

Modern Battery Lab

Future Proof Battery Testing Through a Software-Defined_Approach

Elijah Kerry

Chief Offering Manager, EV Energy Storage

Plan for Today

Software-Defined Battery Lab

Market Disruptions Solution Overview Hardware Roadmap Software Roadmap

The Pace of Change Is Faster than Ever

Organizations Must Rethink Product Innovation or Risk Falling Behind

DRIVING TRAFFIC FATALITIES AND CARBON FOOTPRINT TOWARD ZERO SHIFTING PORTFOLIOS TO SOFTWARE-DEFINED BEVs

EVOLVING SUPPLY CHAINS AND COMMERCIALIZATION MODELS

The Road to the Future is Paved with Software

Acceleration of EV and ADAS Roadmaps will Require New Tools and Process to Meet Demand

		2022	2023-2025			
F	Vehicle Production	80M New Vehicles	~90M New Vehicles by '25			
	Electrification	9% Battery Electric	22% Battery Electric by '25			
(Autonomy	30% L2 Autonomy or Above	>50% L2 Autonomy or Above			
	Software Defined Vehicle	500k vehicles with Domain Controller Architectures	15M vehicles w/Domain Controller Architectures (200% CAGR)			

Overcome Battery Test Challenges

Accelerate Time to Market

Improve Battery Performance

Reduce Total Cost of Test

At NI, we're revolutionizing how enterprises use test systems and insights to drive product and business performance.

Reduce time to market by accelerating product development

Deliver customer satisfaction by improving functionality and reliability

Improve the bottom line by reducing operational cost

Prepare for the future by adapting to evolving test needs

An Open, Software-Defined Approach to Transform the Validation Lab

Battery Validation Workbench

The Software-Defined Battery Lab

Automate and Streamline Workflows

Connect and Increase Utilization of Test Systems

Enhance Data Management and Analysis

Battery Test System (BTS) powered by PAtools

ni.com

Π

Hardware

Battery Cycler Integration in the NI Software Workflow

Seamless integration with NI cyclers, openness for third-party cyclers Configuration-based interface for most existing Cyclers (CAN/Ethernet) Interface with non-standard Cyclers through custom software plug-in Increased development efficiency by standardizing software UI for customer battery cycler collection

NI Battery Cycler Portfolio – Highlights Pack Level

Product	Feature Highlight	Dynamic Response	Technology	Cooling	Granularity	Cost/ Watt	Footprint/ Weight
ERS-BIC	Overload capability with fast recovery	Fast (ms)	IGBT	Water	Medium		Large
NHR-9300	Mobility and power flexibility	Fast (ms)	SiC	Air	High		Small
HPS-17000	High frequency test signal production, High Serviceability	Very Fast (sub-ms)	SiC	Air	High		Medium

NI HPS-17000

RELEASE: Q4 2023

Increased Precision Power Measurement Capability

Network based high accuracy voltage, current and power measurement with warranted specifications for battery cyclers.

Key features

Up to 2000A Current Input (depending on current transducer) 0.05% Guaranteed Accuracy on Voltage and Current Typical 1.25MSPS Sample Rate Continuous background calibration Gain, offset, signal path interleaving Thermally stabilized measurements DSUB Interface to active Fluxgate current transducers +/-10V Input, +/- 2A ח

Software

Serving Large Labs Requires a Software-Centric Approach

"We provide world-class measurements and power electronics, combined with the tools and capabilities that are critical to ensure a safe and efficient lab at scale."

Customer Needs at Scale

Operational Efficiency

- 1. Test Planning and Allocation
- 2. Asset Tracking and Allocation
- 3. Service and Maintenance
- 4. Remote Monitoring
- 5. Cross-functional Communication

Power

- 1. Sub-division of Power
- 2. On-site Energy Storage
- 3. Regeneration
- 4. Load Balancing

Facilities

- 1. Floor Loading
- 2. Fire Resistance and Mitigation
- 3. Ventilation
- 4. Storage
- 5. Roof Infrastructure
- 6. Labor Requirements

Battery Test System - Software Architecture

NI BTS Web UI Example

Π

NI Battery Test Software Workflow

Management Dashboards | Laboratory/Facility Level

Management Dashboards | Test Cell Level

Using Data to Improve Batteries

INSIGHTS FROM TEST DATA

PRODUCT LIFECYCLE

N

"The validation test data we get from NI systems enables our engineering teams learn more about our batteries and find ways to improve them even after they're on the field"

HENRIK RUDELIUS

DIRECTOR, VALIDATION AND SIMULATION BATTERY SYSTEMS

NORTHVOLT

Solution for Large-Scale Lab Management Enabled by NI SystemLink Enterprise

Л

BTS Laboratory Information Management System (LIMS)

- Workflow oriented across Test lifecycle from request through results
- Personalized queue tracks status of Test Requests and assigned work items
- Supports Test, Calibration and Maintenance workflows
- Comments functionality improves cross-team communication and collaboration
- Calendar shows operational visibility
 across entire Test Field
- Smart Scheduling shows Test Station availability based on Test Requirements

Link: Battery Test Analysis Demo

1	Work Orders								
•									
	5 *	4 •	33	4	3	0	5	16	5
	Created by Me	Assigned to Ne	All	New	Defined	Approved	Scheduled	In Progress	Pending
	All Test Requests	Calibration Requests M	aintenance Requests	+ Add Work Order	v				v 9. 7
	Name	Status	Assigned To	Requested By	Туре	Earliest Start	Date Due Date	Start Date	Workspace
	Cycle Test G	New	Me	He	Test Request	-	12/12/22	-	Lo#
	TC828-07 maintenance	New	Bernhard N.	Charlie S.	Maintenance Reques	t 12/12/22	12/12/22	12/12/22	LOF
	TC018-01 maintenance	New	Bernhard N.	Charlie 5.	Maintenance Reques	t 12/12/22	12/12/22	12/12/22	LoF
	Cycle Test F	New	Me	He	Test Request	13/30/22	12/13/22	-	LoF
	Cycle Test E	Defined	He	Me	Test Request		-	-	LoF
	Cycle Test E2	Defined	Me	Me	Test Request	12/13/22	12/12/22	-	Laf
	TC818-01 calibration	Defined	Bernhard N.	Charlie 5.	Calibration Request	12/13/22	12/12/22	12/12/22	LoF
	Cycle Test E3	Reviewed	Bernhard W.	Adison R.	Test Request	-	12/12/22	-	LaF
	Cycle Test E4	Reviewed	Bernhard N.	Adison R.	Test Request		-	-	LoF
	T002A-01 calibration	Scheduled	Bernhard W.	Charlie S.	Calibration Request	12/12/22	12/12/22	12/12/22	LoF
	Cycle Test D	Scheduled	Ma	He	Test Request	12/12/22	12/12/22	12/12/22	LaF
	Cycle Test C	Scheduled	Lin X.	Miles M.	Test Request	12/12/22	12/12/22	12/12/22	LaP
	Cycle Test B	Scheduled	Bernhard W.	Miles M.	Test Request	12/12/22	12/12/22	12/12/22	LOF
	Cycle Test B2	Scheduled	Bernhard N.	Miles M.	Test Request	12/12/22	12/12/22	12/12/22	Lof
	Cycle Test A	in Progress	Bernhard N.	Miles M.	Test Request	12/13/22	12/12/22	12/12/22	LoF
	Cycle Test A2	In Progress	Demhard N.	Miles M.	Test Request	12/13/22	12/12/22	12/12/22	Lof
	TOEsE-05 maintenance	in Progress	Bernhard N.	Charlie S.	Maintenance Reques	t 12/13/22	12/12/22	12/13/22	LOF
	TC818-05 calibration	in Progress	Bernhard N.	Charlie 5.	Calibration Request	12/12/22	12/12/22	12/12/22	LoF
	Cycle Test C	in Progress	Bernhard N.	Miles M.	Test Request	12/13/22	12/12/22	12/12/22	LOF
	Conta Tant C2	in Environment	Barohani N	Miles M	Test Demonst	13/11/22	12/3/31	13/11/22	i of

Create Test Plan latters Cycle Test Info 😔 DUT Propertie lest Sequent 5AE J2288 Description of Te Line 2 Line 3 Line 4 Test Paramet Set 1 Input Paramete Input Paramete Input Pasaret Input Passmet + Add custom naments Create Cancel

Battery Lab Management System Demonstration

ni.com

Charge/Discharge Current | Visualization with Jupyter Notebooks

NI Product Analytics Services – Recent Engagement EV Battery – Performance Data and Analytics for Top Automotive OEM

Project Scope:

- · Deliver a battery analytics data solution that scales across all customer EV battery labs
- Complete solution includes hardware test systems + automation SW + integration services/IT support
- Built the complete data solution architect and integrate into customer's existing IT systems
- Design for security, reliability, and performance with enterprise requirements in mind

Project Highlights

- Ingestion of >90TB of historical data and 750GB+ of weekly data and >500 active users
- Data transformation and visualization, plotting, statistical tools, signal generation, web access, data tagging, approval processes, and more
- Dynamic and static report generation
- Implementation of engineering workflows
- Integration of 3rd party tools like Jupyter Notebooks
- Automatic data ingestion from three existing battery labs with the ability to scale to more in the future

Power Management

TEST CELL 20 ENERGY USAGE

TEST CELL 19 ENERGY USAGE

Operate Safely and Responsibly

Continuously monitor energy usage of all equipment Promptly perform mitigation procedures and alarms

Optimize Energy Usage

Evaluate projected energy needs to recommend test scheduling Minimize energy consumption and maximize asset utilization

Data Collection and Visualization

Securely Connect Systems and Transfer Data

- Manual upload via WebUI
- · Automated data collection via APIs

Data Management

- Ingest file, test results and tabular data
- Metadata enrichment
- Quickly search, group and sort test results
- Ability to link test results to dashboards and report

Visualization

- View data tables in interactive view
- View and manage products

Test Data Analytics

Analysis Routines Development in JupyterHub

- Generate HTML and PDF reports
- Create ETL routines to transform data
- Create custom computation and metrics

Analysis automating, running, and monitoring

- Defined routines to run notebooks on file upload and update, on data table append, and on scheduled calendar time
- Run notebooks on the selected file and data tables on demand
- Integrate notebooks with dashboards to display high-level computed metrics and plots

Test Monitoring and Insights

Viewing fleet wide test results

- View and query product and test results.
- Drill into test steps and measurements.

Creating Test Module Dashboards

Create dashboards to display test and KPI data.

Trending Test Data

- Visualize test performance over time.
- Plot test data against metadata associated with the test.

Accelerate test system development

Maximize reuse of battery testing investments

Connect battery data to improve performance through changes to software

Software-Defined Battery Lab

Open and Flexible Approach to Automate the Validation Lab

Elijah Kerry

Question & Answers

Please submit your question through Q/A chat pod.

