

Optimizing Validation Processes:

Building Complex Test Systems with Distributed I/O

Jason Kreienheder Principal Application Engineer

Matt Jacobson Senior Application Engineer

Agenda

- History of Distributed Systems
- Reasons for Distributing Systems
- Hardware Options for Distributed Systems
- Challenges of a Distributed System

History of Distributed Systems

History of Distributed Systems

It was around the year **1978**, when General Motors introduced the first ever electronics system in an automobile. And the rest as they say is history.

H009 (also called MacAir H009), introduced by McDonnell in **1967**, was one of the first avionics data buses. It is a dual redundant bus controlled by a Central Control Complex (CCC), with up to 16 Peripheral Units (PUs), synchronously communicating using a 1MHz clock. H009 was used in early F-15 fighter jets, but due its noise sensitivity and other reliability issues was replaced by MIL-STD-1553.

https://www.embitel.com/blog/embedded-blog/automotive-control-units-development-innovations-mechanical-to-electronics https://en.w ikipedia.org/wiki/MIL-STD-1553

Reasons for Distributing Systems

Reasons for Distributing Systems

Distributed Processing

Reasons for Distributing Systems Reduced Wiring

Reasons for Distributing Systems

- Sufficient processing power on a single controller
- A need for more slots of a certain type i.e. PXI, PXIe
- I/O segregation based on rack layout and wiring considerations

Л

Hardware Options for

Distributed Systems

MXI Express CompactRIO CompactDAQ EtherCAT

MXI Expansion PXI Remote Control Module Options

PXIe-8360 PXIe, x1, MXI-Express Interface, PXI Remote Control Module

FROM \$ 1,435.00

Bandwidth: <192 MB/s Topology: 1:1 Distance: 7m Chassis 1 PXI Express Chassis Chassis 2 PXI Express Chassis Chassis 3 PXI Express Chassis

MXI Express Connection

1. PXIe Chassis Front Connections

MXI Express Connection

PXIe-8399 PXIe, Gen 3, x16, 2-Port PXI Remote Control Module

PXIe-8398 PXIe, Gen 3, x16 PXI Remote Control Module

FROM \$ 4,699.00

FROM \$ 3,046.00

Bandwidth: <13.7 GB/s Topologies: 1:1, Star & Daisy Chain Distance: < 200m

MXI Expansion PXI Bus Extension Module Options

Chassis 1 PXI Express Chassis Chassis 2 PXI Express Chassis Chassis 3 PXI Express Chassis

1. PXIe Chassis Front Connections

PXIe-8364 PXIe, x1, MXI-Express Daisy-Chain Copper Interface, PXI Bus Extension Module

FROM \$ 1,733.00

Bandwidth: Low/Fixed 192 MB/s Topology: 1:1 Distance: 7m

FROM \$ 3,722.00

Bandwidth: High/Flexible 13.7 GB/s Topologies: 1:1, Star & Daisy Chain Distance: 200m

CompactDAQ

- USB or Ethernet connectivity
- Slot count options 1,4,8 and 14
- Monitoring only
- TSN Enabled on Ethernet

Experience Lounge Demo: 2,000 - Channel Structural Test System

η

EtherCAT

- Chassis are daisy chained from the RT controller standard networking cables
- Control and Monitoring
- Users can utilize the 9145 chassis in either Scan Mode or leverage the backplane FPGA to implement custom logic in FPGA mode.
- Requires NI Scan Engine

Experience Lounge Demo: Coordinated Control for Dynamic Actuator Test

CompactRIO

- NI is trending away from MXI on cRIO
- Fewer options for data sharing between controllers
- Not a typical in distributed systems other than an EtherCAT master

Technology	Physical Distance Between Nodes	Accuracy ¹	Global Traceable Time?	Cabling	Timestamp?	Recommended Hardware	Synchronized Subsystem
Signal- Based ⁵	<100 m	Varies (Refer to the manual)	No	Varies	No	NI-9469, trigger, or NI- 9402	FPGA, and NI- DAQmx/DSA ³
IEEE 1588 with hardware support (IEEE 802.1AS or default profile)	Within subnet	<1 µs	Optional	Standard Ethernet	Yes	Built-in Ethernet port on TSN enabled cRIO controllers	System Clock, FPGA, and NI- DAQmx/ DSA ⁴
IEEE 1588 with software support (default profile)	Within subnet	1 ms	Optional	Standard Ethernet	Yes	Built-in Ethernet port on all Linux RT cRIO controllers	System Clock
SNTP ⁵	Global (access to NTP server)	10's of ms	Yes ²	Standard Ethernet	Yes	Built-in Ethernet port on all Linux RT cRIO controllers	System Clock
GPS ⁵	Global	100 ns	Yes	N/A	Yes	NI-9467	FPGA
IRIG-B ⁵	Varies	100 ns	Optional	Varies	Yes	NI-9402	FPGA

Challenges with a Distributed System

Synchronization

Hardware Configuration Overview

Signal-Based Synchronization

Signal-Based Synchronization

Time-Based Synchronization

Time sync protocol 1588, 802.1AS, GPS AKA "Time Reference"

Servo

Control the rate of time change in response to time correction information

Decides when to "snap" time

Hardware access

Hardware-specific code adjust a hardware clock AKA "Time Keeper"

Many different implementations of all these components, but the same idea

Time-Based Synchronization

Translating Time Protocols

- May have requirement to synchronize to protocol (e.g. GPS) and have NI device which cannot directly synchronize to that protocol (e.g. cDAQ)
- Many indoor devices which must be synchronized to GPS
- Devices in system from multiple distributors which synchronize to different time protocols

Time-Based Synchronization - PXI

- 6683H module synchronizes onboard oscillator to time reference (1588, GPS, etc.)
- 10MHz clock is routed through front of 6683H to 10MHz clock input of PXIe chassis
- All tasks reference PXIe backplane clock
- Either 6683H generates start trigger at specified time or start trigger is timed by 6683H

Л

Time-Based Synchronization – PXIe DAQmx

Time-Based Synchronization – cDAQ/cRIO DAQmx

Time-Based Synchronization – cDAQ/cRIO DAQmx

Ы

Timescales

The platform has two conceptual timescales:

I/O time

determined by NI hardware configuration and other network devices

Host time

Determined by OS configuration Usually same time as a wall clock

EtherCAT Synchronization

- 1. Master sends broadcast to all slaves
- 2. Slaves latch value of internal clock when message is received
- 3. Master reads all latched values to calculate delay
- 4. Calculated delay offsets are sent to slaves

Challenges with a Distributed System

Data Communications

Data Communications

Parameters to check for Data Communication for Distributed Systems

- Latency
- Throughput
- Quality of Service
- Connection Topology

Reflective Memory Network

- Reflective Memory node card provides a
 - high-speed,
 - low latency,
 - deterministic interface
- Allows data to be shared between up to 256 independent systems (nodes) at rates up to 170 Mbyte/s.
- Each Reflective Memory board may be configured with 128 MB or 256 MB of onboard SDRAM.
- The local SDRAM provides fast Read access times to stored data.
- Writes are stored in local SDRAM and broadcast over a high-speed fiber-optic data path to other Reflective Memory nodes.
- The transfer of data between nodes is software transparent.

RDMA Semantics

- High-performance 25-Gigabit remote direct memory access (RDMA) interface for PXI Express.
- Includes two 25-Gigabit Ethernet SFP28 ports in a singleslot PXI Express module and supports RDMA
- Similarities to TCP:
 - Listen, Accept, Connect, Close
 - One listener can accept connections from multiple connectors (each is independent stream)
 - Multiple simultaneous connections allowed

- Differences:
 - Directionality of stream set at connection time (send or receive)
 - Explicit configuration step to setup buffer size and number of overlapped operations

Reflective Memory vs RMDA in VeriStand

Basic Performance of RDMA

- Streaming bandwidth limited only by:
 - PCIe bandwidth
 - Link speed
- Latency very low
 - Dominated by interrupt/event through OS (when used)

Standard event/interrupt mode

[10032]]	INFO]	One-way latence	y:
[10032]	[INFO]	min :	14.547 us
[10032]]	INFO]	mean :	18.5482 us
[10032]	[INFO]	max :	29.374 us
[10032]]	INFO]	std. dev:	2.79786

Polling mode

[10174]	[INFO]	One-	way la	atency	y :
[10174]	[INFO]		min	:	4.374 us
[10174]]	INFO]		mean	:	5.63605 us
[10174]	Ε	INFO]		max	:	7.28 us
[10174]	[INFO]		std.	dev:	0.91291

Notes:

- PXIe-8880
- Standard RT kernel (not no_hz)
- C API
- Background CPU/disk load

Л

RDMA Latency Benchmarking

- Intel published Linux benchmarks show 4-6us for small messages on 100GbE link
- Benchmarked using LabVIEW (Mellanox 50GbE)

Prototype API - One-way latency

ni.com

Zero-copy Transfers to NI devices

Saturating 50GbE link and sending to FlexRIO

🕎 Task M	anager							-	- 🗆	×	
<u>F</u> ile <u>O</u> ptio	ons <u>V</u> iew										
Processes	Performance	App history	Startup	Users	Details	Se	rvices				
						ſ	2%	34%	0%		
Name			Statu	15			CPU	Memory	Disk	N	le
> 🖻 Lal	VIEW 20.0 Dev	elopment Syst					1.0%	298.7 MB	0 MB/s		^
> 👰 Tas	k Manager						0.3%	26.3 MB	0 MB/s		
> 🔯 Service Host: Remote Desktop S							0.2%	54.2 MB	0 MB/s	C	
> 🔯 Service Host: DNS Client							0.1%	2.0 MB	0 MB/s		
> 🀂 Wi	ndows Explorer						0.1%	33.2 MB	0 MB/s		
🔳 Sys	stem						0.1%	0.1 MB	0.1 MB/s		
🔳 Wi	ndows Driver Fo	oundation - U					0.1%	59.3 MB	0 MB/s		,
<										>	
Fewer	<u>d</u> etails								<u>E</u> nd ta	sk	

Send to Target.vi	- 🗆	\times
le Edit View Project Operate Tools \	Window Help	STREAM
· · · · · · · · · · · · · · · · · · ·	3	MEM.
Configuration PXIISIot5 remotePort 2004 remoteAddress 192.168.3.2 192.168.3.2 192.168.3.1 Requested Host Buffer Depth (samples) 4194304000 equiv.Host Buffer Depth (samples) 4194304000 Read/Write Size (samples) 10485760	Host Samples Queued (Cumulative) 9978836418560 Host Output Buffer Status 1 1 2 2 3 3 4.2 4 Output FPGA FIFO Status 0 500k 1M 1.5M 2.1M0	
Stop	Throughput (B/s) Requested (M) Maximum (M) 12800 12800 5.38 error status code source	

Data Transfer Block Diagram

וח

Publish Subscribe Protocols

- MQTT
- DDS
- NI Shared Variables
- OPC UA
- RabbitMQ
- And Many, Many More...

PRODUCER APP PRODUCER PRODUCER APP APP MESSAGE BROKER CONSUMER CONSUMER APP APP CONSUMER APP

Rocket Testing: A Case Study in Distributed Control Architectures Meeting Room 19A 11:45 - 12:45 on Wednesday, May 24

