

Validating Satellite Datalinks with HIL and SLE

Samah Chazbeck

Principal Applications Engineer

Agenda

Л

- Market Trends in Space
- Satellite Datalinks A System Validation Test Challenge
- Datalink (System Under Test) Emulation
- Environment (Channel) Emulation
- Leveraging HIL in the design and characterization workflow

Evolution of Number of Satellites

Defense, Security, Navigation, Earth Observation, Science, Health, Environment, Weather, Telecommunications, Connectivity

Commercialization of Space Applications

ור

Space Industry Trends

Launch Services

Development of lunar and multi-planetary vehicles Increased access to space at a lower price point

LEO payload support small sat launchers and payload adapter

Satellites

Increased constellation manufacturing and specialized payload deployment

Earth Imaging, Global Communications, Satellite Servicing Space Habitats Growth of LEO Economy ISS Decommission in 2030 Multiple Commercial Space Stations

Ground Segment

Multi orbit and multi frequency ground station support

Cyber considerations for critical infrastructure

Space Industry Challenges

Market Challenges

- Increased customer cost pressure
- Increasing market competitors and investment from competition
- Time to market and customer delivery pressure
- Personnel bandwidth capacity and expertise recruitment

Technology Challenges

- Scaling production volumes
- More complex payloads
- HW quality and reliability
- More software and autonomy
- Digital Engineering

וח

NI Space Application Areas

Avionics HW Test

HIL and TT&C Integration & Test RF C

TT&C, FTS, and L RF Components

Launch Operations

Engine Test

Electronic Ground Support Equipment

Environmental, Structural, and Mechanical Test

Satellites

Avionics HW Test

HIL and TI Integration & Test Cha CARE Comp

TT&C, RF Comp., Pow Channel Emulation,

Power Systems Tests

EOIR, SAR, and Comms Payloads

Electronic Ground Support Equipment

Environmental, Structural, and Mechanical Test

Enterprise Test, Data, and Systems Management Software

■ Datalink Payload and TT&C Product Lifecycle

Incrementally Developed & Validated Throughout the Entire Lifecycle

System Design

Rapidly develop product IP and functional simulators by leveraging COTS hardware and software tools to model and verify electronics, command and data interfaces.

Subsystem Design

Rapidly develop product IP and functional simulators by leveraging COTS hardware and software tools to model and verify electronics, command and test pattern interfaces.

System Validation

Automate the calibration and performance validation of mission hardware by leveraging COTS instrumentation and test execution software.

Test & Verification

Automate performance validation of silicon and CCAs with COTS instrumentation, in combination with specialized stimulus hardware.

Shared IP & Simulation Across the Design, Integration & Test Cycle Reduces Risk & Time-to-Market

Design Workflow | Datalink and TT&C

Datalink (System Under Test) Emulation

Application – Datalink Endpoint Validation

ni.com

Design Workflow | Validating a SatCom Payload

RF Subsystem Characterization

Validation of a communications payload or telemetry transmitter can be performed at various stages of the design cycle.

- Software Prototyping Algorithm Validation
- RF Subsystem Characterization
- Final Payload Integration

The ability to detect design flaws, iterate on communication algorithms, and validate performance under mission conditions faster and earlier in the design cycle is crucial to minimizing risk and getting to market faster

RF Subsystem Design validation requires a mix measurement capabilities

- RF Parametric: Gain/Phase, Phase Noise, Channel Power, ٠ Linearity/Compression
- Application: Modulation Quality, Error Vector Magnitude (EVM), Bit Error Rate (BER), I/Q or Data Recording

Traditional test and measurement vendors have solved these needs with separate instruments – leading to a large, expensive, and often mixed vendor test stand

Application or Mission validation is often performed with "golden SUTs" or black box receivers that are expensive to maintain and scale.

Satellite Link Emulator | Hardware Architecture

Consolidated Instrumentation in a single, scalable, Software Connected PXI System

ni.com

Л

Vector Signal Transceiver

Integrated, instrument grade VSA and VSG with up to 1 GHz of instantaneous bandwidth

Support Onboard and External LO's for phase noise optimization

Multi-Channel Synchronization (< 1nsec) and Phase Coherent LOs

Easy SW and HW integration with mixed I/O and PXI

Optimized for automated characterization and production

Customizable firmware for deploying application IP or test speed optimization

- Onboard, open FPGA
- Full rate peer to peer streaming to FPGA coprocessors

Vector Signal Transceiver Product Family

Vector Signal Transceiver

Third-generation VST Provides Extended Frequency and Bandwidth Coverage

PXIe-5842 26.5 GHz VST

- Expand Capabilities with Flexible Licensing/Upgrade Options
- Expand Functionality with additional HW

- mmWave extension up to 54GHz
- Common SW tools to PXIe-583x and PXIe-5841
- Full IBW I/Q Data movement supported via integrated High-Speed MGT interfaces and PXI ecosystem – including the new NI 7903 FPGA Co-Processor

Parameter	Instrument Capability
Frequency Range	30 MHz – 23 GHz (Q4 2022) 30 MHz – 26.5 GHz (H2 2023)*
Bandwidth	Up to 2 GHz
RF IN / OUT Flatness (2GHz)	< ±0.45 dB typ. / < ±0.4 dB typ.
RF IN / OUT Absolute Accuracy	< ±0.4 dB typ.
Max Unleveled Tx Power	+20 dBm typ. (<18 GHz)

*Upgrade from 23 GHz HW to 26.5 GHz HW requires a paid upgrade service

	PXIe-5655
PXIe-5842 (module)	Required LO
PXIe-5842 Vector Signal Transceiver	PXIe-5655 Dual RF Synthesizer ACC ACTIVE
PFIO RF IN R	
	2200 V
Mot Des	LOIN +ITder NUC
	LO OUT +10 dBm MAX PEVERSE
CTRL RF	IN
	HORDER REFIN
	LOIN 155 sillin 155 sillin
tesp Serv	ative 🛆

PXIe-5842 VST

ni.com

PXIe-5842 with 54GHz Freq Extension | High Level Overview

Key Features

Л

- Extended, Wideband coverage for mmWave Applications such as 5G, Satcom, Radar, and EW
- 2x Bidirectional RF ports for both mmWave and IF DUT connections
- Simultaneous operation of RF Tx & Rx ports on a single RMM-5585
- Independent frequency tuning of RF Tx & Rx ports on RMM-5585

Parameter	Instrument Capability
Frequency Range	22.5GHz – 54 GHz (RMM-5585 RF IN/OUT) 100 MHz – 23 GHz (PXIe-5543 RF IN/OUT)
Bandwidth	2 GHz
RMM RF IN/OUT Flatness (2GHz BW)	1.2 dB (39GHz)
RMM RF IN/OUT Absolute Accuracy	± 1.0 dB (39GHz)
RMM RF OUT Max Power	28 GHz: +13 dBm
5G NR,100MHz EVM	Better than -43 dB @ 47GHz

PXIe-5842 VST with 54 GHz Freq Extension

Scalable Digital Interfacing with NI FlexRIO

High Speed Serial Product Table Link

Ы

Specification	NI PXIe-6593	NI PXIe-6594	PXIe-7903
Line Rates	500 Mbps – 16.3 Gbps	500 Mbps – 28.2 Gbps	Up to 28.2 Gbps
Channels	8 RX/TX (GTH)	8 RX/TX (GTY)	48 MGTs (GTYs)
User Programmable FPGA	Able Kintex Ultrascale (KU040 or Kintex Ultrascale + (KU15P) GA KU060)		Virtex Ultrascale+ (VU11P)
DRAM	4 GB	8 GB	16 GB
Host Streaming Bandwidth	7 GB/s	7 GB/s 7 GB/s	
Connector	QSFP28	QSFP28	12x miniSAS zHD
Cabling Options	Copper or Optical	Copper or Optical	Copper or Optical (TBD)
Aux DIO	8 GPIO, 4 GTH (RX/TX)	8 GPIO, 4 GTY (RX/TX)	12 GPIO (MiniHDMI)
Relevant Protocols	ols JESD204B, 10/40 GbE, JESD204B/C, 10/25/40/100 Aurora, Custom GbE, Aurora, Custom		100 GbE, Aurora 64b66b

NI | Datalink Reference Architecture

InstrumentStudio, MeasurementLink, & Application SW				Vector Signal Analysis	Signal Generatio	'n	Real-Time Modulation & Demodulation		
NI RFmx		NI Datalinks Application Software			Calibrated RF Measurements(Spectrum Analysis, Pulse Analysis) Standardized Configuration Interface to Real-Time Mission IP				
NI RF Drivers		NI FlexRIO Drivers		RF Instrume Data Streaming co	nt Control, FPG nfiguration, Tr	iA In igge	strument Control, ring and Synchronization		
		NI Datalinks Reference IP	User IP		<pre>RF Front End 1 Tx + 1 Rx Frequency: 30 54 GHz IBW: 2 GHz</pre>	MHz -	Core • •	<pre>> DSP RE-Configurable Peer-to-Peer Data Stream over MGT (Aurora) User Defined IP with</pre>	
	Image: state sta	FlexRIO FPGA	Coprocessor		 Instrument Grade RF performance & Calibration Full BW I/Q Streaming 		• ,	VHDL import capability Add on stream to disk capability for I/Q data recording	

ni.com

Environmental (Channel) Emulation

Application Challenge | Real-Time Hardware Emulation

Bring real-world radio channel conditions into the lab with real-time, hardware in the loop channel emulation

Π

Satellite Link Emulator | Hardware Architecture

Л

PXIe-7903

Vector Signal Transceiver

Integrated, instrument grade VSA and VSG with up to 2 GHz of instantaneous bandwidth

Support Onboard and External LO's for phase noise optimization

Multi-Channel Synchronization (< 1nsec) and Phase Coherent LOs

Easy SW and HW integration with mixed I/O and PXI

Optimized for automated characterization and production

Customizable firmware for deploying application IP or test speed optimization

- Onboard, open FPGA
- Full rate peer to peer streaming to FPGA coprocessors

Vector Signal Transceiver

- to a Qiana I Trans a since Due doot Fourity

Commercial Off-The Shelf Open Hardware & Software Standards

Heterogenous, Real-Time Compute & DSP Wideband, High-Fidelity RF Synchronization & RF Phase Alignment

Image: Solution Structure Solution Solu

Use PCIe streaming at up to 7 GB/s to stream updated target parameters down to FPGA

1

2 Use Peer to Peer or MGT streaming to stream IQ Data from/To VST.

Use FPGA Onboard memory to store Scene Parameters with time dependent updates

ni.com

Full Comms Validation Solution

NI | End-to-End Datalink Validation

					Real-Time Orbit, Channel, Imp User Defin	pairments, Interference Models, ed algorithms
NI RF Drivers		NI FlexRIO Drivers and LabVIEW FPGA			RF Instrument Control, Data Streaming configuration	FPGA Instrument Control, , Triggering and Synchronization
vsт (((=[])))		NI Datalinks Reference IP	User IP	Channel Emulation	<pre>RF Front End 1 Tx + 1 Rx Frequency: 30 MHz - 54 GHz IBW: 2 GHz The strument Grade</pre>	 Core DSP RE-Configurable Peer-to-Peer Data Stream over MGT (Aurora) User Defined IP with VHDL import canability
((\ -\/)) \	\leftrightarrow	FlexRIO FPGA Coprocessor		RF performance & Calibration • Full BW I/Q Streaming	 Add on stream to disk capability for I/Q data recording 	

ni.com

Л Design Workflow | Modular, Scalable Solution

Modular NI Test Solutions Enable Complete Subsystem-Through-System Validation

N

Datalink & SLE Reference Architecture - Demonstration

Detail of COOPER Design of International State Connection

Today's modern Telemetry and Datalink Systems are increasingly mission-critical to dynamic Aerospace & Defense Applications such as Satellite Communications.

To reduce risk and get to market faster – it's crucial to combine traditional RF parametric measurements with realtime, application specific HIL validation. This includes not just the SUT in a static condition, but under the real mission parameters of the end system.

NI approaches this challenge by combining high performance RF instrumentation with scalable FPGA co-processors to provide the SUT and environment emulation needed to design, validate, and product these key systems.

• See it in action in the Aerospace and Defense Experience Lounge, or contact your NI representative for more information!

