Best Practices for Building a Rack-Based Test System

KOSTA ILIC Chief Engineer Systems R&D, NI

MICHAEL SINGERMAN Senior Mechanical Engineer Systems R&D, NI

What is a Test System?

A **system** is an arrangement of parts or elements that together exhibit behavior or meaning that the individual constituents do not.

An **engineered system** is a system designed or adapted to interact with an anticipated operational environment to achieve one or more intended purposes while complying with applicable constraints.

What is a Rack?

<u>Rack.</u> An open structure for mounting electrical or electronic equipment.

<u>Cabinet.</u> A freestanding and self-supporting enclosure for housing electrical and/or electronic equipment. It is usually fitted with doors and/or side panels, which may or may not be removable.

EIA-301-D

In this presentation, we'll use the term **rack** to refer to a freestanding and self-supporting structure for mounting test equipment, regardless of whether it's an open structure or an enclosure, and regardless of conformance to EIA-310-D.

Value of a Rack Based System

- Simplified asset management
- Footprint
- Simplified operator interface
- Simplified connectivity
- Any others?

Selected Best Practices for Any Test

System Design

Know Your Requirements

N

ni.com

Image source: https://www.pngwing.com/en/free-png-dufzl

Understand the Context

Know Your Constraints

How do you know that you are done?

Additional Considerations

- 1. Component selection
- 2. Software considerations
- 3. System documentation
- 4. Manufacturing test plan
- 5. Bring-up plan
- 6. Repair plan
- 7. Preventative maintenance plan
- 8. Calibration plan
- 9. Operator training

Anything else?

More Software: System Maintenance Software

- Are the right components present at the right locations?
- Are the components working?
- What's the calibration status?

. . .

N

Field Diagnostic Test (of the Test System)

When the test station goes down, test system is the prime suspect

Staff for Success

- Program Manager
- Overall Technical Lead
- Domain Experts
- Test Engineers
- Electrical Engineers
- Software Engineers
- Technical Writers
- ...
- Mechanical Engineers

Minor Rack Modification or: How I Learned to Stop Worrying and Love Mechanical Engineers

My homework:

- Increase bottom clearance from 1.5 inches to 2 inches on three sides
- 2. Prevent air flow on the remaining side

N

Minor Rack Modification or: How I Learned to Stop Worrying and Love Mechanical Engineers

Selected Considerations for Rack-Based Test System Design

n

Featured Topics

System Level Considerations

Design

- Equipment Density
- Rack Geometry & Total Footprint
- Connection to DUT
- User Interface
- IO interface
- Power Budget
- Serviceability
- Thermal Performance
- Further Integration

• Deployment

- Acoustic requirements
- Environmental
- Power Source
- Thermal Dissipation
- Access (internal & external)
- Footprint

Equipment Level Considerations

- Rack Mounting, Installation, and Serviceability
- Thermal Requirements
- Airflow
- Interconnect
- Cable routing
- Installation
- Equipment Density
- Rack Geometry
- Power Requirements
- Function

N

Mechanical Stability

Specification Impact

- Depending on where your test system is deployed, there may be explicit requirements about how good it is at staying standing up.
- What specifications govern your test system?

System Tilting

System Tipping

Minimum Weight for Rack to Survive Lateral Force Test

n

Ergonomics

Design For Manufacturing

Thermal Considerations

When to consider?

Serviceability

Airflow and Thermals Vs...

AIRFLOW

Airflow and Thermals Vs...

AIRFLOW

Airflow Thermals Vs...

Power Allocation

- It's helpful if heat is near the exhaust... but it might screw everything else up
- How variable is the power dissipation of equipment?
- When do we care about thermals vs other things?
- Maybe put together some rule of thumb.
- More...

ni.com

RESOURCES

Key Hardware and BU Icons

Asset Library

Preview in presentation view to click each asset link.

Copy and paste this table to utilize the table styles and color. Add columns or rows using the Table Layout Tab.

Text	Text	Text	Text	Text
Text	Text	Text	Text	Text
Text	Text	Text	Text	Text
Text	Text	Text	Text	Text
		2020	2021	2022
Text		+\$0.OM	+\$0.OM	+\$0.OM
	Text	+\$0.OM	+\$0.OM	+\$0.OM
Text		+\$0.OM	+\$0.OM	+\$0.OM

Charts and Infographics

ni.com

Chart Heading

Simple Option for all users

Chart Heading

■Series 1 ■Series 2 ■Series 3

■ 1st Qtr ■ 2nd Qtr ■ 3rd Qtr ■ 4th Qtr

