

Introduction: James Thornton

Senior Product Manager

Platform Product Management

Experience:

- National Instruments (1+ year)
 - Products Managed
 - ATE CC, PXI Systems, GPIB, Serial, C-series controllers and Chassis
- Engineering Automation (6 years)
 - Roles
 - R&D Engineering, Technical Sales, Product Management

Introduction: Sean Ferguson

Principal Software Engineer – System R&D Aerospace Defense & Government

Agenda

Introduction	.(1 mins)
What is FlexRIO?	.(12 mins)
FlexRIO-7903	.(12 mins)
 Features and Functions 	
Target Applications	
Technical Deep Dive	
LabView FPGA Implementation	(25 mins)
• Demo	
Q & A	(10 mins)

ni.com

nı Today's Industry Challenges

Think Outside the Box

ni.com

FloyDIC

The NI Solution

FlexRIO

- Target Applications
 - High speed data converters
 - Custom digital interfacing
 - Real time digital signal processing
 - AND MORE!
- Key Benefits
 - Fully configurable
 - High-speed analog, digital, and RF I/O
 - Accelerate FPGA Programming
 - LabView
 - Uses timing and synchronization capabilities of PXI
 - Synchronize Multiple Modules

Hardware Architecture

I FlexRIO with Modular I/O System Architecture

FlexRIO Adapter Module

Interchangeable I/O Analog, Digital, RF Custom I/O with MDK

FlexRIO FPGA Module

Kintex-7 FPGA Up to 2 GB of DRAM PCIe Gen 2 x 8 Peer-to-peer streaming (adds inline DSP) PXI Backplane Embedded Controllers Synchronization Data streaming Power/cooling

A Wide Variety of FlexRIO I/O

ni.com

The Move to High-Speed Serial

- Modular Architecture well suited for digital interfacing and communication with converters over LVDS
- Converter manufacturers moving to high-speed serial interfaces with highest performance parts
- Solves common issues with parallel busses
 - Ex: meeting static timing at higher clock rates

FlexRIO Architectures

High-Speed Serial Converters, Integrated I/O

- Second FlexRIO architecture
- Mezzanine I/O module communicates with FPGA via high-speed serial communication
- Xilinx UltraScale FPGAs
- JESD204B interface standard
 - Supports high bandwidth, high performance, high speed, and multichannel applications

או

35+ Modules!

ni.com

Software and IP

Built for Engineering Productivity

We let you focus on solving your biggest engineering challenges by:

- Accelerating development with intuitive graphical programming
- Providing unparalleled hardware connectivity and measurement IP that gets you to faster measurement results
- Scaling from simple applications to large team development

A Quick Look at LabVIEW FPGA

- Helps you **develop** and **debug** custom hardware logic that you can compile and deploy to NI FPGA hardware
- More efficiently and effectively design FPGA-based system
 - IP libraries, high fidelity simulator, and debugging features
- The single-cycle Timed Loop was specifically created to write more efficient LabVIEW FPGA code and it specifies the clock rate and domain that will be used to execute the logic inside it.

Π

• Code needed to read from an ADC and send that to a host PC through the PCIe bus via a DMA FIFO

				li b	$\left\ \ b_{\alpha}^{\beta} \ _{L^{2}(\mathbb{R}^{d})}^{\beta} \ _{L^{2}(\mathbb{R}$		
He and a set				fer ideni	1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,	lud h	
						$\begin{array}{c} (1) &$	
1. 1. 18 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	-	~4	4000	line	s of	VHD	L

VHDL

LabVIEW FPGA

ni.com

n Example Finder

• NI provides Example Finder with a built-in filter capability that helps list out all examples that are **applicable** for specific device **models**.

LabVIEW FPGA Code

Browse	Search	Dou	ible-click an example to open it.			Information		
_			Control and Simulation		~	Description:		1
Brov	wse according to:		🧰 Distributing and Documenting Applicatio	ns		This tool assist	s in the creation	of
Tas	k		🧫 Favorites			Getting Started	projects for	
_			🧫 Fundamentals			Flexible integra	ited to targets.	
O Dir	ectory Structure		Hardware Input and Output					
			🖮 FlexRIO					
			词 Coprocessor Modules					
			DXIe-791X					
			🧓 Device Properties					
			🧓 FPGA Fundamentals					
			词 Integrated IO					
			Getting Started					
			Getting Started FlexRIO Integrated IO.vi		*			
			遍 System Calibration					
			🧓 GPIB					_
			Instrument Drivers			Requirements		
			🖮 Modular Instruments			PXIe-5775		
			🖮 NI-RFSA (RF Signal Analyzer)			PXIe-5785		
			🧓 Configuration List			PXIe-5774		
			🧓 Demos			PCIe-5763		- 1
	Visit ni.com		🤜 Getting Started			PCIe-5764		
	for more examples		🧾 IQ Acquisition			PCIe-5785		
			Spectrum Acquisition			PCIe-5774		
ardware			Synchronization			PXIe-6593		
	Find hardware	\sim	🔄 Utilities		\sim	<		>

Application-specific functions

LabVIEW FPGA IP Library

Clock Constraints I/O Signals DMA over PCIe Signal Processing Functions or IO Modi∎ 0 Fixed-Point to Integer Cast ■ → DMA to Host + II → ¹ Scaled Window Write Nodule\AI 0 Data N Element IO Module\PFI 0 Rd Data Input Valid ۶<u>1</u>° Ready for Input Trigger Reset * **←** * Intuitive Flow Control Controls from CPU

Focus on your algorithms, not infrastructure

Get to a solution faster with extensive libraries of FPGA IP

LabVIEW FPGA IP Commonly used with FlexRIO

Edge detection

10 Gigabit Ethernet UDP 3-Phase PLL Accumulator All-digital PLL Area measurements Baver decoding Binary morphology Binary object detection BRAM delav BRAM FIFO **BRAM** packetizer Butterworth filter Centroid calculation Channel emulation Channel power CIC compiler Color extraction Color space conversion Complexmultiply Corner detection Counters D latch Delay Digital gain Digital pre-distortion Digital pulse processing filter Discrete delav Discrete normalized integrator Divide Dot product DPO DRAM FIFO IDL DRAM packetizer DSP48 node DUC/DDC compiler

Equalization Exponential FFT Filtering FIR compiler Fixed-point filter design Fractional interpolator Fractional resampler Frequency domain measurements Frequency mask trigger Frequency shift Halfband decimator Handshake Hardware test sequencer I2C Image operators Image transforms Instruction sequencer IQ impairment correction Line detection Linear interpolation Lock-in amplifier filter Log Matrix multiply Matrix transpose Mean, Var, Std deviation Memory IDL Moving average N channel DDC Natural log Noise generation Normalized square Notch filter

Persistence display PFT channelizer PID Pipeline frequency transform (PFT) Polar to X/Y conversion Power level triager Power servoing **Power spectrum** Programmable filter Pulse measurements Reciprocal RFFE Rising/falling edge detect RS-232 Scaled window Shading correction Sin & Cos Spectrogram SPL Square root Streaming controller Streaming IDL Synchronous latch Trigger IDL Unit delav VITA-49 data packing Waveform generation Waveform match trigger Waveform math X/Y to polar conversion Xilinx Aurora Zero crossing Zero order hold Z-Transform delay

Product Announcement

PXIe-7903 High Speed Serial FlexRIO Coprocessor

■ 2-Slot FlexRIO Coprocessor

NI's most powerful, highest speed, PXI FPGA coprocessor, built to maximize data movement and computational power.

PXIe-7903

Features

- 12 MiniSAS zHD Connectors
 - 48 RX/TX with 28.2 Gbps line rate
- External Reference Clock Input/Output
- Xilinx Virtex UltraScale+ VU11P FPGA
 - 9,200+ dsp slices
- 20 GB of DRAM (10 GB per bank) w/ up to 25 GB/s write speed
- 8-port DIO terminal (mini-HDMI)
- PCI Express Gen 3x8
- 341 Mb of Embedded Block and Ultra RAM
- Data movement with Ethernet protocols
 - 100 GbE (previously 10 was limit)
 - Aurora 64b/66b

FlexRIO PXIe-7903 FPGA Coprocessor

Target Applications

- Radar Target Generation
- Beamforming RF Signals
- Spectral Stitching RF Instruments
- Real-time Spectrum Analysis
- Electronically scanned array characterization
- Multi-channel RF record and playback

Example Applications

Example Applications

Π

Electronically Scanned Array Characterization

Spectral Stitching

- Combine multiple RF devices together such that they appear as one device
- Happens in real time
- Systems capable of continuously processing and storing multi-GHz of data
- Lots of filters and dsp (math intensive)
- VU11P has 9,200+ dsp slices High Speed Serial Analog Signal VST 1 **PXIe-7903** DSP Recombination Real-Time FPGA Splitter High Speed Serial VST 2 Analog Signal RF_{in} **RF** Signal Analog High Speed Serial Analog Signal VST 3 High Speed Serial VST 4 Analog Signal VSA 1 Rx1 Rx2 Rx3 Rx4 VSA 2 VSA 3 ni.com

Example Applications

Radar Target Generation

Case Study & Demo

Multichannel RF Record & Playback Solution

RF / Digital Systems Performance

- Wideband RF Recording
 - 1 GHz IBW per channel
- 100 GbE Stream To Disk
 - 40 GB/s (8 GHz IBW) 360 TB = 2.5 hours at max IBW
- Multi-Channel / Frequency
- Select Partner/Customer Inline or Parallel Processing
- Offline Analysis

System Calibration & Sync

- Time Synchronization w/ NI-TClk
- Record Trigger Options
 - Software, Digital
- LO Power Calibration
- Wideband Multi-Channel System Equalization Calibration

System Software

- Remote-access with gRPC
- SigMF metadata file format

System Under Test

Case Study - Record (& Playback)

- Synchronized RF data is acquired on eight NI PXIe-5841 1 GHz Vector Signal Transceivers
- The IQ data acquired on each NI PXIe-5841 is written to a 4-lane Aurora 64b/66b interface and streamed to a NI PXIe-7903 FPGA coprocessor.
- The NI PXIe-7903 multiplexes the IQ data from a pair of 4-lane Aurora interfaces into a single 100GigE UDP packet, for a total of four 100GigE interfaces.

Aurora 64b/66b Interface

- Aurora 64b/66b is a point-to-point protocol developed by Xilinx.
- Uses 64b/66b encoding
- The Xilinx IP wraps the MGTs to provide a simple AXI4-Stream interface for the user.
- Framing mode enables CRC check
- Instrument Design Library for LV2023

Aurora 64B66B (12.0) Documentation P Location C Switch to Defaults		A
Show disabled ports + USER_DATA_S_AXIS_TX + AVILITE_DRP_IF_0 + CORE_CONTROL + OFL_CONTROL_IN CORE_STATUS + + OFLL_CONTROL_IN CORE_STATUS + + OFLL_CONTROL_IN CORE_STATUS + + official in content int_creat_out - resct_pb sys_creat_out - resct_pb sys_cresct_out - resct_pb sys_creat_out - resct_pb s	Component Name aurora_64666b_0 Core Options Shared Logic Physical Layer GT Ype GTY GT Type GTY Line Rate (Gbps) 10.3125 IO.5- Column Used fight V Lanes 1 V Starting GT Used 1000 GT Refck Selection MGTREFCLK0 of Quad X1Y0 GT Refck Selection MGTREFCLK0 of Quad X1Y0 GT Refck (MHz) 156.25 IO.7 INIT ck (MHz) 151.32812 IO.7 INIT ck (MHz) 161.132812 IO.7 INIT ck (MHz) IO.7 INT ck (MHz) IO	- 28.01864] - 28.01864] 25 - 161.132812]
	Debug and Control DRP Mode	

Л

100GigE Interface

- The Xilinx CMAC IP includes the physical (PHY) and data link (MAC) layers.
- Ethernet frames are sent and received over a 512-bit AXI4-Stream interface
- The Xilinx CMAC IP will compute and append the FCS
- Hard IP for RS-FEC

bled ports	Compon	ent Name cmad	_usplus_0							
	Genera	al Control / Pa	ause Packet Processing	CMAC / G	T Selection and C	onfiguration	RS-FEC Tr	anscode By	pass	
	Physi	cal Layer								
	N	lode	CAUI4 ~	Li	ne Rate	4 lanes x 25.78	12G 🗸			
	т	ransceiver Type	GTY 🗸	G	T RefClk	156.25	~	(In MHz)		
ref clk) 0	peration	Duplex ~	CI	locking	Asynchronous	~			
s_tx at serial port +	. U	Iser Interface	AXIS 🗸	G	T DRP/init Clock	100.00	0.00 🛞		(50.00 MHz - 250.00 MHz)	
	Link L	Link Layer				Receive				
_ross_in nc_otn_out + fec_in at trusrelk?	<u> </u>	TX Frame CRC Enable ECS Insertion			RX Frame CRC Enable FCS Stripping V Check Preamble				amble	
pback_in[11:0] gt_ref_clk_out gt_ref_clk_out	-	Enable TX Lane0 VI M BIP7 Override Port			May Pkt Le	n 9600	oo ompping			2
reset_nc_datapath gt_nxrecclkout[3:0] gt_powergoodout[3:0]		_			Min Pkt Lo	n 64		0		5
set rx_preambleout(55:0)	-				MITTALE	04		0	- Process Er	
_resetgt_rxusrclk2	E E	low Control			IEEE PTP 1588	w2				
_reset by ovfout	-	🕑 Enable Ti	ansmit Flow Control		🗹 Enable	Time Stamping				
mblein[55:0] usr_tx_reset	F	Enable R	eceive Flow Control		Operati	on Mode		Two Step	• •	
19_10301		🗌 Enable	RX Forward Control Frame	s	Clockin	g Mode		Ordinary	Clock ~	
		🕑 Enable	Receive Check ACK		TX Late	ncy Adjust 1-ste	p with 2-step	0		[0 - 2047]
					🗌 Enable	VLane Adjust N	lode			

ni.com

100GigE LabVIEW FPGA Support

- Network IDL expanded to support 100Gigabit Ethernet
- API for Writing UDP datagrams
- Filtering received packets by MAC address, IP address, UDP port
- Installed with FlexRIO Integrated IO

Л

Π

Case Study - Record (& Playback)

ni.com

Aurora ->100GigE Subsystem

- The data received from each Aurora interface is on a unique Aurora User Clock
 - Data arrives at about 40gbps
- Data written to the CMACs is on the CMAC User Clock (~322 MHz)
- Minimize processing done at 322 MHz to alleviate timing pressure.

UDP over IPv4

• The parameters for the Ethernet, IPv4, and UDP headers are configured by the host. The MAC and IP addresses are static but the UDP source and destination ports for the UDP header toggle between two values for each packet.

ni.com

LabVIEW FPGA Implementation

- Modular Design
 - Four instantiations of the subsystem
- Instruction Framework used vs. front panel controls for portability and modularity
- 'Process' VI handles all parallel processes
 - Read data in the Aurora User Clock domain
 - Writing data in the 100GigE User Clock domain

Л

Π

Floor Planning - XCVU11P

- Choose locations of Aurora Rx ports and CMACs to minimize congestion
- Record & Playback with 5841
 - Combine 2x5841 Aurora x4 links into 1x 100GigE links
 - If SLR1 gets congested, logic can be pushed to SLR2
- Upgrade to 5842 (2 GHz)
 - Same configuration except Aurora x8

Resource Utilization

- CLIP IO highlighted
- 100% of DSP slices remaining
- 88% of LUTs and BRAM

Resource	Utilization	Available	Utilization %
LUT	166528	1295864	12.85
LUTRAM	11773	593216	1.98
FF	234850	2592000	9.06
BRAM	252.50	2016	12.52
IO	430	567	75.84
GT	56	76	73.68
BUFG	58	1008	5.75
MMCM	2	12	16.67

							SLR2
X0Y11	хтут	X2V11	×11	X4Y11	XSY11	X6Y11	х7Ү11
х07/10	X1Y10	X2Y10	X3 Y 10	X4Y10	XSY10	Х6Ү10	<u> 01</u> 77X
670X	X1Y9	Х2Ү9	X3Y9	Х4Ү9	х5ү9	6, 9х	- <u>6</u> ү7Х
X0Y8	Х1Ү8	Х2Ү8	X3Y8	X4Y8	Х5Ү8	879Х	877X
		2×7	347	4	5		rs rr J
	(1YB	(2YB 10	(3Y6	(4YB		1 	ni, F
1	X5		H				
	P-			<4 <u>7</u> 4		(6Y4 X	tina L
			3/3	(4 \ 3	(5/3	6Y3	SLRO
			(3Y2 X	(4Y2 X			
		(2Y1 X	(3\1 X	4 2 2			Ī
	 		e.	Į.			

DEMO

- 2x5841s stream synchronized RF data to a NI PXIe-7903.
- IQ data is muxed into UDP packets with unique source/destination UDP ports
- 100GigE UDP is received on another PXIe-7903 100GigE port and demuxed based on the parsed UDP packet destination port.
- Snapshots of the data are taken and sent to the host for visualization

Demo

Π

n Summary

PXIe-7903

Features

- 12 MiniSAS zHD Connectors
- 28.2 Gbps Line Rate
- External Reference Clock Input/Output
- Xilinx Virtex UltraScale+ FPGA
- 20 GB of DRAM (10 GB per bank) w/ up to 25 GB/s (theoretical) write speed
- 8-port DIO terminal (mini-HDMI)
- PCI Express Gen 3x8

Release

- June 2023
- Delivery in Q3

