Performs the Schur decomposition of a square matrix.
A square real matrix.
This input accepts a 2D array of double-precision, floating point numbers or 2D array of complex double-precision, floating point numbers.
Method to order the eigenvalues and the corresponding triangular matrix in real Schur form and the orthogonal matrix.
Name | Value | Description |
---|---|---|
No Reorder | 0 | Does not change the order of the eigenvalues. |
Real Ascending | 1 | Lists the eigenvalues in ascending order according to their real parts. |
Real Descending | 2 | Lists the eigenvalues in descending order according to their real parts. |
Magnitude Ascending | 3 | Lists the eigenvalues in ascending order according to their magnitudes. |
Magnitude Descending | 4 | Lists the eigenvalues in descending order according to their magnitudes. |
Default: No Reorder
Error conditions that occur before this node runs.
The node responds to this input according to standard error behavior.
Standard Error Behavior
Many nodes provide an error in input and an error out output so that the node can respond to and communicate errors that occur while code is running. The value of error in specifies whether an error occurred before the node runs. Most nodes respond to values of error in in a standard, predictable way.
Default: No error
The block upper triangular matrix in real Schur form.
The orthogonal matrix.
A complex vector that contains all the computed eigenvalues of the input matrix.
Error information.
The node produces this output according to standard error behavior.
Standard Error Behavior
Many nodes provide an error in input and an error out output so that the node can respond to and communicate errors that occur while code is running. The value of error in specifies whether an error occurred before the node runs. Most nodes respond to values of error in in a standard, predictable way.
The following expression defines the Schur decomposition of a square n × n matrix A.
A = Q S Q H
where S is in Schur form and Q H is the conjugate transpose of matrix Q.
For a real matrix A, Q is an n × n orthogonal matrix. S is a block upper triangular matrix in real Schur form, whose elements on the main diagonal are all 1 × 1 or 2 × 2 blocks, as shown in the following matrix.
where S ii are square blocks of dimension 1 or 2 and i = 1, 2, ..., m.
For a complex matrix A, Q is an n × n unitary matrix. S is an upper triangular matrix in complex Schur form.
Where This Node Can Run:
Desktop OS: Windows
FPGA: Not supported
Web Server: Not supported in VIs that run in a web application