
G Anywhere
Enhancing LabVIEW Development with a  
Cross-Platform Embedded Device Library

Presented on May 23, 2023 at

https://www.linkedin.com/in/jimkring/


we’ll cover these topics



we’ll cover these topics

Raspberry Pi Pico 

a great place to run LabVIEW code



we’ll cover these topics

Raspberry Pi Pico 

a great place to run LabVIEW code

Compiling G in G 
 

a way to run LabVIEW anywhere



we’ll cover these topics

Raspberry Pi Pico 

a great place to run LabVIEW code

Compiling G in G 
 

a way to run LabVIEW anywhere

and see some demos!



Raspberry Pi Pico

a great place to run LabVIEW code













• Dual-core Arm Cortex-M0+ processor, flexible clock up to 133 MHz


• 264kB on-chip SRAM 

• 2 × UART, 2 × SPI controllers, 2 × I2C controllers, 16 × PWM channels


• 1 × USB 1.1 controller and PHY, with host and device support


• 8 × Programmable I/O (PIO) state machines for custom peripheral support


• Low-power sleep and dormant modes. Temperature sensor.


• Accelerated integer and floating-point libraries on-chip

RP2040 μC



embedded software 
no operating system



embedded software 
no operating system

264kB on-chip SRAM264kB on-chip SRAM



embedded software 
no operating system

264kB on-chip SRAM264kB on-chip SRAM



embedded software 
no operating system

264kB on-chip SRAM264kB on-chip SRAM



embedded software 
no operating system

264kB on-chip SRAM

embedded software 
no operating system



?

embedded software 
no operating system

264kB on-chip SRAM

embedded software 
no operating system



Compiling G with G
Proving to ourselves that G is a real programming language 

by writing a compiler in G that can compile itself



What a Compiler does

A compiler transforms instructions from a source format to 
some other target format, so it can be executed by a machine.



What a Compiler does

applicable for text-based languages

A compiler transforms instructions from a source format to 
some other target format, so it can be executed by a machine.



What a Compiler does

A compiler transforms instructions from a source format to 
some other target format, so it can be executed by a machine.

this looks a lot like a graph 
(nodes and edges)



What a G Compiler needs to do

A G compiler needs to generate code from a program's 
data flow and control flow graphs (DFG and CFG).



Translating G to Rust
Mapping G’s parallelism to text-based concurrency 

as an intermediate representation.





?







Demo







How about Parallelism?
We need a way to run code asynchronously, 

according to the execution rules of sequential dataflow.





Text-based Concurrency
We can leverage tools like threads and async features 

and frameworks of modern languages (like rust).



• `thread::spawn` runs a 
block of code 
asynchronously.


• `thread::spawn` returns a 
thread handle


• `join` waits until the thread 
completes and returns its 
data


• This is a lot like ACBRN in 
LabVIEW

Threads



Async & Await

Provides a framework to make “async” and act a 
little bit like `thread::spawn`.


Requires framework (runtime engine) to execute 
the async tasks to completion. 



Next Steps
Visit my blog at https://create.vi to stay up to date on progress.


Please feel free to message me if you are interested in contributing or learning more.

Find me on LinkedIn —> @jimkring 

http://www.apple.com
https://www.linkedin.com/in/jimkring/
https://www.linkedin.com/in/jimkring/

