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DC Instrument Applications

Source Measure Unit (SMU)

Digital Multimeter (DMM)Power Supply (PSU)

I/V Waveforms

Higher Power

AC Measurement

Lower Cost

Higher AccuracyVoltmeter/

Ammeter/

Ohmmeter

SMU test solution

other applications

Power Supply

High Voltage

E-Load

Calibration

Standard

Shunt 

Measurements
Low Current

Pulsed Output
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Optimizing Precision vs Speed

Precision

Speed

Increased throughput

Decreased noise

Power line rejection
ms

𝜇s
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Best Practice 1:
Understand the Importance of Calibration
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Calibration Types and Use Cases

External Calibration (typically annually)

Understand the Importance of Calibration

Two types of calibration work together to ensure devices meet specifications:

Self-Calibration (typically daily)
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Externally Calibrate for Absolute Accuracy

Regularly calibrating instruments will ensure that they operate within published specifications

• Adjustment corrects for time drift of onboard references 

• Specifications can only be guaranteed for specific time intervals

• Performance verified against traceable standards – back to fundamental units as defined 
by the International System of Units (SI)

Understand the Importance of Calibration
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Reduce Temperature Sensitivity with Self-Cal

Results show the effect of large temperature 
swings on device offset performance

Understand the Importance of Calibration

Board Temperature

Voltage Offset

(no self-cal)

Voltage Offset

(with self-cal)
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Best Practice 2:
Minimize and Compensate for Voltage Offsets
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Sources of Offset Voltages

Unintentional thermocouples can introduce offsets 
due to

• Variations in temperature across a cable or 
mated connector pair

• Self-heating in current shunts or other high-
power dissipation equipment

• Self-heating in relays due to coil power 
dissipation

Minimize and Compensate for Voltage Offsets

Component “Budgetary” 

Offset

Connector 1uV 

Electromechanical Relay 

(non-latching)

20uV 

Electromechanical Relay 

(latching)

2uV 

Reed Relay

(single pole)

50uV
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Experimental Connector Offset Setup

Tested offset voltage vs temperature gradient:

• Heated one side of a jumper wire

• Measured voltage of the short with DMM

• Measured temperature on both sides of the jumper 

Minimize and Compensate for Voltage Offsets

To DMM

Resistance Wire

(heater)

RTDs
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Experimental Connector Offset Results

Minimize and Compensate for Voltage Offsets

Copper connector showed nearly no 
temperature dependency

• Wire conductor is also copper

Banana plug and tin terminal block 
very similar

• Both are primarily brass + plating

Gold-tin intermated pair much worse

• 600nV/°C is still relatively small
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Balance Offsets for Differential Measurements

Symmetric offsets in a differential pair will cancel out

• Evaluate the specified offset voltage (thermal EMF) of switching in the measurement path

(hint: look for a spec with 𝜇V units)

• Include the same number/type/orientation of relays and connections on each lead

• Model the measurement by replacing closed relays with voltage sources

Minimize and Compensate for Voltage Offsets
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Compensating for Voltage Offsets

Offsets that can’t be physically removed can often be compensated for

A compensated measurement can be calculated from multiple measurements that include the 
offset 

For DMM resistance measurements, compensation can be performed automatically

For SMU measurements, offset compensation can be performed in application code

Minimize and Compensate for Voltage Offsets
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To determine the compensated measurement with an 
SMU, perform two measurements: 

VM1 is the measured voltage with the source turned on

VM1 = ISRX + Vthermal

VM2 is the measured voltage with the source turned off

VM2 = ISoffRX + Vthermal = Vthermal

Compensating for Voltage Offsets

Minimize and Compensate for Voltage Offsets

The offset compensated voltage VOC is then
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Best Practice 3:
Offset the Effects of Lead Resistance 
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Lead Resistance Impact on Measurements

Lead resistance introduces several potential issues:

• Voltage delivered to the DUT is lower than expected

• Resistance measurements will include error 

Offset the Effects of Lead Resistance

1m Wire

Connector

Relay (EMR)

Relay (reed)

Relay (SSR)

Typical Resistance (Ω)

14AWG  – 26AWG
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Offset Effects with Remote Sense

Remote sense uses two pairs:

• Force/output: Supplies current

• Sense: Measures voltage

DMM 4-Wire resistance measurements operate 
the same way

Offset the Effects of Lead Resistance

SMU controls the voltage between the output pins

Vsource = VHI – VLO

The voltage at the DUT is determined by the 
voltage divider formed by RDUT and the HI/LO lead 
resistances due to current flow

Local Sense

SMU controls the voltage between the sense lines

Vsource = VSense HI – VSense LO

With sense lines connected at the DUT, the 
voltage setpoint is maintained at the DUT 
regardless of lead drop voltages

Remote Sense
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Remote Sense Example

Rforce = RDUT + Rlead1 + Rlead4 = 12Ω

Local Sense

VDUT = VSource ∗ ൗ
RDUT

RForce
= 𝟎. 𝟖𝟑𝟑𝐕

Remote Sense
VDUT = VSource = 𝟏𝐕

Offset the Effects of Lead Resistance

RDUT = 10Ω

Rlead1 = Rlead4 = 1Ω (output/force)

Rlead2 = Rlead3 = 10Ω (sense)

Vsource = 1V
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Practical Example of Lead Resistances 

• When the 100mΩ current shunt is enabled, the DUT measures ~900mΩ

• The DMM, in 2W resistance mode, measures ~300mΩ (200mΩ lead + relay resistance)

• For current verification, the DUT voltage measurement is unimportant

• DMM input is high impedance and functions like sense lines, so the 200mΩ resistance does 
not affect the measurement

Offset the Effects of Lead Resistance

NI Manufacturing SMU Current Verification with Low-Value Shunt
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Alternative Compensation for Lead Resistance

For applications where it is not possible to connect sense lines directly at the DUT, there are 
other options

• Remote sense can be used to correct for part of the measurement path 

• Programmable output resistance

• Measure path resistance using the SMU by shorting the output at the DUT, Rpath

• Set output resistance to -Rpath

Offset the Effects of Lead Resistance
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Best Practice 4:
Minimize External Noise
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Inductive

(magnetic field)

External Noise Sources and Coupling

Capacitive

(electric field)

Minimize External Noise

Power Line Switching PSU Broadcast

Hz GHz

Comms
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Minimizing Inductively Coupled Noise

Inductively coupled noise often comes from

• Nearby cabling (or shields)

• Leakage flux from transformers, inductors, or motors 

Reduce the loop area to minimize noise pickup:

• Keep the conductors close together

• Twist the pair together

Minimizing External Noise
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Shielding for Capacitive Coupling

Shielding is a critical consideration for high-impedance measurements

Minimize External Noise
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Implementing Effective Shielding

Minimize External Noise

More Practically

Targeted based on known/expected 
noise sources

Ideal

One continuous unbroken conductor 
around the entire measurement path
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Avoiding Ground Loops

Minimize External Noise

Ground loops can affect shielded differential measurements

• Shield currents can introduce noise

• Connecting shields at only one end eliminates the ground current
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Practical Example of Shielding

Minimize External Noise

NI Manufacturing SMU Station

Station is fully shielded from external noise
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Best Practice 5:
Guard Against Leakage Current
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Errors Introduced by Leakage Currents

Leakage currents can occur when there is a voltage difference across any finite resistance

• Cable dielectric, for example from signal to shield of a coax cable

• Open relay contacts

• Contamination, especially flux residue 

Guard Against Leakage Current

Insulation resistance = 100GΩ 

Output voltage = 50V
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Guard Eliminates Leakages

Guard is a buffered signal at the same potential as Hi 

By placing an additional shield around the signal that is driven to the same voltage, the voltage 
across the leaky insulation is reduced to 0V and no current flows

The configuration with three concentric conductors is a triaxial cable that is used heavily in low-
current applications

Guard Against Leakage Current
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Low Noise Cabling

Cabling used in low-current applications is often “low-noise” 

• Normal cables generate charge when moved

• Low-noise cable has a semi-conductive layer

• This low-noise layer conducts noise to the guard shield

• Noise on HI is reduced several orders of magnitude 

Guard Against Leakage Current

Outer Shield Inner Shield Low-Noise Layer
Center Conductor

(after cleaning)
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Reducing Effective Parasitic Capacitance

Guarding also reduces the parasitic capacitance that must be charged by HI

Voltage across a capacitor changes at a rate  
𝑑𝑉

𝑑𝑇
=

𝑖

𝐶

• SMU current limit and parasitic capacitance limit voltage slew rate

• 1 meter of coaxial cable has ~90pF of capacitance

• With a 1nA limit, voltage slew rate is limited to 11V/s

• Limitation can be avoided by charging the capacitance with guard

Guard Against Leakage Current
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Settling Time Example
PXIe-4135 with 1m of coax cable, 200V step with 10nA limit

Coax Shield to Ground

• Output reaches 200V in 1.8s

• Current settles to <2pA in 30s

Coax Shield to Guard

• Output reaches 200V in 10ms

• Current settles to <1pA in 200ms

Guard Against Leakage Current
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IL = 0A

IL = 0A

Additional Optimizations Leveraging Guard

Relay leakage can be addressed with guard 

• A “guarded-T” topology adds a center node that 
can be connected to guard

• Example shows a 1:2 mux composed of two 
guarded-T sections

• Leakage is removed by guarding the center node

Guard Against Leakage Current

Reducing Leakage in Switching
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Practical Example of Guard Application

• Ohm-Labs MHS contains 7 fully-guarded standard resistors from 1MΩ to 1TΩ

• Entire path from DUT to standard is guarded triax, including switching

• With guard, 1GΩ measurement settles in 100ms with <1pA leakage

• Without guard, settling time would be >60s with 100pA+ leakage 

Guard Against Leakage Current

NI Manufacturing SMU Verification with High Resistance Standards

Gnd

PXIe-413x
SMU
DUT

Interface Fixture
Triax Output (no LoS)
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7

6

2

1

NC

NC

NC

Ohm-Labs MHS
High Resistance Std
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Triax Matrix
Low-Leakage 

Switch
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Applying Best Practices



ni.com

Analyzing Measurement Errors

Model the circuit of your measurement with increasing detail to identify potential issues

• Start with sources and loads, then add representations for parasitic elements

• With a sufficiently detailed model, simple analysis (e.g. Ohm’s law) often reveals potential 
issues

Applying Best Practices

Component Primary Parasitics Additional Parasitics

Wires RWire Cshield, RInsulation and CStray to other conductors

(maybe Ifusing on a bad day)

Coax/triax cable Rwire and Cshield Rinsulation, Itriboelectric, Rleakage due to contamination

Relay (closed) RContact VThermal, Rleakage and CStray to coil

Relay (open) RInsulation and COpen Rleakage and CStray to coil

Connector RContact Rleakage and CStray to other conductors

PCB RTrace Cstray, Rleakage due to contamination
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Summary and Application Considerations

For low-impedance or voltage-sensitive applications:

• Use remote sense to address lead drop voltages

• Apply design best practices to minimize voltage offsets, or compensate for them 

For high-impedance or low-current applications:

• Shield cables and other sensitive part of the measurement path

• Use guard to reduce the impact of leakage currents and parasitic capacitance

For all, especially precision, applications:

• Perform external calibration and self-calibration regularly to ensure instrument performance

• Model the full measurement path to anticipate and account for all sources of error

Applying Best Practices
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Questions?
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Resources

5 Best Practices for Maximizing DC Measurement Performance (white paper)

https://www.ni.com/en/solutions/semiconductor/making-dc-measurements.html

Thermal EMF and Offset Voltage

https://www.ni.com/docs/en-US/bundle/ni-switch/page/switch/thermal_voltages.html

Offset Compensated Ohms

https://www.ni.com/docs/en-US/bundle/ni-dmm/page/offset-compensated-ohms_1.html

https://www.ni.com/en/solutions/semiconductor/making-dc-measurements.html
https://www.ni.com/docs/en-US/bundle/ni-switch/page/switch/thermal_voltages.html
https://www.ni.com/docs/en-US/bundle/ni-dmm/page/offset-compensated-ohms_1.html
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