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Student Guide

Thank you for purchasing the LabVIEW Core 3 course kit. This course manual and the accompanying software are used in the three-day, hands-on LabVIEW Core 3 
course.

You can apply the full purchase of this course kit toward the corresponding course registration fee if you register within 90 days of purchasing the kit. Visit 
ni.com/training for online course schedules, syllabi, training centers, and class registration.

Note For course and exercise manual updates and corrections, refer to ni.com/info and enter the Info Code core3.

A. NI Certification

The LabVIEW Core 3 course is part of a series of courses designed to build your proficiency with LabVIEW and help you prepare for NI LabVIEW certification 
exams. The following illustration shows the courses that are part of the LabVIEW training series. Refer to ni.com/training for more information about 
NI Certification.
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B. Course Description

LabVIEW Core 3 introduces you to structured practices to design, implement, document, and test LabVIEW applications. This course focuses on developing 
hierarchical applications that are scalable, readable, and maintainable. The processes and techniques covered in this course help reduce development time and improve 
application stability. By incorporating these design practices early in your development, you avoid unnecessary application redesign, increase VI reuse, and minimize 
maintenance costs.

This course assumes that you have taken the LabVIEW Core 1 and LabVIEW Core 2 courses or have equivalent experience.

This course kit is designed to be completed in sequence. The course and exercise manuals are divided into lessons, described as follows.

In the course manual, each lesson consists of the following:

• An introduction that describes the purpose of the lesson and what you will learn

• A discussion of the topics in the lesson

• A summary quiz that tests and reinforces important concepts and skills taught in the lesson

In the exercise manual, each lesson consists of the following:

• A set of exercises to reinforce the topics in the lesson

• Some lessons include optional and challenge exercise sections or additional exercises to complete if time permits

Note The exercises in this course are cumulative and lead toward developing a final application at the end of the course. If you skip an exercise, use the 
solution VI for that exercise, available in the <Solutions>\LabVIEW Core 3 directory, in later exercises.
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C. What You Need to Get Started

Before you use this course manual, make sure you have the following items:

 Windows XP or later installed on your computer

 LabVIEW Professional Development System 2012 or later

 LabVIEW Core 3 course CD, containing the following folders:

D. Installing the Course Software

Complete the following steps to install the course software.

1. Insert the course CD in your computer. 

2. Follow the prompts to install the course material.

The installer places the Exercises and Solutions folders at the top level of the root directory. Exercise files are located in the <Exercises>\LabVIEW Core 
3 directory.

Tip Folder names in angle brackets, such as <Exercises>, refer to folders in the root directory of your computer.

E. Course Goal

Given a requirements document for a LabVIEW development project, you will follow a software development process to design, implement, document and test the 
key application features in a manner that satisfies requirements for readability, scalability, and maintainability. 

Directory Description

Exercises Folder containing VIs and other files used in the course

Solutions Folder containing completed course exercises
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5
Managing and Logging Errors

Topics
Exercise 5-1 Manage Errors
Exercise 5-2 Log Errors
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Exercise 5-1 Manage Errors

Goal
Modify your code to gracefully handle both critical and non-critical errors.

Scenario
In the sprint planning meeting for this iteration, the product owner chose to implement the following user stories:

• As a boiler operator, I want the boiler controller to prevent the boiler from entering an unsafe state as a result of a critical error.

• As a boiler operator, I want the system to be robust enough that minor errors do not result in system shut down, so that the boiler only shuts down if the error 
prevents safe operation.

Critical errors require shutting down the application because they cannot be otherwise managed. If they are not handled, critical errors may result in injury to personnel 
or damage to equipment. They may also place the system into an unmanageable state.

Non-critical errors are more akin to inconveniences that should not prevent continued execution of the application.

After discussing these user stories with the team, you identified and classified the following errors:

To address these errors, your team identifies the following tasks:

1. Modify Read Configuration Data.vi to handle cancellation of the Open File dialog.

2. Modify Read UI Constants.vi to handle selection of an invalid INI file.

3. Modify the Default case of the Message Handling Loop and Boiler Controller to handle typos when sending messages.

4. Modify the Message Handling Loop and Boiler Controller Loop to handle shutting down in the event of a critical error.

Table 5-1.  Errors

Cause of Error Critical or Non-Critical

Cancelling the Open File dialog when loading the INI file Non-critical

The user chooses an invalid INI file Critical

During development, you accidentally mistype a message string or case name Critical
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Design
The team decides on the following strategies for approaching each task:

1. Modify Read Configuration Data.vi to handle cancellation of the Open File dialog.

• Modify Read Configuration Data.vi to load a default INI file if the user cancels the Open File dialog.

2. Modify Read UI Constants.vi to handle selection of an invalid INI file.

• Modify Read UI Constants.vi to check that each key was properly read from the INI file.

• Use an error ring to generate a custom error to indicate that the INI file is not valid.

3. Modify the Default case of the Message Handling Loop and Boiler Controller to handle typos when sending messages.

• Use an error ring to generate a custom error to indicate that an invalid message was received by that loop.

4. Modify the Message Handling Loop and Boiler Controller Loop to handle shutting down in the event of a critical error.

• Create a separate Error case in the Message Handling Loop and Boiler Controller Loop.

• Modify Dequeue Message.vi to send you to the Error case instead of the Exit case in the event of an error.

• Critical errors should be passed as message data from the bottom up (Boiler»Boiler Controller»Message Handling Loop)

• The Error case of the Message Handling Loop sends you to the Initiate Stop case, as if you clicked Emergency Stop.
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Figure 5-1.  Errors Passed up to the Message Handling Loop, which then Stops All Loops
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Implementation

Non-Critical Errors
1. Modify Read Configuration Data.vi to handle cancellation of the Open File dialog.

 Run Main.vi. Cancel the Open File dialog where you would normally select the INI file. Notice that the File Dialog express VI generates Error 43 to indicate 
that the operation was cancelled. This error causes the application to exit. This is not a desirable behavior.

 Modify Read Configuration Data.vi to load a default INI file if the user cancels the Open File dialog as shown in Figure 5-2. 

Sample



LabVIEW Core 3 Exercises © National Instruments | 5-7

Figure 5-2.  Read Configuration Data VI Block Diagram Load Default INI File

2. Test the VI.

 Run Main.vi and cancel the Open File dialog. Notice that the code continues executing normally, using the default file.

1 Build Path function

2 Path constant

3 Wire the cancelled output of the File Dialog express VI to the case selector.

3 1

2
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Critical Errors
1. Modify Read UI Constants to handle selection of an invalid INI file.

 Run Main.vi. Select any file other than the INI file that you created. Notice that the range of Fuel Control Valve updated to 0-1 instead of 10-75. This did 
not generate an error, but the application cannot function without proper configuration of the Fuel Control Valve limits.

 Modify Read UI Constants.vi as shown in Figure 5-3 to check that each key was properly read from the INI file.

Figure 5-3.  Read UI Constants Using Error Ring

1 Error Ring—Generate a custom error to indicate that the INI file is not valid. This error shuts down the system.

 Configure the Error ring with custom error code 5000 and the message Could not read UI constants from INI file.

1
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2. Modify the Default case of the Message Handling Loop and Boiler Controller to handle typos when sending messages.

 Modify the Reset event case of the Event Handling Loop to send the incorrect message, Resets, to the Message Handling Loop. 

Figure 5-4.  Event Handling Loop Reset: Value Change Case with Typo

1 Change the Message string constant input to Resets.
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 Open the Default case of the Message Handling Loop. Notice that the code is already generating an error. Replace the Format into String and Error Cluster 
From Error Code functions with an error ring, as shown in Figure 5-5. This method of generating an error allows greater flexibility in how you generate the 
error.

Figure 5-5.  Message Handling Loop Default Case with Error Ring

1 Error Ring—Configure the error ring with Custom Error Code 5003 and the message The invalid message string “%s” was received in the 
Message Handling Loop.

1

Sample



LabVIEW Core 3 Exercises © National Instruments | 5-11

3. Modify the Default case of the Boiler Controller.vi as shown in Figure 5-6.

Figure 5-6.  Boiler Controller VI Default Case with Error Ring

 Run Main.vi. Click Reset. Notice that the application hangs because Dequeue Message.vi sends the Message Handling Loop directly into the Exit 
case which causes the Message Handling Loop and Event Handling Loop stop, but no message is sent to the boiler controller to stop it and the boiler. 

 To halt the application, select the Boiler window and press <Ctrl -.>.

1 Error ring—Configure the error ring with custom error code 5004 and the message The invalid message string “%s” was received in the 
Boiler Controller Loop.

1
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4. Modify the Message Handling Loop and Boiler Controller Loop to handle shutting down in the event of a critical error.

 Create an Error case in the Message Handling Loop and Boiler Controller Loop.

Figure 5-7.  Message Handling Loop Error CaseSample
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Figure 5-8.  Boiler Controller Loop Error CaseSample
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5. Modify Dequeue Message.vi, as shown in Figure 5-9 to send you to the Error case instead of the Exit case in the event of an error.

Note You must close all open VIs and modify Dequeue Message.vi from the LabVIEW project. This VI is reentrant, so you must ensure that there is 
only one copy in memory before you can edit it.

Figure 5-9.  Dequeue Message Block Diagram

 Critical errors should be passed as message data from the bottom up—Boiler»Boiler Controller»Message Handling Loop.

1 Update the comment to say that the output is an Error message instead of an Exit message

2 Update the Message to Stop the Handler to Error.

3 Error cluster constant

3

2

1
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Note Boiler Controller Error sends a message to the Message Handling Loop Error. Errors in the boiler are passed up to the Boiler Controller in the 
same way.

The Error cases should not wire the error cluster into the Enqueue Message. For the Boiler Controller, wire an error cluster constant to the shift register for 
each loop to avoid an endless error cycle. (The desired effect for the error will happen by launching the shutdown process.)

 The Error case of the Message Handling Loop sends you to the Initiate Stop case, as if you clicked Emergency Stop.

Test the Application
1. Test the VI.

 Run the VI.

 Verify that:

– Cancelling the Open File dialog does not stop the application.

– Specifying an invalid INI file stops the application.

– All previously-implemented functionality except for Reset still works.

– Clicking Reset generates a critical error that halts the application.

2. Test the build specification.

 Build the executable from the build specification.

 Run Boiler Controller.exe.

 Verify the behavior from Step 1.

– Cancelling the Open File dialog fails because the relative path to the default INI file is different for the EXE—in the data folder, instead of at the same 
level.
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3. Modify Read Configuration Data.vi, as shown in Figure 5-10, to use a different relative path for EXEs. 

Figure 5-10.  Modify Read Configuration Data Block Diagram

4. Fix the forced error.

 Update the Reset case of the Event Handling Loop to call Reset instead of Resets.

End of Exercise 5-1
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Exercise 5-2 Log Errors

Goal
Log information about any error that causes a system shutdown.

Scenario
In the sprint planning meeting for this iteration, the product owner chose to implement the following user story:

• As a boiler operator, I want information about critical errors to be logged to disk, so that I can identify and troubleshoot the cause of the error at a later date.

As it is currently implemented, critical errors cause the application to shut down without providing any additional information to the end-user.

To implement this user story, your team identifies the following tasks:

1. Create the error log file in the same directory as the main application.

2. When a critical error occurs, log the error code and source. 

3. If you cannot write to the application directory, display the error information to the user.

4. After logging the error, close the error log file reference.

Design
The team decides on the following strategies for approaching each task:

1. Create the error log file in the same directory as the main application.

• The error log should only be created if a critical error actually occurs. 

• Create the error file in the Error case of the Message Handling Loop.

2. When a critical error occurs, log the current time, error code and source. 

• Pass the error cluster as Message Data when you send the Error message.

• Extract the error code and source from the error cluster.

• Create a subVI that writes the time, error code, and source to the error log file.
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3. If you cannot write to the application directory, display the error information to the user.

• If the error log reference is invalid, then you cannot write to the file. 

• Instead, launch a one-button dialog and display the information to the user.

4. After logging the error, close the error log file reference.

Implementation
1. Add a VI to write the time, error code, and source to the error log file.

 Create a virtual folder called Logging in Support VIs folder the Boiler Controller Project Explorer window.

 Navigate to <Exercises>\LabVIEW Core 3\External\Support VIs\Logging and copy Log Error.vi into the <Exercises>\
LabVIEW Core 3\Course Project\support\Logging directory. 

 Add Log Error.vi to the Logging virtual folder of the Boiler Controller Project Explorer window.
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2. If you cannot write to the application directory, display the error information to the user.

 Modify the error file in the Error case of the Message Handling Loop as shown in Figure 5-11.

Figure 5-11.  Message Handling Loop Error Case

1 Create the error log file in the same directory as the main application.

2 After logging the error, close the error log file reference

1

2
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3. When a critical error occurs, log the current time, error code and source. 

 Modify the Error case of Boiler Controller.vi, as shown in Figure 5-12. You use the custom errors 5001 and 5002 in future exercises.

Figure 5-12.  Boiler Controller Error Case

1 Pass the error cluster as Message Data when you send the Error message.

1
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Test the Application

1. Test the VI.

 Run the VI. Verify the following:

– Specifying an invalid INI file stops the application and creates Error Log.txt.

– Error Log.txt contains time, error code, and error source information similar to Figure 5-13.

Figure 5-13.  Error Log.txt

 Modify the Reset event case of the Event Handling Loop to send a Resets message to the Message Handling Loop. 

– Run the VI again. 

– Clicking Reset halts the application with a critical error. 

– Open Error Log.txt and view the new entry to the file.

– Close the file.

– Fix the Reset case to send a Reset message.

 Verify the behavior when the application cannot write to the log file.

– Set Error Log.txt to read-only.

– Run the VI.
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– Specify an invalid INI file. A dialog appears indicating the time, error code, and source.

– Set Error Log.txt to be writable.

2. Test the build specification.

 Build the executable from the build specification.

 Run Boiler Controller.exe.

 Verify the behavior from Step 1. 

– Specify an invalid INI file. You do not need to change the Reset case.

End of Exercise 5-2
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