
Software Deployment

FUNDAMENTALS OF BUILDING A TEST SYSTEM

134 INTRODUCTION

135 MANAGING AND
 IDENTIFY SYSTEM
 COMPONENTS
 INTERCONNECT SYSTEM

138 HARDWARE DETECTION

140 DEPENDENCY RESOLUTION

141 RELEASE MANAGEMENT

143 RELEASE TESTING

145 COMPONENTIZATION

150 SUMMARY

ni.com

http://www.ni.com

133ni.com/automatedtest

SOFTWARE DEPLOYMENT

Introduction

Given more complex devices, test engineers need to create more complex and higher
mix test systems, often with tighter deadlines and lower budgets. One of the most
important steps in creating these test systems is deploying test system software
to target machines. It is also commonly the most tedious and frustrating step. The
abundance of deployment methods today typically adds to the irritation of engineers
simply searching for the cheapest and fastest solution. In addition, test system
developers face many considerations and sensitivities specific to their system.

Deployment, for the purposes of this guide, is defined as the process of compiling or
building a collection of software components and then exporting these components
from a development computer to target machines for execution. The reasons test
engineers employ deployment methods rather than run their test system software
directly from the development environment come down mainly to cost, performance,
portability, and protection.

The following are common examples of inflection points when
a test engineer will move from development environment
execution to a built binary deployment:

	J The cost of application software development license for
each test system begins to exceed budget limitations. Using
deployment licenses for each system offers a more attractive
and efficient solution.

	J The source code for the test system becomes difficult to
transport due to memory limitations or dependency issues.

	J The test system developer does not want the end user to be
able to edit or be exposed to the source code of the system.

	J The test system suffers lower execution speed or memory
management when run from the development environment.
Compiling the code for execution provides better
performance and employs a smaller memory footprint.

This guide recommends and compares different considerations
and tools to address the difficulty and confusion that surrounds
test system deployment. Although there are many different

topics of test system deployment that could be addressed in this
guide, such as source code control best practices or creation
of installers, the selected topics should cover the majority of
universal deployment concerns.

The end of each section offers a best practices recommendation
for a basic use case and an advanced use case:

	J The basic use case is a simple test system composed of
an executable that runs test steps in sequence and calls
a handful of hardware drivers. This type of system usually
comprises less than 200 test functions.

	J At the end of each basic use case best practice, is a handful
of warning signs or indicators for when one should consider
the advanced use case.

The advanced use case represents a large-scale production
test system that uses a combination of executables, modules,
drivers, web services, or third-party applications to execute a
high mix of different test sequences. This type of system is often
in the range of hundreds or even thousands of test functions.

https://www.ni.com/en-us/innovations/electronics/automated-electronics-test.html

ni.com/automatedtest

Software Deployment3

Managing and Identifying System Components

Defining Components
In software development, a component is any physical piece of information used in the system,
such as binary executable files, database tables, documentation, libraries, or drivers. The first
step to completing successful deployments is identifying the components associated with a
test system and ensuring that each component has a deployment method in place. This step
can vary widely in complexity. For example, components for a simple test system could be a
single executable and necessary hardware drivers.

Complex System Components
In a complex test system, however, these components are often XMl configuration files,
database tables, readme text files, or web services. This increase in a system’s complexity
opens the door for more advanced deployment options. For example, it’s possible that the
configuration file needs to be updated frequently to calibrate acquired data to seasonal weather
changes, whereas the main executable rarely needs an update. It would be unnecessary to
redeploy the executable along with the configuration file every time an update is needed, so
the configuration file may employ a separate deployment method than the executable.

Figure 2. Example of a Test System With Complex Dependencies

CONFIg EXE lOg

REaD
ME

WEB
SERVICE

DaQ SERIal DMM

Figure 1. Simple Representation of a Test System Executable That Depends on a DaQ, Serial, and DMM Driver

EXE

DaQ SERIal DMM

FIG

1
 Simple representation of a test system executable
that depends on a DAQ, serial, and DMM driver

FIG

2
Example of a test system with complex dependencies

ni.com/automatedtest

Software Deployment3

Managing and Identifying System Components

Defining Components
In software development, a component is any physical piece of information used in the system,
such as binary executable files, database tables, documentation, libraries, or drivers. The first
step to completing successful deployments is identifying the components associated with a
test system and ensuring that each component has a deployment method in place. This step
can vary widely in complexity. For example, components for a simple test system could be a
single executable and necessary hardware drivers.

Complex System Components
In a complex test system, however, these components are often XMl configuration files,
database tables, readme text files, or web services. This increase in a system’s complexity
opens the door for more advanced deployment options. For example, it’s possible that the
configuration file needs to be updated frequently to calibrate acquired data to seasonal weather
changes, whereas the main executable rarely needs an update. It would be unnecessary to
redeploy the executable along with the configuration file every time an update is needed, so
the configuration file may employ a separate deployment method than the executable.

Figure 2. Example of a Test System With Complex Dependencies

CONFIg EXE lOg

REaD
ME

WEB
SERVICE

DaQ SERIal DMM

Figure 1. Simple Representation of a Test System Executable That Depends on a DaQ, Serial, and DMM Driver

EXE

DaQ SERIal DMM

134ni.com/automatedtest

Managing and Identifying System Components

Defining Components
In software development, a component is any physical piece of
information used in the system, such as binary executable files,
database tables, documentation, libraries, or drivers. The first
step to completing successful deployments is identifying the
components associated with a test system and ensuring that
each component has a deployment method in place. This step
can vary widely in complexity. For example, components for a
simple test system could be a single executable and necessary
hardware drivers.

Complex System Components
In a complex test system, however, these components are often
XML configuration files, database tables, readme text files, or
web services. This increase in a system’s complexity opens
the door for more advanced deployment options. For example,
it’s possible that the configuration file needs to be updated
frequently to calibrate acquired data to seasonal weather
changes, whereas the main executable rarely needs an update.
It would be unnecessary to redeploy the executable along with
the configuration file every time an update is needed, so the
configuration file may employ a separate deployment method
than the executable.

SOFTWARE DEPLOYMENT

https://www.ni.com/en-us/innovations/electronics/automated-electronics-test.html

ni.com/automatedtest

Software Deployment4

In addition to identifying each system component and devising its deployment method, it is
important to identify the relationships between the system components and ensure the
deployment methods do not interrupt those relationships. In the example of the frequently
updated configuration file, the engineer might have to install the configuration file to the same
location on each deployment system so that the executable can locate it at run time.

Dependency Tracking
Maintaining the relationships between dependencies involves assembling a dependency tracking
practice that ensures each component’s dependency components are deployed. although this
may seem obvious after manually identifying each system component, dependencies can often
be deeply nested and require automatic identification as systems scale. For example, if the
executable in System B was dependent on a .dll to execute correctly, the engineer creating the
deployment plan may have either forgotten to identify the .dll file as a necessary component
or been unaware of the dependency. In these cases, build tools come in handy by automatically
identifying most, if not all, of the dependencies of a built application.

Here are examples of build software applications:

■■ LabVIEW Application Builder—Identifies the dependencies (subVIs) of a specified set
of top-level VIs and includes those subVIs in the built application

■■ TestStand Deployment Utility (TSDU)—Takes a TestStand workspace file or path as
input and identifies the system’s dependency code modules; automatically builds and
includes these modules in a built installer

■■ ClickOnce—Microsoft technology that developers can use to easily create installers,
applications, or even web services for their .NET applications; can be configured to
either include dependencies in an installer or prompt the user to install dependencies
after deployment

■■ JarAnalyzer—Dependency management utility for Java applications; can traverse through
a directory, parse each of the jar files in that directory, and identify the dependencies
between them

Figure 3. unexpected Dependencies in a Complex Test System

CONFIg EXE lOg

REaD
ME

WEB
SERVICE

DaQ SERIal DMM Dll

FIG

3
Unexpected dependencies in a complex test system

135ni.com/automatedtest

In addition to identifying each system component and
devising its deployment method, it is important to identify the
relationships between the system components and ensure the
deployment methods do not interrupt those relationships. In
the example of the frequently updated configuration file, the
engineer might have to install the configuration file to the same
location on each deployment system so that the executable can
locate it at run time.

Dependency Tracking
Maintaining the relationships between dependencies involves
assembling a dependency tracking practice that ensures each
component’s dependency components are deployed. Although
this may seem obvious after manually identifying each system
component, dependencies can often be deeply nested and
require automatic identification as systems scale. For example,
if the executable in System B was dependent on a .dll to execute
correctly, the engineer creating the deployment plan may have
either forgotten to identify the .dll file as a necessary component
or been unaware of the dependency. In these cases, build tools
come in handy by automatically identifying most, if not all, of the
dependencies of a built application.

Here are examples of build software applications:

	J LabVIEW Application Builder—Identifies the dependencies
(subVIs) of a specified set of top-level VIs and includes those
subVIs in the built application

	J TestStand Deployment Utility (TSDU)—Takes a TestStand
workspace file or path as input and identifies the system’s
dependency code modules; automatically builds and includes
these modules in a built installer

	J ClickOnce—Microsoft technology that developers can use
to easily create installers, applications, or even web services
for their .NET applications; can be configured to either include
dependencies in an installer or prompt the user to install
dependencies after deployment

	J JarAnalyzer—Dependency management utility for Java
applications; can traverse through a directory, parse each of
the jar files in that directory, and identify the dependencies
between them

SOFTWARE DEPLOYMENT

https://www.ni.com/en-us/innovations/electronics/automated-electronics-test.html

ni.com/automatedtest

Software Deployment5

Relationship Management
Commonly, relationships exist not only between the main test program executable and its
associated components but also between each of the individual components. This brings into
question the nature of the relationships between different components or software modules.
as systems scale, resolving dependencies between different libraries, drivers, or files can
become extremely complex. For example, a test system could use three different code
libraries with the following relationships, shown in the figure below, to each other.

For these complex systems, it is usually necessary to employ a dependency solver to identify
dependency conflicts and manage unsolvable problems. although it is possible to write a
dependency resolver in-house, engineers can instead put in place a package management
system to manage dependencies. an example of a package manager is Nuget, a free,
open-source package manager designed for .NET framework packages. another example is
the VI package manager for labVIEW software that gives users the ability to distribute code
libraries and offers custom code library management tools through an aPI.

Best Practices
Basic: For basic or simple systems, it is usually possible to keep track of all the necessary
components manually. using a software application or package manager to manage dependencies
might be unnecessary and require too high of an up-front cost to set up. However, warning signs,
such as consistently running into missing dependency issues or a growing list of dependencies,
usually point to the need for more advanced dependency management.

Advanced: Complex systems are easier to maintain and upgrade when a scalable dependency
management system is in place. Whether this means using a package manager to diagnose
relationships between packages or a software application to understand and identify dependencies
of various components, maintaining such a system is critical to long-term success.

Figure 4. library B’s reliance on version 4.4 of library C causes an unsolvable dependency issue as library a relies on version 4.5 of library C.

lIBRaRy B

3.2

lIBRaRy a

1.1

lIBRaRy C

4.5

Calls 4.5

Calls 3.2 Calls 4.4

X√

√

FIG

4
Library B’s reliance on version 4.4 of Library C causes an unsolvable
dependency issue as Library A relies on version 4.5 of Library C.

136ni.com/automatedtest

Relationship Management
Commonly, relationships exist not only between the main test
program executable and its associated components but also
between each of the individual components. This brings into
question the nature of the relationships between different
components or software modules. As systems scale, resolving
dependencies between different libraries, drivers, or files
can become extremely complex. For example, a test system
could use three different code libraries with the following
relationships, shown in the figure below, to each other.

For these complex systems, it is usually necessary to employ
a dependency solver to identify dependency conflicts
and manage unsolvable problems. Although it is possible
to write a dependency resolver in-house, engineers can
instead put in place a package management system to
manage dependencies. An example of a package manager
is NuGet, a free, open-source package manager designed
for .NET framework packages. Another example is the VI
package manager for LabVIEW software that gives users
the ability to distribute code libraries and offers custom
code library management tools through an API.

Best Practices

Basic: For basic or simple systems, it is usually possible
to keep track of all the necessary components manually.
Using a software application or package manager to manage
dependencies might be unnecessary and require too high
of an up-front cost to set up. However, warning signs, such
as consistently running into missing dependency issues
or a growing list of dependencies, usually point to the
need for more advanced dependency management.

Advanced: Complex systems are easier to maintain and
upgrade when a scalable dependency management system is in
place. Whether this means using a package manager to diagnose
relationships between packages or a software application to
understand and identify dependencies of various components,
maintaining such a system is critical to long-term success.

SOFTWARE DEPLOYMENT

https://www.ni.com/en-us/innovations/electronics/automated-electronics-test.html

137ni.com/automatedtest

Hardware Detection

Hardware Assertions
A test system that requires a specific hardware setup needs
to determine that this hardware is present on the system and
execute contingency plans for when the hardware is absent
or incompatible in its deployment plan. Although developers
frequently complete hardware assertion manually by visually
inspecting the test machine and matching the hardware
components to the original development system, it is good
practice to assume the test system is being created for a third
party. How would a customer of the test system know they have
incompatible hardware? Can the system adapt to the correct
modules in incorrect slots or ports? Can the system resolve or
adjust for missing hardware? Answering these questions early
on makes for simple scaling and distribution of test systems.

Hardware Standardization
The ultimate goal for hardware assertion is to find no
differences between the expected system and the actual
physical hardware system.

To this end, it is often most efficient to first standardize each test
system on the set of hardware components they will use:

	J Documented—The list of components in the standard set
of hardware should be accessible for every new system.
It is critical that this documentation contain information
about the provider, product numbers, order numbers, count,
replaceable components, warranty, support policy, product
life cycles, and so on.

	J Maintainable—One of the most difficult issues for hardware
standardization is ensuring that the hardware components
used in each test system will still be available in the future.

Often, older hardware is indicated as in end-of-life (EOL) by
the manufacturer and requires a refresh of the standard set
of test system hardware components. This refresh is often
expensive in terms of both hardware upgrades and test
system downtime. Working with a hardware manufacturer
to discuss life-cycle policies for hardware components can
offset challenges in the future. Most hardware manufacturers,
such as NI, provide life-cycle consultancy and a slow roll-off
in each hardware component’s life cycle.

	J Replicable—The necessity to distribute hardware globally
or even regionally should be considered. Ensuring a hardware
distribution method is in place to quickly construct new
systems in remote locations is an important concern.
Maintaining a pipeline for spare hardware components for
maintenance or emergency replacement is also important
for many systems.

Power-On Self-Test (POST)
Even though the correct hardware for the test system may
be present and connected properly, it is also important to do
simple testing of the hardware to ensure that it will behave
as expected once the system is running. Fortunately, most
hardware components contain a preconfigured self-test
designed by the manufacturer to perform a simple check of
the device’s channels, ports, and internal circuit board. Upon
providing power to each test system, a self-test procedure
should be performed for all connected devices to act as an
early check for malfunctioning hardware. For example, each NI
device features a self-test that can be called programmatically
through the device’s driver API. The first step when powering
the test system can then be calling a self-test on each device
and warning the operator of any malfunctioning hardware.

SOFTWARE DEPLOYMENT

https://www.ni.com/en-us/innovations/electronics/automated-electronics-test.html

138ni.com/automatedtest

Alias Configuration
Unfortunately, standardizing on a hardware set does not completely ensure identical configurations. Commonly, hardware configuration
software, such as Measurement & Automation Explorer (MAX), is required to remap hardware devices to aliases. For example, upon
installing all the hardware components and powering the system, engineers can use MAX to detect NI hardware present on the system
and use Windows Device Manager to find non-NI hardware. Subsequently, a .ini configuration file can be edited to map hardware devices
correctly to aliases. The figure below shows an image of a possible output of this process.

Programmatic Configuration
Libraries like the System Configuration API for NI hardware
in LabVIEW software make it possible to programmatically
generate a list of all available live hardware and configure an
alias mapping. For example, a test system executable could call
into the System Configuration API’s Find Hardware function to
generate a list of available NI hardware. From there, the alias
property for each device could be set to a predefined name
through the Hardware Node. This has the potential to cause
issues in a system, such as mapping a hardware device to
the inappropriate alias. Therefore, engineers should use it in
conjunction with another safeguard like manual confirmation
of the mapping list or a standardized hardware set.

Best Practices
Basic: For basic or simple systems, it is important to ensure
that the expected hardware is present on the system.
Hardware standardization is a best practice for all systems

and especially important as the number of hardware
systems begins to increase. The chassis, modules, and
peripheral devices necessary for proper execution of the
test system should be documented and revisited regularly.
However, verifying that the right devices are live on the
system can often be done through manual inspection with a
tool like MAX instead of a programmatic or reconfigurable
solution. As a hardware system grows in number of modules
and devices, it may be necessary to move to a more
advanced solution to prevent missing hardware issues.

Advanced: In complex systems, keeping track of what hardware
is necessary or present on the system should be done with
a combination of different solutions. Just as in the basic best
practices, hardware should be standardized and documented
across systems. To detect malfunctioning hardware, a power-
on self-test (POST) should be developed to ensure the
connected hardware will function as expected. In addition,
a programmatic or minimally manual alias mapping system
should be used to automatically remap the expected devices
to the system’s aliases when hardware standardization fails.

ALIAS DEVICE NAME

PXI NI-4139 PXI 1 Slot 1

PXI NI-3245 PXI 1 Slot 2

PXI NI-2239 PXI 2 Slot 1

TBL

1
hw_config.ini file used to map physical hardware to test system aliases

SOFTWARE DEPLOYMENT

https://www.ni.com/en-us/innovations/electronics/automated-electronics-test.html

FIG

5
Dependency assertion

ni.com/automatedtest

Software Deployment8

Dependency Resolution

Dependency Assertions
It is good practice for a plan to be in place to address existing and missing dependencies on
deployed systems. Often, the test machine being deployed to will already have some of the
test system image’s dependencies installed to it. For smaller systems, it may be a good idea
to simply reinstall all dependencies to ensure they are present. However, for larger systems,
reinstalling all dependencies can potentially be avoided by first checking whether those
dependencies are present on the system. This practice is referred to as dependency assertion
and can help reduce deployment time but comes at the cost of needing to plan for
dependency differences. The Componentization section further discusses componentizing
for faster deployments.

For example, a test system might be compatible with both the 14.0 and 15.0 versions of the
NI-DaQmx driver. although the test system might call for NI-DaQmx 15.0 to be installed, it
might allow the 14.0 version to act as this dependency. However, allowing the 14.0 version
instead of the 15.0 version, although compatible, might change how the test system acts.
Certain test steps may be skipped or different functions called. all of these changes would
need to be documented and tested.

The second element of dependency assertion is deciding how to handle missing dependencies.
as stated earlier, a good practice to follow is to act as if the test system is being deployed to
a customer’s machine. Should the engineer completing the deployment be notified of the
missing dependency? Should the missing dependency silently install in the background or will
the user need to go find and install the dependency manually? answering these questions
early on can allow for faster deployments and appropriate handling of missing dependencies.

Best Practices:
Basic: For basic test systems, dependency resolution and assertion is often unnecessary.
Installing all of the test system’s dependencies, regardless of whether they are present in the
system, is frequently simpler than attempting to identify missing dependencies and install
only the missing elements. as the test system scales, total system install times may increase
to the point at which developing dependency assertion and resolution tools becomes a more
attractive solution.

Figure 5. Dependency assertion

DEPlOyMENT IMagE

14.0
NI-VISa

15.0
NI-DaQmx

15.0
NI-SCOPE

1.3
Dll

DEPlOyMENT TaRgET

14.0
NI-DaQmx

1.3
Dll

139ni.com/automatedtest

Dependency Resolution

Dependency Assertions
It is good practice for a plan to be in place to address existing
and missing dependencies on deployed systems. Often, the
test machine being deployed to will already have some of the test
system image’s dependencies installed to it. For smaller systems,
it may be a good idea to simply reinstall all dependencies to
ensure they are present. However, for larger systems, reinstalling
all dependencies can potentially be avoided by first checking
whether those dependencies are present on the system. This
practice is referred to as dependency assertion and can help
reduce deployment time but comes at the cost of needing to
plan for dependency differences. The Componentization section
further discusses componentizing for faster deployments.

For example, a test system might be compatible with both the
14.0 and 15.0 versions of the NI-DAQmx driver. Although the
test system might call for NI-DAQmx 15.0 to be installed, it
might allow the 14.0 version to act as this dependency. However,
allowing the 14.0 version instead of the 15.0 version, although
compatible, might change how the test system acts. Certain
test steps may be skipped or different functions called. All of
these changes would need to be documented and tested.

The second element of dependency assertion is deciding
how to handle missing dependencies. As stated earlier, a good
practice to follow is to act as if the test system is being deployed
to a customer’s machine. Should the engineer completing the

deployment be notified of the missing dependency? Should
the missing dependency silently install in the background or will
the user need to go find and install the dependency manually?
Answering these questions early on can allow for faster
deployments and appropriate handling of missing dependencies.

Best Practices:
Basic: For basic test systems, dependency resolution and
assertion is often unnecessary. Installing all of the test system’s
dependencies, regardless of whether they are present in the
system, is frequently simpler than attempting to identify missing
dependencies and install only the missing elements. As the test
system scales, total system install times may increase to the
point at which developing dependency assertion and resolution
tools becomes a more attractive solution.

Advanced: Deployment times can quickly scale to
unreasonable amounts, even with solid network connections
or compressed images. For most advanced test systems,
some amount of dependency assertion is necessary
to prevent a reinstall of all components. Tools like the
System Configuration API to find NI software installed on
a system or the WMIC command set to generate a list of
all programs on a Windows machine can be incorporated
into deployment processes. This can allow installers to skip
specific components or allow for version differences.

SOFTWARE DEPLOYMENT

https://www.ni.com/en-us/innovations/electronics/automated-electronics-test.html

140ni.com/automatedtest

Release Management
Often, engineers need to know which version of software image is currently deployed to the test system or be able
to provide a release deployment history.

If these are necessary requirements, there should be a
release management system in place to address each of
the following questions:

	J Which release is currently deployed to System A?

	J What is the status of the most recent deployment
to System B?

	J Where have releases 1, 2, and 3 been deployed?

	J What is the history of releases for System A?

In most test environments, engineers answer these
questions with a pencil and clipboard system, however,
tools exist to automatically record release metrics and
provide documentation on the release history for a specific
system. These tools for release management can be
incorporated into an integrated development environment
(IDE) or exist as stand-alone release management tools.

Some examples include:

	J Visual Studio Release Management—The Visual
Studio IDE is shipped with tools to automate deployments,
trace release history, and manage release security.

	J Jenkins Release Plugin—With this plugin for the
Jenkins continuous integration (CI) service, developers
can specify pre- and post-build actions to manage
releases for their Jenkins-integrated development.

	J XL Deploy—This application release automation
(ARA) software can scale to enterprise levels
and provide visual status dashboards, security,
and analytics for managing releases.

Although the above examples serve as good tools for IDEs and
stand-alone deployment solutions, more commonly, release
management tools are found in conjunction with CI servers and
end-to-end deployment processes. This is intuitive because the
question of what specific code is present on a certain machine
is more applicable to deployment processes than which release
version is on a certain machine. For compiled system images,
this can be difficult to ascertain by manual observation. Tracking
the code from development to deployment is necessary for
release management best practices.

SOFTWARE DEPLOYMENT

https://www.ni.com/en-us/innovations/electronics/automated-electronics-test.html

FIG

6
Developers submit code to a version control repository that can then be built and tested in a CI server.
From there, the builds can be stored in a build server and undergo release management.

ni.com/automatedtest

Software Deployment10

End-to-End System Automation
Efficient release management is a necessary component in developing a more complex
end-to-end process for test system deployments. From development to deployment, each
process in series relies on its predecessor; if source code is managed well, testing and
building can be managed in turn. With good testing and build processing in place, release
management can be a simple extension of the original system. The following diagram
displays a typical end-to-end system.

In this setup, test system developers regularly develop and commit source code to a version
control repository. From there, a CI service can pull the source code into its own repository and
build and test the code appropriately. at this point, either automatically or manually, developers
can move and store builds that pass the CI tests to a build server or repository. Here, on the
build server, release management takes place with reporting and tracking to link each software
build to a specific test machine. usually, the test machines initiate the deployment process
through a request to install a specific release of the test system; however, developers can
also configure build servers to push images onto a chosen machine.

In cases where even basic systems need to employ a level of release management, the most
pragmatic solution will reflect the inherent complexity of the release requirements. If the
requirement is to track which version is deployed to a system, manual versioning through a
configuration file or as a component of building an executable can be sufficient. If requirements
expand in scope, the number of test systems increases, or application version numbers grow,
it will be necessary to use a defined release management system.

Best Practices:
Advanced: Frequently, a complex test system in need of release management will be most
successful with some form of end-to-end automation. This can most simply be done through
a CI service such as Jenkins or Bamboo that ties release management to release testing and
source code control.

Figure 6. Developers submit code to a version control repository that can then be built and tested in a CI server. From there, the
builds can be stored in a build server and undergo release management.

Developer 1

Developer 2

Developer 3

Developer 4

System A

System B

System C
Version Control

System
Build

Server

- Release Management
- Release Security

Continuous
Server

- automated Builds
- Regular Testing
- Test Reporting

141ni.com/automatedtest

End-to-End System Automation
Efficient release management is a necessary component in developing a more complex end-to-end process for test system
deployments. From development to deployment, each process in series relies on its predecessor; if source code is managed well,
testing and building can be managed in turn. With good testing and build processing in place, release management can be a simple
extension of the original system. The following diagram displays a typical end-to-end system.

In this setup, test system developers regularly develop and
commit source code to a version control repository. From there,
a CI service can pull the source code into its own repository
and build and test the code appropriately. At this point, either
automatically or manually, developers can move and store builds
that pass the CI tests to a build server or repository. Here, on the
build server, release management takes place with reporting and
tracking to link each software build to a specific test machine.
Usually, the test machines initiate the deployment process
through a request to install a specific release of the test system;
however, developers can also configure build servers to push
images onto a chosen machine.

In cases where even basic systems need to employ a level
of release management, the most pragmatic solution will

reflect the inherent complexity of the release requirements.
If the requirement is to track which version is deployed to a
system, manual versioning through a configuration file or as
a component of building an executable can be sufficient. If
requirements expand in scope, the number of test systems
increases, or application version numbers grow, it will be
necessary to use a defined release management system.

Best Practices:
Advanced: Frequently, a complex test system in need of release
management will be most successful with some form of end-
to-end automation. This can most simply be done through
a CI service such as Jenkins or Bamboo that ties release
management to release testing and source code control.

SOFTWARE DEPLOYMENT

https://www.ni.com/en-us/innovations/electronics/automated-electronics-test.html

FIG

7
A small update to a module in the test system can cause the functional test to malfunction, resulting in false failures.

ni.com/automatedtest

Software Deployment11

Release Testing

Regression Testing
In software engineering, regression testing refers to the process of testing a previously
developed system after changes to the system are made. The purpose of regression testing is
to maintain integrity for each release and track bugs in the system to specific updates or patches.
For componentized systems, regression testing is especially important to determine if an
upgrade to module a causes unexpected behavior in module B. For example, upgrading the
NI-DaQmx hardware driver in the system could cause issues with a hardware abstraction
library that called a function in the older NI-DaQmx version that is now deprecated in the
newer. There are two types of regression testing: functional testing and unit testing.

Functional Testing
In testing systems, the most important questions to ask about a software update is, will this
change break the functionality of the system and does the system still behave the way it was
intended? Functional testing, which verifies that for a set of known inputs, the system produces
expected outputs, can help answer these broad questions about the system as a whole. This
type of testing usually takes a “black-box” approach; inner mechanisms of the system are not
analyzed, only whether the output of the system is as expected. For test systems, this could
be a verification that hardware configuration updates, driver changes, or test step additions do
not change the original testing functionality. Engineers can perform functional testing on a test
system using simulated devices under test (DuTs) that are calibrated to pass or fail certain
tests. For example, a system that tests for whether an object is a circle is made up of four
components: a camera controller, circumference sensor, diameter sensor, and volume sensor.
If the system is updated from version 1.0 to 1.1 and a change to the diameter sensor is
introduced, the second circle being tested, in the diagram below, would originally pass the
circle tester and then fail after the update.

Figure 7. a small update to a module in the test system can cause the functional test to malfunction, resulting in false failures.

Circle
Checker

v1.0

Update

v1.0 v1.1

Pass Pass

Pass Fail

Fail Fail

Circle
Checker

v1.1

142ni.com/automatedtest

Release Testing

Regression Testing
In software engineering, regression testing refers to the
process of testing a previously developed system after changes
to the system are made. The purpose of regression testing
is to maintain integrity for each release and track bugs in the
system to specific updates or patches. For componentized
systems, regression testing is especially important to determine
if an upgrade to module A causes unexpected behavior in
module B. For example, upgrading the NI-DAQmx hardware
driver in the system could cause issues with a hardware
abstraction library that called a function in the older NI-DAQmx
version that is now deprecated in the newer. There are two
types of regression testing: functional testing and unit testing.

Functional Testing
In testing systems, the most important questions to ask about
a software update is, will this change break the functionality
of the system and does the system still behave the way it
was intended? Functional testing, which verifies that for a
set of known inputs, the system produces expected outputs,
can help answer these broad questions about the system
as a whole. This type of testing usually takes a “black-box”
approach; inner mechanisms of the system are not analyzed,
only whether the output of the system is as expected. For
test systems, this could be a verification that hardware
configuration updates, driver changes, or test step additions
do not change the original testing functionality. Engineers can
perform functional testing on a test system using simulated
devices under test (DUTs) that are calibrated to pass or fail
certain tests. For example, a system that tests for whether an
object is a circle is made up of four components: a camera
controller, circumference sensor, diameter sensor, and volume
sensor. If the system is updated from version 1.0 to 1.1 and
a change to the diameter sensor is introduced, the second
circle being tested, in the diagram below, would originally
pass the circle tester and then fail after the update.

SOFTWARE DEPLOYMENT

https://www.ni.com/en-us/innovations/electronics/automated-electronics-test.html

FIG

8
After performing a unit test of both the v1.0 and v1.1, the processing time is identified as a problem
after the update, causing false failures in the process functional test.

ni.com/automatedtest

Software Deployment12

Unit Testing
Whereas functional testing is for the complete system, unit testing is for specific modules,
components, or functions. This type of testing is intended to track the quality of specific
portions of the test system as opposed to just correctness. For example, if test results are
being logged to a database, a unit test may be done on the database controller to measure
data throughput. In this way, any changes to the database controller not only can be analyzed
for proper logging functionality but also answer the question of whether the software change
sped up or slowed down the system’s logging capability. In addition to helping find bugs, unit
testing can link observed performance enhancements or diminutions to specific changes. The
circle tester example from before can clarify the difference between unit testing and functional
testing. assuming the diameter sensor software component of the circle tester was upgraded
as before, a unit test of the diameter sensor can be done instead of a functional test of the
complete system. For the unit test, one might provide the specific component with binary
image data that represents a circle with a specific diameter and test for whether the output
matches the known diameter of the circle. In this way, the module’s correctness can be verified
and quantitatively measured, say, to measure the execution time of the module.

In this specific case, the upgrade slowed down the module significantly. It can also be deduced
that, because the functional test of the system failed after the upgrade and the unit test passed,
the software bug most likely resides in the communication between the camera controller
and diameter sensor. This ability to verify system correctness and individual module
functionality can ensure that only quality releases get deployed to test machines.

Testing Process
To save development time, regression testing in most test systems happens in conjunction with
source code control, building, or release management. This allows reuse of testing code that
should require more infrequent updates. However, it is also important to plan and budget
development time for building out test code. Commonly, regression testing is a component of
either a CI service or IDE, where source code control, building, and testing all happen in sequence.

Figure 8. after performing a unit test of both the v1.0 and v1.1, the processing time is identified as a problem after the update,
causing false failures in the process functional test.

Update

v1.0 v1.1

.013s

Function

Time

Memory

Function

Time

Memory

.78s

Pass

Pass

Pass

Pass

Fail

Pass

143ni.com/automatedtest

Unit Testing
Whereas functional testing is for the complete system, unit
testing is for specific modules, components, or functions. This
type of testing is intended to track the quality of specific portions
of the test system as opposed to just correctness. For example,
if test results are being logged to a database, a unit test may be
done on the database controller to measure data throughput.
In this way, any changes to the database controller not only can
be analyzed for proper logging functionality but also answer the
question of whether the software change sped up or slowed
down the system’s logging capability. In addition to helping find
bugs, unit testing can link observed performance enhancements
or diminutions to specific changes. The circle tester example
from before can clarify the difference between unit testing and
functional testing. Assuming the diameter sensor software
component of the circle tester was upgraded as before, a unit
test of the diameter sensor can be done instead of a functional
test of the complete system. For the unit test, one might provide
the specific component with binary image data that represents
a circle with a specific diameter and test for whether the
output matches the known diameter of the circle. In this way,
the module’s correctness can be verified and quantitatively
measured, say, to measure the execution time of the module.

In this specific case, the upgrade slowed down the module
significantly. It can also be deduced that, because the
functional test of the system failed after the upgrade and the
unit test passed, the software bug most likely resides in the
communication between the camera controller and diameter
sensor. This ability to verify system correctness and individual
module functionality can ensure that only quality releases get
deployed to test machines.

Testing Process
To save development time, regression testing in most test
systems happens in conjunction with source code control,
building, or release management. This allows reuse of testing
code that should require more infrequent updates. However, it is
also important to plan and budget development time for building
out test code. Commonly, regression testing is a component of
either a CI service or IDE, where source code control, building,
and testing all happen in sequence.

Best Practices:
Basic: For all test systems, there should be some level
of functional testing before deploying a system to a new
machine. This functional testing can range from the simple
case of manually running the application in the development
environment using simulated hardware to a slightly more
complex case of running through a series of functional tests
based on a configuration file. Unit testing may be unnecessary
for simpler, more monolithic applications but needs to be
considered as a test system scales in complexity. As more
modules are added, specific, customized tests are necessary to
track bugs or ensure the system meets certain specifications.

Advanced: Complex test systems should not only have
functional testing over a wide array of inputs done for
each new release of a test system but also have unit tests
developed for each individual module of the system. Both
methods of regression testing should be done at the most
effective point in the deployment process. For example,
performing functional testing after building each release and
unit testing at each source code control submission point
would represent a good mix of regression testing. Often,
these tests are mandatory or self-evident for systems,
especially in the aerospace and defense industry.

SOFTWARE DEPLOYMENT

https://www.ni.com/en-us/innovations/electronics/automated-electronics-test.html

144ni.com/automatedtest

Componentization
Because deployment time is a common concern for large test systems, it is preferable to update only a single
component of the test system that requires a change rather than rebuild the entire system. The Dependency
Resolution section of the guide partially addresses this practice, but it deserves a separate discussion around
developing modular or plugin-based architectures with the goal of more efficient deployments. Whichever
architecture an engineer chooses, best practice dictates that there exist regularly updated peripheral modules
and more core modules that, when developed, stay relatively constant without a need for recompile. This practice
naturally leads to questions about update frequency, explored later in this section.

Deploying Plugin Architectures

A plugin in the context of software deployment is a code module
whose installation is independent of the main application’s
installation, is functionally independent of other plugins, abides
by a global plugin interface, and avoids name conflicts when
used in a built application. The main application then should
be able to load each plugin dynamically, call each plugin by
a standard interface, and use each plugin as an extension
without requiring a recompile. When developed successfully,
a plugin framework allows for componentized deployments—
updating or installing only specific or missing plugins and not
recompiling the main application or any unaffected plugins.

For example, a plugin framework developed for a simple
application might consist of a main executable that searches
through a plugins directory at load time, or periodically during
run time, and executes that plugin through a standard interface.
In this way, plugins can be continually deployed into the plugins
directory of the system without editing the main application.

Hard Drive Replication
Commonly, code libraries, hardware drivers, or specific files
are part of a test system’s core and do not need to be updated
as frequently as other modular, peripheral components. In
these instances, hard drive replication can be a good method
for standardizing the environment as a baseline for further
development. Engineers can replicate and clone the hard drive
of a development machine or ground-zero test machine onto
other test machines. When the drive has been duplicated, test
machines have a common starting point that often includes a

main test application or program, necessary hardware drivers,
a system driver set, and critical peripheral applications, such
as MAX for hardware configuration. It is important to recognize,
however, that hard drive replication comes with its own caveats,
such as requiring identical computer hardware between test
machines, or memory-intensive image distributions that make it
an unsuitable method for frequent software updates.

An example of using hard drive replication for laying a foundation
for further test development is using Symantec Ghost, a popular
hard drive replication tool, with the TestStand Deployment
Utility (TSDU). In the first frame of the following image (A),
the development machine replicates its core software stack
(red) onto the target machine. This core software stack is a
combination of the Windows OS, hardware device drivers,
run-time engines, and MAX. After the target machine has been
imaged, development on the development machine takes place
(B) to create a test sequence using TestStand and LabVIEW
(green). The developer can then move the test sequence to the
target machine using the TSDU. For frequent updates to the test
sequence, the developer can continually use the TSDU to save
development time, as the core software stack does not need
to be changed. Occasionally, development might occur on the
development machine that is not deployed to the target machine
(C). This system mismatch can potentially lead to problems
with missing dependencies. In this instance, a developer could,
instead of using TSDU to update the target machine, choose
to reimage the development machine and replicate it onto the
target machine to realign the two machines (D). Moving forward,
the developer can continue to make frequent updates with the
TSDU and whenever system mismatches arise in the future, can
use Ghost to reimage the hard drive of the target machine.

SOFTWARE DEPLOYMENT

https://www.ni.com/en-us/innovations/electronics/automated-electronics-test.html

FIG

9
TSDU and hard drive replication example

ni.com/automatedtest

Software Deployment15

Continuous Integration and Continuous Deployment
Continuous integration (CI) refers to the practice of continuously submitting, building, and
testing code, usually on a separate CI server. In most test systems, CI services are used to
provide the necessary framework for building, testing, and deploying system software. These
services run regularly and automatically on the CI servers with a wide variety of configuration
options to create build schedules, automated testing rules, release deployments, and so on.
One of the most obvious advantages to using a CI server is the ability to track and manage
different builds and deployments.

Figure 9. TSDu and Hard Drive Replication Example

Ghost

Development Machine Target Machine

TSDU

Development Machine Target Machine

Development Machine Target Machine

Ghost

Development Machine Target Machine

Table 2. CI services provide dashboards to track application builds and deployments.

BuIlDS

VERSION STaTuS laST BuIlD

1.2 Fail May 24, 2016

1.1 Pass april 2, 2016

1.0 Pass December 7, 2015

DEPlOyMENTS

VERSION STaTuS laST BuIlD MaCHINE

1.0 Pass June 7, 2015 a

1.1 Fail June 9, 2015 B

1.1 Pass March 16, 2016 C

145ni.com/automatedtest

Continuous Integration and Continuous Deployment
Continuous integration (CI) refers to the practice of continuously submitting, building, and testing code, usually on a separate CI server.
In most test systems, CI services are used to provide the necessary framework for building, testing, and deploying system software.
These services run regularly and automatically on the CI servers with a wide variety of configuration options to create build schedules,
automated testing rules, release deployments, and so on. One of the most obvious advantages to using a CI server is the ability to track
and manage different builds and deployments.

TBL

2
CI services provide dashboards to track application builds and deployments.

Builds

VERSION STATUS LAST BUILD

1.2 Fail May 24, 2016

1.1 Pass April 2, 2016

1.0 Pass December 7, 2015

Deployments

VERSION STATUS LAST BUILD MACHINE

1.0 Pass June 7, 2015 A

Table Body Left Table Body Center June 9, 2015 B

Table Body Left Table Body Center March 16, 2016 C

SOFTWARE DEPLOYMENT

https://www.ni.com/en-us/innovations/electronics/automated-electronics-test.html

146ni.com/automatedtest

CI tools range widely in capabilities and open-source developers
and software companies both develop them. The latter of which
has the added benefit of providing support for system setup.

	J Jenkins—Termed the “leading open-source automation
server,” Jenkins is one of the most popular CI services today
as it allows for easy installation and configuration. Jenkins can
also be used with virtually all programming languages as it can
interface with programs through their command line interface
or through a wide array of Jenkins plugins.

	J Bamboo— The software company Atlassian produces
Bamboo, the leading proprietary CI service. In addition
to the testing, building, and integration functionality that
Bamboo provides, Atlassian boasts “first-class support for
deployments” over Jenkins.

	J Travis CI and Circle CI—These two open-source CI services
offer great extension capabilities but only integrate with
projects that reside in a GitHub repository.

Overall, the goal of CI is to provide automatic and configurable
tools that give developers the ability to continue coding while
their software is built and tested.

Best Practices:
Basic: Componentization is often not a large concern for
simple systems. Although the system uses very few code
modules or does not employ a plugin architecture, each test
system can usually be deployed as a stand-alone application.
However, if install times become very large and begin to slow
down deployment times, it may be necessary to move to a
more componentized approach that removes the need for a
reinstallation of all components.

Advanced: When test systems become large, complex,
or use a plugin architecture, it makes sense to move
away from a monolithic deployment image and toward
a modular deployment where each component can
be updated separately. Using a plugin architecture is a
quick way to achieve this modular setup but can also be
accomplished through configuration of CI services.

Practical Scenario
An audio equipment production company that does
functional electrical testing on its products using TestStand
and LabVIEW is an example of a more advanced deployment
framework. The test department of the audio equipment
manufacturer has over 50 test systems distributed globally.
Each system uses a PXI chassis that houses a high mix of
modules, including data acquisition, digital I/O, digital signal
acquisition, digital multimeter, and frequency counter cards.

The test engineer in charge of deployment follows the outlined
procedure for every new test system to be brought online.

01
Creating the Base System Image
For each new test system, there is a list of necessary
software, both company made and third party, needed
to ensure security of the system. The company’s IT
department requires this software and it includes antivirus
software, VPN security applications, and Windows Group
Policy configuration specifications. Secondly, each system
needs a base software set to execute its necessary test
sequences. The primary component of this software is a
set of drivers cross-checked with the published NI System
Driver Sets. That is, one version of the test system might
contain NI-DMM 14.0, NI-Switch 15.1, NI-FGEN 14.0.1, and
NI-DAQmx 14.5 drivers. In addition, run-time engines for
LabVIEW 2014 and TestStand 2014 are needed to run the
main test system executable. The following chart outlines
all the necessary software.

The first step of deploying to a new test system is to create
this image on a development machine and replicate it using
a hard drive imaging software. This software image may
have been created previously, opening up the possibility
to reuse an image across multiple machines. This helps
reduce deployment cost as installation needs to be done
only once per batch of identical test machines.

After the base system image has been generated by
installing all of the necessary software, Symantec Ghost
is used to replicate the hard drive and upload the new
image onto a build server. The build server is located at
headquarters and possesses the sole requirement of
maintaining a large memory footprint for multiple system
images to reside on the server.

SOFTWARE DEPLOYMENT

https://www.ni.com/en-us/innovations/electronics/automated-electronics-test.html

147ni.com/automatedtest

SOFTWARE VERSION

NI-DAQmx Driver 14.5.0

NI-DMM Driver 14.0.0

NI-Switch Driver 15.1

NI-FGEN Driver 14.0.0

LabVIEW Run-Time Engine 2014

TestStand Run-Time Engine 2014

Internal AntiVirus Software 3.2

TBL

3
When creating a base system image, it is important to explicitly list the versions of the drivers and run-time engines that will be included.

02
Deploying the Base Image
After uploading the base image to the build server,
the test engineer connects the new test system to the
company network, and then uses a web interface to
connect to the image server and browse the various
base system images available for install. After selecting
the appropriate version, Symantec Ghost images the
new system’s hard drive with the replicate image. At
this point, the test system has the base necessary
software it needs to execute test sequences.

03
Validating Hardware
After physically installing the necessary hardware
modules to the PXI chassis and turning on the system,
the test engineer needs to map the system aliases to
the live devices in software. Although given a list of
modules with associated slot numbers, the test engineer
must use the configuration system setup to map the
aliases so that module locations can change between
systems. For this company, each test system uses a
.ini file that the engineer edits to provide a mapping
of live system hardware to test system aliases. This
is done by identifying devices in MAX and manually
editing the .ini file to create the appropriate map.

SOFTWARE DEPLOYMENT

https://www.ni.com/en-us/innovations/electronics/automated-electronics-test.html

FIG

10

This test deployment system is using an image server to store and deploy base system images that keep the various test stations in sync with each other.
Developers then regularly upload their source code to a continuous integration and source code control server that periodically builds and tests the submitted
code. Once the submitted code passes all of the necessary tests, the built image is added to a build server that handles the large-scale distribution of the test
software system image.

ni.com/automatedtest

Software Deployment18

4. Installing the Application and Components
at this point, the test system has installed its base system image and validated its live hardware.
Now, the engineer is tasked with installing the most recent version of the test application. In
this case, the application is a TestStand installer, generated by the TSDu, that includes all of
the necessary code modules, sequence files, and support files. To explain how this installer
is generated, it is important to look at the development system employed by the production
company. Each developer creates either a specific test step in labVIEW or test sequence in
TestStand and submits these to an apache Subversion source code control repository. This
repository is located on a server that is running a CI service, Jenkins. The Jenkins service is
employed to run tests on submitted code modules, validate sequences with the TestStand
sequence analyzer by command line, and then build the necessary test sequences into installers
using the TSDu command line interface. after each installer is built, it is automatically deployed,
along with its necessary support files, to a build server using the Jenkins Deploy Plugin.

5. Executing
after the TestStand installer has been put on the build server, the test engineer can download
the installer onto the new test system. The engineer can then run the installer, locate the main
test executable, and begin running the base test system.

With this deployment system, the test engineer can quickly and easily make changes to each
test system. The hard drive imaging system in place can be used for either large code revisions
or driver set upgrades while the more lightweight build server can be used to deploy either
small changes to the main test application or individual components and plugins.

Figure 10. This test deployment system is using an image server to store and deploy base system images that keep the various test
stations in sync with each other. Developers then regularly upload their source code to a continuous integration and source code control
server that periodically builds and tests the submitted code. Once the submitted code passes all of the necessary tests, the built image
is added to a build server that handles the large-scale distribution of the test software system image.

Rack

Rack

Rack

Build ServerCI and SCC

Image Server

Workstation

Workstation

Workstation

Workstation

148ni.com/automatedtest

04
Installing the Application
and Components
At this point, the test system has installed its base system
image and validated its live hardware. Now, the engineer
is tasked with installing the most recent version of the test
application. In this case, the application is a TestStand
installer, generated by the TSDU, that includes all of the
necessary code modules, sequence files, and support
f iles. To explain how this installer is generated, it is
important to look at the development system employed
by the production company. Each developer creates
either a specific test step in LabVIEW or test sequence in
TestStand and submits these to an Apache Subversion
source code control repository. This repository is located
on a server that is running a CI service, Jenkins. The
Jenkins service is employed to run tests on submitted
code modules, validate sequences with the TestStand
sequence analyzer by command line, and then build the
necessary test sequences into installers using the TSDU
command line interface. After each installer is built, it is
automatically deployed, along with its necessary support
files, to a build server using the Jenkins Deploy Plugin.

05
Executing
After the TestStand installer has been put on the
build server, the test engineer can download the
installer onto the new test system. The engineer can
then run the installer, locate the main test executable,
and begin running the base test system.

With this deployment system, the test engineer can
quickly and easily make changes to each test system.
The hard drive imaging system in place can be used
for either large code revisions or driver set upgrades
while the more lightweight build server can be used
to deploy either small changes to the main test
application or individual components and plugins.

SOFTWARE DEPLOYMENT

https://www.ni.com/en-us/innovations/electronics/automated-electronics-test.html

WHITE PAPER TITLE

©2020 NATIONAL INSTRUMENTS. ALL RIGHTS RESERVED. NATIONAL INSTRUMENTS, NI, AND NI.COM ARE TRADEMARKS OF NATIONAL INSTRUMENTS.
OTHER PRODUCT AND COMPANY NAMES LISTED ARE TRADEMARKS OR TRADE NAMES OF THEIR RESPECTIVE COMPANIES. 184427

Summary

Test System Deployment can often be a complex process especially as the complexity
and number of the test systems scale. Establishing deployment processes early on
in the development of a test system is the key to completing scalable and successful
deployments. Ensuring that all of the necessary test system artifacts have been
identified and defined and have a deployment method in place is the first step to
creating a successful deployment process. Putting dynamic hardware configuration
options in place can also be an important consideration of many deployment systems.
For larger and more advanced systems, dynamically resolving dependencies between
the deployment image and the target machine can help reduce both the complexity
of the deployment process and the time required to upgrade or reimage a system.
Managing and testing each release of a deployment image is another important
consideration for test system developers. Whether this is done through a continuous
integration service or configuration files, it is important to maintain a scalable release
management system for distributed deployments. The deployment methods put in
place for a test system will always be highly customized to the functionality and nature
of the test system. The sections listed in this guide provide suggestions necessary for
building a scalable solution, regardless of the tools used or the system’s functionality.

TestStand Deployment Utility
The TestStand Deployment Utility simplifies the complex
process of deploying a TestStand system by automating
many of the steps involved in deployment, including collecting
sequence files, code modules, and support files for a test
system and then creating an installer for these files.

Learn more about the TestStand Deployment Utility

LabVIEW Application Builder
Best Practices
LabVIEW Application Builder best practices make it simple
to manage and organize LabVIEW applications. These
recommendations help engineers to establish guidelines
and procedures before beginning development to ensure
that their applications scale for large numbers of VIs and
multiple developers, saving development time and energy.

Start using Application Builder best practices
for LabVIEW projects

SOFTWARE DEPLOYMENT

http://www.ni.com/tutorial/9923/en/
http://www.ni.com/white-paper/7197/en/

	Contents
	PG 2
	PG 12
	PG 26
	PG 42
	PG 66
	PG 78
	PG 107
	PG 122
	PG 133
	PG 151

