Version:

Last Modified: January 12, 2018

Calculates the Kronecker product of two input matrices.

The first input matrix.

This input accepts a 2D array of double-precision, floating point numbers or 2D array of complex double-precision, floating point numbers.

**Default: **Empty array

The second input matrix.

This input accepts a 2D array of double-precision, floating point numbers or 2D array of complex double-precision, floating point numbers.

**Default: **Empty array

Error conditions that occur before this node runs.

The node responds to this input according to standard error behavior.

Standard Error Behavior

Many nodes provide an **error in** input and an **error out** output so that the node can respond to and communicate errors that occur while code is running. The value of **error in** specifies whether an error occurred before the node runs. Most nodes respond to values of **error in** in a standard, predictable way.

**Default: **No error

Matrix containing the Kronecker product of the first and second input matrices.

The number of rows in **kronecker product** is the product of the number of rows in the first and second input matrices. The number of columns in **kronecker product** is the product of the number of columns in the first and second input matrices.

Error information.

The node produces this output according to standard error behavior.

Standard Error Behavior

**error in** input and an **error out** output so that the node can respond to and communicate errors that occur while code is running. The value of **error in** specifies whether an error occurred before the node runs. Most nodes respond to values of **error in** in a standard, predictable way.

If *A* is an *n*-by-*m* matrix and *B* is a *k*-by-*l* matrix, the Kronecker product of *A* and *B*, *C* = *A* Ⓧ *B*, results in a matrix *C* with dimensions *n**k*-by-*m**l*. This node calculates the Kronecker product using the following equation.

$C={\left[\begin{array}{cccc}{a}_{11}B& {a}_{12}B& \dots & {a}_{1m}B\\ {a}_{21}B& {a}_{22}B& \dots & {a}_{2m}B\\ \vdots & \vdots & \ddots & \vdots \\ {a}_{n1}B& {a}_{n2}B& \dots & {a}_{nm}B\end{array}\right]}_{nk\times ml}$

For example, if

$\begin{array}{cc}A=\left[\begin{array}{cc}1& 2\\ 3& 4\end{array}\right]& B=\left[\begin{array}{cc}5& 6\\ 7& 8\end{array}\right]\end{array}$

then

$\begin{array}{ccc}{a}_{11}B=\left[\begin{array}{cc}5& 6\\ 7& 8\end{array}\right]& {a}_{12}B=\left[\begin{array}{cc}10& 12\\ 14& 16\end{array}\right]& C=\left[\begin{array}{cc}{a}_{11}B& {a}_{12}B\\ {a}_{21}B& {a}_{22}B\end{array}\right]=\left[\begin{array}{cccc}5& 6& 10& 12\\ 7& 8& 14& 16\\ 15& 18& 20& 24\\ 21& 24& 28& 32\end{array}\right]\end{array}$

**Where This Node Can Run: **

Desktop OS: Windows

FPGA: Not supported

Web Server: Not supported in VIs that run in a web application