; optional	3 years; optional	NI enhances warranty coverage with additional service benefits provided with a hardware service program.
Maximum Duration with Renewal	<3 years with a service program	<3 years	<3 years	NI maintains the high performance and availability of your hardware for up to three years with a hardware service program.
Extended Repair Coverage	•	•	•	NI restores your device's functionality and includes firmware updates and factory calibration within <10 working days ⁴ plus standard shipping time.
System Configuration, Assembly, and Test ¹		•	•	NI technicians assemble, install software in, and test your system per your custom configuration prior to shipment.
Advanced Replacement ²			•	NI stocks replacement hardware that can be shipped immediately if a repair is needed.
System Return Material Authorization (RMA) ¹			•	NI accepts the delivery of fully assembled systems when performing repair services.
Technical Support	•	•	•	NI provides access to support resources for your hardware.
Calibration Plan (Optional)		Standard	Expedited ³	NI performs the requested level of calibration at the specified calibration interval for the duration of the service program.

¹ This option is only available for PXI, CompactRIO, and CompactDAQ systems.

PremiumPlus Service Program

NI can customize the previously listed offerings or offer additional entitlements such as on-site calibration, custom sparing, and lifecycle services through a **PremiumPlus Service Program**. Contact your NI sales representative to learn more.

Technical Support

NI hardware service programs and warranty include access to technical support provided by NI Support Agents during local business hours. Service requests can be managed online. Additionally, take advantage of NI's award winning online resources and communities.

² This option is not available for all products in all countries. Contact your local NI sales engineer to confirm availability.

³ Expedited calibration is only available for the traceable calibration level.

⁴ This applies to non-RF products only. Standard extended repair coverage for RF products is <15 working days plus standard shipping time.

Neither Emerson, Emerson Automation Solutions, nor any of their affiliated entities assumes responsibility for the selection, use, or maintenance of any product. Responsibility for proper selection, use, and maintenance of any product remains solely with the purchaser and end user.

National Instruments, NI, NI.com, Ettus Research, and LabVIEW are marks owned by one of the companies in the Test & Measurement business unit of Emerson Electric Co. Emerson and the Emerson logo are trademarks and service marks of Emerson Electric Co. MathWorks®, MATLAB®, and Simulink® are registered trademarks of The MathWorks, Inc. The registered trademark Linux® is used pursuant to a sublicense from LMI, the exclusive licensee of Linus Torvalds, owner of the mark on a worldwide basis. All other marks are the property of their respective owners.

The contents of this publication are presented for informational purposes only, and while every effort has been made to ensure their accuracy, they are not to be construed as warranties or guarantees, express or implied, regarding the products or services described herein or their use or applicability. All sales are governed by our terms and conditions, which are available upon request. We reserve the right to modify or improve the designs or specifications of such products at any time without notice.

NI 11500 N Mopac Expwy Austin, TX 78759-3504 © 2025 National Instruments. All rights reserved. 665900