The National Instruments 9755 CompactRIO NOx Sensor Module Kit interfaces with NO\textsubscript{x} and O\textsubscript{2} exhaust gas sensors.

Features

- Configurable from one to four channels
- Measures NO\textsubscript{x} (ppm) and O\textsubscript{2} (%) concentrations
- Sensor controller supply voltage of 12 V to 16 V (24 V version available)
- Reverse battery protection on sensor controller module
- Sensor controller module harness
- LabVIEW FPGA and RT VIs for quick integration with application
- Integration with existing PXI or CompactRIO chassis hardware
System Diagram

Figure 1. NI 9755 System

Hardware

The NI 9755 includes the following hardware:
- Continental UniNOx Smart NOx Sensor with integrated sensor controller module
- Sensor bung
- Wiring harness
- NI-9853 CompactRIO High-Speed CAN module

The wiring harness in the NI 9755 connects to the NOx Sensor Control Module and splits into two cables for the NI-9853 module and an external power supply. The first cable connects to the NI-9853 with a female DB-9 connector. A terminating resistor of approximately 120 Ω is located inside this cable near the NOx Sensor Control Module and between the CAN High and CAN Low wires. The second cable provides three non-terminated leads for connecting to a power supply, which requires two leads, and for address selection of the NOx Sensor Module, which requires one lead. If the cable is to be extended, follow CAN network wiring guidelines.

Refer to the **NI 9853 CAN Module Operating Instructions and Specifications** for more information on cabling requirements.

Note You must use the sensor included in the NI 9755 kit. NI does not support other sensors.
Powering the Hardware

The NI 9755 requires power from a range of 12 V to 16 V with a continuous current of 1.5 A and a peak current of 16 A. The maximum power requirement is 20 W, which typically occurs when the heating element is being turned on from a cold state. If you are using two sensors, double the capacity of the power supply.

Refer to the NI 9853 Operating Instructions and Specifications for more information on power requirements.

Contact National Instruments for more information about sensor specifications.

NOx Sensor Light-Off Times

Conditions
- Air T: 25 ±5 °C
- Batt V: 14 V
- Heater: ON

NOx: < 100 s
O₂: < 80 s

NOx Sensor Preheating Function

When power is supplied to the sensor, the sensor enters preheating mode automatically until the Sensor Enable Boolean is set to TRUE within the supporting software. The Sensor Enable Boolean turns the internal sensor heater to its ON state. If the Sensor Enable Boolean is set to FALSE, the sensor returns to preheating mode. The preheating mode protects the sensor from mechanical cracks caused by water splash.

NOx Sensor Operating Temperature Ranges

Sensor module controller temperature: -40 °C to 105 °C
(105 °C to 115 °C for a maximum of 10 minutes)
Storage temperature range: -40 °C to 120 °C
Max storage time: 2 years
Max exhaust gas temperature: 800 °C (950 °C for a maximum of 100 hours)
Max sensor hexagon screw temperature: 620 °C (650 °C for a maximum of 100 hours)
Max sensor grommet temperature: 200 °C (230 °C for a maximum of 100 hours)
Preheating sensor temperature: 80 °C to 120 °C
Lifespan approved by life cycle pattern: 2,000 hours or 120 K miles
NOx Sensor Electrical Characteristics

NOx Sensor Supply Voltage
Minimum supply voltage 12 V
Maximum supply voltage 16 V

NOx Sensor Supply Current
Average supply current 1.5 A
Peak supply current at switch on 16 A

Supply Power
Maximum supply power 20 W

NOx Sensor Miscellaneous
Thread Torque 50 N · m (36.88 lb · ft)
Lubrication Anti-seize compound

Figure 2. Installation Position

Figure 3. Tilt Angle in Gas Flow Direction
NOx Sensor Controller Module Connector

Type of connector ... Hirschmann MLK 872-860-501
Number of pins .. 5

Connector pin assignment

- Pin 1 .. Battery [red]
- Pin 2 .. Ground [black]
- Pin 3 .. CAN Low [blue]
- Pin 4 .. CAN High [orange]
- Pin 5 .. Address Switch [purple]

Pulling Pin 5 to ground changes the CAN transmit ID of the NOx sensor control module so that two NOx sensor control modules can be added to the same network. Sensor Control Modules with Pin 5 floating are Ch. 1 and Sensor Control Modules with Pin 5 grounded are Ch. 2.

Wiring Harness

Figure 4. 2-Sensor Harness

- Each leg from the junction is 4 ft
- Batt and Gnd wires are 18 AWG, CAN wires are 20 AWG
- 120 Ω resistors across CAN-Low and CAN-High near sensor 1 and 2
- NI-CAN devices connect to the harness through a female DB-9 connector
- CAN-Ground is connected to Ground near junction
- Add. Sw should be connected to ground at the power supply

Refer to the NI Trademarks and Logo Guidelines at ni.com/trademarks for more information on National Instruments trademarks. Other product and company names mentioned herein are trademarks or trade names of their respective companies. For patents covering National Instruments products/technology, refer to the appropriate location: Help»Patents in your software, the patents.txt file on your media, or the National Instruments Patents Notice at ni.com/patents. You can find information about end-user license agreements (EULAs) and third-party legal notices in the readme file for your NI product. Refer to the Export Compliance Information at ni.com/legal/export-compliance for the National Instruments global trade compliance policy and how to obtain relevant HTS codes, ECCNs, and other import/export data.

© 2013 National Instruments. All rights reserved.