Rocket Testing: A Case Study in **Distributed Control** Architecture

NI Connect 2023

Steve Summers Offering Manager Mechanical Test NI

Daryn Lazar

ACS

Sr Director Bus Development Alan Saucedo Engineer Ground Software Rocket Factory Augsburg

PROPULSION TEST

Types of Propulsion Test:

- Engine Test
- Stage Test
- Full Assembly Test

1.00

S 🍂

🔹 🗉 🗘

非

0

ידייורים אר

Jhm

▶ ♦ 0:00 / 1:34

PROPULSION TEST

PROPULSION TEST

Rocket Test Challenges

Setup

- Cost, time, resources
 Environment
- Noise, vibration, elements
 System / subsystem failure
- Detection, reaction

Safe, successful execution is critical to success of a program

Managing risks in a rocket test control system

Goal: Architect system components to manage risk.

- System-level approach
- · Identify acceptable risk profile
- Classify sources of risk
- Use good system design to address risk sources

System Design

Reduce risk through:

- Identification of risks
- Ensuring security
- Providing redundancy
- Simplified maintenance
- Improved scalability

ות System Design Steps

(((Requirements Architectural System Design Detailed Testing Deployment **Implementation** Maintenance Gathering Specifications Analysis Design Design

וח

Identifying Risk Profile

וח

Good System Design Choices

ni.com

System Architecture Options

Centralized control + measurement

Л

Distributed control + measurement

System Architecture Options

Π

Centralized control + measurement

Distributed control + measurement

PXI Options

Л

OS: Windows Linux Linux Real-time

VCXO/OCXO oscillator options for timing

RDMA for communication

RDMA

Data transfer without CPUs to reduce latency and jitter Available with PXIe-8285 and NI-RDMA driver

ni.com

CompactRIO Options

Ethernet

Л

Standard ethernet communications – TCP, UDP, etc.

Dual-port ethernet can be used in redundant topologies

TSN

NI cDAQ and cRIO devices support TSN timing

EtherCAT

NI-9145 support EtherCAT Requires master running RT-OS in the network

ni.com

וח

Software options to manage risk

Operating System	Platform	Architecture	Communication
Windows Linux Real-Time	C/C#/C++ Python Assembly LabVIEW Pre-written application	Central / distributed Monolithic / modular Data brokering	TCP UDP EtherCAT Shared memory High/low level

Key to success: Good risk profile definition

• What determinism do I need? \rightarrow Windows or Real-Time OS

- What happens in loss of network? → Central or distributed architecture
- Can I tolerate lost data points? \rightarrow TCP or UDP

N

Communication options

ni.com

OSI Network Model

U

Communication options

	Latency	Jitter	Reliability	Comments
ТСР		-	+	Use existing network Re-transmit on failure
UDP		+		Use existing network Broadcast Latest value available
RDMA	+	+		Requires new network components
EtherCAT	+	+	+	Requires additional master device.
gRPC				Many options for deployment.

DISTRIBUTED CONTROL AND MEASUREMENT SYSTEMS FOR ROCKET TESTING

ALAN SAUCEDO – GROUND SOFTWARE ENGINEER

TEAM

220

29

38

MEMBERS

AVERAGE AGE

NATIONALITIES

Rocket Factory Augsburg AG (RFA) is a New Space start-up located German in Augsburg. It was founded in 2018 with the mission to build rockets like just cars. Its multistage rocket, **RFA One**, is currently under development and scheduled to launch in late 2023. FOUNDED 2018

LabVIEW roketsan

3D PRINTED ROCKET ENGINE PARTS

• Flexible design • Rapid prototyping

• Predictable and controllable timescales and costs

DECISIONS BEHIND BUILDING A RELIABLE DISTRIBUTED CONTROL AND MEASUREMENT SYSTEM

Test

article

Control & DAQ

- Industrial-grade
- High-speed control
- Signal processing
- Modular

Communications

- Standard protocol
- Low latency
- Any to any
- Categorization

Software

- Deterministic
- Configurable
- Flexible
- Scalable

USER INTERFACES

- Real-time sensor data
- Control manipulation reflection
- Command acknowledgement
- Actuator feedback

- Configuration of sequence execution
- Health status from control system
- Launch and listen
- Watchdog timer on demand

WATCHDOG TIMER

• Self-reliant software-based timer used to detect a malfunction in the network connection or responsiveness of the monitoring and control interface which triggers a safe shutdown sequence of the plant and test article.

HOW DOES IT WORK?

ENGINE TEST

- Sequence + abort criteria executed in real-time •
- Cross-platform communication for event triggering based on • sequence status
- Measurement timestamping at source

Ē

Α

SECOND STAGE TEST

TEST SITE IN KIRUNA, SWEDEN (2022)

- ~ 520 sensors
- ~ 170 actuators
- 9 cRIOs

Thank you for joining our mission

Follow us on Social Media!

- @rfa_space
- @rfa.space
- Rocket Factory Augsburg

ENGINEER • INTEGRATE • BUILD

DELIVERING SOLUTIONS **BUILDING TRUST** Integrated Facility, Equipment, and Controls Solutions

utomotive/Off-Road/Rail • Aero ice/Aviation • Energy • Chemica • Food & Beverage • Laboratory Research • Science & Technolog • Manufacturing • TEST SOLL TIONS • Aerospace/Aviation Energy • Chemical • Food Beverage • Laboratory/Re search • Science & Tech nology • Manufacturina • Automotive/Off-Road

Automotive/Off-Road/Rail • Aero space/Aviation • Energy • Chemica • Food & Beverage • Laboratory Research • Science & Technolog

TSN ■ FPGA DDS

EtherCAT

CAN

- TCP/IP
- Modbus
- Serial
- Queued messaging

Processing jitter

- Range of processing time within a processing loop
- Minimize the time variance
- OS dependent component
- Architecture and coding component

ENGINEER . INTEGRATE . BUILD

otive/Off-Road/Rail

Aerospace/

- Monitoring safety critical events in hardware - safety rated
- Monitor health of main control system watchdogs
- Monitor general system limits software
- Redundancy

Real-Time Control

- Closed-loop PID (proportional, integral, derivative)
- Deterministic calculation within a clock cycle
- Digital loops with adjustable output, feedback and setpoint selection
- Custom algorithm support

Test Profiles

- Parallel threads
- Sequential options

Flexibility

- Accommodate wide variety and quantity of subsystems
- Versatility to handle various types of devices under test
- Small, medium and high channel count support
- Support for customization and expansion
- Additional acquisition devices such as oscilloscopes, power meters, etc.

Application Examples

Aerospace – R&D/V&V Landing Gear Control System Upgrade

Aerospace – ATP EOL Fuel Pump Test System

Transportation – R&D eAxle Test System

Aerospace – R&D Thermal Management Automotive/Off-Road/Rail • Aerospace/Aviation • Energy • Chemical • Food & Beverage • Laboratory/ Research • Science & Technology

Transportation – R&D High-Speed eMotor Test System

Energy • Chemical • Food Beverage • Laboratory/Researc • Science & Technology • Auto motive/Off-Road/Rail • Aerospace viation • Energy • Chemical • Foo

Key Benefits

- Standardization
 - Standardize at a framework and architecture level not application level. Users are capable of creating custom GUIs, custom Chemical + Food & modules, but all using a framework and industry standards.

Quicker ROI

Utilize existing framework modules and DAQ engines to quickly build test systems, leaving more time to focus on value-added tasks such as test article test profiles, custom GUIs, and machine control logic.

Lower Costs

- Not only build test systems faster, but the one-time purchase cost and optional yearly subscription fees for site-wide usage is a ratory/Research relatively low total cost.
- Reduced Support and Maintenance
 - A familiar and consistent framework provides for simplified training and understanding, and support services are available from internal resources, ACS, or any integrator familiar with the framework or LabVIEW. Original source code for each project stored in our secure GitHub repository.

Licensed Open Source

Customers are free to use and modify the framework source as they see fit across their facility and can decide to upgrade on their schedule.

Continuous Improvement

The framework itself continues to improve through contributions by ACS, integrators and the LabVIEW community with all updates available to subscribed customers. Customizations considered proprietary or customer specific are not shared with the community.

Reduced Obsolescence

The modularity of the source code reduces the impact of obsolescence as hardware is abstracted from all but a single software module.

Design and build a new turboshaft test facility for turboshaft engine testing

We Provided:

- Turnkey, single source design and construction
- Phased approach for complete design build.
- Mechanical systems
- Control system
- Safety system
- Tempered engine air make-up
- Custom ACS controls solutions
- Commissioning and acceptance testing

LINGINEER + INTEGRATE + BUILD

Turboshaft Engine Test Facility (Exterior)

(erior) (erior) (contor) (contory/Research (contory/Research (contory/Research (contory/Research) (contory/R

Aviation * Energy * Chemical * Foo

- Upgraded existing test facilities with supporting infrastructure and site improvements
- Designed and built an entire new cell for rocket engine testing

We Provided:

- Turnkey, single source design and construction
- Phased approach for site wide renovation and expansion
- Custom ACS controls solutions
- Commissioning and acceptance testing

- R&D test firing of Sierra Nevada Corporation (SNC) patented VORTEX[®] engine
- Test in horizontal & vertical positions
- Multiple fuels
- Remote control room connected via CCTV and PLC communications

We Provided:

- Turkey design build of new test cell
- Systems integration

Give us your feedback! Quick 2 Question Survey

In the mobile app, click into the session you would like to provide feedback for

10:15 AM Multichannel RF Data Recording

- Meeting Room 19A
- Aerospace & Defense Technical Session

10:15 AM Optimizing Validation Processes: 11:15 AM Building Complex Test Systems with Distributed I/O

- Meeting Room 19B
- Aerospace & Defense Technical Session

10:15 AM Panel: Continuous Integration (CI/ 11:15 AM CD)—Don't Leave Home without It

- Meeting Room 12A
- Programming Essentials Technical Session

10:15 AM Using Python and TestStand to 11:15 AM Boost Your Test Development

- Ballroom G
- Product & Technology Technical Session

10:15 AM What Does Left Shifting Test 11:15 AM Mean in the NI Ecosystem?

Meeting Room 18A
 Transportation - Technical Session

K Tue May 23

Aerospace & Defense · Technical Session

[]] Surveys

Take Session Survey

In this session, learn to improve efficiency and reduce non-recurring engineering costs in validation labs by connecting multiple distributed line-replaceable unit (LRU) test systems. Also learn how to abstract LRUs and construct complex test systems faster and more efficiently using existing distributed I/O and edge computation technology.

Click "Take the Session Survey"

ni.com

NI CONFIDENTIAL