The High-Tech Tools and Toys Labs*

Michael Ruane
Electrical & Computer Engineering
Boston University

National Instruments
Scientific Imaging Symposium
Chelmsford, MA

*This project was supported by the National Science Foundation under the CenSSIS Engineering Research Center award

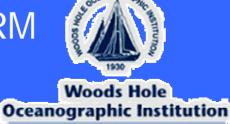
CenSSIS ERC Partners

Education Leaders:

S W McKnight, G. Tadmor, NEU

M Ruane, BU

G Saulnier, RPI


R. Rodriguez-Solis, UPRM





What is the High-Tech Tools and Toys Lab?

Connects learning to engineering practice!

Introduces engineering by exposing students to state-of-the-art high-tech products and lets them learn by operating, interfacing, and benchmarking these instruments.

HTTTL Elements

- #Freshman stand-along discovery lab
- Interface computers with "high-tech" instrumentation and equipment
- ******Active learning/inquiry-based introduction to engineering

HTTTL Concept

The Great Wide Open

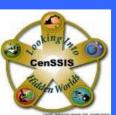
Starting point for engineering education under HTTTL philosophy

Capstone/Senior Design

Coop/Internship

Engineering Theory

Traditional engineering education starting point
November 13, 2003
NI Scientific I


NI Scientific Imaging Symposium

Northeastern University: GE1102/1101

- #Programming stepper motor control

 #X-Y position control
- **#Sound velocity measurement**
- **#**Ultrasound imaging of hidden shapes

MATLAB/EXCEL C/C++

Boston University: EK130 Modules

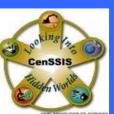
- # Liquid-Level Detection (LabView)
- Coin Recognition (LabVIEW)
- # Tracking slot cars
 (Vision Builder)
- # Hover controller
 (Vision Builder)
- # Ultrasound ranging (LabVIEW)
- Microscope stage control (LabVIEW)

U of Puerto Rico: HTTTL

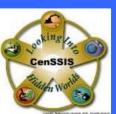
#Image Processing:
 optical filters (MATLAB)

#CD Player: audio filters
(MATLAB)

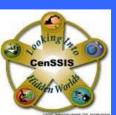
#Lego Mindstorm Robots
#Ultrasound positioning


and imaging

Northeastern University

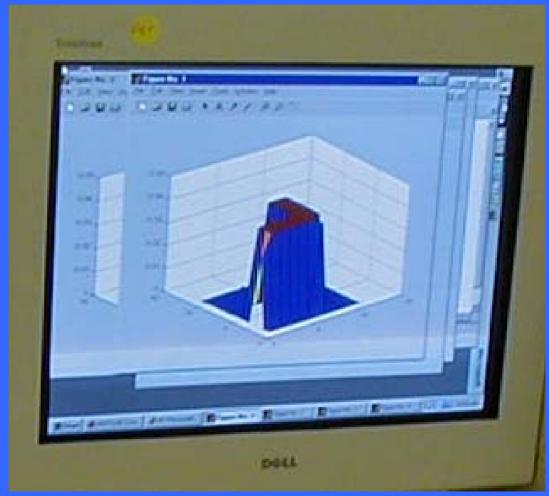

#Freshman computation
#Elective course
#Acoustic imaging
#MATLAB, NI hardware

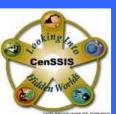



Measuring Speed of Sound in Air (MS Excel)

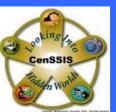
Control of Stepper Motor

Ultrasonic Imaging



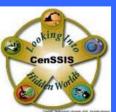

Subsurface Shape in Opaque Gelatin

Subsurface Object Imaged

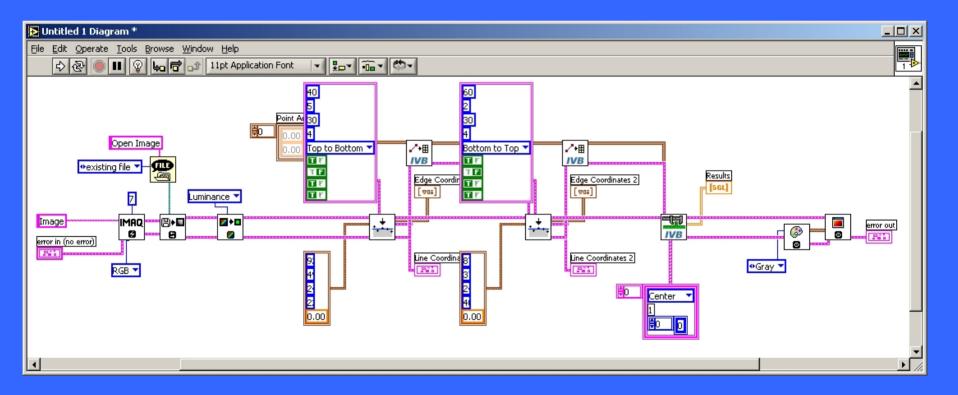


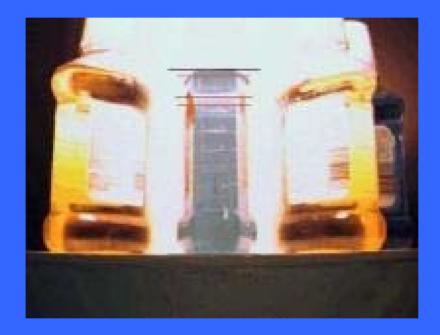
Boston University

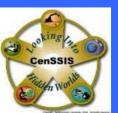
- #Freshman Intro to Engineering
- **#Elective modules**
- **#Imaging, hands-on** stations
- **#MATLAB, LabVIEW,**IMAQ, Vision Builder,
 Hardware

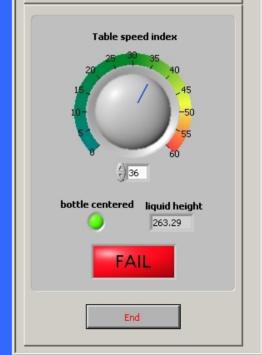

With thanks
to John
Callan (IVI)!!

Diverse Experiments

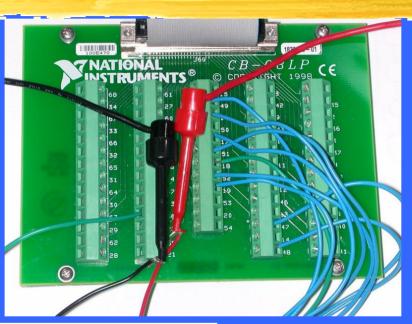

Machine Vision




LabVIEW by TFs, UROPs, HSS



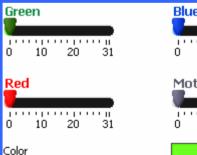
Interface, speed



Alignment complete

FROP Lighting Controller

Figure 19
DAQ card and power lines for DAC chip



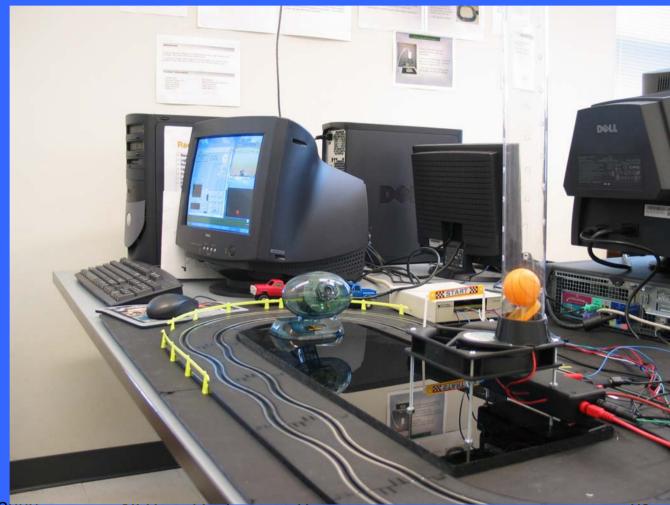
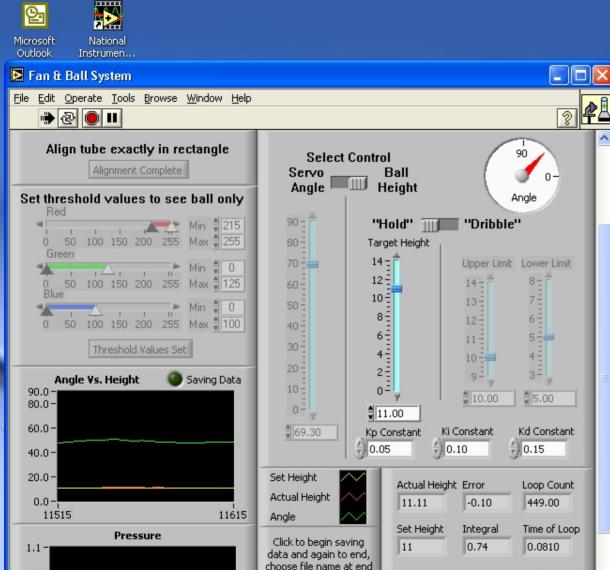
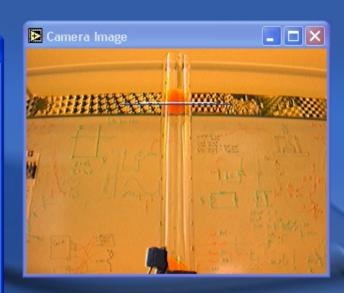


Figure 20
Graphical interface for DAC LabVIEW program

Hovering Ball - PID Control





Motor and Throttle

logitech image to histogram

1.05 -

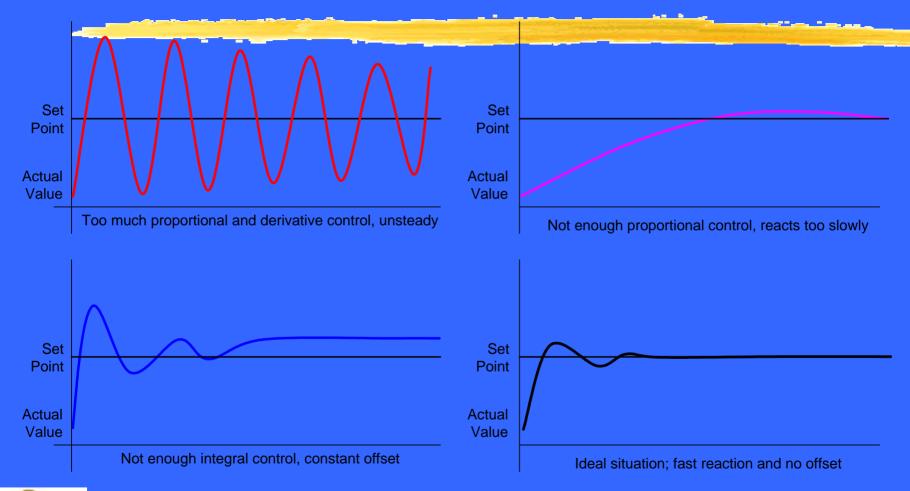
1149694

1149699

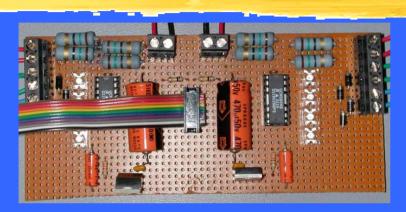
Save Data

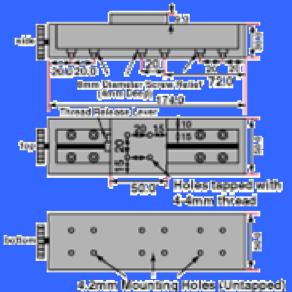
Voltage /

END

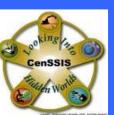


#





Stage Controller



Slot Car Controller

- Vision Builder
- •ROI vignetting
- Tracking
- Position rules
- Direct V control
- •Students compete

Other Stations

- #Low cost acoustic
 imaging (steppers,
 LabVIEW, electronics)
- **#Coin counting**
- #Microscope interface
- **Laser mine detection metaphor
- **#Biohazard** detector
- **XIR** camera imaging

Senior Capstone Design & CenSSIS **Boston University HTT1** BOSTON

CenSSIS has supported 8 senior design teams in ECE and AME on acoustic, EIT, and sonar applications

ECE Day

UNIVERSITY

Reverse Acoustic Engineering

HTT&L houses some projects, provides materials, and advising.

Proposal Talks

Mapping

Acoustic Homing AME AUV Hull Design

Project Planning

Reporting Design

BU CenSSIS High Tech Tools and Toys Lab

Paul Laplume (BU), Professor Michael Ruane (BU)

CenSSIS Philosophy

- Engineering as problem solving.
- Systems approach
- Engineering education as a top-down process

BU HTTTL Philosophy

- Challenge students with problems that create a lasting experience
- •In solving, they gain a firsthand understanding of engineering
- Supplement with theory in classes and UROP/IUROP

Goals

- olimading hardware/softwa
- Create confident attitude about solving engineering challenges

EK130 Course Description

In seven weeks, freshmen engineering students are introduced to image processing, problem solving, and design. They advance in teams to the HTTTL to use several imaging stations and extend their functionality. Two modules per

Project Stations

Optical Coin Calculator

- System initially recognizes quarters and pennies
- •Students extend it to recognize all four US coins, ignore fakes (e.g. subway tokens)
- •Uses Hitachi camera, Data Translation frame grabber, and DT Vision Foundry software

Gauging Station

- System designed to descry bottles with out-oftolerance liquid levels
- Students challenged to modify system to discriminate
- •Uses ADS Technologies FireWire Web camera and NI LabVIEW software

Open Microscope

- •System initially recognizes one type of bad component
- •Students must train it to find others and move stage to center them
- •Built around Sony FireWire camera, Linos microscope, and MATLAB

SONAR Imaging System

Motion Tracking

Current Status

- •Gauging station and optical coin calculator are functional for module I.
- microscope and motion tracking systems will be added for module II.

2002. Montreal, Quebec, Canada,

- is working on a redesign of the SONAR system.
- team is working on a 3D motion tracker in collaboration with an artist from BU College of

Future Plans

- Additional senior design projects in sensing and imaging
- Upper-level engineering courses
- Online access to project stations

Contact Information

Michael Ruane

NI Scientific Imaging Sympossociate Professor, Electrical & Computer Engineering November 13, 2003 **Boston University**

8 St. Marv's Street, Boston, MA 02215-2103

Conclusions

- #Freshman introduction to imaging, sensing, systems issues
- **#Elective**, hands-on modules
- **#Imaging and LabVIEW themes**
- **#**Motivated students anxious to learn more...
- #http://www.censsis.neu.edu
- #RICC Nov 18-19 at NEU

