LabVIEW™ 2017 Upgrade Notes

These upgrade notes describe the process of upgrading LabVIEW for Windows, OS X, and Linux to
LabVIEW 2017. Before you upgrade, read this document for information about the following topics:

* The recommended process for upgrading LabVIEW

* Potential compatibility issues you should know about prior to loading any VIs you saved in a
previous version of LabVIEW

* New features and behavior changes in LabVIEW 2017

Contents
Upgrading to LADVIEW 2017.....c.couiiiiiiiiiiiieinieeete ettt ettt sttt st 1
1. Back Up Your VIs and Machine Configuration............cecceeeeeierienieneneninineeeeeeeeiesiesienienee 2
2. Test and Record the Existing Behavior of Your VIS......ccccociieiiineininnieeeeeceeceee 3
3. Install LabVIEW, Add-Ons, and Device DITVETS.........cocvvieviiieeieiieeeeeieeeeeeeeeeeeeeee e 4
4. Convert Your VIs and Address Behavior Changes.............cccecvevverierenenenenieieieeseseseeeeenes 4
Troubleshooting Common Upgrade ISSUES..........ccerueriruiriiiieiiieiesiesie ettt 5
Upgrade and Compatibility ISSUES.......cceveririiiiiiiirienieseeee ettt 6
Upgrading from LabVIEW 2012 or Earlier......)
Upgrading from LabVIEW 2013...................... ...
Upgrading from LabVIEW 2014..... i
Upgrading from LabVIEW 2015..... .8
Upgrading from LabVIEW 2016..... 8
LabVIEW 2017 Features and CRanges...........coeeruerieierieirieieienieieiesieie sttt eene s 8
Reduced VI Load and Compile TIME.........ccveruerieruerierieiieieieieietesie e seeseesseseeeseeseesessessessesseenas 8
Maintaining Wire Connections When Moving ObjJects............coecvverieerenineneieneineneeneeeneees 8
MaLLEADIE VISoiiiiiiiiieiieieet ettt ettt st 8
New and Changed VIs and FUNCHONS.ccooirieiiiieiiieiieeeecse e 9
New and Changed Classes, Properties, Methods, and Events............cccceeeveiecienienienieneseeeennne 10
Application Builder Enhancements............cceverueriiririeieieieieieseee ettt eeenean 10
Features and Changes in Previous Versions of LabDVIEW........c..ccocooiiiiniiniiniininncnceecnccenene 11

Upgrading to LabVIEW 2017

Although you can upgrade small applications to a new version of LabVIEW by installing the new version
and then loading your VIs, NI recommends a more rigorous upgrade process to ensure that you can
detect and correct upgrade difficulties as efficiently as possible.

@ Tip This process is especially beneficial for large LabVIEW applications that control or monitor

< critical operations; cannot afford extended down time; use multiple modules, toolkits, or drivers;
or are saved in an unsupported version of LabVIEW. Refer to the NI website at ni .com/info
and enter the Info Code 1i fecycle for information about which versions of LabVIEW still

receive mainstream support.

NATIONAL
WNSTRUMENTSW

Overview of the Recommended Upgrade Process

4 N\
Back Up Your Vis and
Machine Configuration
A J
4 N\
Test and Record
the Existing Behavior of
Your Vis
A J
4 N\
Install
LabVIEW, Add-Ons, and
Device Drivers
A J
4 N\
Convert Your Vis
and Address Behavior
Changes
A\ J

N
By protecting the VIs and development machine,
you ensure that you can restore your files and restart
the upgrade process if necessary.
J
~
By verifying the baseline behavior of the Vls in the
previous version of LabVIEW, you can better detect
any behavior changes caused by upgrading.
J
N
Upgrading all your NI software at the same time
ensures that upgraded VIs can locate the required subVls, palettes,
and Property Nodes in the new version of LabVIEW.
J
N
By converting and testing your VIs immediately
after upgrading, you can confirm that the VIs still behave as
expected and proactively correct any behavior changes.
J

Figure 1.

@ Note To upgrade from LabVIEW 5.1 or earlier, you must first upgrade to an intermediate
version of LabVIEW. Refer to the NI website at ni.com/info and enter the Info Code
upgrade0ld for more information about upgrading from your specific legacy version of

LabVIEW.

1. Back Up Your VIs and Machine Configuration
By protecting a copy of your VIs and, if possible, the configuration of your development or production

machine before upgrading to LabVIEW 2017, you ensure that you can restore your VIs to their previous
functionality and restart the upgrade process if necessary.

a. Back Up Your Vs

If you back up your VIs before you upgrade LabVIEW, you can quickly revert to the back-up copy.
Without the back-up copy, you can no longer open upgraded Vls in the previous version of LabVIEW
without saving each VI for the previous version.

You can back up a set of VIs using either of the following methods:

* Submit VIs to source code control—This action allows you to revert to this version of the VIs if
you cannot address behavior changes caused by upgrading the VIs. For more information about
using source code control with LabVIEW, refer to the Fundamentals»Working with Projects
and Targets»Concepts»Using Source Control in LabVIEW topic on the Contents tab of the

LabVIEW Help.
* Create a copy of the VIs—Create a copy of the VIs according to how they are organized:

— Saved as a project—Open the project and select FilenSave As to duplicate the . 1vproj file
and all project contents. Ensure that you also maintain a copy of the files on which the project
depends by selecting Include all dependencies.

LabVIEW 2017 Upgrade Notes

ni.com

— Saved as an LLB or as VIs in a directory—From the file explorer of your operating system,
create a copy of the LLB or directory and store it at a different location from the original. To
prevent possible naming conflicts, avoid storing the copy on the same hard drive.

b. Back Up Your Machine Configuration

Installing a new version of LabVIEW updates shared files in ways that sometimes affect the behavior
of VIs even in previous versions. However, after you update those shared files, it is very difficult to
restore the previous versions of the files. Therefore, consider one of the following methods for backing
up the configuration of NI software on your development machine, especially if you are upgrading from
an unsupported version of LabVIEW or if down time for your applications would be costly:

Create a back-up image of the machine configuration—Use disk imaging software to preserve
the disk state of the machine before you upgrade, including installed software, user settings, and
files. To return the machine to its original configuration after you upgrade, deploy the back-up disk
image.

Test the upgrade process on a test machine—Although upgrading on a test machine requires
more time than creating a back-up image, NI strongly recommends this approach if you need to
prevent or minimize down time for machines that control or monitor production. After resolving
any issues that result from upgrading on the test machine, you can either replace the production
machine with the test machine or replicate the upgrade process on the production machine.

@ Tip To minimize the possibility that upgraded VIs on the test machine behave differently

= than on the development machine, use a test machine that matches the features of the
development machine as closely as possible, including CPU, RAM, operating system, and
versions of software.

2. Test and Record the Existing Behavior of Your Vis

When you upgrade Vs, differences between the previous version of LabVIEW and LabVIEW 2017 can
occasionally change the behavior of the VIs. If you test the VIs in both versions, you can compare the
results to detect behavior changes specifically caused by upgrading. Therefore, verify that you have
current results for any of the following tests:

© National Instruments

Mass compile logs—Mass compiling your VIs in the previous version of LabVIEW produces a
thorough log of broken VIs. This information is particularly useful if multiple people contribute to
the development of the Vs or if you suspect that some of the VIs have not been compiled recently.
To generate this mass compile log, place a checkmark in the Log Results checkbox of the Mass
Compile dialog box. For more information about mass compiling VIs, refer to the
Fundamentals»Creating VIs and SubVIs»How-To»Saving VIs»Mass Compiling Vs topic on
the Contents tab of the LabVIEW Help.

Unit tests that verify whether individual VIs perform their intended functions correctly
Integration tests that verify whether a project or group of subVIs work together as expected
Deployment tests that verify whether VIs behave as expected when deployed to a target, such as a
desktop or FPGA target

Performance tests that benchmark CPU usage, memory usage, and code execution speed. You can
use the Profile Performance and Memory window to obtain estimates of the average execution
speeds of your VlIs.

Stress tests that verify whether the VIs handle unexpected data correctly

3 LabVIEW 2017 Upgrade Notes

For more information about testing VIs, refer to the Fundamentals» Application Development and
Design Guidelines»Concepts»Developing Large Applications»Phases of the Development
Models»Testing Applications topic on the Contents tab of the LabVIEW Help.

@ Note If you changed any VIs as the result of testing, back up the new versions of the VIs
before proceeding.

3. Install LabVIEW, Add-Ons, and Device Drivers
a. Install LabVIEW, Including Modules, Toolkits, and Drivers

When you upgrade to a new version of LabVIEW, you must install not only the new development system
but also modules, toolkits, and drivers that are compatible with the new version.

b. Copy user.lib Files

To ensure that custom controls and VIs you created in the previous version of LabVIEW are available
to VIs in LabVIEW 2017, copy files from the 1abview\user.1ib directory in the previous version to
the labview\user.1ib directory in LabVIEW 2017.

4. Convert Your VIs and Address Behavior Changes

Mass compiling your VIs in LabVIEW 2017 converts the VIs to the new version of LabVIEW and
creates an error log to help you identify VIs that are broken. You can use this information in conjunction
with the Upgrade and Compatibility Issues section of this document to identify and correct behavior
changes associated with the new version of LabVIEW.

a. Mass Compile Your Vls in the New Version of LabVIEW

Mass compiling VIs simultaneously converts and saves the VIs in LabVIEW 2017. However, after mass
compiling the VIs, you no longer can open the VIs in a previous version of LabVIEW without selecting
FilenSave for Previous Version for each VI or project. Therefore, mass compile only the VIs that you
want to convert to the new version of LabVIEW. To help identify any problems that arose from upgrading,
create a mass compile log by placing a checkmark in the Log Results checkbox of the Mass Compile
dialog box.

@ Note When you mass compile VIs that contain FPGA or real-time resources, the Mass
Compile dialog box may report the VIs as non-executable VIs. To check for errors, you must
open the VIs under the FPGA or RT target in a LabVIEW project with the required FPGA or
real-time resources.

For more information about mass compiling Vs, refer to the following topics on the Contents tab of
the LabVIEW Help:

* Fundamentals»Creating VIs and SubVIs»How-To»Saving VIs»Mass Compiling VIs
* Fundamentals»Creating VIs and SubVIs»How-To»Saving VIs»Common Mass Compile Status
Messages

b. Fix Any Broken Vls

Differences between your previous version of LabVIEW and LabVIEW 2017 can occasionally cause

some Vs to break if they use modified features. To quickly identify and fix broken VIs in LabVIEW 2017,

complete the following steps:

1. To identify VIs that broke during upgrading, compare the mass compile error log you created in
the previous step to the log you created when testing the existing behavior of the Vls.

2. To determine whether updates to LabVIEW caused each VI to break, refer to the Upgrade and
Compatibility Issues section of this document.

LabVIEW 2017 Upgrade Notes 4 ni.com

c. ldentify and Correct Behavior Changes

Although NI invests significant effort to avoid changing the behavior of VIs between different versions
of LabVIEW, improvements and bug fixes occasionally do alter the behavior of VIs. To quickly identify
whether the new version of LabVIEW changes the behavior of your VIs, use one or more of the following

tools:

* Upgrade VI Analyzer Tests—For large sets of VIs, these tests provide an efficient way to identify
many behavior changes caused by upgrading. Complete the following steps to obtain and use these
tests:

L.

Download the Upgrade VI Analyzer Tests for all versions of LabVIEW later than your previous
version. Refer to the NI website at ni . com/info and enter the Info Code analyzevi to
download these tests.

Open and run the tests by selecting Tools» VI Analyzer»Analyze VIs and starting a new VI
Analyzer task. To analyze an entire project at once, select this menu option from the Project
Explorer window rather than from a single VI.

Resolve test failures by referring to the Upgrade and Compatibility Issues section for the
version of LabVIEW that corresponds to the tests. For example, if the LabVIEW 2014 Upgrade
VI Analyzer tests locate a potential behavior change, refer to the Upgrading from

LabVIEW 2013 section of that topic.

* Upgrade documentation

Upgrade and Compatibility Issues section of this document—Lists changes that may break
or affect the behavior of your VIs. Refer to the subsections for each version of LabVIEW
beginning with your previous version.

@ Tip To quickly locate deprecated objects and other objects mentioned in the Upgrade
S and Compatibility Issues section, open your upgraded VIs and select Edit»Find and
Replace.

LabVIEW 2017 Known Issues list—Lists bugs discovered before and throughout the release
of LabVIEW 2017. Refer to the NI website at ni . com/info and enter the Info Code 1v2017ki
to access this list. Refer to the Upgrade - Behavior Change and Upgrade - Migration sections,
if available, to identify workarounds for any bugs that may affect the behavior of upgraded
VIs.

Module and toolkit documentation—Lists upgrade issues specific to some modules and toolKkits,
such as the LabVIEW FPGA Module and the LabVIEW Real-Time Module.

Driver readme files—Lists upgrade issues specific to each driver. To locate each readme, refer
to the installation media for the driver.

@ Tip To determine whether a behavior change resulted from a driver update rather
= than an update to LabVIEW, test your VIs in the previous version of LabVIEW after
installing LabVIEW 2017.

* Your own tests—Perform the same tests on the VIs in LabVIEW 2017 that you performed in the
previous version and compare the results. If you identify new behaviors, refer to the upgrade
documentation to diagnose the source of the change.

Troubleshooting Common Upgrade Issues

Refer to the Upgrading to LabVIEW 2017»Troubleshooting Common Upgrade Issues topic on the
Contents tab of the LabVIEW Help for more information about solving the following upgrade issues:

* Locating missing module or toolkit functionality

© National Instruments

5 LabVIEW 2017 Upgrade Notes

* Locating missing subVlIs, palettes, and Property Nodes

* Determining why LabVIEW 2017 cannot open VIs from a previous version of LabVIEW
* Determining which versions of NI software are installed

* Restoring Vs to a previous version of LabVIEW

Upgrade and Compatibility Issues

Refer to the following sections for changes specific to different versions of LabVIEW that may break
or alter the behavior of your VIs.

Refer to the readme . html file in the 1abview directory for information about known issues in the new
version of LabVIEW, additional compatibility issues, and information about late-addition features in
LabVIEW 2017.

Upgrading from LabVIEW 2012 or Earlier

Refer to the NI website at ni . com/info and enter the Info Code upnotel3 to access upgrade and
compatibility issues you might encounter when you upgrade to LabVIEW 2017 from LabVIEW 2012
or earlier. Also, refer to the other Upgrading from LabVIEW x sections in this document for information
about other upgrade issues you might encounter.

Upgrading from LabVIEW 2013

You might encounter the following compatibility issues when you upgrade to LabVIEW 2017 from
LabVIEW 2013. Refer to the Upgrading from LabVIEW 2014, Upgrading from LabVIEW 2015, and
Upgrading from LabVIEW 2016 sections of this document for information about other upgrade issues
you might encounter.

Behavior Change in the String to Path Function

In LabVIEW 2014 and later, the String To Path function is case insensitive when reading any variation
of the string <Not A Path> and always returns a constant value of <Not A Path>. For example, you
can specify <not a path>or<Not A Path> inthe string input, and in both cases, the function returns
a constant value of <Not A Path>. Refer to the following table for more information about how the
String to Path function behaves in previous versions of LabVIEW.

LabVIEW 2012 and 2013 LabVIEW 2011 and Earlier

Regardless of case, the String To Path function does not return a
constant value of <Not A Path>. You can specify any variation of the
string <Not A Path>, and the function returns a path to a directory
named <Not A Path> instead of returning a constant value of
<Not A Path>.

Like LabVIEW 2014 and later, the String To Path function is case
insensitive and returns the constant value of <Not A Path> when you
specify any variation of the string <Not A Path>. Whether you
specify <not a path>or<Not a Path>, the function returns
the constant value of <Not A Path>.

LabVIEW 2017 Upgrade Notes 6

Reviewing and Updating Type Definitions
The Review and Update from Type Def shortcut menu item replaces the Update from Type Def
shortcut menu item that appears in LabVIEW 2013 and earlier.

Deprecated Vls, Functions, and Nodes
LabVIEW 2014 and later do not support the following VIs, functions, and nodes.

Apple Event Vis

(OS X) LabVIEW 2014 and later no longer support Apple Event VIs. Instead, use the Run AppleScript
Code VI on the Libraries & Executables palette to communicate with OS X applications external to

ni.com

LabVIEW. If you attempt to load a VI that contains any of the following Apple Event VIs, LabVIEW
may generate errors and be unable to run the VI:

* AESend Do Script

* AESend Finder Open

* AESend Open

* AESend Open Document

* AESend Print Document

* AESend Quit Application

* Get Target ID

* AESend Abort

* AESend Close

* AESend Open, Run, Close
* AESend Run

* AESend VI Active?

* AECreate Comp Descriptor
* AECreate Descriptor List

* AECreate Logical Descriptor
* AECreate Object Specifier
* AECreate Range Descriptor
* AECreate Record

« AESend

* Make Alias

Actor Framework VIs

LabVIEW 2014 and later do not support the Actor:Launch Actor VI. Use the Actor:Launch Root Actor
VI or Actor:Launch Nested Actor VI instead.

In Port and Out Port Vis

LabVIEW 2014 and later do not support the In Port and Out Port VIs.

Deprecated Properties, Methods, and Events

LabVIEW 2014 and later do not support the Get VI:Old Help Info method of the Application class.
Instead, use the Get VI:Help Info method to return help information from the Documentation page of
the VI Properties dialog box for a specified VI.

Upgrading from LabVIEW 2014

You might encounter the following compatibility issues when you upgrade to LabVIEW 2017 from
LabVIEW 2014. Refer to the Upgrading from LabVIEW 2015 and Upgrading from LabVIEW 2016
sections of this document for information about other upgrade issues you might encounter.

Identifying Buffer Allocations in LabVIEW Applications

LabVIEW 2014 Service Pack 1 and later include the Profile Buffer Allocations window to identify and
analyze buffer allocations in a LabVIEW application. Select Tools»Profile»Profile Buffer Allocations
to display this window.

Hyperlinks in Free Labels

LabVIEW 2015 and later detect URLs in free labels and converts them to hyperlinks underlined in blue
text. LabVIEW does not automatically convert URLSs in free labels to hyperlinks when you upgrade

© National Instruments 7 LabVIEW 2017 Upgrade Notes

from LabVIEW 2014 or earlier. To enable hyperlinks in front panel labels, right-click the free label and
select Enable Hyperlinks in the shortcut menu. You cannot disable hyperlinks in block diagram labels.

Deprecated Vls, Functions, and Nodes

LabVIEW 2015 and later do not support the following VIs, functions, and nodes.

* Read From Spreadsheet File—Use the Read Delimited Spreadsheet VI instead.
* Write To Spreadsheet File—Use the Write Delimited Spreadsheet VI instead.

Upgrading from LabVIEW 2015
You might encounter the following compatibility issue when you upgrade to LabVIEW 2017 from

LabVIEW 2015. Refer to the Upgrading from LabVIEW 2016 section of this document for information
about other upgrade issues you might encounter.

In LabVIEW 2016 and later, the Quick Drop Configuration dialog box contains a default list of shortcuts
for front panel and block diagram objects. Shortcuts you created in LabVIEW 2015 or earlier do not
automatically migrate to the list of shortcuts in LabVIEW 2016 and later.

Upgrading from LabVIEW 2016

You might encounter the following compatibility issue when you upgrade to LabVIEW 2017 from
LabVIEW 2016.

Behavior Change in the Actor Framework Vis

In LabVIEW 2016 and earlier, when a nested actor fails to launch because of an error in the Pre-Launch
Init method, the nested actor returns an error and sends a Last Ack message that contains the error to its
caller actor. In LabVIEW 2017, the nested actor returns an error without sending a Last Ack message
to its caller actor.

LabVIEW 2017 Features and Changes

The Idea Exchange icon =&t denotes a new feature idea that originates from a product feedback suggestion
on the NI Idea Exchange discussion forums. Refer to the NI website at ni . com/info and enter the Info
Code ex3gus to access the NI Idea Exchange discussion forums.

Refer to the readme . html file in the 1abview directory for known issues, a partial list of bugs fixed,
additional compatibility issues, and information about late-addition features in LabVIEW 2017.

Reduced VI Load and Compile Time

(Windows) For LabVIEW 2017, NI upgraded to a more aggressive compiler for building both the
LabVIEW development environment and the LabVIEW Run-Time Engine. This upgrade reduced
aggregate VI load time and VI compile time.

Maintaining Wire Connections When Moving Objects

LabVIEW 2017 automatically maintains wire connectivity when you move objects in and out of structures
on the block diagram. When an object moving in or out of a structure is connected to an object in the
structure, LabVIEW creates or removes tunnels to maintain wire connectivity. You can toggle automatic
wire connectivity when moving objects by pressing the <W> key.

Malleable Vis

= LabVIEW 2017 includes malleable VIs (. vim) that are inlined into their calling VIs and can adapt
each terminal to its corresponding input data type. With malleable VIs, you create a VI to perform the
same operation on any acceptable data type instead of saving a separate copy of the VI for each data

type.

LabVIEW 2017 Upgrade Notes 8 ni.com

A malleable VI is similar to a polymorphic VI but is more flexible when determining which data types
are acceptable. A polymorphic VI uses a predefined list of acceptable data types. A malleable VI computes
whether a data type is acceptable by implementation.

Malleable VIs use the . vim file extension. You can create a malleable VI by selecting File»New and
selecting Malleable VI from the New dialog box. You can convert an existing VI into a malleable VI
by saving the file with the . vim file extension.

@ Note You can convert only standard VIs into malleable VIs. You cannot convert polymorphic
Vs, global VIs, or XControl abilities into malleable VIs.

Built-In Malleable Vis

LabVIEW provides the following malleable VIs for use in your applications. The icons of the built-in
malleable VIs have orange backgrounds.

* Array palette

— Decrement Array Element—Subtracts 1 from the specified element of a 1D array. If the
array is an array of timestamps, this VI decrements the element by one second.

— Increment Array Element—Adds 1 to the specified element of a 1D array. If the array is an
array of timestamps, this VI increments the element by one second.

— Shuffle 1D Array—Rearranges the elements of a 1D array in a pseudorandom order.
— Shuffle 2D Array—Rearranges the elements of a 2D array in a pseudorandom order.
— Sort 2D Array—Rearranges the rows or columns of a 2D array by sorting the elements in
the specified column or row in ascending order.
* Comparison palette
— Is Value Changed—Returns TRUE if this is the first call of this VI or if the input value is
different from the value when this VI was last called.
* Conversion palette
— Number To Enum—Looks for an enum value that matches the specified number and returns
the corresponding enum item.
+ Timing palette
— Stall Data Flow—Delays the data flow of the wire for a specified period of time.

Refer to the Fundamentals»Creating VIs and SubVIs»Concepts»Creating Modular Code»Malleable
VIs topic on the Contents tab in the LabVIEW Help for information about malleable VIs.

Refertothe 1abview\examples\Malleable VIs\Basics\Malleable VIs Basics.lvproj for
an example of using malleable VIs.

[Idea submitted by NI Discussion Forums member DanyAllard.]
New and Changed Vis and Functions
LabVIEW 2017 includes the following new and changed VIs and function:

Read-Only Access for Data Value References

The Data Value Reference Read / Write Element border node of the In Place Element structure can allow
read-only access to a data value reference. Right-click the border node on the right of the structure and
select Allow Parallel Read-Only Access. When the border node on the right is unwired, LabVIEW
allows multiple, concurrent read-only operations and does not modify the data value reference.

© National Instruments 9 LabVIEW 2017 Upgrade Notes

New Channel Templates

LabVIEW 2017 includes the Event Messenger channel template. Use this channel to transfer data from
multiple writers to one or more Event structures. Each write operation to the channel triggers an event.
The Event Messenger channel allows the channel syntax to combine with the event syntax that controls
your user interface events and generated events. Refer to the labview\examples\Channels\Event
Messenger\Channel - Event Messenger.lvproj for an example of using the Event Messenger
channel.

New and Changed Classes, Properties, Methods, and Events

LabVIEW 2017 includes changes to the Get VI Dependencies (Names and Paths) method. The Keep
Express VIs? parameter is renamed to Keep Express and Malleable VIs?. If Keep Express and
Malleable VIs? is FALSE (default), LabVIEW returns the names of the hidden instance VIs that underlie
the Express VIs and malleable VIs. If TRUE, LabVIEW returns the Express VIs and malleable VIs as
dependencies. If you want edit-time dependencies, set Keep Express and Malleable VIs? to TRUE. If
you want run-time dependencies, set Keep Express and Malleable VIs? to FALSE. Regardless of this
setting, LabVIEW includes the subVlIs of the instance VIs as dependencies of the referenced VI.

Application Builder Enhancements

LabVIEW 2017 includes the following enhancements to the LabVIEW Application Builder and build
specifications:

Backward Compatibility of the LabVIEW Run-Time Engine

In previous versions of LabVIEW, you cannot load and run binaries and VIs built in older versions of
LabVIEW without recompilation. Starting from 2017, LabVIEW supports backward compatibility for
the LabVIEW Run-Time Engine. For example, versions of LabVIEW later than 2017 can load binaries
and VIs built with LabVIEW 2017 without recompiling. This improvement applies to stand-alone
applications (EXEs), shared libraries (DLLs), and packed project libraries.

To enable binaries to be backward compatible, place a checkmark in the following checkbox on the
Advanced page of the specific dialog box depending on your build specification:

Build Specification Dialog Box Checkbox

Stand-alone application (EXE) Application Properties Allow future versions of the LabVIEW
Runtime to run this application

Packed project library Packed Library Properties Allow future versions of LabVIEW to load
this packed library

Shared library (DLL) Shared Library Properties Allow future versions of LabVIEW to load
this shared library

LabVIEW enables these options by default for build specifications you create in LabVIEW 2017 and
later. You can disable these options to bind a build specification to a specific version of LabVIEW.
Disabling these options prevents any changes to the performance profiles and helps you avoid unexpected
problems resulting from compiler upgrades. For real-time applications, these options do not appear in
the dialog boxes but the functionality is enabled by default.

Improvements to Calls between LabVIEW and Other Languages

In LabVIEW 2017, the performance and stability of LabVIEW-built shared libraries (DLLs) are improved
significantly, specifically for calls to LabVIEW-built DLLs from LabVIEW and other languages. For
example, calls to LabVIEW-built DLLs from a C-language application now run in a multithreaded

LabVIEW 2017 Upgrade Notes 10 ni.com

execution system. The improvements also prevent some potential deadlocks and atomicity violations
while calling LabVIEW-built DLLs from LabVIEW.

To use this functionality, place a checkmark in the Execute VIs in private execution system checkbox
on the Advanced page of the Shared Library Properties dialog box. By default, this option is enabled
for new build specifications. This option is disabled for build specifications migrated from LabVIEW
2016 and earlier to prevent unintended changes in behavior. For example, disabling this option prevents
shared libraries that rely on single-threaded execution to execute in a multithreaded execution system,
when LabVIEW-built shared libraries are called from a non-LabVIEW application. (NI Linux Real-Time)
This option is disabled by default for Linux RT targets because of potential performance jitters.

Features and Changes in Previous Versions of LabVIEW

To identify new features in each version of LabVIEW that released since your previous version, review
the upgrade notes for those versions. To access these documents, refer to the NI website at ni . com/info
and enter the Info Code for the appropriate LabVIEW version from the following list:

e LabVIEW 2013 Upgrade Notes—upnotel3
* LabVIEW 2014 Upgrade Notes—upnoteld
e LabVIEW 2015 Upgrade Notes—upnotel5
o LabVIEW 2016 Upgrade Notes—upnotel6

© National Instruments 1 LabVIEW 2017 Upgrade Notes

Refer to the NI Trademarks and Logo Guidelines at ni . com/trademarks for more information on NI trademarks.
Other product and company names mentioned herein are trademarks or trade names of their respective
companies. For patents covering NI products/technology, refer to the appropriate location: Help»Patents in your
software, the patents. txt file on your media, or the National Instruments Patent Notice at ni .com/patents. You
can find information about end-user license agreements (EULAs) and third-party legal notices in the readme
file for your NI product. Refer to the Export Compliance Information at ni .com/legal/export-compliance for the
NI global trade compliance policy and how to obtain relevant HTS codes, ECCNs, and other import/export
data. NI MAKES NO EXPRESS OR IMPLIED WARRANTIES AS TO THE ACCURACY OF THE INFORMATION
CONTAINED HEREIN AND SHALL NOT BE LIABLE FOR ANY ERRORS. U.S. Government Customers: The
data contained in this manual was developed at private expense and is subject to the applicable limited rights
and restricted data rights as set forth in FAR 52.227-14, DFAR 252.227-7014, and DFAR 252.227-7015.

©1998-2017 National Instruments. All rights reserved.

371780N-01

Mar17

	LabVIEW™ 2017 Upgrade Notes
	Contents
	Upgrading to LabVIEW 2017
	1. Back Up Your VIs and Machine Configuration
	2. Test and Record the Existing Behavior of Your VIs
	3. Install LabVIEW, Add-Ons, and Device Drivers
	4. Convert Your VIs and Address Behavior Changes
	Troubleshooting Common Upgrade Issues

	Upgrade and Compatibility Issues
	Upgrading from LabVIEW 2012 or Earlier
	Upgrading from LabVIEW 2013
	Reviewing and Updating Type Definitions
	Deprecated VIs, Functions, and Nodes
	Deprecated Properties, Methods, and Events

	Upgrading from LabVIEW 2014
	Identifying Buffer Allocations in LabVIEW Applications
	Hyperlinks in Free Labels
	Deprecated VIs, Functions, and Nodes

	Upgrading from LabVIEW 2015
	Upgrading from LabVIEW 2016
	Behavior Change in the Actor Framework VIs

	LabVIEW 2017 Features and Changes
	Reduced VI Load and Compile Time
	Maintaining Wire Connections When Moving Objects
	Malleable VIs
	Built-In Malleable VIs

	New and Changed VIs and Functions
	Read-Only Access for Data Value References
	New Channel Templates

	New and Changed Classes, Properties, Methods, and Events
	Application Builder Enhancements
	Backward Compatibility of the LabVIEW Run-Time Engine
	Improvements to Calls between LabVIEW and Other Languages

	Features and Changes in Previous Versions of LabVIEW

