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HARDWARE AND MEASUREMENT ABSTRACTION LAYERS

Introduction

The design and development of automated test equipment (ATE) presents a host 
of challenges, from initial planning through hardware and software development to 
final integration. At each stage of the process, changes become more difficult and 
costly to implement. Furthermore, because software typically follows hardware in 
the development cycle, many open-ended items are left for the software engineer 
to handle. Good planning goes a long way toward mitigating familiar risk, but it can’t 
prevent every problem, especially in a fast-paced test development cycle where 
many issues arise at final integration.  The idea that the software is more malleable 
than hardware, results in the phrase “just fix it in software!” However, hardware and 
software are tightly coupled and most issues typically require updates to both. This 
doesn’t stop with the initial deployment, but continues for the system’s life cycle.

As products get more complex, so do the systems required to test them. ATE 
instrumentation costs become important, so the ability to reuse instrumentation 
across several products is often a necessity. Furthermore, shortened development 
times require hardware and software to be developed in parallel, usually with poorly 
defined requirements. Then, once deployed, long product life cycles mean that failing 
or obsolete instruments, as well as product and test requirement changes, could 
produce more challenges for test equipment. Because of this, modularity, flexibility, 
and scalability are critical to a successful automated functional test system. 
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ATE Software Challenges

DEVELOPMENT MAINTENANCE

Rushed development cycle

Poorly defined requirements

Evolving test procedure

Software development begins before hardware 
design is complete

Separation between software and hardware engineers

Long product life cycle
∙ Failing or obsolete instruments 
∙ Instrumentation changes

Product updates
∙ Test procedure changes 
∙ New hardware required

Manufacturing engineer is often not the 
original test developer

Benefits of Software Abstraction

DEVELOPMENT MAINTENANCE

Decouples hardware and software

Disconnects sequence development from code (driver) 
development

Provides common API for instrumentation

Optimizes code reuse

Reduces developement time

Separates roles of architect versus test developer

Mitigates risk of obsolescence or hardware changes

∙ Reduces reliance on specific instruments 
∙ Allows hardware changes without modifying test sequence

Reduces code complexity for future test support/changes 
Increases compatibility of code across platforms

HARDWARE AND MEASUREMENT ABSTRACTION LAYERS

From a hardware standpoint, this is typically 
accomplished by using modular instrumentation and 
interconnects with interchangeable test fixtures. But 
how can you make the test software as adaptable as 
the hardware? Hardware abstraction layers (HALs) 
and measurement abstraction layers (MALs) are 
some of the most effective design patterns for this 
task. Rather than employing device-specific code 
modules in a test sequence, abstraction layers give 
you the ability to decouple measurement types and 
instrument-specific drivers from the test sequence. 
Because test procedures are typically defined using 
types of instruments (such as power supplies, digital 
multimeters [DMMs], analog outputs, and relays) rather 
than specific instruments, employing abstraction 

layers results in a test sequence that is faster to 
develop, easier to maintain, and more adaptable 
to new instruments and requirements. By using 
hardware abstraction to decouple the hardware and 
software, you can drastically reduce development 
time by giving hardware and software engineers 
the ability to work in parallel. The development of 
common APIs for sequence and low-level code 
implementation allows a system architect to maintain 
a repository of common functions, promoting 
standardization and reusability. This makes it 
possible for test developers to focus on the individual 
unit under test (UUT) sequence development 
and spend less time writing low-level code.  

https://www.ni.com/en-us/innovations/electronics/automated-electronics-test.html
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Printer dialogs are an excellent everyday use of a HAl/mAl. when you print from your computer, 
you don’t have to open a terminal and send the raw serial, uSB, or TCP commands to your 
printer to initialize, configure, and send the data to print. A hardware driver implements methods 
to perform configuration and printing. Each printer manufacturer follows certain standards for 
implementing these methods into their drivers, so that their printers are easy to use. This common 
interface for executing tasks on a piece of hardware is the HAl. So do you write code to call 
the abstracted methods of the HAl to configure and print a document? No, when you select 
print, a print dialog is displayed. This dialog provides a common interface to adjust the configuration 
parameters, and send the printable data to the device. This is the mAl, as it gives you the 
ability to exercise all printers intuitively without having to understand the low-level functions 
of printer devices. Just like with printing documents, an ATE HAl defines a common set of 
low-level tasks that each instrument type must follow, and the mAl provides a common means 
of performing high-level actions that exercise the instruments.

Figure 2. Printer dialogs are an excellent everyday use of a HAl/mAl.
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2
Printer dialogs are an excellent everyday use of a HAL/MAL.
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It’s important to understand the difference between a HAl and mAl. A HAl is a code interface 
that gives application software the ability to interact with instruments at a general level, rather 
than a device-specific level. Typically a HAl defines instrument classes, or types and standard 
parameters and functions that those instruments must conform to. In other words, the HAl 
provides a generic interface to communicate with instruments from the instrument’s point of 
view. A mAl is a software interface that provides high-level actions that can be performed on a set 
of abstracted hardware. These actions are a way of exercising multiple instruments to perform 
a task from the uuT’s point of view. Together these make up a hardware abstraction framework. 

ATE SOFTwARE CHAllENgES

Rushed development cycle

Poorly defined requirements

Evolving test procedure

Software development begins before hardware design is 
complete

Separation between software and hardware engineers

dEvElOPmENT

long product life cycle

�� Failing or obsolete instruments

�� Instrumentation changes

Product updates

�� Test procedure changes

�� New hardware required

manufacturing engineer is often not the original  
test developer

mAINTENANCE

BENEFITS OF SOFTwARE ABSTRACTION

decouples hardware and software

disconnects sequence development from code (driver) 
development

Provides common API for instrumentation

Optimizes code reuse

Reduces developement time

Separates roles of architect versus test developer

dEvElOPmENT

mitigates risk of obsolescence or hardware changes

�� Reduces reliance on specific instruments

�� Allows hardware changes without modifying test sequence

Reduces code complexity for future test support/changes

Increases compatibility of code across platforms

mAINTENANCE

TEST ExECuTIvE
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Figure 1. High-level Overview of an Abstraction Framework
FIG

1
High-level overview of an abstraction framework
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It’s important to understand the difference between a HAL and 
MAL. A HAL is a code interface that gives application software 
the ability to interact with instruments at a general level, rather 
than a device-specific level. Typically a HAL defines instrument 
classes, or types and standard parameters and functions that 
those instruments must conform to. In other words, the HAL 
provides a generic interface to communicate with instruments 
from the instrument’s point of view. A MAL is a software interface 
that provides high-level actions that can be performed on a set 
of abstracted hardware. These actions are a way of exercising 
multiple instruments to perform a task from the UUT’s point of 
view. Together these make up a hardware abstraction framework. 

Printer dialogs are an excellent everyday use of a HAL/MAL. 
When you print from your computer, you don’t have to open 
a terminal and send the raw serial, USB, or TCP commands 
to your printer to initialize, configure, and send the data to 
print. A hardware driver implements methods to perform 
configuration and printing. Each printer manufacturer follows 
certain standards for implementing these methods into their 
drivers, so that their printers are easy to use. This common 
interface for executing tasks on a piece of hardware is the HAL. 
So do you write code to call the abstracted methods of the 
HAL to configure and print a document? No, when you select 
print, a print dialog is displayed. This dialog provides a common 
interface to adjust the configuration parameters, and send the 

printable data to the device. This is the MAL, as it gives you 
the ability to exercise all printers intuitively without having to 
understand the low-level functions of printer devices. Just like 
with printing documents, an ATE HAL defines a common set of 
low-level tasks that each instrument type must follow, and the 
MAL provides a common means of performing high-level actions 
that exercise the instruments.

https://www.ni.com/en-us/innovations/electronics/automated-electronics-test.html
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Existing HAL/MAL
The test and measurement world has addressed HALs and MALs in many ways. Much of this can be used right out of the box, 
or integrated into a larger custom HAL/MAL approach to extend functionality with minimal effort. Here are a few of the most 
common examples.

Out-of-the-Box Software Abstraction Layers

ABSTRACTION DESCRIPTION TYPE PROS CONS

Vendor-Specific 
Driver Family
Drivers (NI-DAQmx, 
Modular Instruments, 
Pickering PILPXI)

HAL Vendor-specific family drivers 
provide generic interfaces 
for some groups of a vendor’s 
common instruments. These driver 
sets can interface with dozens 
to hundreds of instruments 
for each particular family. 
Examples include NI drivers 
(such as NI-DAQmx, NI-DCPower, 
NI-DMM, NI-Scope, NI-SWITCH, and 
NI-FGEN), and Pickering PILPXI.

	J Common intuitive  
interface for 
supported 
instruments

	J Well documented 
and tested

	J All available 
functions provided

	J Low learning 
curve—the same 
driver can control 
all instruments in 
the family

	J Valid only for 
each vendor’s 
specific drivers

	J Not all 
instruments 
support 
all functions

Industry-Standard  
Interfaces

HAL IVI is a standard for instrument 
driver software that promotes 
instrument interchangeability 
and provides flexibility when 
interfacing with IVI-compliant 
instruments. The standard 
defines specifications for 13 
instrument classes, which many 
manufacturers follow, allowing 
a single driver to control 
multiple types of instruments. 
Instrument classes include DMM, 
oscilloscope, arbitrary waveform/
function generator, DC power 
supply, switch, power meter, 
spectrum analyzer, RF signal 
generator, counter, digitizer, 
downconverter, upconverter, and 
AC power supply.

	J Available for a 
wide variety of 
instruments from 
USB to PXI

	J Compatible with 
many boxed GPIB, 
serial, and 
LXI instruments

	J Plug and play 
Standard 
programming model 
for all drivers

	J High-level 
instrument 
API allows 
simulated devices

	J Only API is 
specified, not the 
implementation—two 
“interchangeable” 
implementations may 
return different 
results for the 
same measurement

	J Cannot be used 
with noncompliant 
instruments

	J May not implement  
all functions 
required

	J May expose 
functions that are 
not supported by 
an instrument

Switch Executive MAL Switch Executive is a switch 
management and routing 
application that allows compliant 
switch matrix and multiplexer 
instruments to be combined 
into a single virtual switch 
device. This virtual switch can 
be intuitively configured and 
actuated using named signal 
channels and routes.

	J Intuitive switch 
route setup 
and operation

	J Define channels 
and routes based 
on UUT- or test-
centric names

	J Define no-connect 
routes for 
added safety

	J Requires switches 
to be NI- or 
IVI-compliant

	J Doesn’t work with 
relays controlled 
with NI-d AQmx

HARDWARE AND MEASUREMENT ABSTRACTION LAYERS
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Out-of-the-box abstractions provide a lot of functionality with minimal customization. However, 
they don’t provide unification. Iv I drivers and NI family drivers are great HAl s for compliant 
instruments, but they still require test sequences to be developed from an instrument-centric 
point of view. Switch Executive does an excellent job of abstracting switch routes to a test- 
centric point of view, but it can be used for only NI- or Iv I-compliant switch connections (no 
analog or digital I/O, dmm , Scope, power supply, and so on). By using a unified HAl /mAl , you 
can more effectively develop uu T-centric sequences that can interface with a wide variety of 
instrumentation and better handle changes to instrument channels and connections.

Although beneficial, HAl s and mAl s require a lot of foresight that typically comes from past 
experience. There are many different levels of abstraction to consider. Some are software and 
time intensive, and others are given out of the box. In general, the more abstracted from 
specific instrumentation and measurements you get, the more high-level framework planning 
and software development is required. Architecting a large abstraction framework is time- 
consuming, and can be risky without proper planning. Improper initial assumptions or 
implementation can have both positive and negative lasting consequences. It is important to 
find the right scope of hardware substitution for your particular needs.  If you are unsure of how 
to proceed, start simple, keep it scalable, and use built-in abstraction when possible.

Background
To best understand how a HAl /mAl  is implemented, you must understand the anatomy  
of automated test software. At the highest level, automated test software employs a test 
executive (or sequencer), such as TestStand. The executive calls a series of test steps, which 
most often are code modules or functions, developed in languages like g  in l abvIEw  software, 
C, .NET, or Activex. w ith a custom instrument-specific approach, these code modules have 
specific purposes, such as a switched dmm  that uses the dmm  and switch, or a power supply 
with ripple measurement that uses both the power supply and the scope. Although this can 
be beneficial, because it gives each developer the ability to code the specific functions needed, 
it requires a large amount of cross-functionality and can be difficult to develop, deploy, and 
manage. Furthermore, it requires every test developer to be well versed in the low-level 
software (such as l abvIEw ).

COd E mOd u l ES

TEST SEQu ENCER (Ex AmPl E TestStand)

Switched d mm d mm w/ Trigger Switched Scope PS + Ripple measurement

INSTRu mENTS

dm m Switch d AQ PS Scope

Figure 3. The Anatomy of Nonabstracted Automated Test SoftwareFIG

3
The anatomy of nonabstracted automated test software
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Out-of-the-box abstractions provide a lot of functionality with minimal customization. However, they don’t provide unification. IVI drivers 
and NI family drivers are great HALs for compliant instruments, but they still require test sequences to be developed from an instrument-
centric point of view. Switch Executive does an excellent job of abstracting switch routes to a test-centric point of view, but it can be 
used for only NI- or IVI-compliant switch connections (no analog or digital I/O, DMM , Scope, power supply, and so on). By using a unified 
HAL/MAL , you can more effectively develop uu T-centric sequences that can interface with a wide variety of instrumentation and better 
handle changes to instrument channels and connections.

Although beneficial, HALs and MALs require a lot of foresight 
that typically comes from past experience. There are many 
different levels of abstraction to consider. Some are software 
and time intensive, and others are given out of the box. In 
general, the more abstracted from specific instrumentation 
and measurements you get, the more high-level framework 
planning and software development is required. Architecting 

a large abstraction framework is time-consuming, and 
can be risky without proper planning. Improper initial 
assumptions or implementation can have both positive 
and negative lasting consequences. It is important to find 
the right scope of hardware substitution for your particular 
needs.  If you are unsure of how to proceed, start simple, 
keep it scalable, and use built-in abstraction when possible.

HARDWARE AND MEASUREMENT ABSTRACTION LAYERS
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Background

To best understand how a HAL/MAL is implemented, you must understand the anatomy of automated test 
software. At the highest level, automated test software employs a test executive (or sequencer), such as TestStand. 
The executive calls a series of test steps, which most often are code modules or functions, developed in languages 
like G in LabVIEW software, C, .NET, or ActiveX with a custom instrument-specific approach, these code modules 
have specific purposes, such as a switched DMM that uses the DMM and switch, or a power supply with ripple 
measurement that uses both the power supply and the scope. Although this can be beneficial, because it gives 
each developer the ability to code the specific functions needed, it requires a large amount of cross-functionality 
and can be difficult to develop, deploy, and manage. Furthermore, it requires every test developer to be well versed 
in the low-level software (such as LabVIEW).

Without Abstraction
Without hardware or measurement abstraction, you must 
employ code modules that directly reference drivers to interface 
with instruments. This results in a test sequence that is closely 
coupled to specific instruments and specific driver code.

Four inevitable problems occur without a HAL/MAL framework:

	J Instruments need to change because of obsolescence or 
requirement changes—without abstraction, you need to 
change the driver for each call to that instrument, which 
could be dozens of steps in a typical test sequence. 
Each instrument change causes a chain reaction of 
software changes.

	J Driver functionality changes because of new requirements—
if a driver needs to be updated, you may need to update every 
instance of that driver to match the new code, especially if the 
inputs or outputs change. Furthermore, directly calling driver 
code modules requires that every test developer understand 
the inner workings of each driver they use, especially in 
the case of multifunction action engines. By exposing all of 
this functionality, test engineers must also be well-versed 
software engineers.

HARDWARE AND MEASUREMENT ABSTRACTION LAYERS

	J Test sequences are developed from the point of view of 
the instrumentation—by using instrument-specific drivers, 
all test sequences are developed using instrument-centric 
channel names (for example, you develop test sequences 
using instrument-centric names) rather than UUT- or test-
centric names (for example, 5V_Rail, LED_Control, VDD). 
Because you developed test procedures from the UUT’s 
point of view, this makes development and debugging difficult. 
Furthermore, any test changes require intimate knowledge of 
the instrumentation, wiring, and interconnects.

	J Test sequence development occurs at the same time as 
hardware development—to achieve tight deadlines, software 
and hardware development often happen concurrently. 
Therefore, the instrumentation and channel details are not 
always known when developing test sequences. without 
abstraction, you’ll need to leave placeholders for drivers, 
channel numbers, and connections. Any hardware signals 
that change require updates to the test sequence.

https://www.ni.com/en-us/innovations/electronics/automated-electronics-test.html
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From the perspective of the test executive, the code module is called to perform a specific 
function (multiplexed dmm ). This function implements specific calls to the instruments for 
which it was developed. The block diagram below shows the nesting of command calls. In the 
diagram, the test executive contains a step that calls the code module. The code module employs 
drivers to talk to specific instruments. Each outer item is dependent on its internal calls. 

If an instrument must change, every function in the line of dependencies must change.  
For instance, if the initial multiplexer lacks enough channels, and needs to be switched for 
a higher channel count matrix, a series of changes must take place because of the chain  
of dependencies:

1. Instrument—PxI-2527 mux is changed to a PxI-2532B matrix

2. Driver—NI mux driver changes to NI matrix (rows/columns instead of channels)

3. Code Module—NI mux dmm  vI must be changed to an NI matrix dmm  vI

4. Function Call—The test executive call to the code module must be updated

5. Sequence—Test sequence must be updated for every call to that code module

Figure 5. Nested Command Calls to Perform a multiplexed dmm  measurement

Test Sequencer

Step: measure 5v Rail

NI mu x d mm v I

NI d mm d river
measure d C volts

NI Px I-4065 d mm

NI mu x d river
d isconnect CH7

NI Px I-2527 mu x

NI mu x d river
Connect CH7

NI Px I-2527 mu x

FIG

5
Nested command calls to perform a multiplexed DMM measurement

ni.com/automatedtest

Hardware and measurement Abstraction l ayers7

Without Abstraction
w ithout hardware or measurement abstraction, you must employ code modules that directly 
reference drivers to interface with instruments. This results in a test sequence that is closely 
coupled to specific instruments and specific driver code. Four inevitable problems occur without 
a HAl /mAl  framework:

■■ Instruments need to change because of obsolescence or requirement changes—
w ithout abstraction, you need to change the driver for each call to that instrument, which
could be dozens of steps in a typical test sequence. Each instrument change causes a chain
reaction of software changes.

■■ Driver functionality changes because of new requirements—If a driver needs to be
updated, you may need to update every instance of that driver to match the new code,
especially if the inputs or outputs change. Furthermore, directly calling driver code modules
requires that every test developer understand the inner workings of each driver they use,
especially in the case of multifunction action engines. By exposing all of this functionality,
test engineers must also be well-versed software engineers.

■■ Test sequences are developed from the point of view of the instrumentation—
By using instrument-specific drivers, all test sequences are developed using instrument-
centric channel names (for example, you develop test sequences using instrument-centric
names) rather than uu T- or test-centric names (for example, 5v_Rail, l Ed _Control, vdd ).
Because you developed test procedures from the uu T’s point of view, this makes development
and debugging difficult. Furthermore, any test changes require intimate knowledge of the
instrumentation, wiring, and interconnects.

■■ Test sequence development occurs at the same time as hardware development—
To achieve tight deadlines, software and hardware development often happen concurrently.
Therefore, the instrumentation and channel details are not always known when developing
test sequences. w ithout abstraction, you’ll need to leave placeholders for drivers, channel
numbers, and connections. Any hardware signals that change require updates to the
test sequence.

For example, with the custom approach, a multiplexed dmm  measurement code module may 
look something like the image below, a common switched dmm  l abv IEw  v I. The code 
module has a specific set of calls to specific instrument types. In this example, these are the 
NI mux and NI dmm . This code module connects a switch based on an input channel and 
switch topology, measures using the dmm  based on some input parameters, and then 
disconnects the switch. In the test executive, you must know what fields to fill out, and 
exactly what channels, topologies, and configurations are needed from the instrumentation’s 
point of view. you must also make sure to pass the switch and dmm  measurements to the 
code module appropriately.  

Figure 4. Front Panel of a Typical multiplexed dmm  measurement Application in l abvIEw

NI Switch DMM Mux Example - Custom.vi

SWITCH

X

Switch Reference

Switch PXI_2527

topology name

2527-Wire 32x1 Mux

MUX Channel

CH7

DMM Measurement

DMM resources

PXI_4065 DMM

measurement type

DC Volts

range

10.00

Resolution

6 1/2

0.00000

FIG

4
Front panel of a typical multiplexed DMM measurement 
application in LabVIEW
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For example, with the custom approach, a multiplexed DMM 
measurement code module may look something like the 
image below, a common switched DMM LabVIEW VI. The 
code module has a specific set of calls to specific instrument 
types. In this example, these are the NI Mux and NI DMM. 
This code module connects a switch based on an input 
channel and switch topology, measures using the DMM 
based on some input parameters, and then disconnects 
the switch. In the test executive, you must know what 
fields to fill out, and exactly what channels, topologies, and 
configurations are needed from the instrumentation’s point 
of view. You must also make sure to pass the switch and 
DMM measurements to the code module appropriately. 

From the perspective of the test executive, the code module is called to perform a specific function (multiplexed DMM). This function 
implements specific calls to the instruments for which it was developed. The block diagram below shows the nesting of command 
calls. In the diagram, the test executive contains a step that calls the code module. The code module employs drivers to talk to specific 
instruments. Each outer item is dependent on its internal calls. 

If an instrument must change, every function in the line of dependencies must change.  For instance, if the initial multiplexer lacks 
enough channels, and needs to be switched for a higher channel count matrix, a series of changes must take place because of the 
chain of dependencies:

	J Instrument—PXI-2527 mux is changed to a PXI-2532B matrix

	J Driver—NI Mux driver changes to NI Matrix (rows/columns instead of channels)

	J Code Module—NI Mux DMM VI must be changed to an NI Matrix DMM VI

	J Function Call—The test executive call to the code module must be updated

	J Sequence—Test sequence must be updated for every call to that code module

HARDWARE AND MEASUREMENT ABSTRACTION LAYERS
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STEP 1: INSTRu mENT CHANg E

Test Sequence

Step: measure 5 v  Rail

NI mux d mm v I

NI d mm d river
measure d C volts

Px I-4065 d mm

NI mux d river
d isconnect CH7

Px I-2538B mTx

NI mux d river
d isconnect CH7

Px I-2532B mTx

Test Sequence

Step: measure 5 v  Rail

NI mux d mm v I

NI d mm d river
measure d C volts

Px I-4065 d mm

NI matrix d river
d isconnect (r0/c0, r1/c7)

Px I-2538B mTx

NI matrix d river
Connect (r0/c0, r1/c7)

Px I-2538B mTx

STEP 4: Fu NCTION CAl l CHANg E

Test Sequence

Step: measure 5 v  Rail

NI mux d mm v I

NI d mm d river
measure d C volts

Px I-4065 d mm

NI matrix d river
d isconnect (r0/c0, r1/c7)

Px I-2538B mTx

NI matrix d river
Connect (r0/c0, r1/c7)

Px I-2538B mTx

STEP 5: TEST SEQu ENCE CHANg E

Test Sequence

Step: measure 5 v  Rail

NI mux d mm v I

NI d mm d river
measure d C volts

Px I-4065 d mm

NI mux d river
d isconnect (r0/c0, r1/c7)

Px I-2538B mTx

NI matrix d river
Connect (r0/c0, r1/c7)

Px I-2538B mTx

STEP 2: d RIvER CHANg E

Test Sequence

Step: measure 5 v  Rail

NI matrix d mm v I

NI d mm d river
measure d C volts

Px I-4065 d mm

NI matrix d river
d isconnect (r0/c0, r1/c7)

Px I-2538B mTx

NI matrix d river
Connect (r0/c0, r1/c7)

Px I-2538B mTx

STEP 3: COd E mOd u l E CHANg E

Figure 6. Nonabstracted Changes Required by Chain of d ependenciesFIG

6
Nonabstracted changes required by chain of dependencies
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With Abstraction 
Hardware and measurement abstraction breaks the coupling between the test executive and 
the code modules that interact with the instruments. Instead of calling code modules that 
directly interact with specific instruments, the test executive interacts with the mAl . This 
defines actions or step types that perform common tasks based on generic instrument types. 
These actions are instrument-generic and typically have high-level names like “Signal Input,” 
“Signal Output,” “Connection,” “Power,” and “l oad.”  They also take in test-specific parameters 
(rather than instrument-specific parameters) like signal name, connection name, power supply 
alias, voltage/current, and load method (Cv, CC, CP). A mapping framework uses a configuration 
file to translate test-specific parameters of the generic actions into instrument-specific 
parameters like instrument references, channel numbers, matrix rows and columns, g PIB 
addresses, and instrument configuration constraints. The framework interfaces with the HAl  
to communicate with the specific instruments that the configuration file defines. It calls the 
appropriate methods of each specific instrument based off of the mAl  action type with 
instrument-specific parameters pulled from the configuration file.

If you think of a single step as a cooking recipe (pancakes), the details in the configuration file 
would be the ingredients (eggs, milk, butter, flour), the actions would be the cooking functions 
(combine, mix, beat), the drivers would be the kitchen tools (bowl, mixer, griddle), and the 
framework would be the instructions that put it all together. 
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With Abstraction 
Hardware and measurement abstraction breaks the coupling 
between the test executive and the code modules that interact 
with the instruments. Instead of calling code modules that 
directly interact with specific instruments, the test executive 
interacts with the MAL. This defines actions or step types that 
perform common tasks based on generic instrument types. 
These actions are instrument-generic and typically have high-
level names like “Signal Input,” “Signal Output,” “Connection,” 
“Power,” and “Load.” They also take in test-specific parameters 
(rather than instrument-specific parameters) like signal name, 
connection name, power supply alias, voltage/current, and load 
method (Cv, CC, CP). A mapping framework uses a configuration 
file to translate test-specific parameters of the generic 

actions into instrument-specific parameters like instrument 
references, channel numbers, matrix rows and columns,  
GPIB addresses, and instrument configuration constraints. 
The framework interfaces with the HAL to communicate 
with the specific instruments that the configuration file 
defines. It calls the appropriate methods of each specific 
instrument based off of the MAL action type with instrument-
specific parameters pulled from the configuration file.

If you think of a single step as a cooking recipe (pancakes), the 
details in the configuration file would be the ingredients (eggs, 
milk, butter, flour), the actions would be the cooking functions 
(combine, mix, beat), the drivers would be the kitchen tools (bowl, 
mixer, griddle), and the framework would be the instructions that 
put it all together. 
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This section continues to the multiplexed dmm  example using abstraction. In this example, 
the test executive calls a generic step type, Signal Input, using a step-specific input parameter 
5 v  Rail. In this particular framework, Signal Input is defined as three device actions: connect 
signal route, read measurement device, disconnect signal route. This is passed to the mapping 
framework using the 5 v  Rail parameter. The mapping framework reads the configuration file 
to find the instrument and channel details of 5v  Rail. These correspond to a connection of the 
PxI-2527 mux channel 7, and a measurement of the PxI-4065 dmm  in d C volts mode. The 
framework then calls the appropriate abstracted drivers, NI-Switch and NI-dmm , to communicate 
with the specific instruments that the configuration file defines.

Executing the same change as discussed in the nonabstracted example, where the PxI-2527 
mux is replaced with a PxI-2532B matrix proves to be much easier when using a HAl /mAl  
framework. Because all of the instrument-specific details are stored in the configuration file 
and the HAl  provides a common interface for interacting with similar instruments, only the 
configuration file needs to change. By replacing PxI-2527 mux: Ch7 with PxI-2532B mtx: r0/c0, 
r1,c7, the mapping framework automatically pulls the updated details and calls the new matrix 
with the new parameters. No test sequence or code module changes are required.

Figure 8. Function Calls for a dmm  measurement w ith an Abstraction Framework
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This section continues to the multiplexed DMM example using 
abstraction. In this example, the test executive calls a generic 
step type, Signal Input, using a step-specific input parameter 
5 v Rail. In this particular framework, Signal Input is defined as 
three device actions: connect signal route, read measurement 
device, disconnect signal route. This is passed to the mapping 
framework using the 5 v Rail parameter. The mapping framework 
reads the configuration file to find the instrument and channel 
details of 5 v Rail. These correspond to a connection of the 
PXI-2527 mux channel 7, and a measurement of the PXI-4065 
DMM in DC volts mode. The framework then calls the appropriate 
abstracted drivers, NI-Switch and NI-DMM, to communicate with 
the specific instruments that the configuration file defines.

Executing the same change as discussed in the nonabstracted 
example, where the PXI-2527 mux is replaced with a PXI-2532B 
matrix proves to be much easier when using a HAL/MAL 
framework. Because all of the instrument-specific details are 
stored in the configuration file and the HAL provides a common 
interface for interacting with similar instruments, only the 
configuration file needs to change. By replacing PXI-2527 mux: 
Ch7 with PXI-2532B mtx: r0/c0, r1, c7, the mapping framework 
automatically pulls the updated details and calls the new matrix 
with the new parameters. No test sequence or code module 
changes are required.
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Approaches
The most important topic to consider when deciding on an abstraction framework is the scope 
of abstraction on which all other decisions are based. On one extreme, there is the case for no 
abstraction, where each hardware interface is a direct call to an instrument-specific driver. On 
the other extreme, you have complete abstraction, where every possible interface between 
components, communications protocols, measurements, and configuration formats has an 
abstract definition. This section explores some of the options that cover the range of possibilities.  

Option 1: Instrument-Specific Driver
The instrument-specific driver approach is probably the most commonly implemented in 
automated test, mainly because it requires the least amount of coding, foresight, and planning. 
w ith this approach, low-level code modules are developed to interface with specific instruments. 
These are typically referred to as low-level drivers, or instrument drivers, which are then called 
by higher level code modules or directly by the test executive. The block diagram below shows 
each of the instrument drivers developed for a specific instrument. In this scenario, if the 
instrument changes, the driver and higher level calls must also change.

Figure 9. Abstraction makes it easy to update hardware with minimal software updates—just updates to the configuration file.
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Abstraction makes it easy to update hardware with minimal software updates—just updates to the configuration file.
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Approaches
The most important topic to consider when deciding on an abstraction framework is the scope of abstraction on 
which all other decisions are based. On one extreme, there is the case for no abstraction, where each hardware 
interface is a direct call to an instrument-specific driver. On the other extreme, you have complete abstraction, 
where every possible interface between components, communications protocols, measurements, and configuration 
formats has an abstract definition. This section explores some of the options that cover the range of possibilities. 

Option 1: Instrument-Specific Driver

The instrument-specific driver approach is probably the most 
commonly implemented in automated test, mainly because it 
requires the least amount of coding, foresight, and planning. 
With this approach, low-level code modules are developed 
to interface with specific instruments. These are typically 
referred to as low-level drivers, or instrument drivers, which 

are then called by higher level code modules or directly by the 
test executive. The block diagram below shows each of the 
instrument drivers developed for a specific instrument. In this 
scenario, if the instrument changes, the driver and higher level 
calls must also change.
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Although this method does not include any abstraction, there are still best practices you should 
follow to promote robust driver development and interactions:

■■ d evelop or use instrument driver packages for interfacing with each instrument.
■■ A low-level driver package implements all of the functions for initializing, interacting

with, and closing a connection to an instrument.
■■ Functions should be simple and single-purposed.
■■ d rivers should be able to handle multiple instances of the same instrument type

(such as two identical power supplies in the same system).
■■ d evelop wrapper instrument drivers to simplify the instrument interface.

■■ Pre-existing drivers contain dozens of functions that may be difficult to understand. you
can wrap pre-existing full-featured instrument drivers into simpler wrapper instrument
drivers to promote easy usability.

■■ Ensure all instrument interfacing goes through instrument drivers.
■■ This provides a single point of entry for all instrument communications, which eases

debugging, reduces race conditions, and allows the instrument state to be managed in
a single location.

■■ A wrapper instrument driver, if developed, should be the single entry point.
■■ d rivers may be called directly by the test executive, or by higher level code modules.

■■ d o not implement test-specific functionality at the driver level.
■■ Test-specific algorithms should be implemented by higher level code modules or in the

test executive.

INSTRu mENT
d RIvERS

TEST ExECu TIvE

INSTRu mENTS

HIg H-l EvEl
COd E mOd u l ES

NI-d mm d river NI-matrix d river NI-d AQmx d river PS d river xg 850 d river
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Figure 10. Overview of an Instrument-Specific d river method for Automated Test Software w ithout AbstractionFIG
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Overview of an instrument-specific driver method for automated test software without abstraction
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Although this method does not include any abstraction, there 
are still best practices you should follow to promote robust driver 
development and interactions:

	J Develop or use instrument driver packages for interfacing 
with each instrument.

	J A low-level driver package implements all of the functions 
for initializing, interacting with, and closing a connection to 
an instrument.

	J Functions should be simple and single-purposed.

	J Drivers should be able to handle multiple instances of 
the same instrument type (such as two identical power 
supplies in the same system).

	J Develop wrapper instrument drivers to simplify the 
instrument interface.

	J Pre-existing drivers contain dozens of functions that 
may be difficult to understand. you can wrap pre-existing 
full-featured instrument drivers into simpler wrapper 
instrument drivers to promote easy usability.

	J Ensure all instrument interfacing goes through 
instrument drivers.

	J This provides a single point of entry for all instrument 
communications, which eases debugging, reduces race 
conditions, and allows the instrument state to be managed 
in a single location.

	J A wrapper instrument driver, if developed, should be the 
single entry point.

	J Drivers may be called directly by the test executive, or by 
higher level code modules.

	J Do not implement test-specific functionality at the driver level.

	J Test-specific algorithms should be implemented by higher 
level code modules or in the test executive.

	J Ensure instrument drivers are unaware of one another.

	J High-level code modules or the test executive calling 
individual instrument drivers should perform multi-
instrument interactions.
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Option 2: Out-of-the-Box HAL/MAL 
The fastest way to incorporate abstraction into the 
instrumentation driver architecture is to use pre-existing 
HALs and MALs. Although the options for purchasing a fully 
integrated HAL/MAL abstraction framework are limited, many 
hardware vendors have already implemented some level of 
hardware abstraction into their instruments; Switch Executive 
is a MAL geared specifically toward switch connections and 
routing. By architecting your code modules around these 
pre-existing abstractions, you can increase ATE software 
adaptability and abstraction with minimal development effort.

Out-of-the-Box Hardware Abstraction
Pre-existing hardware abstraction uses common low-
level interfaces that work with a variety of instruments. 
This reduces the number of required instrument-specific 
drivers and reduces the impact of instrument changes in a 
system. The test executive and higher level code modules 
can reference general drivers, which reduces development 
effort and the impact of instrument changes. When one of 
the abstraction types defined below is implemented, the 
I/O for a particular interface is fixed. Therefore, instrument 
changes do not typically cause code module changes.

You can use pre-existing hardware abstraction in two ways: 
instrument family drivers and communications standards. 
Instrument family drivers tend to be vendor-specific drivers 
that can control many variations of a particular instrument 
type within that vendor’s catalog. Communications standards 
provide an industry agreed-on method for interfacing with 
certain types of instruments across multiple vendors. You 
may use these standards to develop instrument drivers 
that can control a variety of similar instruments.

Hardware Abstraction Through Instrument 
Family Drivers
Instrument family drivers are vendor-specific drivers that 
communicate with a common product line of instruments. 
Similar to IVI drivers, instrument family drivers provide 
communications to multiple different instruments using 
a common driver. Common examples include NI modular 
instruments (NI-DMM, NI-Switch, NI-d CPower, and NI-Scope) 
and Pickering PIl PXI. Instrument family drivers promote 
interchangeability within the family for which they are developed. 
Although they do not support cross-vendor or cross-family 
reuse, these drivers are typically intuitive, easy to implement, 
and contain most, if not all, of the functions for each instrument.

Hardware Abstraction Through 
Communications Standards
Many instrument manufacturers follow industry standards 
for device communications. By following industry standards, 
manufacturers can make their instrumentation interoperable 
with other similar instruments. Two of the most common 
standards are the Standard Commands for Programmable 
Instruments (SCPI, often pronounced “skippy”) and 
Interchangeable Virtual Instruments (IVI).

SCPI
SCPI defines a standard for syntax and commands to use 
in controlling programmable instruments in the test and 
measurement industry. With these commands, users can set 
and query common parameters of instruments. SCPI commands 
can be implemented over a variety of communications 
protocols, including GPIB, LAN, and serial. By developing a single 
SCPI-compliant driver, you can communicate with multiple 
instruments of the same type  (DC power supply, electronic load, 
and so on) without having to develop instrument-specific drivers. 
When developing a SCPI driver, note that, although SCPI defines 
a common command and syntax standard, different vendors 
sometimes implement the standard with minor differences, 
making a 100 percent standard driver somewhat difficult. 
When selecting SCPI-compliant instruments and developing 
drivers, it is important to pay close attention to the command 
specifics of each instrument. 
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Figure 11. Overview of Automated Test Software w ith Out-of-the-Box Abstraction

Out-of-the-Box Measurement Abstraction
Although pre-existing hardware abstraction is relatively common, it allows abstraction from only 
an instrument point of view. Conversely, measurement abstraction is very limited. Because 
of the high level of customization across test systems, it is difficult to define a standard for 
measurement actions. The most well-known out-of-the-box measurement abstraction layer is 
Switch Executive, a switch management and routing application that allows compliant switch 
matrix and multiplexer instruments to be combined into a single virtual switch device. This virtual 
switch can be intuitively configured and actuated with user-named channels and routes. Although 
valid for only devices compliant with NI-Switch and Iv I switch, Switch Executive provides an 
excellent method of defining switch routes from the point of view of the uu T or test.  

First, Switch Executive provides a g raphical Configuration u tility for setting up switch  
channel names and routes within single instruments and across multiple instruments. Rows, 
columns, channels, and route groups can all be configured and named to intuitively set up a 
switching scheme.
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Overview of automated test software with out-of-the-box abstraction
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IVI
IVI is a standard for instrument driver software that promotes 
instrument interchangeability and provides flexibility when 
interfacing with IVI-compliant instruments. The standard 
defines an I/O abstraction layer using VISA. Because of the 
incorporation of SCPI into IVI, many instruments that are SCPI-
compliant are by definition IVI-compliant. The IVI standard 
defines specifications for 13 instrument classes that many 
manufacturers follow, which gives a single driver of each type 
the ability to control multiple unique instruments from different 
vendors. Instrument classes include DMM, oscilloscope, 
arbitrary waveform/function generator, DC power supply, 
switch, power meter, spectrum analyzer, RF signal generator, 
counter, digitizer, downconverter, upconverter, and AC power 
supply. Many PXI and boxed instruments follow the IVI standard, 
and pre-existing drivers are available in many programming 
languages and test executives.

By developing test sequences and code modules using IVI 
drivers for IVI-compliant instruments, one vendor’s instrument 
looks the same as another’s. You may use a single driver 
set for each type to interface with many interchangeable 
instruments. If an IVI-compliant instrument is replaced with 
one of similar functionality, code and sequence updates are 
reduced as compared to using instrument-specific drivers. 
However, although IVI drivers can implement most functions 
of compliant instruments, some instruments may still require 
specific code for executing custom functions. Conversely, 
some instruments may not be capable of handling all IVI-
compliant functions. Finally, although two instruments may 
execute identical IVI functions, they may not always achieve 
identical results. Always verify and test the functionality 
of instrumentation whenever changes are made.
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Figure 12. Switch Executive mAl  Configuration Interface

Next, Switch Executive integrates into l abvIEw  and TestStand to provide powerful interfaces 
for setting and querying the preconfigured routes by name. w hen used with the TestStand 
test executive, Switch Executive can be used on a step-by-step basis to provide a named 
interface to the switch instruments before executing the step’s code module.

Switch Executive is a useful mAl  that abstracts switch connections to test-specific names 
rather than instrument-specific names. w hen used in conjunction with Iv I-switch hardware 
abstraction, it proves to be an excellent example of an integrated HAl /mAl  framework. 
However, it falls short when non-Iv I switches or external digital-output-controlled relays are 
used. Furthermore, Switch Executive pertains only to switch routing, and does not extend to 
other measurement types. To achieve an integrated HAl /mAl  framework beyond switching, 
custom code development is required.

Figure 13. Switch Executive mAl  Test Setup
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Figure 12. Switch Executive mAl  Configuration Interface

Next, Switch Executive integrates into l abvIEw  and TestStand to provide powerful interfaces 
for setting and querying the preconfigured routes by name. w hen used with the TestStand 
test executive, Switch Executive can be used on a step-by-step basis to provide a named 
interface to the switch instruments before executing the step’s code module.

Switch Executive is a useful mAl  that abstracts switch connections to test-specific names 
rather than instrument-specific names. w hen used in conjunction with Iv I-switch hardware 
abstraction, it proves to be an excellent example of an integrated HAl /mAl  framework. 
However, it falls short when non-Iv I switches or external digital-output-controlled relays are 
used. Furthermore, Switch Executive pertains only to switch routing, and does not extend to 
other measurement types. To achieve an integrated HAl /mAl  framework beyond switching, 
custom code development is required.
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Out-of-the-Box Measurement Abstraction
Although pre-existing hardware abstraction is relatively 
common, it allows abstraction from only an instrument point 
of view. Conversely, measurement abstraction is very limited. 
Because of the high level of customization across test systems, 
it is difficult to define a standard for measurement actions. The 
most well-known out-of-the-box measurement abstraction 
layer is Switch Executive, a switch management and routing 
application that allows compliant switch matrix and multiplexer 

instruments to be combined into a single virtual switch 
device. This virtual switch can be intuitively configured and 
actuated with user-named channels and routes. Although 
valid for only devices compliant with NI-Switch and IVI switch, 
Switch Executive provides an excellent method of defining 
switch routes from the point of view of the UUT or test.

First, Switch Executive provides a graphical Configuration 
utility for setting up switch channel names and routes within 
single instruments and across multiple instruments. Rows, 
columns, channels, and route groups can all be configured 
and named to intuitively set up a switching scheme. Next, 
Switch Executive integrates into LabVIEW and TestStand 
to provide powerful interfaces for setting and querying the 
preconfigured routes by name. w hen used with the TestStand 
test executive, Switch Executive can be used on a step-
by-step basis to provide a named interface to the switch 
instruments before executing the step’s code module.

Switch Executive is a useful MAL that abstracts switch 
connections to test-specific names rather than instrument-
specific names. When used in conjunction with IVI-switch 
hardware abstraction, it proves to be an excellent example 
of an integrated HAL/MAL framework. However, it falls short 
when non-IVI switches or external digital-output-controlled 
relays are used. Furthermore, Switch Executive pertains only 
to switch routing, and does not extend to other measurement 
types. To achieve an integrated HAL/MAL framework 
beyond switching, custom code development is required.
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Option 3: Integrated HAL/MAL Framework
An integrated HAl /mAl  framework provides a structure for implementing high-level actions 
called by the test executive (mAl ), interfacing with low-level drivers to communicate with 
instruments (HAl ), and mapping the details between the two. This framework is implemented 
by three major types of code modules: actions, mapping framework, and hardware drivers. 
Each of these code module types are defined by a set of APIs. An API is a set of tools (functions, 
protocols, parameters, syntax) for software applications, which define how a code module 
should function and interact with the software around it. In a basic HAl /mAl  framework there 
are four common APIs: measurement API, Configuration API, Hardware d river API, and 
Instrument API. The code modules, APIs, and their interactions are shown and described below.
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Overview of automated test software with an integrated MAL and HAL
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Option 3: Integrated HAL/MAL Framework
An integrated HAL/MAL framework provides a structure for implementing high-level actions called by the test executive (MAL), interfacing 
with low-level drivers to communicate with instruments (HAL), and mapping the details between the two. This framework is implemented 
by three major types of code modules: actions, mapping framework, and hardware drivers. Each of these code module types are 
defined by a set of APIs. An API is a set of tools (functions, protocols, parameters, syntax) for software applications, which define how 
a code module should function and interact with the software around it. In a basic HAL/MAL framework there are four common APIs: 
measurement API, Configuration API, Hardware driver API, and Instrument API. The code modules, APIs, and their interactions are 
shown and described below.
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The three types of code modules are:

	J Actions/Step Types—The actions define the capabilities of 
the MAL. A specific action defines each measurement type 
(input or output). Actions can be as simple as a single function 
call to a single instrument type, such as making a switch 
connection. They can also be as complex as multiple function 
calls to multiple instruments, such as combining a switch 
connection with setting a power supply voltage, current, 
and enabled state. These code modules implement the 
measurement API for defining their methods and parameters.

	J Mapping Framework—The mapping framework is the 
internal code that links the high-level actions to the low-level 
instrument devices using defaults from the configuration 
file. The mapping framework code module interacts with the 
hardware drivers through the hardware driver API, and with 
the actions through the measurement API.

	J Hardware Drivers—The hardware driver code modules 
translate the generic device type function calls (DMM , 
power supply, switch, and so on) to instrument-specific 
communications (SCPI, IVI, NI-d CPower, and proprietary 
communications). Therefore the hardware drivers implement 
the hardware driver API on one end, and instrument-specific 
API on the other.

A HAL/MAL abstraction framework contains a minimum of 
the following four APIs:

	J Measurement API—The measurement API defines the 
high-level actions and their specific parameters. This is the 
MAL definition. The measurement API defines a common 
framework that all actions must follow, and then allows each 
action to define its own API (parameters and methods) 
required to carry out its particular function. Each action 
must at a minimum implement the back-end measurement 
API, which the mapping framework uses to link the human 
readable alias to specific switching and measurement 

instruments and the appropriate channels. Optionally, a 
front end to the API may be developed that provides a more 
intuitive interface to each action. This front end is typically a 
configuration dialog/wizard. An example measurement API for 
a signal input would define a signal input alias and an output of 
the return value. The API would also define that, for the alias, a 
connection, measurement, and then disconnection is made.

	J Configuration API—The mapping framework uses the 
Configuration API to fill in the details on how to translate from 
the measurement API to the Hardware API. The Configuration 
API defines the parameters, syntax, and content of the 
configuration file or database. Only the mapping framework 
uses this API. For example, the Configuration API may 
dictate that the configuration file is a Microsoft Excel file and 
that each signal alias should have the following properties: 
name, type, connection details, instrument, instrument 
configuration, and scaling.

	J Hardware API—The Hardware API is the abstracted 
API that defines what common parameters and methods 
a particular type of instrument must implement. This 
API defines the HAL. For example, the DMM Hardware 
API might dictate that all DMMs must be able to 
initialize, configure (voltage, current, resistance, range, 
resolution), measure (return value), and close.

	J Instrument API—The Instrument API is defined by each 
individual instrument, and is therefore not an abstracted 
layer. Each instrument-specific hardware driver implements 
the necessary functions and commands for controlling its 
particular instrument. This is the same API that would be 
used in an instrument-specific code interface, and would 
implement the specific communications protocols and 
commands for that particular instrument.

To better understand the interactions between the code 
modules and APIs, revisit the multiplexed DMM example 
with a detailed explanation of the inputs and output of 
each code module.
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In the example, the signal input block is the action code module, which defines that a signal 
input should execute a Switch d evice Connect function, a measurement d evice measure 
function, and then a Switch d evice d isconnect function. The measurement API for this function 
defines that the code module requires an alias that it receives from the test executive, then 
passes to the mapping framework, and then gets a return value from the mapping framework 
to pass back to the test executive.

Figure 16. Example of mAl  Action APIs for a Signal Input
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In the example, the signal input block is the action code module, 
which defines that a signal input should execute a Switch device 
Connect function, a measurement device measure function, and 
then a Switch device disconnect function. The measurement 

API for this function defines that the code module requires an 
alias that it receives from the test executive, then passes to 
the mapping framework, and then gets a return value from the 
mapping framework to pass back to the test executive.
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The mapping framework receives the commands from the action through the measurement API. 
It then parses the alias data from the configuration file through the Configuration API to obtain 
the correct instrument Id s and parameters. The Configuration API defines the file format, syntax, 
and fields for the system configuration. The mapping framework then passes the instrument-
specific information to the appropriate drivers through the Hardware d river API.

The mapping framework calls the individual hardware drivers using the generic Hardware 
d river API.  Each driver then interprets the details of the generic setup and communicates 
with the specific instruments using their own out-of-the-box methods and parameters.  
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Figure 17. Example of mapping Framework APIs for a Signal Input
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The mapping framework receives the commands from the action through the measurement API. 
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The mapping framework receives the commands from the action through the measurement API. It then parses the alias data from the 
configuration file through the Configuration API to obtain the correct instrument IDs and parameters. The Configuration API defines the 
file format, syntax, and fields for the system configuration. The mapping framework then passes the instrument-specific information to 
the appropriate drivers through the hardware driver API.

The mapping framework calls the individual hardware drivers using the generic Hardware driver API.  Each driver then interprets the 
details of the generic setup and communicates with the specific instruments using their own out-of-the-box methods and parameters. 
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Option 4: HAL/MAL Plugin Architecture
Plugins are potentially valuable additions to an 
integrated framework. A true plugin is simply a software 
component that can be modified after deployment 
without redeploying an entire application. Plugins are 
stored on disk separately from the main application and/
or framework and are loaded dynamically at run time.

Although developing a plugin architecture introduces several 
challenges, it also simplifies software regression testing 
by clearly limiting the scope and risk of added or modified 
functionality. A framework developed without plugins must be 
rebuilt each time a new measurement type, instrument driver, 
or configuration format is needed. Because, without plugins, the 
entire source is built into a single EXE, there can be no guarantee 
that a seemingly trivial change to one instrument library did not 
inadvertently affect other application features. Testing must be 
thorough because it is difficult to know all possible effects of 
source modifications.

A plugin architecture provides the highest level of software 
modularity by giving a developer the ability to add or fix 
plugin code without modifying, or redeploying the underlying 
framework. This is achieved by writing a framework that depends 
only on abstract classes or modules and that loads the required 
concrete plugins dynamically, usually only as needed. Successful 
plugin architectures depend on thoughtful interface design. 

In other words, to make use of plugins in a test framework, the 
framework must know how to call any possible component that 
plugs in. If all plugins implement a consistent software interface, 
loading them at run time requires only that the framework or test 
application knows where to find them.

Although these are some of the more common processes, 
APIs, and code modules of an abstraction framework, they are 
certainly not the only ones. Each framework is unique, and has its 
own requirements, processes, and implementations. For some 
teams, this level of abstraction may be more than is required. 
However, in other cases, the system architect may need to inject 
additional layers of abstraction. The actual implementations 
of these APIs are also open to interpretation, based on the 
needs and abilities of the framework architect and users. Some 
engineers implement all abstractions with simple action engines, 
some use more advanced object-oriented programming, some 
use plugins, and others prefer a single code base. The key is to 
find the right extent of abstraction and implementation to fit your 
particular needs and abilities. It is also important to understand 
that not everything can be solved by abstraction, and sometimes 
instrument-specific code may still be required. Therefore, 
when developing an abstraction layer, make sure not to prevent 
custom code from being developed for advanced functions. you 
can do this by allowing instrument references to be obtained by 
higher level code modules or by the test executive. Advanced 
developers should never be hindered by a framework.
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Feature Comparison for Abstraction Layer Options None    Some    Full -

ABSTRACTION OPTION OPTION 1 
NONE

OPTION 2 
OUT OF BOX

OPTION 3 
BASIC CUSTOM

OPTION 4 
WITH PLUGINS

Allows individual instruments to be replaced with:

  Instrument with same communications protocol

  IVI- or family-compliant instrument

  Instrument with different communications protocol

Change instrument channels/wiring without modifying 
test sequence (modify config file)

Measurements/tasks from point of view of test/UUT

Add new instruments or measurements without 
modifying framework
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Practical Scenario
You, a test engineer from a commercial product company, have been tasked with developing functional tests for the 
electronic subassemblies of a new product. There are three PCBAs and a final assembly that your need to test. An 
existing general-purpose ATE instrumentation platform exists but it is outdated, and previous test programs have 
been recently plagued by equipment failures and obsolescence. Fortunately, a new ATE platform has been designed 
as part of this program, and it allows interchangeable test heads to adapt the instrumentation to different assemblies. 

Your task is to develop the test sequence and code module software to interact with the instrumentation and 
fixtures that hardware engineers are developing. you have some experience with a test executive (the same one 
used by the previous platform), and have been developing software applications for a few years. As part of the 
effort, there have been talks about using abstraction to help mitigate the obsolescence issues of the previous 
system. You must decide if this is the right way to go and how far to take it. 

To Abstract or Not to Abstract…
The first decision you must make is whether to develop an 
abstraction framework, regardless of the level of abstraction. 
given the out-of-the-box options, like IVI, the answer to this 
decision is almost always yes. The only time that abstraction 
is not worth the effort is if the project lifespan is 100 percent 
known, and changes will never be required, which is almost never. 

Will You Need a HAL?
The next decision to be made is what level of hardware 
abstraction to use. This is where the decision gets more 
complicated, as many factors are at stake. Hardware 
abstraction is typically easier to understand, and therefore 
less costly to implement than a MAL. This is especially 
true if you can reasonably commit to using pre-abstracted 
drivers, such as IVI and product family drivers. However, 
as soon as you must use instruments that don’t fall into a 
single driver, you may need to develop a generic interface for 
each instrument type. For instance, if your system has some 
IVI-compliant power supplies, as well as a noncompliant 
supply, you may want to develop an abstracted power supply 
definition that works with either type. Defining an abstract 
hardware definition typically requires past knowledge of how 
most instruments of that particular type work. you can then 
use that information to define the common methods and 
parameters for each in strument type within your system.

Aim for covering about 80 percent of the functions that you 
reasonably expect each device to use. Talk with your team to 
determine the core functions and parameters of each instrument 
type that have to be implemented by each abstracted instrument 
driver. For example, the team may determine that the core 
functions of all power supplies should be initialize, set voltage/
current/enabled state, readback voltage/current/enabled state, 
and close. Although there may be other functions that one power 
supply could potentially use in the future, it may not always be 
worth it to include as part of your system’s standard. If you don’t 
know enough about a particular instrument type, or are unsure of 
what functions to require, start small. You can always add to the 
standard in the future, but it is difficult to change the parameters 
or details of a function after it is in use by multiple drivers.

The following flowchart can help you decide what level of 
hardware abstraction is right for you.  If you are unsure of an 
answer, you can either assume toward more of an abstracted 
solution or toward the less abstracted solution. A more 
abstracted solution requires more upfront design, but may save 
time in the long run, while the less abstracted solution gets you 
up and running faster, but may be problematic in the future. One 
item to note is that the first question is if you require a MAL. This 
is because a MAL cannot be effectively implemented without a 
well-designed HAL.
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Will You Need a MAL?
The first decision of a HAL is if a MAL will be required. This is 
because a MAL is nearly impossible without relying on hardware 
abstraction. Therefore, this question is really asking if you need 
an integrated abstraction framework. A HAL/MAL is ideal when 
there are multiple test developers who may not have low-level 
software experience.

A few major questions can help guide the decision to 
develop a MAL:

	J Will there be a software architect who can plan and support 
the framework? A HAL/MAL is difficult to support organically 
without an architect/owner.

	J Will there be multiple test developers with minimal software 
experience? A big benefit of an abstraction framework is that 
it lowers the learning curve for test development.

	J Will the system have a long life cycle that supports many 
products? This can be a big upfront investment, but the 
payoff is greater the more it is used.

	J Do you feel comfortable developing and supporting a 
MAL? No abstraction is better than poorly defined and 
poorly implemented abstraction. When simple and elegant, 
a HAL/MAL can save a lot of time in the long run; when 
overly complex or poorly designed, it can be cumbersome 
and actually add development and debug time.

If you answer yes to most of these questions, then 
developing an integrated abstraction framework 
will probably pay off in the long run. 

Practical Scenario 2
Even if all of the benefits of abstraction are known, there is still the major hurdle of cost versus payoff (where units 
are typically time). Although the first part of the abstraction decision is typically from a technical perspective, the 
cost/benefit decision has to be made at a higher business level. 
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 Abstraction Framework Tasks and Costs 

CATEGORY TASK DESCRIPTION HOURS ESTIMATE 
(LOW)

HOURS ESTIMATE 
(HIGH)

Planning

Architecture 
definition

Documentation of the types of actions, 
devices, and the general interfaces 
between them

24 48

HAL definition 
per device type 

Documentation of the inputs and outputs 
and methods of each type of device

8 
(Per device)

16 
(Per device)

MAL definition 
per action

Documentation of the inputs and outputs and 
methods of each type of measurement/action

8 
(Per action)

16 
(Per action)

Configuration 
definition

Definition of the format, syntax, and 
content of the configuration file or database 24 48

Implementation

Mapping 
framework 
development

Implementation of all of the software 
to map the configuration file to actions 
and abstract drivers—the majority of the 
underlying framework is developed here

60 120

Abstract 
device driver 
development

Software development of the abstract 
device interface code, per device type—
essentially building the instrument

4 
(Per device)

24 
(Per device)

Instrument 
driver 
development

Software development of each instrument- 
specific driver that uses the HAL—fills in 
the template for each specific driver

4 
(Per instrument)

24 
(Per instrument)

Action 
development

Software development for each action 
defined by the MAL—implements the front- and 
back-end APIs for interfacing with the test 
executive and the mapping framework

4 
(Per action)

24 
(Per action)

Total

Total time to develop framework 
(not including individual instrument 
drivers)—assumes five device types with 
one instrument-specific driver per device, 
and five actions

248 776

How Much Will it Cost?
This is a difficult question to answer as much of it depends on past experience, coding abilities, and the level of abstraction required. 
However, you can estimate a rough order of magnitude for various components, as the table below shows. 

This shows that development time for a fully integrated HAL/MAL abstraction layer could be as low as 250 hours, and could exceed 
750 hours. Depending on the level of abstraction, this could even exceed 1,000 hours. 
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What Can You Do to Reduce Cost?
When it comes to software development, cost is closely 
related to complexity. Complexity can be both good and 
bad, depending on its nature. The goal is to increase good 
complexity while avoiding bad complexity. Complexity can be 
good when it increases functionality. Each feature typically 
increases functionality. Code that is scalable, flexible, and 
modular tends to be more complex to achieve these goals. But 
this complexity is beneficial when implemented in an elegant 
way. Complexity that arises out of poor planning, redundant 
functionality, and unclean spaghetti code is bad because it 
increases development cost without increasing features. 

You can reduce complexity in an ATE abstraction framework 
in four ways:

	J Plan your architecture up front. As with most development 
processes, upfront planning and documentation can save 
a lot of time and hassle during development. By planning 
and documenting your APIs and code modules up front 
you can reduce cross-functionality and unnecessary 
interdependence, which makes your code more robust and 
reduces unnecessary complexity. You don’t have to plan every 
nuance of every API and code module, but define the major 
interactions, parameters, and basic functions of the software.

	J Don’t think too far ahead. When developing a large 
architecture, the tendency is to overdesign and try to plan for 
all possible scenarios. Although a forward-thinking approach 
can be good, it is best to design for what is known. All too 
often, engineers design systems for the worst-case scenario 
that typically never happens. It’s the last 20 percent that 
takes 80 percent of the time. You will end up spending more 
time trying to handle presumed edge cases, rather than 
focusing on the software that will be used most of the time.

	J Give in to the fact that you may not be able to abstract 
everything. Abstraction is great, but trying to abstract away 
every possible interface is an exercise in diminishing returns. 
Instead, don’t preclude custom hardware interactions 
as part of your framework to account for the times 
when a generic interface just isn’t possible. Set realistic 
rules for your system that give you the ability to reduce 
abstraction layers. For example, restrict configuration 
files to a single format (.INI, .XLS, database) to reduce the 
complexity of the mapping framework, or restrict actions 
to three independent hardware calls to prevent the need 
to implement a recursive Hardware driver API call.

	J Keep it flexible, scalable, and modular. Although flexibility, 
scalability, and modularity do add complexity, they are 
your best tools for developing large architectures. Here is 
where plugin architectures are extremely handy, because 
they define the low-level framework but let the details be 
implemented by unique code libraries. This means that new 
functionality can expand on old functionality without breaking 
pre-existing functions. A well-planned plugin architecture is 
the epitome of developing for what is known and expanding to 
new challenges as necessary.

Is It Worth the Effort?
Although the development of an abstraction framework can 
be time-consuming, even when implemented well, it is done 
because the payoff is often greater than the development 
effort. Several key factors can improve the payoff and make 
your framework more successful. many of these payoffs can 
be quantified by the time or effort saved. The following table 
outlines some typical costs associated with tasks and compares 
the difference between a nonabstracted system and one that 
uses a HAL/MAL abstraction framework. 
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  Costs Associated with Tasks in Nonabstracted and Abstracted Systems

TASK ESTIMATE 
(STANDARD)

ESTIMATE 
(ABSTRACTED) WHY THE PAYOFF?

Test software platform 
learning curve for new 
test engineers

60 hours 
(Per engineer)

40 hours 
(Per engineer)

Mastering how to use an abstraction framework typically 
requires understanding the test executive as well as 
the framework. In either situation, the developer must 
understand how to interact with the test system hardware. 
when instrument-specific drivers are used, the engineer 
must know the details of each driver and how to use them. 
However, when learning an abstraction framework, the 
engineer needs to understand only the high-level actions 
to be performed, as the instrument details are left to the 
framework. Typically, these high-level actions are more 
intuitive and easier to implement than various instrument-
specific drivers.

Development and debug 
of a basic functional 
test sequence (by an 
experienced engineer)

80 hours 
(Per sequence)

40 hours 
(Per sequence)

Test sequence development becomes much faster because the 
details of the hardware are stored in a single location, 
rather than in every driver call within the sequence. 
Tests interact with hardware from the UUT’s point of view, 
allowing the sequence to be more intuitive and better match 
the test procedure. In general, an intuitive framework can 
cut development and debug time in half.

Test sequence 
development and debug 
by a new engineer

120 hours 
(Per sequence)

60 hours 
(Per sequence)

The payback on development time is amplified when a new or 
less-experienced engineer develops test sequences. Because 
the framework imposes a set of rules and functions, less-
experienced engineers can better use pre-existing steps to 
develop sequences when compared to using instrument-specific 
drivers and code. Furthermore, an intuitive framework allows 
product-minded test engineers to develop sequences without 
having to be experts on the underlying software language.

Updating a test 
sequence for a 
failed/obsolete 
instrument or new 
instrument requirement

8 hours for 
driver 

development 
plus 4 to 
20 hours 

(Per sequence)

8 hours for 
driver 

development 
plus <1 hour 

(Per sequence)

When an instrument in the system needs to be replaced, 
the test must change to account for it. In a nonabstracted 
platform, this means that every instance of the driver 
call must be updated for the new instrument. The more 
the instrument is referenced, the longer this can take. 
When using an abstracted framework, engineers may need to 
develop a new instrument driver, but after that is done, 
only the configuration file/database needs to be modified.

Moving a test 
sequence to a new 
ATE hardware platform

40 to 80 hours 
(Per sequence)

<8 hours 
(Per engineer)

Occasionally, entire systems get upgraded and all of the 
tests must be migrated to the new system. Typically these 
new systems have very different instrumentation. whether 
using an abstraction framework or not, new drivers must 
be developed, however after those drivers exist, the test 
sequences must be updated to use them. with a nonabstracted 
sequence, this is very cumbersome, and can sometimes 
be easier to write the sequence again from scratch. 
However, an abstracted sequence can typically be updated 
in less than a day, all through the configuration file, 
without having to touch the test sequence software.

You can use these numbers to expand on the previous scenario with the commercial product company and see if or when it makes 
sense to develop an integrated abstraction framework.

First, assume that you develop all four test sequences on your own. You must start by developing the framework. In the standard, 
In the standard, nonabstracted scenario, you must develop instrument-specific drivers. In the second scenario, you focus on 
using out-of-the-box abstraction when developing the drivers. In the third scenario, you develop an integrated HAL/MAL.

HARDWARE AND MEASUREMENT ABSTRACTION LAYERS

https://www.ni.com/en-us/innovations/electronics/automated-electronics-test.html
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TASK DEVELOPMENT TIME 
(STANDARD)

DEVELOPMENT TIME 
(OUT-OF-THE-BOX ABSTRACTION)

DEVELOPMENT TIME 
(INTEGRATED HAL/MAL)

Framework/driver  
development 80 hours 100 hours 500 hours

Test development (4 tests) 80 x 4 = 320 hours 80 x 4 = 320 hours 40 x 4 = 160 hours

New total 400 hours 420 hours 660 hours

TBL
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An integrated HAL/MAL requires the most up front development effort.

By the time you have completed initial development, the integrated HAL/MAL approach is around 240 hours more than the standard, 
but out-of-the-box abstraction has cost only about 20 hours more. However, no test program ends after initial development.  

Six months later, R&D finds that a few more measurements are required and the 32-channel multiplexer in the system is no longer 
sufficient, so it is replaced with a 4 x 128 matrix. you must now develop a new driver and update each test sequence to use the matrix 
instead of the mux. However, if you used a pre-existing abstracted driver, you would not need to do any driver development to handle 
the new matrix, and the function calls in the sequence wouldn’t need to change—only the details. By using an integrated HAL/MAL, 
the sequence updates would only need to be done in the channel configuration file.

Even now, the integrated abstraction layer hasn’t paid off yet, although the out-of-the-box hardware abstraction has almost broken even. 
Now imagine that a new test program comes along that requires you to test four more assemblies. Unfortunately, you are too busy to 
develop these sequences on your own, and two new test engineers are brought onboard. You must train them on the system and have 
them develop the sequences.

HARDWARE AND MEASUREMENT ABSTRACTION LAYERS

TASK DEVELOPMENT TIME 
(STANDARD)

DEVELOPMENT TIME 
(OUT-OF-THE-BOX ABSTRACTION)

DEVELOPMENT TIME 
(INTEGRATED HAL/MAL)

New driver development 4 hours 0 hours 0 hours

Update 2 simple test 
sequences for new matrix 2 x 4 = 8 hours 2 x 2 = 4 hours 2 x 1 = 1 hour

Update 2 complex test 
sequences for new matrix 2 x 16 = 32 hours 2 x 12 = 24 hours 2 x 2 = 2 hours

Additional hours 44 hours 28 hours 7 hours

New total 444 hours 448 hours 667 hours

TBL
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The integrated HAL/MAL method is much easier to update, but still requires more development effort.

https://www.ni.com/en-us/innovations/electronics/automated-electronics-test.html
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HARDWARE AND MEASUREMENT ABSTRACTION LAYERS

TASK DEVELOPMENT TIME 
(STANDARD)

DEVELOPMENT TIME 
(OUT-OF-THE-BOX ABSTRACTION)

DEVELOPMENT TIME 
(INTEGRATED HAL/MAL)

Training/learning curve 60 x 2 = 120 hours 50 x 2 = 100 hours 40 x 2 = 80 hours

Test development (4 tests) 120 x 4 = 480 hours 100 x 4 = 400 hours 60 x 4 = 160 hour

Additional hours 600 hours 500 hours 240 hours

New total 1,044 hours 948 hours 907 hours

TBL

7
The integrated HAL/MAL approach pays off in the long run when more tests are developed or significant changes are made.

At this point, the initial 500-hour investment in the 
framework has paid off by about 100 hours over the 
standard development practice. As new tests are developed, 
changes are made, and the product life cycle continues, 
there will be a continual return on the initial investment.

There are also many more subjective payoffs to using 
abstraction that are difficult to put a number on. The 
calendar time to develop tests is greatly reduced as well, 
because a HAL/MAL makes it much easier to develop 

software before the hardware is fully defined. By maintaining 
a standard framework, you ensure a single repository where 
new drivers and measurements can be added, bugs can 
be managed, and code divergence among engineers can 
be reduced. Standardization helps keep everyone (test 
engineers, manufacturing engineers, and technicians) 
aligned, allowing better support of systems. Although there 
are countless other advantages, as described in detail in this 
document, let your abilities and ROI calculations help you 
understand what level of abstraction makes sense for you.

Next Steps

TestStand
TestStand is industry-standard test management software that helps test and validation engineers build and deploy automated test 
systems faster. TestStand includes a ready-to-run test sequence engine that supports multiple test code languages, flexible result 
reporting, and parallel/multithreaded test. Although TestStand includes many features out of the box, it is designed to be highly 
extensible. As a result, tens of thousands of users worldwide have chosen TestStand to build and deploy custom automated test 
systems. NI offers training and certification programs that nurture and validate the skills of over 1,000 TestStand users annually.

Learn more about TestStand.

About Bloomy

Bloomy provides products and services for electronics functional test; avionics, battery,  and BmS hardware-in-the-loop (HIL) 
testing; aerospace systems integration lab (SIL) data systems; as well as world-class LabVIEW, TestStand, and VeriStand application 
development. Bloomy is a 24-year NI Alliance Partner, placed in the top Platinum and Select tiers by NI since the program’s inception.

Learn more about Bloomy’s UTS Software Suite, which includes an integrated HAL/MAL.

http://www.ni.com/teststand/whatis/
http://www.bloomy.com/products/electronics-functional-test/uts-software-suite
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