NI ELVIS RIO Control Module

The NI ELVIS RIO Control Module is a reconfigurable I/O (RIO) device that is used to design control, robotics, and mechatronics systems.

This document contains pinouts, connectivity information, dimensions, and mounting instructions for the NI ELVIS RIO CM. The NI ELVIS RIO CM provides the I/O shown in the following figure and connects to a host computer through a USB connection.

Figure 1. NI ELVIS RIO CM Features

1. Power LED
2. Status LED
3. LED0
4. LED1
5. LED2
6. LED3
7. Button0 (User Button)
8. Reset Button
9. USB Host Port
10. Workstation Interface Connector
11. USB Device Port
12. MXP Connector A
13. MXP Connector B

Hardware Overview

The NI ELVIS RIO CM provides analog input (AI), analog output (AO), digital input and output (DIO), and power output in a compact embedded device. The NI ELVIS RIO CM connects to a host computer through a USB connection.

The following figure shows the arrangement and functions of NI ELVIS RIO CM components.
Figure 2. NI ELVIS RIO CM Hardware Block Diagram

MXP Connector Pinout
Table 1. Signal Descriptions

<table>
<thead>
<tr>
<th>Signal Name</th>
<th>Reference</th>
<th>Direction</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>+5V</td>
<td>DGND</td>
<td>Output</td>
<td>+5 V power output.</td>
</tr>
<tr>
<td>AI <0..3></td>
<td>AGND</td>
<td>Input</td>
<td>0 V to 5 V, referenced single-ended AI. Refer to the AI Channels section for more information.</td>
</tr>
<tr>
<td>AO <0..1></td>
<td>AGND</td>
<td>Output</td>
<td>0 V to 5 V, referenced single-ended AO. Refer to the AO Channels section for more information.</td>
</tr>
<tr>
<td>AGND</td>
<td>—</td>
<td>—</td>
<td>Reference for AI and AO.</td>
</tr>
<tr>
<td>+3.3V</td>
<td>DGND</td>
<td>Output</td>
<td>+3.3 V power output.</td>
</tr>
<tr>
<td>DIO <0..15></td>
<td>DGND</td>
<td>Input or Output</td>
<td>General-purpose digital lines with +3.3 V output, 3.3 V-/5 V-compatible input. Refer to the DIO Lines section for more information.</td>
</tr>
<tr>
<td>UART.RX</td>
<td>DGND</td>
<td>Input</td>
<td>UART receive input. UART lines are electrically identical to DIO lines.</td>
</tr>
<tr>
<td>UART.TX</td>
<td>DGND</td>
<td>Output</td>
<td>UART transmit output. UART lines are electrically identical to DIO lines.</td>
</tr>
<tr>
<td>DGND</td>
<td>—</td>
<td>—</td>
<td>Reference for digital signals, +5 V, and +3.3 V.</td>
</tr>
</tbody>
</table>

Note MXP connectors A and B have identical sets of signals and are distinguished in software by the connector name, such as ConnectorA/DIO1 and ConnectorB/DIO1. Refer to the software documentation for information about configuring and using signals.

Note Some pins carry secondary functions as well as primary functions.

Interfaces

AI Channels

The NI ELVIS RIO CM MXP connectors A and B have four single-ended AI channels per connector, AI0-AI3, which you can use to measure signals of 0 V to 5 V. The channels are multiplexed to a single analog-to-digital converter (ADC) that samples all channels.

Note For important information about improving measurement accuracy by reducing noise, visit ni.com/info and enter the Info Code analogwiring.
The following figure shows the AI topology of the NI ELVIS RIO CM.

Figure 3. NI ELVIS RIO CM AI Circuitry

AO Channels

The NI ELVIS RIO CM MXP connectors A and B have two AO channels per connector, AO0 and AO1, which you can use to generate signals of 0 V to 5 V. Each channel has a dedicated digital-to-analog converter (DAC), which allows all AO channels to update simultaneously. The DACs for the AO channels are controlled by a serial communication bus from the FPGA. MXP connectors A and B share this bus and therefore, all channels must share the same update rate.

The following figure shows the AO topology of the NI ELVIS RIO CM.

Figure 4. NI ELVIS RIO CM AO Circuitry

Converting Raw Data Values to Voltage

You can use the following equations to convert raw AI and AO data values to volts:

\[
V = \text{Raw Data Value} \times \text{LSB Weight}
\]

\[
\text{LSB Weight} = \frac{\text{Nominal Range}}{2^\text{Resolution}}
\]

where

- Raw Data Value is the value returned by the FPGA I/O node,
- LSB Weight is the value in volts of the increment between data values,
Nominal Range is the absolute value in volts of the full, peak-to-peak nominal range of the channel, and
Resolution is the resolution of the ADC or DAC in bits (Resolution = 12)

For AI and AO channels on the MXP connectors,

\[\text{LSB Weight} = 5 \, V \div 2^{12} = 1.221 \, mV \]
\[\text{Maximum Reading} = 4095 \times 1.221 \, mV = 4.999 \, V \]

DIO Lines

The NI ELVIS RIO CM provides 3.3 V general-purpose DIO lines on the MXP connectors.

DIO <13..0> on the MXP have 40 kΩ pull-up resistors to 3.3 V, as shown in the following figure.

![Figure 5. DIO Lines with 40 kΩ Pull-up Resistors to 3.3 V](image)

DIO <15..14> on the MXP have 2.2 kΩ pull-up resistors to 3.3 V, as shown in the following figure.

![Figure 6. DIO Lines with 2.2 kΩ Pull-up Resistors to 3.3 V](image)

You can program all MXP DIO lines individually as inputs or outputs. Secondary digital functions include SPI, I²C, PWM, and quadrature encoder input.

Note For information about configuring the behavior of the DIO lines, visit ni.com/info and enter the Info Code elvisriocmhelp.

When a DIO line is floating, it floats in the direction of the pull resistor. A DIO line may be floating in any of the following conditions:

- When the NI ELVIS RIO CM device is starting up.
- When the line is configured as an input.
- When the NI ELVIS RIO CM device is powering down.

You can add a stronger resistor to a DIO line to cause it to float in the opposite direction.
UART Lines
The NI ELVIS RIO CM has one UART receive input line and one UART transmit output line on each MXP connector.

The UART lines on the MXP are electrically identical to DIO <13..0> on the MXP. Similarly, UART.RX and UART.TX have 40 kΩ pull-up resistors to 3.3 V.

USB Device Port
You can deploy and debug code by connecting a USB cable from the USB device port on the NI ELVIS RIO CM to a computer.

USB Host Port
The NI ELVIS RIO CM USB host port supports the following devices:

• Web cameras that conform to the USB Video Device Class (UVC) protocol.
• Machine vision cameras that conform to the USB3 Vision standard and are backward compatible with the USB 2.0 specification.
• Basler ace USB3 cameras.
• USB Flash drives.\(^1\)
• USB-to-IDE adapters formatted with FAT16 and FAT32 file systems.\(^1\)

Front Panel Buttons

Reset Button
Pressing and releasing the Reset button restarts the processor and the FPGA. The following figure shows the reset behavior of the NI ELVIS RIO CM.

\(^1\) LabVIEW usually maps USB devices to the /U, /V, /W, or /X drive, starting with the /U drive if it is available.
When the NI ELVIS RIO CM is in safe mode, you can communicate with it by using the UART lines on MXP connector A. You require the following items to communicate with the NI ELVIS RIO CM device over UART:

- USB-to-TTL serial UART converter cable (for example, part number TTL-232RG-VSW3V3-WE from FTD Chip)

You must configure your serial-port terminal program with the following settings:

- 115,200 bits per second
- Eight data bits
- No parity
- One stop bit
- No flow control

User Button

The User Button produces a logic TRUE when depressed and a logic FALSE when not depressed. The User Button is not debounced in hardware.

LED Indications

Power LED

The Power LED is lit while the NI ELVIS RIO CM is powered on. This LED indicates that the power supply connected to the device is adequate.

Status LED

The Status LED is off during normal operation. The NI ELVIS RIO CM runs a power-on self test (POST) when you apply power to the device. During the POST, the Power and Status LEDs turn on. When the Status LED turns off, the POST is complete. The NI ELVIS RIO CM
indicates specific error conditions by flashing the Status LED a certain number of times every few seconds, as shown in the following table.

Table 2. Status LED Indications

<table>
<thead>
<tr>
<th>Number of Flashes Every Few Seconds</th>
<th>Indication</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>The device has detected an error in its software. This usually occurs when an attempt to upgrade the software is interrupted. Reinstall software on the device.</td>
</tr>
<tr>
<td>3</td>
<td>The device is in safe mode.</td>
</tr>
<tr>
<td>4</td>
<td>The software has crashed twice without rebooting or cycling power between crashes. This usually occurs when the device runs out of memory. Review your LabVIEW Real-Time VI and check the memory usage. Modify the VI as necessary to solve the memory usage issue.</td>
</tr>
<tr>
<td>Continuously flashing or solid</td>
<td>The device has detected an unrecoverable error. Contact NI.</td>
</tr>
</tbody>
</table>

LEDs 0-3

You can use LEDs 0-3 to help debug your application or easily retrieve application status. Logic TRUE turns an LED on and logic FALSE turns an LED off.

Physical Dimensions

The following figures describe the physical dimensions of the NI ELVIS RIO CM enclosure and its features.

Figure 8. NI ELVIS RIO CM Dimensions, Top View
Figure 9. NI ELVIS RIO CM Dimensions, Front View

Figure 10. NI ELVIS RIO CM Dimensions, Side View

Note For more information about the dimensions of the system, detailed 2-dimensional drawings and 3-dimensional models, visit ni.com/dimensions and search for the product name.

Warranty

For customers other than private individual users in the EU: The NI ELVIS RIO CM is warranted against defects in materials and workmanship for a period of three years from the date of shipment, as evidenced by receipts or other documentation. NI will, at its option, repair or replace equipment that proves to be defective during the warranty period. This warranty includes parts and labor.

For private individual users in the EU: Based on your statutory rights, NI will—through its distributor—cure defects in materials and workmanship within two years from delivery.
Worldwide Support and Services

The NI website is your complete resource for technical support. At ni.com/support, you have access to everything from troubleshooting and application development self-help resources to email and phone assistance from NI Application Engineers.

Visit ni.com/services for NI Factory Installation Services, repairs, extended warranty, and other services.

Visit ni.com/register to register your NI product. Product registration facilitates technical support and ensures that you receive important information updates from NI.

A Declaration of Conformity (DoC) is our claim of compliance with the Council of the European Communities using the manufacturer’s declaration of conformity. This system affords the user protection for electromagnetic compatibility (EMC) and product safety. You can obtain the DoC for your product by visiting ni.com/certification. If your product supports calibration, you can obtain the calibration certificate for your product at ni.com/calibration.

NI corporate headquarters is located at 11500 North Mopac Expressway, Austin, Texas, 78759-3504. NI also has offices located around the world. For telephone support in the United States, create your service request at ni.com/support or dial 1 866 ASK MYNI (275 6964). For telephone support outside the United States, visit the Worldwide Offices section of ni.com/niglobal to access the branch office websites, which provide up-to-date contact information, support phone numbers, email addresses, and current events.