

4 Best Practices to Prolong Relay Life in NI Switches

Laura Moody Product Marketing Engineer

Nikita Prasad Staff Analog Engineer

Flora Yoon Senior Technical Product Manager

Agenda

- Introduction
- Relay Life Basics
- 4 Best Practices
- NI Switch Executive
- Summary
- Q&A

Switches

- Switches are the unsung hero of automation
- Responsible for signal routing
- Easy way to increase channel count
- Found in
 - General purpose functional test
 - Semiconductor parametric test
 - High –power fault insertion
 - Radar tests
 - And MORE
- Chief consideration—Relay Life

What is Relay Life?

The Basics Variables Affecting Relay Life

Relay Life Basics

Relay Life

- Expected or actual duration of time that a relay can operate reliably under its specified conditions.
- Mechanical
 - Assumes no electrical load across contacts during actuation
- Electrical
 - Impacted by arcing
- Depend on several factors:
 - Relay Type
 - Operating environment
 - Load characteristics
 - System Capacitance
 - Stress
- Relay lifespan can affect the overall cost and reliability of the system

Dynamic	
Relay operate time ^[4]	1 ms, typical 3.4 ms, maximum
Expected relay life ^[5]	
Mechanical	1×10 ⁸ cycles
Electrical	
10 VDC, 100 mADC resistive	2.5×10^6 cycles
10 VDC, 1 ADC resistive	1×10 ⁶ cycles
30 VDC, 1 ADC resistive	5×10^5 cycles
60 VDC, 1 ADC resistive	1×10 ⁵ cycles

Know the Strength & Limitations of Each Relay Type

2

Avoid Hot Switching

Use Protective Resistance to Combat Inrush Current

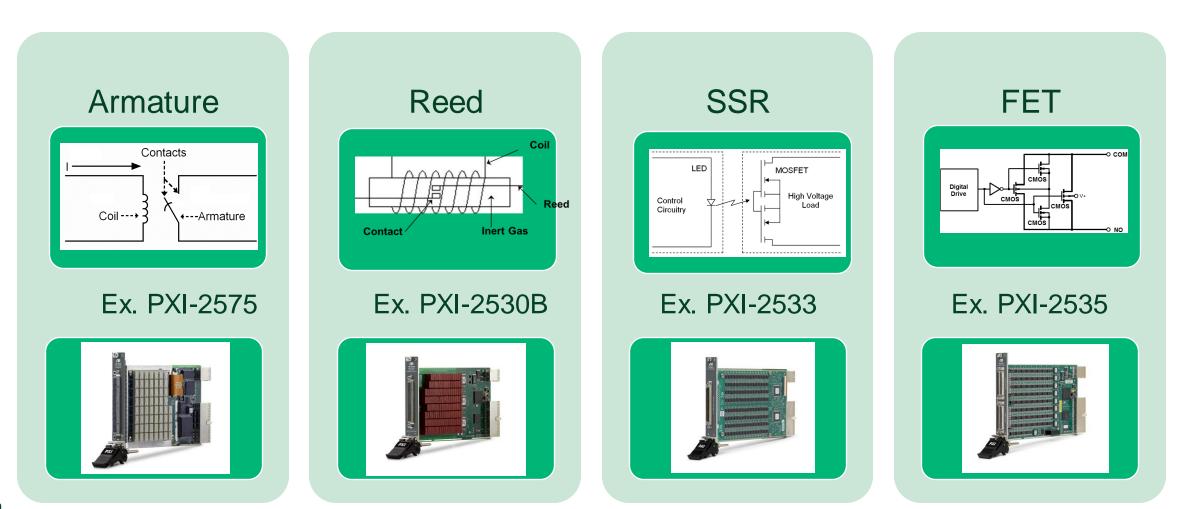
4

Use NI Software to Monitor Relay Health

Know the Strength & Limitations of Each Relay Type

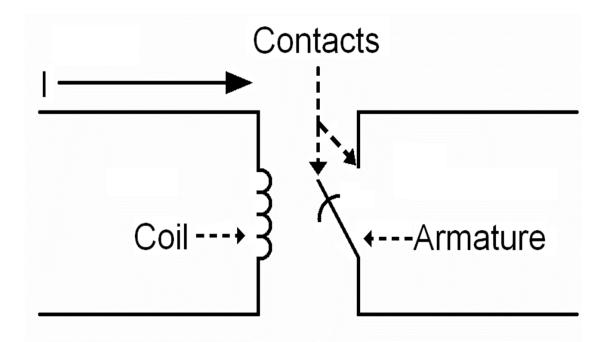
4 Best Practices

Avoid Hot Switching



Use Protective Resistance to Combat Inrush Current

Use NI Software to Monitor Relay Health Π


Relay Types Overview

Electromechanical Armature

- 2. Reed
- 3. SSR
- 4. FET

Coil, when energized, creates a magnetic field to pull contacts closed

Advantages:

- Low cost
- Ease of Use
- High voltage and current loads

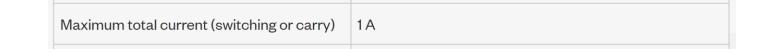
Disadvantages:

- Limited lifespan due to mechanical wear and tear
- Slower to switch
- Audible clicking sound

Failure Mechanism: Resistance build up, unable to close

Relay Types

Armature High Contact Resistance Remediation


If switching very low currents with armature relays is unavoidable, there are still things that can be done:

1. Increase the Switching Current

- Clean the absorbed/polymerized material from the contacts
- Amount of current will vary depending on the relay size
 - Recommended to use max current reported in the specifications
 - Power level >0 Dbm
- Too high of current can also degrade the contact resistance

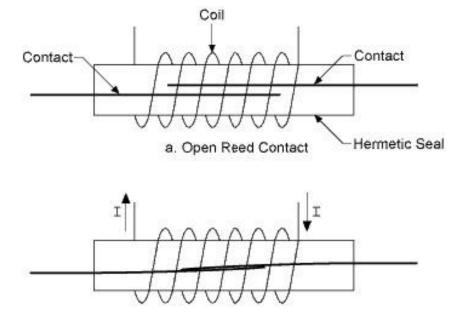
2. "Buzz" the Relay

- Rapid cycling the relay to knock deposits from relay contacts
 - Actuate the device for ~1second
- No fixtures or other measurement devices are needed
- Effective for shorter time than the first method
- Impacts relay life

1. Armature

2. Reed

3. SSR


4.

FET

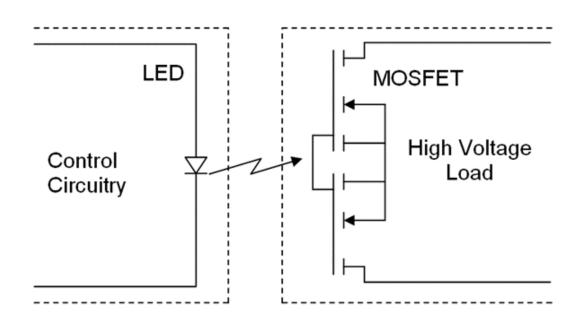
Electromechanical Reed

. Armature

- 2. Reed
- 3. SSR
- 4. FET

b. Closed Reed Contact

Two reeds physically contact when coils are energized Inside a vacuum glass bead -> Resistant to contact polymerization Advantage:


- Smaller than armature relays
- Low power consumption
- Faster than armature relays (higher switching speed)
- Longer lifespan

Disadvantage:

- Low load voltage and low current
- Susceptible to contact damage
- Prone to inrush currents

Failure Mechanism: Welded Shut

ni.com

- Photo-sensitive MOSFET responds to light from LED
- Isolation barrier allows relay to switch high voltages
- LED restricts switching speed

Advantage:

- Faster than electromechanical relays
- Quiet due to no moving parts
- Infinite life when used within specifications

Armature

Reed

SSR

FET

2

3.

4.

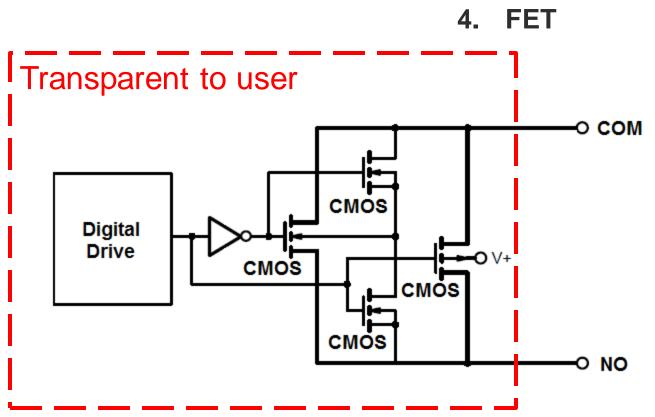
Disadvantage:

- High cost
- Not as robust
- Susceptible to surge currents and damage

Leakage current might need to be addressed Heat could be produced from the LED

ni.com

FET Switch


Recommended to check the voltage across the relay with a DMM first to avoid damage.

Advantage:

- Very fast switching rate
- Long switching lifespan

Disadvantage:

- Very easily damaged
- Only be used with low voltage (±10V)
 - Voltage of the system cannot be higher than the voltage that is allowed to pass through the relay

Armature

Reed

SSR

2

3.

- · CMOS transistors to implement the switching
- No additional isolation between the control circuitry and the signal path

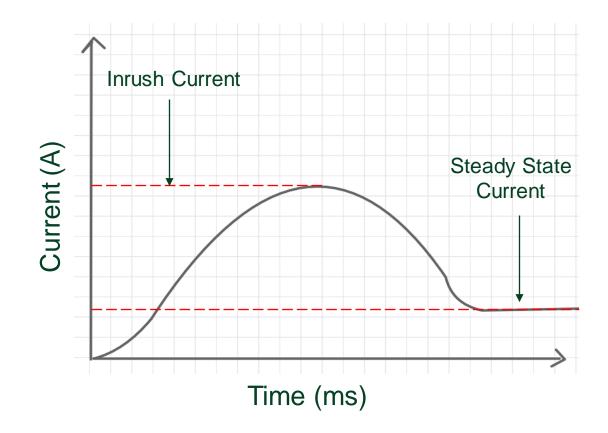
Relay Life Basics

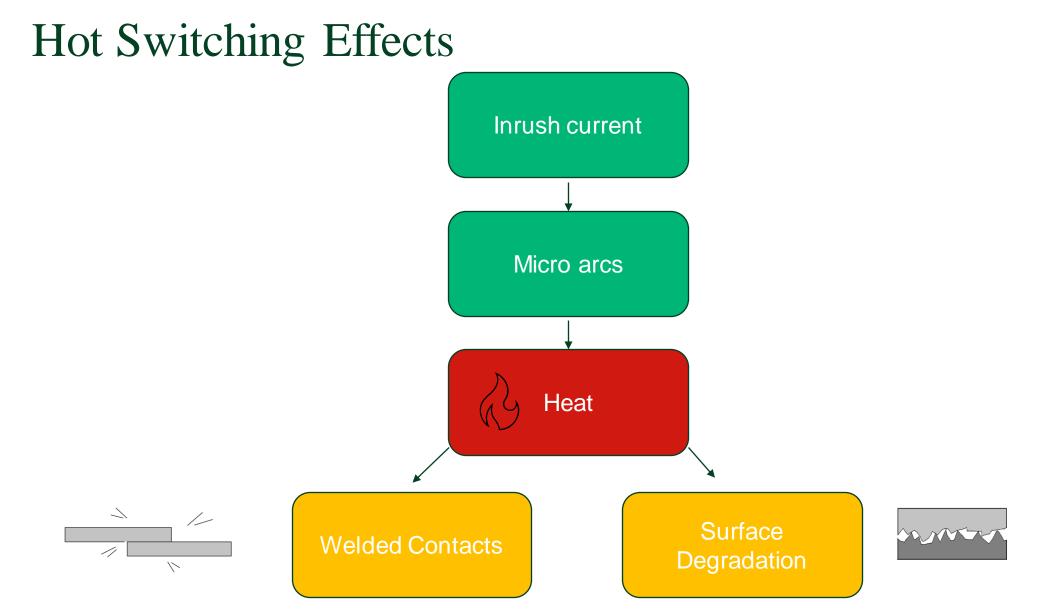
Relay Types and Capabilities

Capabilities	Armature	Reed	SSR	FET
High-Power	Best	Better	Better	Good
High-Speed	Good 150 cycles/s	Better 2000 cycles/s	Better+ 300 cycle/s	Best 60,000 cycles/s
Size	Better Smallest	Better+ About 10x smaller than armature	Best Smaller than Reed	Best Smaller than Reed
Low Path Resistance	Best <1Ω	Better	Better <1 Ω to 100 Ω	Good 8 Ω to 15 Ω
Relay Life	Good 1X10 ⁶ Cycles	Better 1X10 ⁹ Cycles	Best Unlimited mechanical life	Best Unlimited mechanical life
Cost	Best	Best	Good	Good

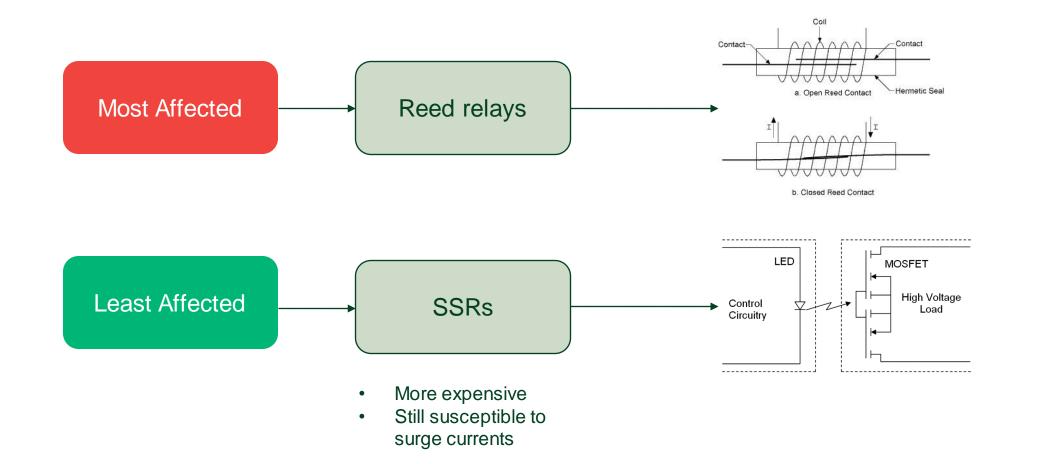
Know the Strength & Limitations of Each Relay Type

Avoid Hot Switching


Use Protective Resistance to Combat Inrush Current

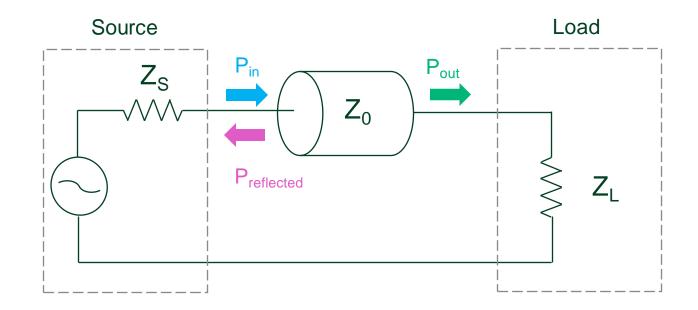


Use NI Software to Monitor Relay Health


What is Hot Switching?

- Definition of Hot Switching:
 - Moving the relay when current/voltage is applied
- What does hot switching lead to?
 - High inrush current

Hot Switching & Relay Type


Damage to Relays—DC vs. AC

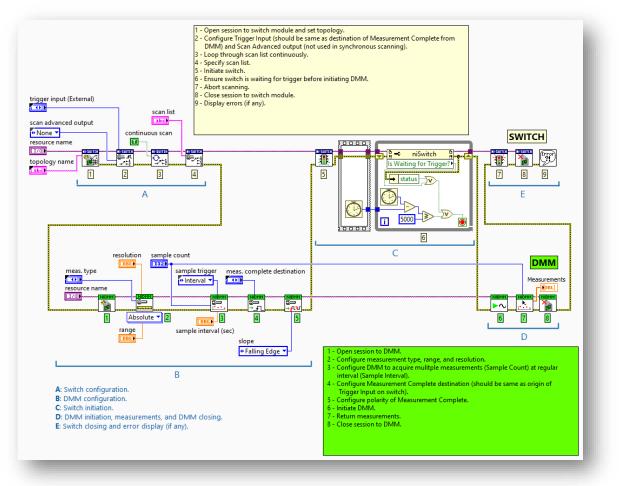
- Relay damage worse for DC signals
- Why?
 - Current flows continuously in one direction
 - Longer and stronger arcing
 - Greater heat and damage
- Consequence?
 - Max rated switching power is less for DC than AC

Hot Switching RF Signals

- Can damage the RF signal source due to reflected power
- Open relay leads to high impedance
 - Impedance mismatch leads to power loss because power is reflected
- Terminated switches ensure that when a selected path is closed all other paths are terminated with 50/75 Ω loads
- Avoid switching during transmission

How to Avoid Hot Switching

Carefully coordinate switching sequence using:


Time delays between switching operations

- ✓ Allow proper settling time
- Reduce instances of cross talk or interference
- ✓ Facilitate cooling

Overvoltage protection

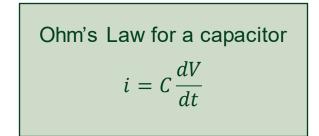
- Receives input from voltage sensing circuits
- Disables power supply, shuts down system, or sends alerts when threshold is exceeded

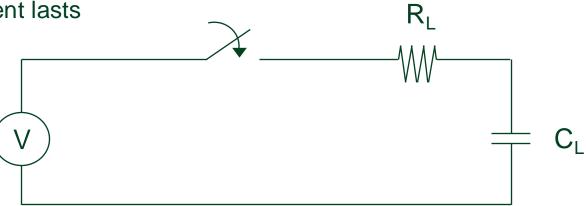
Know the Strength & Limitations of Each Relay Type

2

Avoid Hot Switching

Use Protective Resistance to Combat Inrush Current

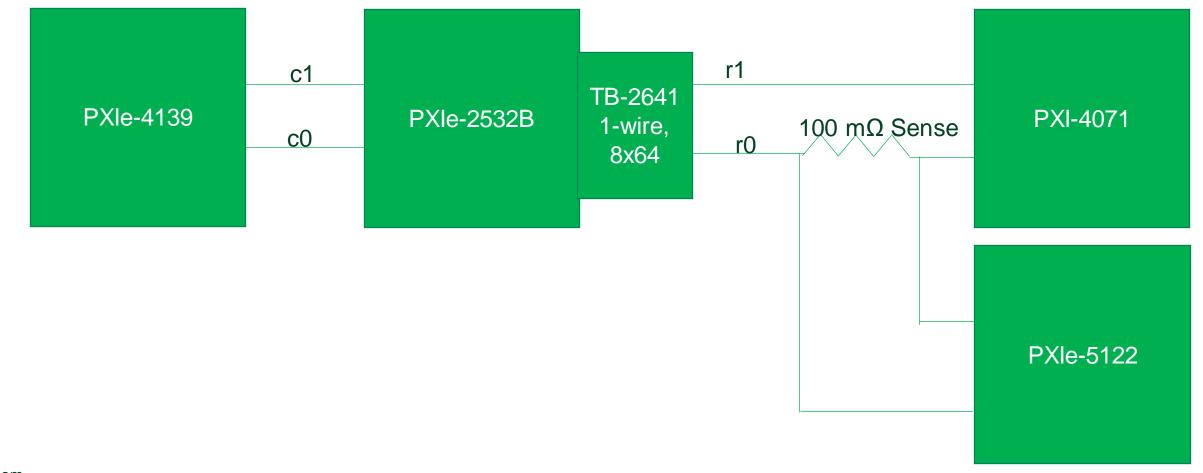




Use NI Software to Monitor Relay Health

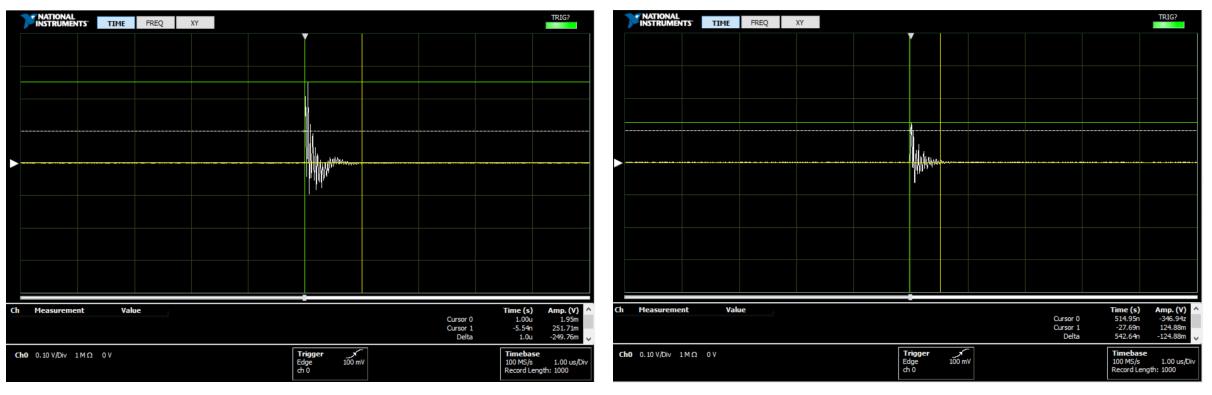
Switching Capacitive Loads

- Protective resistors limit inrush current due to switching in capacitive load
- Everything has capacitance:
 - DMM / Power Supplies / SMU / Cables
- High inrush can cause relay contacts to weld shut requiring relay replacement
- Inrush current is proportional to:
 - (1) change in voltage
 - (2) capacitance
- Resistance limits how long the inrush current lasts



Demo

Observing Inrush Current in Real Time


Demo Set Up

Π

Without 100Ω Protection

With 100Ω Protection

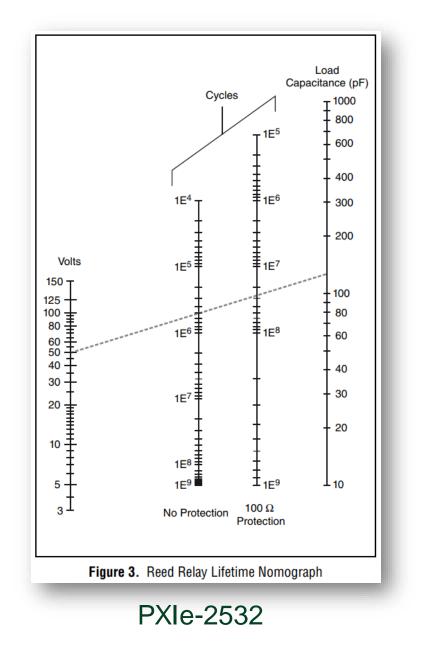
- 250 mV spike w/o protection resistors, lasts 1 uS
- 125 mV spike w protection resistors, lasts 542 ns

ni.com

Know the Strength & Limitations of Each Relay Type

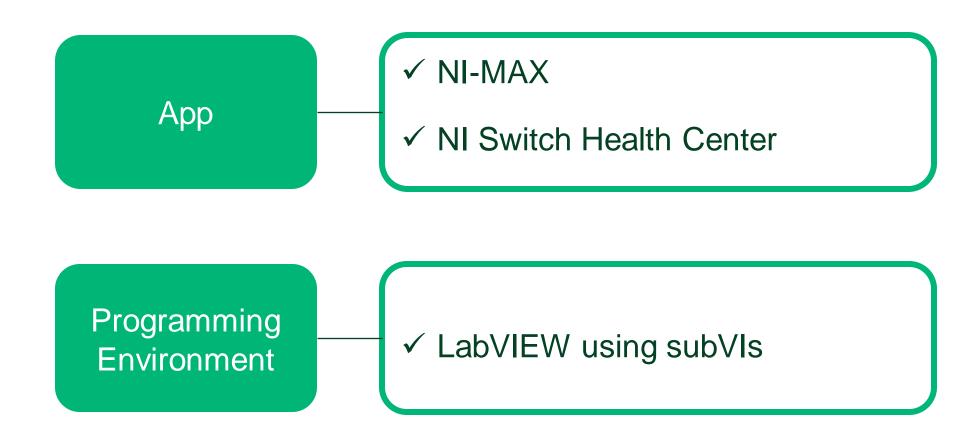
Avoid Hot Switching

Use Protective Resistance to Combat Inrush Current



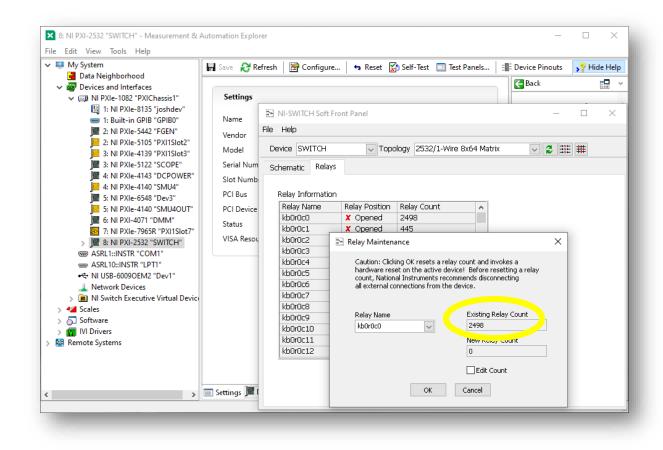
Use NI Software to Monitor Relay Health

Use NI Software to Monitor Relay Health


Predicting Relay Life

- Predicting relay life less straightforward and depends on the type of load
 - Purely resistive loads
 - Capacitive loads
- Must account for statistical variations on relays
- ✓ Predictive maintenance is key

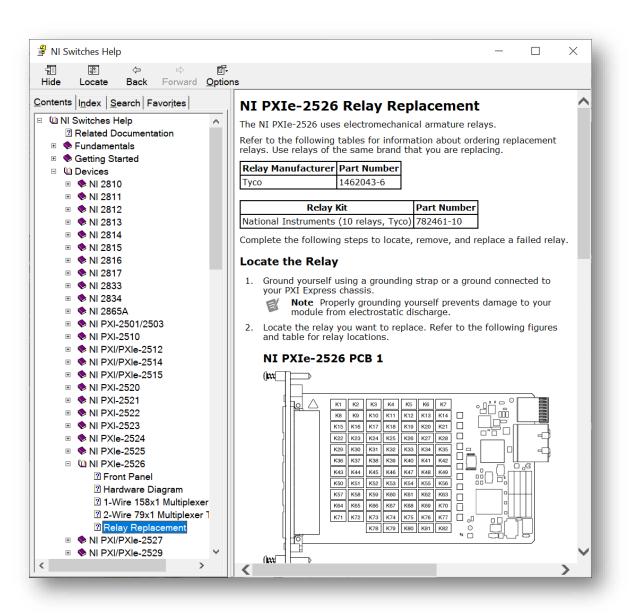
Π


NI Software for Relay Monitoring

Use NI Software to Monitor Relay Health

NI-MAX

- Check relay counts
 - Can search by name
- Reset count for new relays
- Cycle count = # of times relay has been closed and opened
- Counts stored on switch hardware in nonvolatile storage such as EEPROM or flash, and are backed up periodically as well as on system shutdown



N

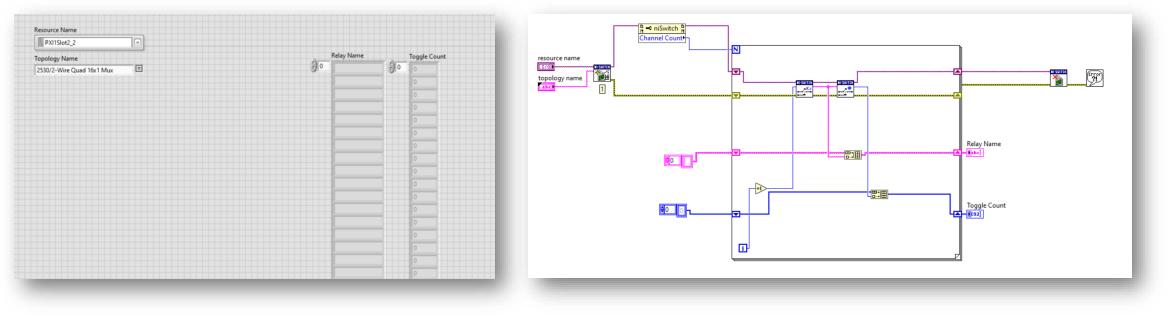
Use NI Software to Monitor Relay Health

Replacing Your Relays

- Replacement instructions in NI Switches Help app
 - Includes instructions on resetting count in NI-MAX
- Replacement Kits contain 10 relays
- To order visit <u>https://www.ni.com/en/contact-us.html</u>
- For more information visit <u>How to</u> <u>Replace a Relay on Your Switch</u>
- Eliminate hassle with <u>system return</u> material authorization (RMA)

N

NI Switch Health Center


- Monitor relay health and failure modes through integrated relay test:
 - ✓ Basic functional test
 - ✓ Test to determine change in resistance
- HTML Report is generated along with a detailed diagram
- Shipped on all NI SwitchBlock modules and select PXI Switch Modules

odel: rial No.:	NI 281 0×0	1A												
	K1	K2	K3	K4	K5	KG	17	KS		Relay	SW Name	Condition	Count	
•	K9	K10	K11	K12	K13	K14	K15	K16		K41	kcard1r2c20	Pass	0	
	K18	K19	K20	K21	K22	K2.3	K24	K25		K42	kcard1r1c2	Pass	0	
	K26 K34	K27 K35	K28 K36	K29 K37	K30 K38	K31 K39	K32 K40	K33 K41		K43	kcard1r1c5	Pass	0	
	K42	K43	K44	K45	K46	K47	K48	K49	8.60	K44	kcard1r1c8	Pass	0	
1	K50	K51	K52	K53	K54	K55	K56	K57		K45	kcard1r1c11	Pass	0	=
	K59	K 60	K61	K62	K63	K64	K65	K66		K46	kcard1r1c14	Pass	0	
	K67 K75	K68 K76	K69 K77	K70 K78	K71 K79	K72 K80	K73 K81	K74 K82		K47	kcard1r1c17	Pass	0	
	K84	K85	K36	K/8 K87	K/9 K88	K80 K89	K90	K82 K91					-	
- <u>-</u>	K92	K93	K94	K95	K96	K97	K98	K99		K48	kcard1r2c19	Pass	0	
	K100	K101	K102	K103	K104	K105	K106	K107		K49	kcard1ab2	Stuck closed	0	
	K108	K109	K110	K111	K112	K113	K114	K115	Ac	K50	kcard1r2c0	Stuck open	0	
	K117 K125	K118 K126	K119 K127	K120 K128	K121 K129	K122 K130	K123 K131	K124	N114	K51	kcard1r2c3	Pass	0	
	K125 K132	K120	K127 K134	K128 K135	K129 K136	K130 K137	K131 K138	_ [] "	PARTICIAL DE	K52	kcard1r2c6	Pass	0	
	K139	K140	K141	K142	K143	K144	K145	NI 2811	10	K53	kcard1r2c9	Pass	0	
-	K146	K147	K148	K149	K150	K151	K152	1085 N		K54	kcard1r2c12	Pass	0	
ET .	K153	K154	K155	K156	K157	K158	K159			K55	kcard1r2c15	Pass	0	
	K160 K167	K161 K168	K162 K169	K163 K170	K164 K171	K165 K172	K166 K173	I¤∟ L		K56	kcard1r3c18	Pass	0	
	K174	K175	K176	K177	K178	K179	K180	₽IC Ē	68 8					-
Pas				K177	K178	K179	K180]' ©'(€	98 B	K57	kcard1ab3	Pass	0	-

Use NI Software to Monitor Relay Health

Front Panel

• Use example VI from library (niSwitch Get Relay Count.vi)

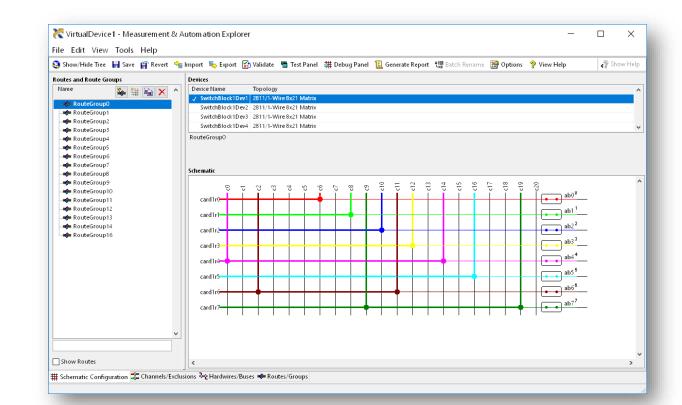
Block Diagram

ni.com

Demo

Get Relay Count

- NI MAX
- LabVIEW


NI Switch Executive

Management & Routing App Software

ni.com

NI-Switch Executive

- Switching software for automated test equipment (ATE) systems
- Provides interactive configuration and automatic routing capabilities that make it easier to design a switch system
- How does it work?
 - Create virtual device which serves as the software configuration of your switch
 - Rename channels & apply route exclusions
 - Validate in simulation mode
 - Export & edit configuration in Excel

 ✓ Reuse test code in LabVIEW, LabWindows™/CVI, Measurement Studio, & TestStand

→ Download <u>Here</u>

Summary

- 4 Best Practices:
 - 1. Know the strengths and limitations of each Relay type
 - 2. Avoid Hot Switching
 - 3. Use Protective Resistance to Combat Inrush Current
 - 4. Use NI Software to Monitor Relay Health
- Use NI Switch Executive for switch system configuration

Check out <u>this guide</u> on Switching and Multiplexing to ensure you're creating a successful automated functional test system.

Q&A

Give us your feedback! Quick 2 Question Survey

In the mobile app, click into the session you would like to provide feedback for

10:15 AM Multichannel RF Data Recording 11:15 AM and Analysis

Meeting Room 19A

Aerospace & Defense •
 Technical Session

10:15 AM Optimizing Validation Processes: 11:15 AM Building Complex Test Systems with Distributed I/O

- Meeting Room 19B
- Aerospace & Defense •
 Technical Session

10:15 AM Panel: Continuous Integration (Cl/ 11:15 AM CD)—Don't Leave Home without It

- Meeting Room 12A
- Programming Essentials Technical Session

10:15 AM Using Python and TestStand to 11:15 AM Boost Your Test Development

Ballroom G

 Product & Technology • Technical Session

10:15 AM What Does Left Shifting Test 11:15 AM Mean in the NI Ecosystem?

Meeting Room 18A
 Transportation - Technical Session

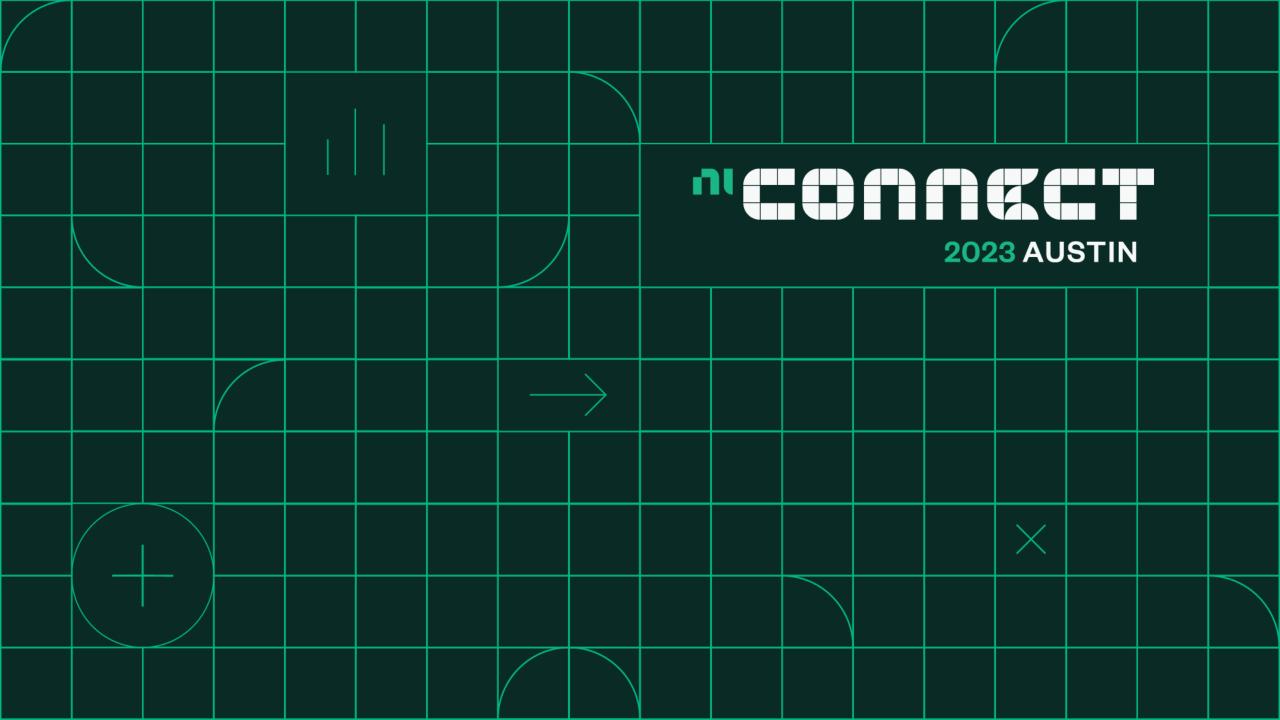
〈 Tue May 23

🛨 Add to Schedule 🛛 🏥 iCal 🛛 👤 Check In

Optimizing Validation Processes: Building Complex Test Systems with Distributed I/O

Tue May 23 10:15 AM - 11:15 AM

Map Meeting Room 19B
 Aerospace & Defense • Technical Session


C Surveys

Take Session Survey

In this session, learn to improve efficiency and reduce non-recurring engineering costs in validation labs by connecting multiple distributed line-replaceable unit (LRU) test systems. Also learn how to abstract LRUs and construct complex test systems faster and more efficiently using existing distributed I/O and edge computation technology.

Click "Take the Session Survey"

ni.com

