
Hardware and Measurement
Abstraction Layers
Grant Gothing, ATE R&D Manager, Bloomy Controls

FUNDAMENTALS OF BUILDING A TEST SYSTEM

79	 INTRODUCTION

84	 BACKGROUND

89	 APPROACHES

99	 PRACTICAL SCENARIO 1

101	PRACTICAL SCENARIO 2

106	NEXT STEPS

ni.com

http://www.ni.com

78ni.com/automatedtest

HARDWARE AND MEASUREMENT ABSTRACTION LAYERS

Introduction

The design and development of automated test equipment (ATE) presents a host
of challenges, from initial planning through hardware and software development to
final integration. At each stage of the process, changes become more difficult and
costly to implement. Furthermore, because software typically follows hardware in
the development cycle, many open-ended items are left for the software engineer
to handle. Good planning goes a long way toward mitigating familiar risk, but it can’t
prevent every problem, especially in a fast-paced test development cycle where
many issues arise at final integration. The idea that the software is more malleable
than hardware, results in the phrase “just fix it in software!” However, hardware and
software are tightly coupled and most issues typically require updates to both. This
doesn’t stop with the initial deployment, but continues for the system’s life cycle.

As products get more complex, so do the systems required to test them. ATE
instrumentation costs become important, so the ability to reuse instrumentation
across several products is often a necessity. Furthermore, shortened development
times require hardware and software to be developed in parallel, usually with poorly
defined requirements. Then, once deployed, long product life cycles mean that failing
or obsolete instruments, as well as product and test requirement changes, could
produce more challenges for test equipment. Because of this, modularity, flexibility,
and scalability are critical to a successful automated functional test system.

https://www.ni.com/en-us/innovations/electronics/automated-electronics-test.html

79ni.com/automatedtest

ATE Software Challenges

DEVELOPMENT MAINTENANCE

Rushed development cycle

Poorly defined requirements

Evolving test procedure

Software development begins before hardware
design is complete

Separation between software and hardware engineers

Long product life cycle
∙ Failing or obsolete instruments
∙ Instrumentation changes

Product updates
∙ Test procedure changes
∙ New hardware required

Manufacturing engineer is often not the
original test developer

Benefits of Software Abstraction

DEVELOPMENT MAINTENANCE

Decouples hardware and software

Disconnects sequence development from code (driver)
development

Provides common API for instrumentation

Optimizes code reuse

Reduces developement time

Separates roles of architect versus test developer

Mitigates risk of obsolescence or hardware changes

∙ Reduces reliance on specific instruments
∙ Allows hardware changes without modifying test sequence

Reduces code complexity for future test support/changes
Increases compatibility of code across platforms

HARDWARE AND MEASUREMENT ABSTRACTION LAYERS

From a hardware standpoint, this is typically
accomplished by using modular instrumentation and
interconnects with interchangeable test fixtures. But
how can you make the test software as adaptable as
the hardware? Hardware abstraction layers (HALs)
and measurement abstraction layers (MALs) are
some of the most effective design patterns for this
task. Rather than employing device-specific code
modules in a test sequence, abstraction layers give
you the ability to decouple measurement types and
instrument-specific drivers from the test sequence.
Because test procedures are typically defined using
types of instruments (such as power supplies, digital
multimeters [DMMs], analog outputs, and relays) rather
than specific instruments, employing abstraction

layers results in a test sequence that is faster to
develop, easier to maintain, and more adaptable
to new instruments and requirements. By using
hardware abstraction to decouple the hardware and
software, you can drastically reduce development
time by giving hardware and software engineers
the ability to work in parallel. The development of
common APIs for sequence and low-level code
implementation allows a system architect to maintain
a repository of common functions, promoting
standardization and reusability. This makes it
possible for test developers to focus on the individual
unit under test (UUT) sequence development
and spend less time writing low-level code.

https://www.ni.com/en-us/innovations/electronics/automated-electronics-test.html

ni.com/automatedtest

Hardware and measurement Abstraction layers4

Printer dialogs are an excellent everyday use of a HAl/mAl. when you print from your computer,
you don’t have to open a terminal and send the raw serial, uSB, or TCP commands to your
printer to initialize, configure, and send the data to print. A hardware driver implements methods
to perform configuration and printing. Each printer manufacturer follows certain standards for
implementing these methods into their drivers, so that their printers are easy to use. This common
interface for executing tasks on a piece of hardware is the HAl. So do you write code to call
the abstracted methods of the HAl to configure and print a document? No, when you select
print, a print dialog is displayed. This dialog provides a common interface to adjust the configuration
parameters, and send the printable data to the device. This is the mAl, as it gives you the
ability to exercise all printers intuitively without having to understand the low-level functions
of printer devices. Just like with printing documents, an ATE HAl defines a common set of
low-level tasks that each instrument type must follow, and the mAl provides a common means
of performing high-level actions that exercise the instruments.

Figure 2. Printer dialogs are an excellent everyday use of a HAl/mAl.

Print

General

Select Printer

Page Range

Number of copies

Preferences...

Collate

All

Printer 1
Printer 2
Printer 3

Selection

Status

Location
Comment

Current Page

PrintC ancelA pply

Pages:

X

Page Format

OK Cancel

Advanced

Printing Preferences

Layout

Orientation

Page Order

Pagea per Sheet

Paper/ Quality

X

FIG

2
Printer dialogs are an excellent everyday use of a HAL/MAL.

ni.com/automatedtest

Hardware and measurement Abstraction layers3

It’s important to understand the difference between a HAl and mAl. A HAl is a code interface
that gives application software the ability to interact with instruments at a general level, rather
than a device-specific level. Typically a HAl defines instrument classes, or types and standard
parameters and functions that those instruments must conform to. In other words, the HAl
provides a generic interface to communicate with instruments from the instrument’s point of
view. A mAl is a software interface that provides high-level actions that can be performed on a set
of abstracted hardware. These actions are a way of exercising multiple instruments to perform
a task from the uuT’s point of view. Together these make up a hardware abstraction framework.

ATE SOFTwARE CHAllENgES

Rushed development cycle

Poorly defined requirements

Evolving test procedure

Software development begins before hardware design is
complete

Separation between software and hardware engineers

dEvElOPmENT

long product life cycle

�� Failing or obsolete instruments

�� Instrumentation changes

Product updates

�� Test procedure changes

�� New hardware required

manufacturing engineer is often not the original
test developer

mAINTENANCE

BENEFITS OF SOFTwARE ABSTRACTION

decouples hardware and software

disconnects sequence development from code (driver)
development

Provides common API for instrumentation

Optimizes code reuse

Reduces developement time

Separates roles of architect versus test developer

dEvElOPmENT

mitigates risk of obsolescence or hardware changes

�� Reduces reliance on specific instruments

�� Allows hardware changes without modifying test sequence

Reduces code complexity for future test support/changes

Increases compatibility of code across platforms

mAINTENANCE

TEST ExECuTIvE

mEASuRE 5 v RAIl ON uuT

mAl

1. SwITCH: ENERgIzE mux CHANNEl 7

2. dmm: mEASuRE vOlTAgE AT 100 v RANgE

3. SwITCH: dE-ENERgIzE mux CHANNEl 7

HAl

INSTRumENTATION

Figure 1. High-level Overview of an Abstraction Framework
FIG

1
High-level overview of an abstraction framework

80ni.com/automatedtest

HARDWARE AND MEASUREMENT ABSTRACTION LAYERS

It’s important to understand the difference between a HAL and
MAL. A HAL is a code interface that gives application software
the ability to interact with instruments at a general level, rather
than a device-specific level. Typically a HAL defines instrument
classes, or types and standard parameters and functions that
those instruments must conform to. In other words, the HAL
provides a generic interface to communicate with instruments
from the instrument’s point of view. A MAL is a software interface
that provides high-level actions that can be performed on a set
of abstracted hardware. These actions are a way of exercising
multiple instruments to perform a task from the UUT’s point of
view. Together these make up a hardware abstraction framework.

Printer dialogs are an excellent everyday use of a HAL/MAL.
When you print from your computer, you don’t have to open
a terminal and send the raw serial, USB, or TCP commands
to your printer to initialize, configure, and send the data to
print. A hardware driver implements methods to perform
configuration and printing. Each printer manufacturer follows
certain standards for implementing these methods into their
drivers, so that their printers are easy to use. This common
interface for executing tasks on a piece of hardware is the HAL.
So do you write code to call the abstracted methods of the
HAL to configure and print a document? No, when you select
print, a print dialog is displayed. This dialog provides a common
interface to adjust the configuration parameters, and send the

printable data to the device. This is the MAL, as it gives you
the ability to exercise all printers intuitively without having to
understand the low-level functions of printer devices. Just like
with printing documents, an ATE HAL defines a common set of
low-level tasks that each instrument type must follow, and the
MAL provides a common means of performing high-level actions
that exercise the instruments.

https://www.ni.com/en-us/innovations/electronics/automated-electronics-test.html

81ni.com/automatedtest

Existing HAL/MAL
The test and measurement world has addressed HALs and MALs in many ways. Much of this can be used right out of the box,
or integrated into a larger custom HAL/MAL approach to extend functionality with minimal effort. Here are a few of the most
common examples.

Out-of-the-Box Software Abstraction Layers

ABSTRACTION DESCRIPTION TYPE PROS CONS

Vendor-Specific
Driver Family
Drivers (NI-DAQmx,
Modular Instruments,
Pickering PILPXI)

HAL Vendor-specific family drivers
provide generic interfaces
for some groups of a vendor’s
common instruments. These driver
sets can interface with dozens
to hundreds of instruments
for each particular family.
Examples include NI drivers
(such as NI-DAQmx, NI-DCPower,
NI-DMM, NI-Scope, NI-SWITCH, and
NI-FGEN), and Pickering PILPXI.

	J Common intuitive
interface for
supported
instruments

	J Well documented
and tested

	J All available
functions provided

	J Low learning
curve—the same
driver can control
all instruments in
the family

	J Valid only for
each vendor’s
specific drivers

	J Not all
instruments
support
all functions

Industry-Standard
Interfaces

HAL IVI is a standard for instrument
driver software that promotes
instrument interchangeability
and provides flexibility when
interfacing with IVI-compliant
instruments. The standard
defines specifications for 13
instrument classes, which many
manufacturers follow, allowing
a single driver to control
multiple types of instruments.
Instrument classes include DMM,
oscilloscope, arbitrary waveform/
function generator, DC power
supply, switch, power meter,
spectrum analyzer, RF signal
generator, counter, digitizer,
downconverter, upconverter, and
AC power supply.

	J Available for a
wide variety of
instruments from
USB to PXI

	J Compatible with
many boxed GPIB,
serial, and
LXI instruments

	J Plug and play
Standard
programming model
for all drivers

	J High-level
instrument
API allows
simulated devices

	J Only API is
specified, not the
implementation—two
“interchangeable”
implementations may
return different
results for the
same measurement

	J Cannot be used
with noncompliant
instruments

	J May not implement
all functions
required

	J May expose
functions that are
not supported by
an instrument

Switch Executive MAL Switch Executive is a switch
management and routing
application that allows compliant
switch matrix and multiplexer
instruments to be combined
into a single virtual switch
device. This virtual switch can
be intuitively configured and
actuated using named signal
channels and routes.

	J Intuitive switch
route setup
and operation

	J Define channels
and routes based
on UUT- or test-
centric names

	J Define no-connect
routes for
added safety

	J Requires switches
to be NI- or
IVI-compliant

	J Doesn’t work with
relays controlled
with NI-d AQmx

HARDWARE AND MEASUREMENT ABSTRACTION LAYERS

https://www.ni.com/en-us/innovations/electronics/automated-electronics-test.html

ni.com/automatedtest

Hardware and measurement Abstraction l ayers6

Out-of-the-box abstractions provide a lot of functionality with minimal customization. However,
they don’t provide unification. Iv I drivers and NI family drivers are great HAl s for compliant
instruments, but they still require test sequences to be developed from an instrument-centric
point of view. Switch Executive does an excellent job of abstracting switch routes to a test-
centric point of view, but it can be used for only NI- or Iv I-compliant switch connections (no
analog or digital I/O, dmm , Scope, power supply, and so on). By using a unified HAl /mAl , you
can more effectively develop uu T-centric sequences that can interface with a wide variety of
instrumentation and better handle changes to instrument channels and connections.

Although beneficial, HAl s and mAl s require a lot of foresight that typically comes from past
experience. There are many different levels of abstraction to consider. Some are software and
time intensive, and others are given out of the box. In general, the more abstracted from
specific instrumentation and measurements you get, the more high-level framework planning
and software development is required. Architecting a large abstraction framework is time-
consuming, and can be risky without proper planning. Improper initial assumptions or
implementation can have both positive and negative lasting consequences. It is important to
find the right scope of hardware substitution for your particular needs. If you are unsure of how
to proceed, start simple, keep it scalable, and use built-in abstraction when possible.

Background
To best understand how a HAl /mAl is implemented, you must understand the anatomy
of automated test software. At the highest level, automated test software employs a test
executive (or sequencer), such as TestStand. The executive calls a series of test steps, which
most often are code modules or functions, developed in languages like g in l abvIEw software,
C, .NET, or Activex. w ith a custom instrument-specific approach, these code modules have
specific purposes, such as a switched dmm that uses the dmm and switch, or a power supply
with ripple measurement that uses both the power supply and the scope. Although this can
be beneficial, because it gives each developer the ability to code the specific functions needed,
it requires a large amount of cross-functionality and can be difficult to develop, deploy, and
manage. Furthermore, it requires every test developer to be well versed in the low-level
software (such as l abvIEw).

COd E mOd u l ES

TEST SEQu ENCER (Ex AmPl E TestStand)

Switched d mm d mm w/ Trigger Switched Scope PS + Ripple measurement

INSTRu mENTS

dm m Switch d AQ PS Scope

Figure 3. The Anatomy of Nonabstracted Automated Test SoftwareFIG

3
The anatomy of nonabstracted automated test software

82ni.com/automatedtest

Out-of-the-box abstractions provide a lot of functionality with minimal customization. However, they don’t provide unification. IVI drivers
and NI family drivers are great HALs for compliant instruments, but they still require test sequences to be developed from an instrument-
centric point of view. Switch Executive does an excellent job of abstracting switch routes to a test-centric point of view, but it can be
used for only NI- or IVI-compliant switch connections (no analog or digital I/O, DMM , Scope, power supply, and so on). By using a unified
HAL/MAL , you can more effectively develop uu T-centric sequences that can interface with a wide variety of instrumentation and better
handle changes to instrument channels and connections.

Although beneficial, HALs and MALs require a lot of foresight
that typically comes from past experience. There are many
different levels of abstraction to consider. Some are software
and time intensive, and others are given out of the box. In
general, the more abstracted from specific instrumentation
and measurements you get, the more high-level framework
planning and software development is required. Architecting

a large abstraction framework is time-consuming, and
can be risky without proper planning. Improper initial
assumptions or implementation can have both positive
and negative lasting consequences. It is important to find
the right scope of hardware substitution for your particular
needs. If you are unsure of how to proceed, start simple,
keep it scalable, and use built-in abstraction when possible.

HARDWARE AND MEASUREMENT ABSTRACTION LAYERS

https://www.ni.com/en-us/innovations/electronics/automated-electronics-test.html

83ni.com/automatedtest

Background

To best understand how a HAL/MAL is implemented, you must understand the anatomy of automated test
software. At the highest level, automated test software employs a test executive (or sequencer), such as TestStand.
The executive calls a series of test steps, which most often are code modules or functions, developed in languages
like G in LabVIEW software, C, .NET, or ActiveX with a custom instrument-specific approach, these code modules
have specific purposes, such as a switched DMM that uses the DMM and switch, or a power supply with ripple
measurement that uses both the power supply and the scope. Although this can be beneficial, because it gives
each developer the ability to code the specific functions needed, it requires a large amount of cross-functionality
and can be difficult to develop, deploy, and manage. Furthermore, it requires every test developer to be well versed
in the low-level software (such as LabVIEW).

Without Abstraction
Without hardware or measurement abstraction, you must
employ code modules that directly reference drivers to interface
with instruments. This results in a test sequence that is closely
coupled to specific instruments and specific driver code.

Four inevitable problems occur without a HAL/MAL framework:

	J Instruments need to change because of obsolescence or
requirement changes—without abstraction, you need to
change the driver for each call to that instrument, which
could be dozens of steps in a typical test sequence.
Each instrument change causes a chain reaction of
software changes.

	J Driver functionality changes because of new requirements—
if a driver needs to be updated, you may need to update every
instance of that driver to match the new code, especially if the
inputs or outputs change. Furthermore, directly calling driver
code modules requires that every test developer understand
the inner workings of each driver they use, especially in
the case of multifunction action engines. By exposing all of
this functionality, test engineers must also be well-versed
software engineers.

HARDWARE AND MEASUREMENT ABSTRACTION LAYERS

	J Test sequences are developed from the point of view of
the instrumentation—by using instrument-specific drivers,
all test sequences are developed using instrument-centric
channel names (for example, you develop test sequences
using instrument-centric names) rather than UUT- or test-
centric names (for example, 5V_Rail, LED_Control, VDD).
Because you developed test procedures from the UUT’s
point of view, this makes development and debugging difficult.
Furthermore, any test changes require intimate knowledge of
the instrumentation, wiring, and interconnects.

	J Test sequence development occurs at the same time as
hardware development—to achieve tight deadlines, software
and hardware development often happen concurrently.
Therefore, the instrumentation and channel details are not
always known when developing test sequences. without
abstraction, you’ll need to leave placeholders for drivers,
channel numbers, and connections. Any hardware signals
that change require updates to the test sequence.

https://www.ni.com/en-us/innovations/electronics/automated-electronics-test.html

ni.com/automatedtest

Hardware and measurement Abstraction l ayers8

From the perspective of the test executive, the code module is called to perform a specific
function (multiplexed dmm). This function implements specific calls to the instruments for
which it was developed. The block diagram below shows the nesting of command calls. In the
diagram, the test executive contains a step that calls the code module. The code module employs
drivers to talk to specific instruments. Each outer item is dependent on its internal calls.

If an instrument must change, every function in the line of dependencies must change.
For instance, if the initial multiplexer lacks enough channels, and needs to be switched for
a higher channel count matrix, a series of changes must take place because of the chain
of dependencies:

1. Instrument—PxI-2527 mux is changed to a PxI-2532B matrix

2. Driver—NI mux driver changes to NI matrix (rows/columns instead of channels)

3. Code Module—NI mux dmm vI must be changed to an NI matrix dmm vI

4. Function Call—The test executive call to the code module must be updated

5. Sequence—Test sequence must be updated for every call to that code module

Figure 5. Nested Command Calls to Perform a multiplexed dmm measurement

Test Sequencer

Step: measure 5v Rail

NI mu x d mm v I

NI d mm d river
measure d C volts

NI Px I-4065 d mm

NI mu x d river
d isconnect CH7

NI Px I-2527 mu x

NI mu x d river
Connect CH7

NI Px I-2527 mu x

FIG

5
Nested command calls to perform a multiplexed DMM measurement

ni.com/automatedtest

Hardware and measurement Abstraction l ayers7

Without Abstraction
w ithout hardware or measurement abstraction, you must employ code modules that directly
reference drivers to interface with instruments. This results in a test sequence that is closely
coupled to specific instruments and specific driver code. Four inevitable problems occur without
a HAl /mAl framework:

■■ Instruments need to change because of obsolescence or requirement changes—
w ithout abstraction, you need to change the driver for each call to that instrument, which
could be dozens of steps in a typical test sequence. Each instrument change causes a chain
reaction of software changes.

■■ Driver functionality changes because of new requirements—If a driver needs to be
updated, you may need to update every instance of that driver to match the new code,
especially if the inputs or outputs change. Furthermore, directly calling driver code modules
requires that every test developer understand the inner workings of each driver they use,
especially in the case of multifunction action engines. By exposing all of this functionality,
test engineers must also be well-versed software engineers.

■■ Test sequences are developed from the point of view of the instrumentation—
By using instrument-specific drivers, all test sequences are developed using instrument-
centric channel names (for example, you develop test sequences using instrument-centric
names) rather than uu T- or test-centric names (for example, 5v_Rail, l Ed _Control, vdd).
Because you developed test procedures from the uu T’s point of view, this makes development
and debugging difficult. Furthermore, any test changes require intimate knowledge of the
instrumentation, wiring, and interconnects.

■■ Test sequence development occurs at the same time as hardware development—
To achieve tight deadlines, software and hardware development often happen concurrently.
Therefore, the instrumentation and channel details are not always known when developing
test sequences. w ithout abstraction, you’ll need to leave placeholders for drivers, channel
numbers, and connections. Any hardware signals that change require updates to the
test sequence.

For example, with the custom approach, a multiplexed dmm measurement code module may
look something like the image below, a common switched dmm l abv IEw v I. The code
module has a specific set of calls to specific instrument types. In this example, these are the
NI mux and NI dmm . This code module connects a switch based on an input channel and
switch topology, measures using the dmm based on some input parameters, and then
disconnects the switch. In the test executive, you must know what fields to fill out, and
exactly what channels, topologies, and configurations are needed from the instrumentation’s
point of view. you must also make sure to pass the switch and dmm measurements to the
code module appropriately.

Figure 4. Front Panel of a Typical multiplexed dmm measurement Application in l abvIEw

NI Switch DMM Mux Example - Custom.vi

SWITCH

X

Switch Reference

Switch PXI_2527

topology name

2527-Wire 32x1 Mux

MUX Channel

CH7

DMM Measurement

DMM resources

PXI_4065 DMM

measurement type

DC Volts

range

10.00

Resolution

6 1/2

0.00000

FIG

4
Front panel of a typical multiplexed DMM measurement
application in LabVIEW

84ni.com/automatedtest

For example, with the custom approach, a multiplexed DMM
measurement code module may look something like the
image below, a common switched DMM LabVIEW VI. The
code module has a specific set of calls to specific instrument
types. In this example, these are the NI Mux and NI DMM.
This code module connects a switch based on an input
channel and switch topology, measures using the DMM
based on some input parameters, and then disconnects
the switch. In the test executive, you must know what
fields to fill out, and exactly what channels, topologies, and
configurations are needed from the instrumentation’s point
of view. You must also make sure to pass the switch and
DMM measurements to the code module appropriately.

From the perspective of the test executive, the code module is called to perform a specific function (multiplexed DMM). This function
implements specific calls to the instruments for which it was developed. The block diagram below shows the nesting of command
calls. In the diagram, the test executive contains a step that calls the code module. The code module employs drivers to talk to specific
instruments. Each outer item is dependent on its internal calls.

If an instrument must change, every function in the line of dependencies must change. For instance, if the initial multiplexer lacks
enough channels, and needs to be switched for a higher channel count matrix, a series of changes must take place because of the
chain of dependencies:

	J Instrument—PXI-2527 mux is changed to a PXI-2532B matrix

	J Driver—NI Mux driver changes to NI Matrix (rows/columns instead of channels)

	J Code Module—NI Mux DMM VI must be changed to an NI Matrix DMM VI

	J Function Call—The test executive call to the code module must be updated

	J Sequence—Test sequence must be updated for every call to that code module

HARDWARE AND MEASUREMENT ABSTRACTION LAYERS

https://www.ni.com/en-us/innovations/electronics/automated-electronics-test.html

ni.com/automatedtest

Hardware and measurement Abstraction l ayers9

STEP 1: INSTRu mENT CHANg E

Test Sequence

Step: measure 5 v Rail

NI mux d mm v I

NI d mm d river
measure d C volts

Px I-4065 d mm

NI mux d river
d isconnect CH7

Px I-2538B mTx

NI mux d river
d isconnect CH7

Px I-2532B mTx

Test Sequence

Step: measure 5 v Rail

NI mux d mm v I

NI d mm d river
measure d C volts

Px I-4065 d mm

NI matrix d river
d isconnect (r0/c0, r1/c7)

Px I-2538B mTx

NI matrix d river
Connect (r0/c0, r1/c7)

Px I-2538B mTx

STEP 4: Fu NCTION CAl l CHANg E

Test Sequence

Step: measure 5 v Rail

NI mux d mm v I

NI d mm d river
measure d C volts

Px I-4065 d mm

NI matrix d river
d isconnect (r0/c0, r1/c7)

Px I-2538B mTx

NI matrix d river
Connect (r0/c0, r1/c7)

Px I-2538B mTx

STEP 5: TEST SEQu ENCE CHANg E

Test Sequence

Step: measure 5 v Rail

NI mux d mm v I

NI d mm d river
measure d C volts

Px I-4065 d mm

NI mux d river
d isconnect (r0/c0, r1/c7)

Px I-2538B mTx

NI matrix d river
Connect (r0/c0, r1/c7)

Px I-2538B mTx

STEP 2: d RIvER CHANg E

Test Sequence

Step: measure 5 v Rail

NI matrix d mm v I

NI d mm d river
measure d C volts

Px I-4065 d mm

NI matrix d river
d isconnect (r0/c0, r1/c7)

Px I-2538B mTx

NI matrix d river
Connect (r0/c0, r1/c7)

Px I-2538B mTx

STEP 3: COd E mOd u l E CHANg E

Figure 6. Nonabstracted Changes Required by Chain of d ependenciesFIG

6
Nonabstracted changes required by chain of dependencies

85ni.com/automatedtest

HARDWARE AND MEASUREMENT ABSTRACTION LAYERS

https://www.ni.com/en-us/innovations/electronics/automated-electronics-test.html

ni.com/automatedtest

Hardware and measurement Abstraction l ayers10

With Abstraction
Hardware and measurement abstraction breaks the coupling between the test executive and
the code modules that interact with the instruments. Instead of calling code modules that
directly interact with specific instruments, the test executive interacts with the mAl . This
defines actions or step types that perform common tasks based on generic instrument types.
These actions are instrument-generic and typically have high-level names like “Signal Input,”
“Signal Output,” “Connection,” “Power,” and “l oad.” They also take in test-specific parameters
(rather than instrument-specific parameters) like signal name, connection name, power supply
alias, voltage/current, and load method (Cv, CC, CP). A mapping framework uses a configuration
file to translate test-specific parameters of the generic actions into instrument-specific
parameters like instrument references, channel numbers, matrix rows and columns, g PIB
addresses, and instrument configuration constraints. The framework interfaces with the HAl
to communicate with the specific instruments that the configuration file defines. It calls the
appropriate methods of each specific instrument based off of the mAl action type with
instrument-specific parameters pulled from the configuration file.

If you think of a single step as a cooking recipe (pancakes), the details in the configuration file
would be the ingredients (eggs, milk, butter, flour), the actions would be the cooking functions
(combine, mix, beat), the drivers would be the kitchen tools (bowl, mixer, griddle), and the
framework would be the instructions that put it all together.

HAl — HARd w ARE d RIvERS

TEST SEQu ENCER (Ex AmPl E TestStand)

NI-d mm d river NI-Scope d river NI-d AQmx d river NI-Switch d river

INSTRu mENTS

mAl — ACTIONS/STEP TyPES

Signal Input Signal Output Switching Power

PS d river

mapping Framework

Figure 7. Anatomy of Abstracted Automated Test Software

Configuration File

dm m Scope d AQ Switch Power Supply

FIG

7
Anatomy of abstracted automated test software

86ni.com/automatedtest

With Abstraction
Hardware and measurement abstraction breaks the coupling
between the test executive and the code modules that interact
with the instruments. Instead of calling code modules that
directly interact with specific instruments, the test executive
interacts with the MAL. This defines actions or step types that
perform common tasks based on generic instrument types.
These actions are instrument-generic and typically have high-
level names like “Signal Input,” “Signal Output,” “Connection,”
“Power,” and “Load.” They also take in test-specific parameters
(rather than instrument-specific parameters) like signal name,
connection name, power supply alias, voltage/current, and load
method (Cv, CC, CP). A mapping framework uses a configuration
file to translate test-specific parameters of the generic

actions into instrument-specific parameters like instrument
references, channel numbers, matrix rows and columns,
GPIB addresses, and instrument configuration constraints.
The framework interfaces with the HAL to communicate
with the specific instruments that the configuration file
defines. It calls the appropriate methods of each specific
instrument based off of the MAL action type with instrument-
specific parameters pulled from the configuration file.

If you think of a single step as a cooking recipe (pancakes), the
details in the configuration file would be the ingredients (eggs,
milk, butter, flour), the actions would be the cooking functions
(combine, mix, beat), the drivers would be the kitchen tools (bowl,
mixer, griddle), and the framework would be the instructions that
put it all together.

HARDWARE AND MEASUREMENT ABSTRACTION LAYERS

https://www.ni.com/en-us/innovations/electronics/automated-electronics-test.html

ni.com/automatedtest

Hardware and measurement Abstraction l ayers11

This section continues to the multiplexed dmm example using abstraction. In this example,
the test executive calls a generic step type, Signal Input, using a step-specific input parameter
5 v Rail. In this particular framework, Signal Input is defined as three device actions: connect
signal route, read measurement device, disconnect signal route. This is passed to the mapping
framework using the 5 v Rail parameter. The mapping framework reads the configuration file
to find the instrument and channel details of 5v Rail. These correspond to a connection of the
PxI-2527 mux channel 7, and a measurement of the PxI-4065 dmm in d C volts mode. The
framework then calls the appropriate abstracted drivers, NI-Switch and NI-dmm , to communicate
with the specific instruments that the configuration file defines.

Executing the same change as discussed in the nonabstracted example, where the PxI-2527
mux is replaced with a PxI-2532B matrix proves to be much easier when using a HAl /mAl
framework. Because all of the instrument-specific details are stored in the configuration file
and the HAl provides a common interface for interacting with similar instruments, only the
configuration file needs to change. By replacing PxI-2527 mux: Ch7 with PxI-2532B mtx: r0/c0,
r1,c7, the mapping framework automatically pulls the updated details and calls the new matrix
with the new parameters. No test sequence or code module changes are required.

Figure 8. Function Calls for a dmm measurement w ith an Abstraction Framework

mAl HAl

Test Sequence

Step: measure 5 v Rail

Channel Configuration File

5 v Rail

Connections

Px I-2527

mux: ch7

measurement

Px I-4065

d mm: d C volts

Signal Input

Connect (5 v Rail)

measure (5 v Rail)

d isconnect (5 v Rail)

NI-Switch d river

NI-d mm d river

Px I-2527 mux

Px I-4065 d mmvalue

Signal Input
(5 v Rail)

mapping Framework

Connect Px I-2527

mux: ch7

measure Px I-4065

d mm: d C volts

d isconnect Px I-2527

mux: ch7

FIG

8
Function calls for a DMM measurement with an abstraction framework

87ni.com/automatedtest

This section continues to the multiplexed DMM example using
abstraction. In this example, the test executive calls a generic
step type, Signal Input, using a step-specific input parameter
5 v Rail. In this particular framework, Signal Input is defined as
three device actions: connect signal route, read measurement
device, disconnect signal route. This is passed to the mapping
framework using the 5 v Rail parameter. The mapping framework
reads the configuration file to find the instrument and channel
details of 5 v Rail. These correspond to a connection of the
PXI-2527 mux channel 7, and a measurement of the PXI-4065
DMM in DC volts mode. The framework then calls the appropriate
abstracted drivers, NI-Switch and NI-DMM, to communicate with
the specific instruments that the configuration file defines.

Executing the same change as discussed in the nonabstracted
example, where the PXI-2527 mux is replaced with a PXI-2532B
matrix proves to be much easier when using a HAL/MAL
framework. Because all of the instrument-specific details are
stored in the configuration file and the HAL provides a common
interface for interacting with similar instruments, only the
configuration file needs to change. By replacing PXI-2527 mux:
Ch7 with PXI-2532B mtx: r0/c0, r1, c7, the mapping framework
automatically pulls the updated details and calls the new matrix
with the new parameters. No test sequence or code module
changes are required.

HARDWARE AND MEASUREMENT ABSTRACTION LAYERS

https://www.ni.com/en-us/innovations/electronics/automated-electronics-test.html

ni.com/automatedtest

Hardware and measurement Abstraction l ayers12

Approaches
The most important topic to consider when deciding on an abstraction framework is the scope
of abstraction on which all other decisions are based. On one extreme, there is the case for no
abstraction, where each hardware interface is a direct call to an instrument-specific driver. On
the other extreme, you have complete abstraction, where every possible interface between
components, communications protocols, measurements, and configuration formats has an
abstract definition. This section explores some of the options that cover the range of possibilities.

Option 1: Instrument-Specific Driver
The instrument-specific driver approach is probably the most commonly implemented in
automated test, mainly because it requires the least amount of coding, foresight, and planning.
w ith this approach, low-level code modules are developed to interface with specific instruments.
These are typically referred to as low-level drivers, or instrument drivers, which are then called
by higher level code modules or directly by the test executive. The block diagram below shows
each of the instrument drivers developed for a specific instrument. In this scenario, if the
instrument changes, the driver and higher level calls must also change.

Figure 9. Abstraction makes it easy to update hardware with minimal software updates—just updates to the configuration file.

mAl HAl

Test Sequence

Step: measure 5 v Rail

Channel Configuration File

5 v Rail

Connections

Px I-2532B

mTx : r0/c0, r1/c7

measurement

Px I-4065

d mm d C volts

Signal Input

Connect (5 v Rail)

measure (5 v Rail)

d isconnect (5 v Rail)

mapping Framework

Connect Px I-2527

mux: ch7

measure Px I-4065

d mm: d C volts

d isconnect Px I-2527

mux: ch7

NI-Switch d river

NI-d mm d river

Px I-2532B

Px I-4065 d mm
value

Signal Input

(5v Rail)

FIG

9
Abstraction makes it easy to update hardware with minimal software updates—just updates to the configuration file.

88ni.com/automatedtest

Approaches
The most important topic to consider when deciding on an abstraction framework is the scope of abstraction on
which all other decisions are based. On one extreme, there is the case for no abstraction, where each hardware
interface is a direct call to an instrument-specific driver. On the other extreme, you have complete abstraction,
where every possible interface between components, communications protocols, measurements, and configuration
formats has an abstract definition. This section explores some of the options that cover the range of possibilities.

Option 1: Instrument-Specific Driver

The instrument-specific driver approach is probably the most
commonly implemented in automated test, mainly because it
requires the least amount of coding, foresight, and planning.
With this approach, low-level code modules are developed
to interface with specific instruments. These are typically
referred to as low-level drivers, or instrument drivers, which

are then called by higher level code modules or directly by the
test executive. The block diagram below shows each of the
instrument drivers developed for a specific instrument. In this
scenario, if the instrument changes, the driver and higher level
calls must also change.

HARDWARE AND MEASUREMENT ABSTRACTION LAYERS

https://www.ni.com/en-us/innovations/electronics/automated-electronics-test.html

ni.com/automatedtest

Hardware and measurement Abstraction l ayers13

Although this method does not include any abstraction, there are still best practices you should
follow to promote robust driver development and interactions:

■■ d evelop or use instrument driver packages for interfacing with each instrument.
■■ A low-level driver package implements all of the functions for initializing, interacting

with, and closing a connection to an instrument.
■■ Functions should be simple and single-purposed.
■■ d rivers should be able to handle multiple instances of the same instrument type

(such as two identical power supplies in the same system).
■■ d evelop wrapper instrument drivers to simplify the instrument interface.

■■ Pre-existing drivers contain dozens of functions that may be difficult to understand. you
can wrap pre-existing full-featured instrument drivers into simpler wrapper instrument
drivers to promote easy usability.

■■ Ensure all instrument interfacing goes through instrument drivers.
■■ This provides a single point of entry for all instrument communications, which eases

debugging, reduces race conditions, and allows the instrument state to be managed in
a single location.

■■ A wrapper instrument driver, if developed, should be the single entry point.
■■ d rivers may be called directly by the test executive, or by higher level code modules.

■■ d o not implement test-specific functionality at the driver level.
■■ Test-specific algorithms should be implemented by higher level code modules or in the

test executive.

INSTRu mENT
d RIvERS

TEST ExECu TIvE

INSTRu mENTS

HIg H-l EvEl
COd E mOd u l ES

NI-d mm d river NI-matrix d river NI-d AQmx d river PS d river xg 850 d river

NI-d mm NI-matrix NI-d AQ NI PS 1 NI PS 2 xg 850 PS

NI matrix/d mm NI matrix/AO NI AI NI d IO

Figure 10. Overview of an Instrument-Specific d river method for Automated Test Software w ithout AbstractionFIG

10
Overview of an instrument-specific driver method for automated test software without abstraction

89ni.com/automatedtest

Although this method does not include any abstraction, there
are still best practices you should follow to promote robust driver
development and interactions:

	J Develop or use instrument driver packages for interfacing
with each instrument.

	J A low-level driver package implements all of the functions
for initializing, interacting with, and closing a connection to
an instrument.

	J Functions should be simple and single-purposed.

	J Drivers should be able to handle multiple instances of
the same instrument type (such as two identical power
supplies in the same system).

	J Develop wrapper instrument drivers to simplify the
instrument interface.

	J Pre-existing drivers contain dozens of functions that
may be difficult to understand. you can wrap pre-existing
full-featured instrument drivers into simpler wrapper
instrument drivers to promote easy usability.

	J Ensure all instrument interfacing goes through
instrument drivers.

	J This provides a single point of entry for all instrument
communications, which eases debugging, reduces race
conditions, and allows the instrument state to be managed
in a single location.

	J A wrapper instrument driver, if developed, should be the
single entry point.

	J Drivers may be called directly by the test executive, or by
higher level code modules.

	J Do not implement test-specific functionality at the driver level.

	J Test-specific algorithms should be implemented by higher
level code modules or in the test executive.

	J Ensure instrument drivers are unaware of one another.

	J High-level code modules or the test executive calling
individual instrument drivers should perform multi-
instrument interactions.

HARDWARE AND MEASUREMENT ABSTRACTION LAYERS

https://www.ni.com/en-us/innovations/electronics/automated-electronics-test.html

90ni.com/automatedtest

Option 2: Out-of-the-Box HAL/MAL
The fastest way to incorporate abstraction into the
instrumentation driver architecture is to use pre-existing
HALs and MALs. Although the options for purchasing a fully
integrated HAL/MAL abstraction framework are limited, many
hardware vendors have already implemented some level of
hardware abstraction into their instruments; Switch Executive
is a MAL geared specifically toward switch connections and
routing. By architecting your code modules around these
pre-existing abstractions, you can increase ATE software
adaptability and abstraction with minimal development effort.

Out-of-the-Box Hardware Abstraction
Pre-existing hardware abstraction uses common low-
level interfaces that work with a variety of instruments.
This reduces the number of required instrument-specific
drivers and reduces the impact of instrument changes in a
system. The test executive and higher level code modules
can reference general drivers, which reduces development
effort and the impact of instrument changes. When one of
the abstraction types defined below is implemented, the
I/O for a particular interface is fixed. Therefore, instrument
changes do not typically cause code module changes.

You can use pre-existing hardware abstraction in two ways:
instrument family drivers and communications standards.
Instrument family drivers tend to be vendor-specific drivers
that can control many variations of a particular instrument
type within that vendor’s catalog. Communications standards
provide an industry agreed-on method for interfacing with
certain types of instruments across multiple vendors. You
may use these standards to develop instrument drivers
that can control a variety of similar instruments.

Hardware Abstraction Through Instrument
Family Drivers
Instrument family drivers are vendor-specific drivers that
communicate with a common product line of instruments.
Similar to IVI drivers, instrument family drivers provide
communications to multiple different instruments using
a common driver. Common examples include NI modular
instruments (NI-DMM, NI-Switch, NI-d CPower, and NI-Scope)
and Pickering PIl PXI. Instrument family drivers promote
interchangeability within the family for which they are developed.
Although they do not support cross-vendor or cross-family
reuse, these drivers are typically intuitive, easy to implement,
and contain most, if not all, of the functions for each instrument.

Hardware Abstraction Through
Communications Standards
Many instrument manufacturers follow industry standards
for device communications. By following industry standards,
manufacturers can make their instrumentation interoperable
with other similar instruments. Two of the most common
standards are the Standard Commands for Programmable
Instruments (SCPI, often pronounced “skippy”) and
Interchangeable Virtual Instruments (IVI).

SCPI
SCPI defines a standard for syntax and commands to use
in controlling programmable instruments in the test and
measurement industry. With these commands, users can set
and query common parameters of instruments. SCPI commands
can be implemented over a variety of communications
protocols, including GPIB, LAN, and serial. By developing a single
SCPI-compliant driver, you can communicate with multiple
instruments of the same type (DC power supply, electronic load,
and so on) without having to develop instrument-specific drivers.
When developing a SCPI driver, note that, although SCPI defines
a common command and syntax standard, different vendors
sometimes implement the standard with minor differences,
making a 100 percent standard driver somewhat difficult.
When selecting SCPI-compliant instruments and developing
drivers, it is important to pay close attention to the command
specifics of each instrument.

HARDWARE AND MEASUREMENT ABSTRACTION LAYERS

https://www.ni.com/en-us/innovations/electronics/automated-electronics-test.html

ni.com/automatedtest

Hardware and measurement Abstraction l ayers16

INSTRu mENT
d RIvERS

TEST ExECu TIvE

INSTRu mENTS

HIg H-l EvEl
COd E mOd u l ES

Iv I d mm d river NI-Switch d river NI-d AQmx d river Iv I d C PS d river

NI-d mm NI-matrix NI-d AQ NI PS 1 NI PS 2 xg 850 PS

Switched d mm Switched AO NI AI NI d IO

Figure 11. Overview of Automated Test Software w ith Out-of-the-Box Abstraction

Out-of-the-Box Measurement Abstraction
Although pre-existing hardware abstraction is relatively common, it allows abstraction from only
an instrument point of view. Conversely, measurement abstraction is very limited. Because
of the high level of customization across test systems, it is difficult to define a standard for
measurement actions. The most well-known out-of-the-box measurement abstraction layer is
Switch Executive, a switch management and routing application that allows compliant switch
matrix and multiplexer instruments to be combined into a single virtual switch device. This virtual
switch can be intuitively configured and actuated with user-named channels and routes. Although
valid for only devices compliant with NI-Switch and Iv I switch, Switch Executive provides an
excellent method of defining switch routes from the point of view of the uu T or test.

First, Switch Executive provides a g raphical Configuration u tility for setting up switch
channel names and routes within single instruments and across multiple instruments. Rows,
columns, channels, and route groups can all be configured and named to intuitively set up a
switching scheme.

Keysight d mm NI mmx AmREl PS

FIG

11
Overview of automated test software with out-of-the-box abstraction

91ni.com/automatedtest

IVI
IVI is a standard for instrument driver software that promotes
instrument interchangeability and provides flexibility when
interfacing with IVI-compliant instruments. The standard
defines an I/O abstraction layer using VISA. Because of the
incorporation of SCPI into IVI, many instruments that are SCPI-
compliant are by definition IVI-compliant. The IVI standard
defines specifications for 13 instrument classes that many
manufacturers follow, which gives a single driver of each type
the ability to control multiple unique instruments from different
vendors. Instrument classes include DMM, oscilloscope,
arbitrary waveform/function generator, DC power supply,
switch, power meter, spectrum analyzer, RF signal generator,
counter, digitizer, downconverter, upconverter, and AC power
supply. Many PXI and boxed instruments follow the IVI standard,
and pre-existing drivers are available in many programming
languages and test executives.

By developing test sequences and code modules using IVI
drivers for IVI-compliant instruments, one vendor’s instrument
looks the same as another’s. You may use a single driver
set for each type to interface with many interchangeable
instruments. If an IVI-compliant instrument is replaced with
one of similar functionality, code and sequence updates are
reduced as compared to using instrument-specific drivers.
However, although IVI drivers can implement most functions
of compliant instruments, some instruments may still require
specific code for executing custom functions. Conversely,
some instruments may not be capable of handling all IVI-
compliant functions. Finally, although two instruments may
execute identical IVI functions, they may not always achieve
identical results. Always verify and test the functionality
of instrumentation whenever changes are made.

HARDWARE AND MEASUREMENT ABSTRACTION LAYERS

https://www.ni.com/en-us/innovations/electronics/automated-electronics-test.html

ni.com/automatedtest

Hardware and measurement Abstraction l ayers17

Figure 12. Switch Executive mAl Configuration Interface

Next, Switch Executive integrates into l abvIEw and TestStand to provide powerful interfaces
for setting and querying the preconfigured routes by name. w hen used with the TestStand
test executive, Switch Executive can be used on a step-by-step basis to provide a named
interface to the switch instruments before executing the step’s code module.

Switch Executive is a useful mAl that abstracts switch connections to test-specific names
rather than instrument-specific names. w hen used in conjunction with Iv I-switch hardware
abstraction, it proves to be an excellent example of an integrated HAl /mAl framework.
However, it falls short when non-Iv I switches or external digital-output-controlled relays are
used. Furthermore, Switch Executive pertains only to switch routing, and does not extend to
other measurement types. To achieve an integrated HAl /mAl framework beyond switching,
custom code development is required.

Figure 13. Switch Executive mAl Test Setup

Route Groups Devices

Name

X

DMM_TO_RES_1
DMM_TO_RES_2
DMM_TO_RES_3

Name

Schematic

PXI-2535

Topology

2535/1-Wire 4x136 Matrix

DMM_HI

DMM_LO

DMM_HI_5

DMM_LO_5

RE
S_

H
I_

1

RE
S_

LO
_1

RE
S_

H
I_

5_
1

RE
S_

LO
_5

_1

RE
S_

H
I_

2

RE
S_

LO
_2

RE
S_

H
I_

5_
2

RE
S_

LO
_5

_2

RE
S_

H
I_

3

RE
S_

LO
_3

RE
S_

H
I_

5_
3

RE
S_

LO
_5

_3

Step Setting for Simulation Dialog

Properties Module

X

General
Run Options
Looping
Post Actions
Switching
Synchronization
Expressions
Preconditions
Requirements
Property Browsers

Enable Switching
Switch Executive Virtual Device:

Operation:

Route(s) to Connect:

Routes(s) to Disconnect:

Multiconnect Mode:

Operation Order:

Connection Lifetime:

“Resistor_Test”

Connect

“DMM_TO_RES_1”

Multiconnect Routes

Disconnect After Connect

Step

Wait for Debounce Before Executing Step

FIG

12
Switch Executive MAL configuration interface

ni.com/automatedtest

Hardware and measurement Abstraction l ayers17

Figure 12. Switch Executive mAl Configuration Interface

Next, Switch Executive integrates into l abvIEw and TestStand to provide powerful interfaces
for setting and querying the preconfigured routes by name. w hen used with the TestStand
test executive, Switch Executive can be used on a step-by-step basis to provide a named
interface to the switch instruments before executing the step’s code module.

Switch Executive is a useful mAl that abstracts switch connections to test-specific names
rather than instrument-specific names. w hen used in conjunction with Iv I-switch hardware
abstraction, it proves to be an excellent example of an integrated HAl /mAl framework.
However, it falls short when non-Iv I switches or external digital-output-controlled relays are
used. Furthermore, Switch Executive pertains only to switch routing, and does not extend to
other measurement types. To achieve an integrated HAl /mAl framework beyond switching,
custom code development is required.

Figure 13. Switch Executive mAl Test Setup

Route Groups Devices

Name

X

DMM_TO_RES_1
DMM_TO_RES_2
DMM_TO_RES_3

Name

Schematic

PXI-2535

Topology

2535/1-Wire 4x136 Matrix

DMM_HI

DMM_LO

DMM_HI_5

DMM_LO_5

RE
S_

H
I_

1

RE
S_

LO
_1

RE
S_

H
I_

5_
1

RE
S_

LO
_5

_1

RE
S_

H
I_

2

RE
S_

LO
_2

RE
S_

H
I_

5_
2

RE
S_

LO
_5

_2

RE
S_

H
I_

3

RE
S_

LO
_3

RE
S_

H
I_

5_
3

RE
S_

LO
_5

_3

Step Setting for Simulation Dialog

Properties Module

X

General
Run Options
Looping
Post Actions
Switching
Synchronization
Expressions
Preconditions
Requirements
Property Browsers

Enable Switching
Switch Executive Virtual Device:

Operation:

Route(s) to Connect:

Routes(s) to Disconnect:

Multiconnect Mode:

Operation Order:

Connection Lifetime:

“Resistor_Test”

Connect

“DMM_TO_RES_1”

Multiconnect Routes

Disconnect After Connect

Step

Wait for Debounce Before Executing Step

FIG

13
Switch Executive MAL test setup

92ni.com/automatedtest

Out-of-the-Box Measurement Abstraction
Although pre-existing hardware abstraction is relatively
common, it allows abstraction from only an instrument point
of view. Conversely, measurement abstraction is very limited.
Because of the high level of customization across test systems,
it is difficult to define a standard for measurement actions. The
most well-known out-of-the-box measurement abstraction
layer is Switch Executive, a switch management and routing
application that allows compliant switch matrix and multiplexer

instruments to be combined into a single virtual switch
device. This virtual switch can be intuitively configured and
actuated with user-named channels and routes. Although
valid for only devices compliant with NI-Switch and IVI switch,
Switch Executive provides an excellent method of defining
switch routes from the point of view of the UUT or test.

First, Switch Executive provides a graphical Configuration
utility for setting up switch channel names and routes within
single instruments and across multiple instruments. Rows,
columns, channels, and route groups can all be configured
and named to intuitively set up a switching scheme. Next,
Switch Executive integrates into LabVIEW and TestStand
to provide powerful interfaces for setting and querying the
preconfigured routes by name. w hen used with the TestStand
test executive, Switch Executive can be used on a step-
by-step basis to provide a named interface to the switch
instruments before executing the step’s code module.

Switch Executive is a useful MAL that abstracts switch
connections to test-specific names rather than instrument-
specific names. When used in conjunction with IVI-switch
hardware abstraction, it proves to be an excellent example
of an integrated HAL/MAL framework. However, it falls short
when non-IVI switches or external digital-output-controlled
relays are used. Furthermore, Switch Executive pertains only
to switch routing, and does not extend to other measurement
types. To achieve an integrated HAL/MAL framework
beyond switching, custom code development is required.

HARDWARE AND MEASUREMENT ABSTRACTION LAYERS

https://www.ni.com/en-us/innovations/electronics/automated-electronics-test.html

ni.com/automatedtest

Hardware and measurement Abstraction l ayers18

HARdw ARE d RIvERS

TEST SEQu ENCER (Ex AmPl E TestStand)

INSTRu mENTS

Figure 14. Overview of Automated Test Software w ith an Integrated mAl and HAl

ACTIONS/STEP TyPES

Signal Input Signal Output Switching Power

Channel Configuration mapping Framework

measurement API (Front)

measurement API (Back)

Hardware d river API

Instrument API

dm m Scope d AQ Switch PS

NI-d mm d river NI-Scope d river NI-d AQmx d river NI-Switch d river PS d river

Configuration
API

Option 3: Integrated HAL/MAL Framework
An integrated HAl /mAl framework provides a structure for implementing high-level actions
called by the test executive (mAl), interfacing with low-level drivers to communicate with
instruments (HAl), and mapping the details between the two. This framework is implemented
by three major types of code modules: actions, mapping framework, and hardware drivers.
Each of these code module types are defined by a set of APIs. An API is a set of tools (functions,
protocols, parameters, syntax) for software applications, which define how a code module
should function and interact with the software around it. In a basic HAl /mAl framework there
are four common APIs: measurement API, Configuration API, Hardware d river API, and
Instrument API. The code modules, APIs, and their interactions are shown and described below.

FIG

14
Overview of automated test software with an integrated MAL and HAL

93ni.com/automatedtest

Option 3: Integrated HAL/MAL Framework
An integrated HAL/MAL framework provides a structure for implementing high-level actions called by the test executive (MAL), interfacing
with low-level drivers to communicate with instruments (HAL), and mapping the details between the two. This framework is implemented
by three major types of code modules: actions, mapping framework, and hardware drivers. Each of these code module types are
defined by a set of APIs. An API is a set of tools (functions, protocols, parameters, syntax) for software applications, which define how
a code module should function and interact with the software around it. In a basic HAL/MAL framework there are four common APIs:
measurement API, Configuration API, Hardware driver API, and Instrument API. The code modules, APIs, and their interactions are
shown and described below.

HARDWARE AND MEASUREMENT ABSTRACTION LAYERS

https://www.ni.com/en-us/innovations/electronics/automated-electronics-test.html

94ni.com/automatedtest

The three types of code modules are:

	J Actions/Step Types—The actions define the capabilities of
the MAL. A specific action defines each measurement type
(input or output). Actions can be as simple as a single function
call to a single instrument type, such as making a switch
connection. They can also be as complex as multiple function
calls to multiple instruments, such as combining a switch
connection with setting a power supply voltage, current,
and enabled state. These code modules implement the
measurement API for defining their methods and parameters.

	J Mapping Framework—The mapping framework is the
internal code that links the high-level actions to the low-level
instrument devices using defaults from the configuration
file. The mapping framework code module interacts with the
hardware drivers through the hardware driver API, and with
the actions through the measurement API.

	J Hardware Drivers—The hardware driver code modules
translate the generic device type function calls (DMM ,
power supply, switch, and so on) to instrument-specific
communications (SCPI, IVI, NI-d CPower, and proprietary
communications). Therefore the hardware drivers implement
the hardware driver API on one end, and instrument-specific
API on the other.

A HAL/MAL abstraction framework contains a minimum of
the following four APIs:

	J Measurement API—The measurement API defines the
high-level actions and their specific parameters. This is the
MAL definition. The measurement API defines a common
framework that all actions must follow, and then allows each
action to define its own API (parameters and methods)
required to carry out its particular function. Each action
must at a minimum implement the back-end measurement
API, which the mapping framework uses to link the human
readable alias to specific switching and measurement

instruments and the appropriate channels. Optionally, a
front end to the API may be developed that provides a more
intuitive interface to each action. This front end is typically a
configuration dialog/wizard. An example measurement API for
a signal input would define a signal input alias and an output of
the return value. The API would also define that, for the alias, a
connection, measurement, and then disconnection is made.

	J Configuration API—The mapping framework uses the
Configuration API to fill in the details on how to translate from
the measurement API to the Hardware API. The Configuration
API defines the parameters, syntax, and content of the
configuration file or database. Only the mapping framework
uses this API. For example, the Configuration API may
dictate that the configuration file is a Microsoft Excel file and
that each signal alias should have the following properties:
name, type, connection details, instrument, instrument
configuration, and scaling.

	J Hardware API—The Hardware API is the abstracted
API that defines what common parameters and methods
a particular type of instrument must implement. This
API defines the HAL. For example, the DMM Hardware
API might dictate that all DMMs must be able to
initialize, configure (voltage, current, resistance, range,
resolution), measure (return value), and close.

	J Instrument API—The Instrument API is defined by each
individual instrument, and is therefore not an abstracted
layer. Each instrument-specific hardware driver implements
the necessary functions and commands for controlling its
particular instrument. This is the same API that would be
used in an instrument-specific code interface, and would
implement the specific communications protocols and
commands for that particular instrument.

To better understand the interactions between the code
modules and APIs, revisit the multiplexed DMM example
with a detailed explanation of the inputs and output of
each code module.

HARDWARE AND MEASUREMENT ABSTRACTION LAYERS

https://www.ni.com/en-us/innovations/electronics/automated-electronics-test.html

ni.com/automatedtest

Hardware and measurement Abstraction l ayers20

In the example, the signal input block is the action code module, which defines that a signal
input should execute a Switch d evice Connect function, a measurement d evice measure
function, and then a Switch d evice d isconnect function. The measurement API for this function
defines that the code module requires an alias that it receives from the test executive, then
passes to the mapping framework, and then gets a return value from the mapping framework
to pass back to the test executive.

Figure 16. Example of mAl Action APIs for a Signal Input

Signal Input

Connect (Alias)

measure (Alias)

Return (Alias)

d isconnect (Alias)

d isconnect Switch (Alias)

measure (Alias)

Connect Switch (Alias)

Return (valve)

Set (Alias)

Measurement API
(Front End)

Measurement API
(Back End)

Action

Figure 15. multiplexed dmm measurement w ith an Abstraction Framework

mAl HAl

Test Sequence

Step: measure 5 v Rail

Channel Configuration File

5 v Rail

Connections

Px I-2527

mux: ch7

measurement

Px I-4065

d mm: d C volts

Signal Input

Connect (5 v Rail)

measure (5 v Rail)

d isconnect (5 v Rail)

NI-Switch d river

NI-d mm d river

Px I-2527 mux

Px I-4065 d mmvalue

Signal Input
(5 v Rail)

mapping Framework

Connect Px I-2527

mux: ch7

measure Px I-4065

d mm: d C volts

d isconnect Px I-2527

mux: ch7

FIG

15
Multiplexed DMM measurement with an abstraction framework

ni.com/automatedtest

Hardware and measurement Abstraction l ayers20

In the example, the signal input block is the action code module, which defines that a signal
input should execute a Switch d evice Connect function, a measurement d evice measure
function, and then a Switch d evice d isconnect function. The measurement API for this function
defines that the code module requires an alias that it receives from the test executive, then
passes to the mapping framework, and then gets a return value from the mapping framework
to pass back to the test executive.

Figure 16. Example of mAl Action APIs for a Signal Input

Signal Input

Connect (Alias)

measure (Alias)

Return (Alias)

d isconnect (Alias)

d isconnect Switch (Alias)

measure (Alias)

Connect Switch (Alias)

Return (valve)

Set (Alias)

Measurement API
(Front End)

Measurement API
(Back End)

Action

Figure 15. multiplexed dmm measurement w ith an Abstraction Framework

mAl HAl

Test Sequence

Step: measure 5 v Rail

Channel Configuration File

5 v Rail

Connections

Px I-2527

mux: ch7

measurement

Px I-4065

d mm: d C volts

Signal Input

Connect (5 v Rail)

measure (5 v Rail)

d isconnect (5 v Rail)

NI-Switch d river

NI-d mm d river

Px I-2527 mux

Px I-4065 d mmvalue

Signal Input
(5 v Rail)

mapping Framework

Connect Px I-2527

mux: ch7

measure Px I-4065

d mm: d C volts

d isconnect Px I-2527

mux: ch7

FIG

16
Example of MAL action APIs for a signal input

95ni.com/automatedtest

In the example, the signal input block is the action code module,
which defines that a signal input should execute a Switch device
Connect function, a measurement device measure function, and
then a Switch device disconnect function. The measurement

API for this function defines that the code module requires an
alias that it receives from the test executive, then passes to
the mapping framework, and then gets a return value from the
mapping framework to pass back to the test executive.

HARDWARE AND MEASUREMENT ABSTRACTION LAYERS

https://www.ni.com/en-us/innovations/electronics/automated-electronics-test.html

ni.com/automatedtest

Hardware and measurement Abstraction l ayers21

The mapping framework receives the commands from the action through the measurement API.
It then parses the alias data from the configuration file through the Configuration API to obtain
the correct instrument Id s and parameters. The Configuration API defines the file format, syntax,
and fields for the system configuration. The mapping framework then passes the instrument-
specific information to the appropriate drivers through the Hardware d river API.

The mapping framework calls the individual hardware drivers using the generic Hardware
d river API. Each driver then interprets the details of the generic setup and communicates
with the specific instruments using their own out-of-the-box methods and parameters.

d isconnect (d evice, Channel)

measure (d evice, Channel, mode)

Connect (d evice, Channel)

measure (Alias)

Connect Switch (Alias)

Measurement API
(Back End)

Hardware Driver
API

Mapping

mapping Framework

Connect

Conn_d evice

Conn_Channel

measure

meas_d evice

measure_Channel

meas_mode

d isconnect

Conn_d evice

Conn_Channel

d isconnect Switch (Alias)

Figure 17. Example of mapping Framework APIs for a Signal Input

Channel Configuration File

Alias

Connection

Conn_d evice

Conn_Channel

measurement

meas_d evice

meas_mode

meas_mode

Figure 18. Example of Hardware d river APIs for a Signal Input

Sw 1: SetChannel (7, Off)

d mm_Config (d C volts, 100v)

Sw 1: SetChannel (7, On)

measure
d evice/Channel

Connect Switch
d evice/Channel

Hardware Driver
API

Instrument
API

Hardware
Drivers

d isconnect Switch
d evice/Channel

Switch d river

measurement
d river

Instrument

Switch d river

Switch d evice

measurement
d evice

Switch d evice

FIG

17
Example of mapping framework APIs for a signal input

ni.com/automatedtest

Hardware and measurement Abstraction l ayers21

The mapping framework receives the commands from the action through the measurement API.
It then parses the alias data from the configuration file through the Configuration API to obtain
the correct instrument Id s and parameters. The Configuration API defines the file format, syntax,
and fields for the system configuration. The mapping framework then passes the instrument-
specific information to the appropriate drivers through the Hardware d river API.

The mapping framework calls the individual hardware drivers using the generic Hardware
d river API. Each driver then interprets the details of the generic setup and communicates
with the specific instruments using their own out-of-the-box methods and parameters.

d isconnect (d evice, Channel)

measure (d evice, Channel, mode)

Connect (d evice, Channel)

measure (Alias)

Connect Switch (Alias)

Measurement API
(Back End)

Hardware Driver
API

Mapping

mapping Framework

Connect

Conn_d evice

Conn_Channel

measure

meas_d evice

measure_Channel

meas_mode

d isconnect

Conn_d evice

Conn_Channel

d isconnect Switch (Alias)

Figure 17. Example of mapping Framework APIs for a Signal Input

Channel Configuration File

Alias

Connection

Conn_d evice

Conn_Channel

measurement

meas_d evice

meas_mode

meas_mode

Figure 18. Example of Hardware d river APIs for a Signal Input

Sw 1: SetChannel (7, Off)

d mm_Config (d C volts, 100v)

Sw 1: SetChannel (7, On)

measure
d evice/Channel

Connect Switch
d evice/Channel

Hardware Driver
API

Instrument
API

Hardware
Drivers

d isconnect Switch
d evice/Channel

Switch d river

measurement
d river

Instrument

Switch d river

Switch d evice

measurement
d evice

Switch d evice

FIG

18
Example of hardware driver APIs for a signal input

96ni.com/automatedtest

The mapping framework receives the commands from the action through the measurement API. It then parses the alias data from the
configuration file through the Configuration API to obtain the correct instrument IDs and parameters. The Configuration API defines the
file format, syntax, and fields for the system configuration. The mapping framework then passes the instrument-specific information to
the appropriate drivers through the hardware driver API.

The mapping framework calls the individual hardware drivers using the generic Hardware driver API. Each driver then interprets the
details of the generic setup and communicates with the specific instruments using their own out-of-the-box methods and parameters.

HARDWARE AND MEASUREMENT ABSTRACTION LAYERS

https://www.ni.com/en-us/innovations/electronics/automated-electronics-test.html

97ni.com/automatedtest

Option 4: HAL/MAL Plugin Architecture
Plugins are potentially valuable additions to an
integrated framework. A true plugin is simply a software
component that can be modified after deployment
without redeploying an entire application. Plugins are
stored on disk separately from the main application and/
or framework and are loaded dynamically at run time.

Although developing a plugin architecture introduces several
challenges, it also simplifies software regression testing
by clearly limiting the scope and risk of added or modified
functionality. A framework developed without plugins must be
rebuilt each time a new measurement type, instrument driver,
or configuration format is needed. Because, without plugins, the
entire source is built into a single EXE, there can be no guarantee
that a seemingly trivial change to one instrument library did not
inadvertently affect other application features. Testing must be
thorough because it is difficult to know all possible effects of
source modifications.

A plugin architecture provides the highest level of software
modularity by giving a developer the ability to add or fix
plugin code without modifying, or redeploying the underlying
framework. This is achieved by writing a framework that depends
only on abstract classes or modules and that loads the required
concrete plugins dynamically, usually only as needed. Successful
plugin architectures depend on thoughtful interface design.

In other words, to make use of plugins in a test framework, the
framework must know how to call any possible component that
plugs in. If all plugins implement a consistent software interface,
loading them at run time requires only that the framework or test
application knows where to find them.

Although these are some of the more common processes,
APIs, and code modules of an abstraction framework, they are
certainly not the only ones. Each framework is unique, and has its
own requirements, processes, and implementations. For some
teams, this level of abstraction may be more than is required.
However, in other cases, the system architect may need to inject
additional layers of abstraction. The actual implementations
of these APIs are also open to interpretation, based on the
needs and abilities of the framework architect and users. Some
engineers implement all abstractions with simple action engines,
some use more advanced object-oriented programming, some
use plugins, and others prefer a single code base. The key is to
find the right extent of abstraction and implementation to fit your
particular needs and abilities. It is also important to understand
that not everything can be solved by abstraction, and sometimes
instrument-specific code may still be required. Therefore,
when developing an abstraction layer, make sure not to prevent
custom code from being developed for advanced functions. you
can do this by allowing instrument references to be obtained by
higher level code modules or by the test executive. Advanced
developers should never be hindered by a framework.

HARDWARE AND MEASUREMENT ABSTRACTION LAYERS

Feature Comparison for Abstraction Layer Options None Some Full -

ABSTRACTION OPTION OPTION 1
NONE

OPTION 2
OUT OF BOX

OPTION 3
BASIC CUSTOM

OPTION 4
WITH PLUGINS

Allows individual instruments to be replaced with:

 Instrument with same communications protocol

 IVI- or family-compliant instrument

 Instrument with different communications protocol

Change instrument channels/wiring without modifying
test sequence (modify config file)

Measurements/tasks from point of view of test/UUT

Add new instruments or measurements without
modifying framework

https://www.ni.com/en-us/innovations/electronics/automated-electronics-test.html

98ni.com/automatedtest

Practical Scenario
You, a test engineer from a commercial product company, have been tasked with developing functional tests for the
electronic subassemblies of a new product. There are three PCBAs and a final assembly that your need to test. An
existing general-purpose ATE instrumentation platform exists but it is outdated, and previous test programs have
been recently plagued by equipment failures and obsolescence. Fortunately, a new ATE platform has been designed
as part of this program, and it allows interchangeable test heads to adapt the instrumentation to different assemblies.

Your task is to develop the test sequence and code module software to interact with the instrumentation and
fixtures that hardware engineers are developing. you have some experience with a test executive (the same one
used by the previous platform), and have been developing software applications for a few years. As part of the
effort, there have been talks about using abstraction to help mitigate the obsolescence issues of the previous
system. You must decide if this is the right way to go and how far to take it.

To Abstract or Not to Abstract…
The first decision you must make is whether to develop an
abstraction framework, regardless of the level of abstraction.
given the out-of-the-box options, like IVI, the answer to this
decision is almost always yes. The only time that abstraction
is not worth the effort is if the project lifespan is 100 percent
known, and changes will never be required, which is almost never.

Will You Need a HAL?
The next decision to be made is what level of hardware
abstraction to use. This is where the decision gets more
complicated, as many factors are at stake. Hardware
abstraction is typically easier to understand, and therefore
less costly to implement than a MAL. This is especially
true if you can reasonably commit to using pre-abstracted
drivers, such as IVI and product family drivers. However,
as soon as you must use instruments that don’t fall into a
single driver, you may need to develop a generic interface for
each instrument type. For instance, if your system has some
IVI-compliant power supplies, as well as a noncompliant
supply, you may want to develop an abstracted power supply
definition that works with either type. Defining an abstract
hardware definition typically requires past knowledge of how
most instruments of that particular type work. you can then
use that information to define the common methods and
parameters for each in strument type within your system.

Aim for covering about 80 percent of the functions that you
reasonably expect each device to use. Talk with your team to
determine the core functions and parameters of each instrument
type that have to be implemented by each abstracted instrument
driver. For example, the team may determine that the core
functions of all power supplies should be initialize, set voltage/
current/enabled state, readback voltage/current/enabled state,
and close. Although there may be other functions that one power
supply could potentially use in the future, it may not always be
worth it to include as part of your system’s standard. If you don’t
know enough about a particular instrument type, or are unsure of
what functions to require, start small. You can always add to the
standard in the future, but it is difficult to change the parameters
or details of a function after it is in use by multiple drivers.

The following flowchart can help you decide what level of
hardware abstraction is right for you. If you are unsure of an
answer, you can either assume toward more of an abstracted
solution or toward the less abstracted solution. A more
abstracted solution requires more upfront design, but may save
time in the long run, while the less abstracted solution gets you
up and running faster, but may be problematic in the future. One
item to note is that the first question is if you require a MAL. This
is because a MAL cannot be effectively implemented without a
well-designed HAL.

HARDWARE AND MEASUREMENT ABSTRACTION LAYERS

https://www.ni.com/en-us/innovations/electronics/automated-electronics-test.html

ni.com/automatedtest

Hardware and measurement Abstraction layers25

Start

use instrument
specific drivers.

use built-in IvI drivers
of test executive.

Are there any special-purpose
instruments that do not have a

replacement or cannot
reasonably change?

will a mAl be used?

Can you answer yes to
any of the following:

Are all instruments
IvI-compliant?

will instrument
settings change

from test to test?

does the test
executive have

built-in IvI support?

No

No

No

yes

yes

yes

No

�� will the system life cycle exceed one year?

�� will more than one instrument of each particular type
(measurement, power, switching, and so on) be used?

�� will the instruments need to change because of
obsolescence or requirements changes?

�� will instruments need to be added to the system?

yes

yes

yes

No

develop instrument-specific drivers
for all special-purpose instruments.

Figure 19. decision Flowchart to determine what level of Abstraction to Implement

document parameters and
methods for each instrument class.

develop instrument-, family-, or standard- specific
drivers that conform to abstract definition.

document abstract hardware driver
code for each instrument class.

will a mAl
be used?

No

develop test sequences using mAl.

yes

develop test sequences using abstract drivers.

No

Implement
configuration file

format for managing
instrument settings.

FIG

19
 Decision flowchart to determine what level of abstraction to implement

99ni.com/automatedtest

HARDWARE AND MEASUREMENT ABSTRACTION LAYERS

https://www.ni.com/en-us/innovations/electronics/automated-electronics-test.html

100ni.com/automatedtest

Will You Need a MAL?
The first decision of a HAL is if a MAL will be required. This is
because a MAL is nearly impossible without relying on hardware
abstraction. Therefore, this question is really asking if you need
an integrated abstraction framework. A HAL/MAL is ideal when
there are multiple test developers who may not have low-level
software experience.

A few major questions can help guide the decision to
develop a MAL:

	J Will there be a software architect who can plan and support
the framework? A HAL/MAL is difficult to support organically
without an architect/owner.

	J Will there be multiple test developers with minimal software
experience? A big benefit of an abstraction framework is that
it lowers the learning curve for test development.

	J Will the system have a long life cycle that supports many
products? This can be a big upfront investment, but the
payoff is greater the more it is used.

	J Do you feel comfortable developing and supporting a
MAL? No abstraction is better than poorly defined and
poorly implemented abstraction. When simple and elegant,
a HAL/MAL can save a lot of time in the long run; when
overly complex or poorly designed, it can be cumbersome
and actually add development and debug time.

If you answer yes to most of these questions, then
developing an integrated abstraction framework
will probably pay off in the long run.

Practical Scenario 2
Even if all of the benefits of abstraction are known, there is still the major hurdle of cost versus payoff (where units
are typically time). Although the first part of the abstraction decision is typically from a technical perspective, the
cost/benefit decision has to be made at a higher business level.

HARDWARE AND MEASUREMENT ABSTRACTION LAYERS

https://www.ni.com/en-us/innovations/electronics/automated-electronics-test.html

101ni.com/automatedtest

 Abstraction Framework Tasks and Costs

CATEGORY TASK DESCRIPTION HOURS ESTIMATE
(LOW)

HOURS ESTIMATE
(HIGH)

Planning

Architecture
definition

Documentation of the types of actions,
devices, and the general interfaces
between them

24 48

HAL definition
per device type

Documentation of the inputs and outputs
and methods of each type of device

8
(Per device)

16
(Per device)

MAL definition
per action

Documentation of the inputs and outputs and
methods of each type of measurement/action

8
(Per action)

16
(Per action)

Configuration
definition

Definition of the format, syntax, and
content of the configuration file or database 24 48

Implementation

Mapping
framework
development

Implementation of all of the software
to map the configuration file to actions
and abstract drivers—the majority of the
underlying framework is developed here

60 120

Abstract
device driver
development

Software development of the abstract
device interface code, per device type—
essentially building the instrument

4
(Per device)

24
(Per device)

Instrument
driver
development

Software development of each instrument-
specific driver that uses the HAL—fills in
the template for each specific driver

4
(Per instrument)

24
(Per instrument)

Action
development

Software development for each action
defined by the MAL—implements the front- and
back-end APIs for interfacing with the test
executive and the mapping framework

4
(Per action)

24
(Per action)

Total

Total time to develop framework
(not including individual instrument
drivers)—assumes five device types with
one instrument-specific driver per device,
and five actions

248 776

How Much Will it Cost?
This is a difficult question to answer as much of it depends on past experience, coding abilities, and the level of abstraction required.
However, you can estimate a rough order of magnitude for various components, as the table below shows.

This shows that development time for a fully integrated HAL/MAL abstraction layer could be as low as 250 hours, and could exceed
750 hours. Depending on the level of abstraction, this could even exceed 1,000 hours.

HARDWARE AND MEASUREMENT ABSTRACTION LAYERS

https://www.ni.com/en-us/innovations/electronics/automated-electronics-test.html

102ni.com/automatedtest

What Can You Do to Reduce Cost?
When it comes to software development, cost is closely
related to complexity. Complexity can be both good and
bad, depending on its nature. The goal is to increase good
complexity while avoiding bad complexity. Complexity can be
good when it increases functionality. Each feature typically
increases functionality. Code that is scalable, flexible, and
modular tends to be more complex to achieve these goals. But
this complexity is beneficial when implemented in an elegant
way. Complexity that arises out of poor planning, redundant
functionality, and unclean spaghetti code is bad because it
increases development cost without increasing features.

You can reduce complexity in an ATE abstraction framework
in four ways:

	J Plan your architecture up front. As with most development
processes, upfront planning and documentation can save
a lot of time and hassle during development. By planning
and documenting your APIs and code modules up front
you can reduce cross-functionality and unnecessary
interdependence, which makes your code more robust and
reduces unnecessary complexity. You don’t have to plan every
nuance of every API and code module, but define the major
interactions, parameters, and basic functions of the software.

	J Don’t think too far ahead. When developing a large
architecture, the tendency is to overdesign and try to plan for
all possible scenarios. Although a forward-thinking approach
can be good, it is best to design for what is known. All too
often, engineers design systems for the worst-case scenario
that typically never happens. It’s the last 20 percent that
takes 80 percent of the time. You will end up spending more
time trying to handle presumed edge cases, rather than
focusing on the software that will be used most of the time.

	J Give in to the fact that you may not be able to abstract
everything. Abstraction is great, but trying to abstract away
every possible interface is an exercise in diminishing returns.
Instead, don’t preclude custom hardware interactions
as part of your framework to account for the times
when a generic interface just isn’t possible. Set realistic
rules for your system that give you the ability to reduce
abstraction layers. For example, restrict configuration
files to a single format (.INI, .XLS, database) to reduce the
complexity of the mapping framework, or restrict actions
to three independent hardware calls to prevent the need
to implement a recursive Hardware driver API call.

	J Keep it flexible, scalable, and modular. Although flexibility,
scalability, and modularity do add complexity, they are
your best tools for developing large architectures. Here is
where plugin architectures are extremely handy, because
they define the low-level framework but let the details be
implemented by unique code libraries. This means that new
functionality can expand on old functionality without breaking
pre-existing functions. A well-planned plugin architecture is
the epitome of developing for what is known and expanding to
new challenges as necessary.

Is It Worth the Effort?
Although the development of an abstraction framework can
be time-consuming, even when implemented well, it is done
because the payoff is often greater than the development
effort. Several key factors can improve the payoff and make
your framework more successful. many of these payoffs can
be quantified by the time or effort saved. The following table
outlines some typical costs associated with tasks and compares
the difference between a nonabstracted system and one that
uses a HAL/MAL abstraction framework.

HARDWARE AND MEASUREMENT ABSTRACTION LAYERS

https://www.ni.com/en-us/innovations/electronics/automated-electronics-test.html

103ni.com/automatedtest

 Costs Associated with Tasks in Nonabstracted and Abstracted Systems

TASK ESTIMATE
(STANDARD)

ESTIMATE
(ABSTRACTED) WHY THE PAYOFF?

Test software platform
learning curve for new
test engineers

60 hours
(Per engineer)

40 hours
(Per engineer)

Mastering how to use an abstraction framework typically
requires understanding the test executive as well as
the framework. In either situation, the developer must
understand how to interact with the test system hardware.
when instrument-specific drivers are used, the engineer
must know the details of each driver and how to use them.
However, when learning an abstraction framework, the
engineer needs to understand only the high-level actions
to be performed, as the instrument details are left to the
framework. Typically, these high-level actions are more
intuitive and easier to implement than various instrument-
specific drivers.

Development and debug
of a basic functional
test sequence (by an
experienced engineer)

80 hours
(Per sequence)

40 hours
(Per sequence)

Test sequence development becomes much faster because the
details of the hardware are stored in a single location,
rather than in every driver call within the sequence.
Tests interact with hardware from the UUT’s point of view,
allowing the sequence to be more intuitive and better match
the test procedure. In general, an intuitive framework can
cut development and debug time in half.

Test sequence
development and debug
by a new engineer

120 hours
(Per sequence)

60 hours
(Per sequence)

The payback on development time is amplified when a new or
less-experienced engineer develops test sequences. Because
the framework imposes a set of rules and functions, less-
experienced engineers can better use pre-existing steps to
develop sequences when compared to using instrument-specific
drivers and code. Furthermore, an intuitive framework allows
product-minded test engineers to develop sequences without
having to be experts on the underlying software language.

Updating a test
sequence for a
failed/obsolete
instrument or new
instrument requirement

8 hours for
driver

development
plus 4 to
20 hours

(Per sequence)

8 hours for
driver

development
plus <1 hour

(Per sequence)

When an instrument in the system needs to be replaced,
the test must change to account for it. In a nonabstracted
platform, this means that every instance of the driver
call must be updated for the new instrument. The more
the instrument is referenced, the longer this can take.
When using an abstracted framework, engineers may need to
develop a new instrument driver, but after that is done,
only the configuration file/database needs to be modified.

Moving a test
sequence to a new
ATE hardware platform

40 to 80 hours
(Per sequence)

<8 hours
(Per engineer)

Occasionally, entire systems get upgraded and all of the
tests must be migrated to the new system. Typically these
new systems have very different instrumentation. whether
using an abstraction framework or not, new drivers must
be developed, however after those drivers exist, the test
sequences must be updated to use them. with a nonabstracted
sequence, this is very cumbersome, and can sometimes
be easier to write the sequence again from scratch.
However, an abstracted sequence can typically be updated
in less than a day, all through the configuration file,
without having to touch the test sequence software.

You can use these numbers to expand on the previous scenario with the commercial product company and see if or when it makes
sense to develop an integrated abstraction framework.

First, assume that you develop all four test sequences on your own. You must start by developing the framework. In the standard,
In the standard, nonabstracted scenario, you must develop instrument-specific drivers. In the second scenario, you focus on
using out-of-the-box abstraction when developing the drivers. In the third scenario, you develop an integrated HAL/MAL.

HARDWARE AND MEASUREMENT ABSTRACTION LAYERS

https://www.ni.com/en-us/innovations/electronics/automated-electronics-test.html

104ni.com/automatedtest

TASK DEVELOPMENT TIME
(STANDARD)

DEVELOPMENT TIME
(OUT-OF-THE-BOX ABSTRACTION)

DEVELOPMENT TIME
(INTEGRATED HAL/MAL)

Framework/driver
development 80 hours 100 hours 500 hours

Test development (4 tests) 80 x 4 = 320 hours 80 x 4 = 320 hours 40 x 4 = 160 hours

New total 400 hours 420 hours 660 hours

TBL

5
An integrated HAL/MAL requires the most up front development effort.

By the time you have completed initial development, the integrated HAL/MAL approach is around 240 hours more than the standard,
but out-of-the-box abstraction has cost only about 20 hours more. However, no test program ends after initial development.

Six months later, R&D finds that a few more measurements are required and the 32-channel multiplexer in the system is no longer
sufficient, so it is replaced with a 4 x 128 matrix. you must now develop a new driver and update each test sequence to use the matrix
instead of the mux. However, if you used a pre-existing abstracted driver, you would not need to do any driver development to handle
the new matrix, and the function calls in the sequence wouldn’t need to change—only the details. By using an integrated HAL/MAL,
the sequence updates would only need to be done in the channel configuration file.

Even now, the integrated abstraction layer hasn’t paid off yet, although the out-of-the-box hardware abstraction has almost broken even.
Now imagine that a new test program comes along that requires you to test four more assemblies. Unfortunately, you are too busy to
develop these sequences on your own, and two new test engineers are brought onboard. You must train them on the system and have
them develop the sequences.

HARDWARE AND MEASUREMENT ABSTRACTION LAYERS

TASK DEVELOPMENT TIME
(STANDARD)

DEVELOPMENT TIME
(OUT-OF-THE-BOX ABSTRACTION)

DEVELOPMENT TIME
(INTEGRATED HAL/MAL)

New driver development 4 hours 0 hours 0 hours

Update 2 simple test
sequences for new matrix 2 x 4 = 8 hours 2 x 2 = 4 hours 2 x 1 = 1 hour

Update 2 complex test
sequences for new matrix 2 x 16 = 32 hours 2 x 12 = 24 hours 2 x 2 = 2 hours

Additional hours 44 hours 28 hours 7 hours

New total 444 hours 448 hours 667 hours

TBL

6
The integrated HAL/MAL method is much easier to update, but still requires more development effort.

https://www.ni.com/en-us/innovations/electronics/automated-electronics-test.html

WHITE PAPER TITLE

©2020 NATIONAL INSTRUMENTS. ALL RIGHTS RESERVED. NATIONAL INSTRUMENTS, NI, AND NI.COM ARE TRADEMARKS OF NATIONAL INSTRUMENTS.
OTHER PRODUCT AND COMPANY NAMES LISTED ARE TRADEMARKS OR TRADE NAMES OF THEIR RESPECTIVE COMPANIES.  184427

HARDWARE AND MEASUREMENT ABSTRACTION LAYERS

TASK DEVELOPMENT TIME
(STANDARD)

DEVELOPMENT TIME
(OUT-OF-THE-BOX ABSTRACTION)

DEVELOPMENT TIME
(INTEGRATED HAL/MAL)

Training/learning curve 60 x 2 = 120 hours 50 x 2 = 100 hours 40 x 2 = 80 hours

Test development (4 tests) 120 x 4 = 480 hours 100 x 4 = 400 hours 60 x 4 = 160 hour

Additional hours 600 hours 500 hours 240 hours

New total 1,044 hours 948 hours 907 hours

TBL

7
The integrated HAL/MAL approach pays off in the long run when more tests are developed or significant changes are made.

At this point, the initial 500-hour investment in the
framework has paid off by about 100 hours over the
standard development practice. As new tests are developed,
changes are made, and the product life cycle continues,
there will be a continual return on the initial investment.

There are also many more subjective payoffs to using
abstraction that are difficult to put a number on. The
calendar time to develop tests is greatly reduced as well,
because a HAL/MAL makes it much easier to develop

software before the hardware is fully defined. By maintaining
a standard framework, you ensure a single repository where
new drivers and measurements can be added, bugs can
be managed, and code divergence among engineers can
be reduced. Standardization helps keep everyone (test
engineers, manufacturing engineers, and technicians)
aligned, allowing better support of systems. Although there
are countless other advantages, as described in detail in this
document, let your abilities and ROI calculations help you
understand what level of abstraction makes sense for you.

Next Steps

TestStand
TestStand is industry-standard test management software that helps test and validation engineers build and deploy automated test
systems faster. TestStand includes a ready-to-run test sequence engine that supports multiple test code languages, flexible result
reporting, and parallel/multithreaded test. Although TestStand includes many features out of the box, it is designed to be highly
extensible. As a result, tens of thousands of users worldwide have chosen TestStand to build and deploy custom automated test
systems. NI offers training and certification programs that nurture and validate the skills of over 1,000 TestStand users annually.

Learn more about TestStand.

About Bloomy

Bloomy provides products and services for electronics functional test; avionics, battery, and BmS hardware-in-the-loop (HIL)
testing; aerospace systems integration lab (SIL) data systems; as well as world-class LabVIEW, TestStand, and VeriStand application
development. Bloomy is a 24-year NI Alliance Partner, placed in the top Platinum and Select tiers by NI since the program’s inception.

Learn more about Bloomy’s UTS Software Suite, which includes an integrated HAL/MAL.

http://www.ni.com/teststand/whatis/
http://www.bloomy.com/products/electronics-functional-test/uts-software-suite

	Contents
	PG 2
	PG 12
	PG 26
	PG 42
	PG 66
	PG 78
	PG 107
	PG 122
	PG 133
	PG 151

