NI PXI/PCI-6541/6542 Specifications #### 50/100 MHz Digital Waveform Generator/Analyzer このドキュメントには、日本語ページも含まれています。 This document provides the specifications for the NI PXI/PCI-6541 (NI 6541) and the NI PXI/PCI-6542 (NI 6542). Typical values are representative of an average unit operating at room temperature. Specifications are subject to change without notice. For the most recent NI 6541/6542 specifications, visit ni.com/manuals. To access the NI 6541/6542 documentation, including the *NI Digital Waveform Generator/Analyzer Getting Started Guide*, which contains functional descriptions of the NI 6541/6542 signals, navigate to **Start» Programs»National Instruments»NI-HSDIO»Documentation**. **Hot Surface** If the NI 6541/6542 has been in use, it may exceed safe handling temperatures and cause burns. Allow time to cool before removing the NI 6541/6542 from the chassis. **Note** All values were obtained using a 1 m cable (SHC68-C68-D4 recommended). Performance specifications are not guaranteed when using longer cables. Values are typical unless otherwise noted. #### **Contents** | Channel Specifications | 2 | |---|---| | Generation Channels (Data, DDC CLK OUT, and PFI <03>) | | | Acquisition Channels (Data, STROBE, and PFI <03>) | 4 | | Timing Specifications | 5 | | Sample Clock | | | Generation Timing (Data, DDC CLK OUT, and PFI <03> | | | Channels) | 7 | | Generation Provided Setup and Hold Times | | | Acquisition Timing (Data, STROBE, and PFI <03> Channels | s)11 | |--|------| | CLK IN (SMB Jack Connector) | 14 | | STROBE (DDC Connector) | 15 | | PXI_STAR (PXI Backplane) | 16 | | CLK OUT (SMB Jack Connector) | | | DDC CLK OUT (DDC Connector) | | | Reference Clock (PLL) | 17 | | Waveform Specifications | 18 | | Memory and Scripting | 18 | | Triggers (Inputs to the NI 6541/6542) | 20 | | Events (Generated from the NI 6541/6542) | 22 | | Miscellaneous | 22 | | Power | 23 | | Physical Specifications | | | Software | 24 | | Environment | 24 | | Safety, Electromagnetic Compatibility, and CE Compliance | 25 | | | | ## **Channel Specifications** | Specification | Value | Comments | |--|---------------------|---| | Number of data channels | 32 | _ | | Direction
control of data
channels | Per channel | _ | | Number of
programmable
function
interface (PFI)
channels | 4 | Refer to the Waveform Specifications section for more details. | | Direction
control of PFI
channels | Per channel | _ | | Number of clock terminals | 3 input
2 output | Refer to the <i>Timing Specifications</i> section for more details. | ## Generation Channels (Data, DDC CLK OUT, and PFI <0..3>) | Specification | | Value | | | | | |---|--|-------------|-----------|------------|-----------------|--| | Generation
voltage
families | 1.8V, 2.5V, 3.3V TTL (5V TTL compatible) | | | | Into 1 MΩ | | | Generation signal type | Single-ended | | | | _ | | | Generation | Voltage L | ow Levels | Voltage H | igh Levels | _ | | | voltage levels | Typical | Maximum | Minimum | Typical | | | | 1.8V | 0 V | 0.1 V | 1.7 V | 1.8 V | $I = 100 \mu A$ | | | 2.5V | 0 V | 0.1 V | 2.4 V | 2.5 V | | | | 3.3V | 0 V | 0.1 V | 3.2 V | 3.3 V | | | | 5.0V | 0 V | 0.1 V | 3.2 V | 3.3 V | 1 | | | Output impedance | 50 Ω nominal | _ | | | | | | Maximum DC drive strength | ±8 mA at 1.8 V
±16 mA at 2.5 V
±32 mA at 3.3 V | | | | | | | Data channel
driver
enable/disable
control | Per channel | Per channel | | | | | | Channel power-on state | Module Assemblies Module Assemblies Labeled A and B Labeled C and Later | | | | _ | | | | Drivers disabled, Drivers disabled, $10 \text{ k}\Omega$ input impedance 50 kΩ input impedance | | | | | | | Output protection | The device can indefinitely sustain a short to any voltage between 0 V and 5 V. | | | | _ | | #### Acquisition Channels (Data, STROBE, and PFI < 0..3 >) | Specification | Va | lue | Comments | |------------------------------|---|--|--| | Acquisition voltage families | 1.8V, 2.5V, 3.3V TTL
(5V TTL compatible) | _ | | | Acquisition signal type | Single-ended | | _ | | Acquisition | Low Voltage Threshold | High Voltage Threshold | | | voltage levels | Maximum | Minimum | | | 1.8V | 0.45 V | 1.35 V | | | 2.5V | 0.75 V | 1.75 V | | | 3.3V | 1.00 V | 2.30 V | _ | | 5.0V | 1.00 V | 2.30 V | | | Input impedance | Module Assemblies
Labeled A and B | Module Assemblies
Labeled C and Later | _ | | | 10 kΩ | 50 kΩ | | | Input protection | -1 to 6 V | | Diode clamps
in the design
may provide
additional
protection
outside this
range. | # **Timing Specifications** #### Sample Clock | Specification | Value | Comments | |--|---|---| | Sample clock sources | On Board Clock (internal voltage-controlled crystal oscillator (VCXO) with divider) CLK IN (SMB jack connector) | _ | | | 3. PXI_STAR (PXI backplane—PXI only) | | | | 4. STROBE (Digital Data & Control (DDC) connector; acquisition only) | | | On Board
Clock | NI 6541 : 48 Hz to 50 MHz
Configurable to 200 MHz/ N ; $4 \le N \le 4,194,304$ | _ | | frequency range | NI 6542 : 48 Hz to 100 MHz
Configurable to 200 MHz/ N ; $2 \le N \le 4,194,304$ | | | CLK IN
frequency
range | NI 6541: 20 kHz to 50 MHz NI 6542: 20 kHz to 100 MHz | Refer to the CLK IN (SMB Jack Connector) section for restrictions based on waveform type. | | PXI_STAR
frequency
range
(PXI only) | NI 6541: 48 Hz to 50 MHz
NI 6542: 48 Hz to 100 MHz | Refer to the PXI_STAR (PXI Backplane) section. | | STROBE
frequency
range | NI 6541: 48 Hz to 50 MHz
NI 6542: 48 Hz to 100 MHz | Refer to the STROBE (DDC Connector) section. | | Specification | | Value | Comments | |--|---|---|-------------------| | Sample clock
relative delay
adjustment
range | 0.0 to 1.0 Sample clock | You can apply
a delay or
phase
adjustment to | | | Sample clock
relative delay
adjustment
resolution | 10 ps | the On Board
Clock to align
multiple
devices. | | | Exported
Sample clock
destinations | 1. DDC CLK OUT (DI
2. CLK OUT (SMB jac | Sample clocks
with sources
other than
STROBE can
be exported. | | | Exported Sample clock delay range (δ_C) | 0.0 to 1.0 Sample clock | For clock
frequencies
≥25 MHz | | | | 1/256 of Sample clock p | For clock
frequencies
≥25 MHz | | | Exported | Period Jitter | Cycle-to-Cycle Jitter | Typical; using | | Sample clock
jitter | 20 ps _{rms} | 35 ps _{rms} | On Board
Clock | ## Generation Timing (Data, DDC CLK OUT, and PFI <0..3> Channels) | Specification | Value | Comments | |--|---|---| | Data
channel-to-
channel skew | ±600 ps | Typical skew
across all data
channels | | Maximum data channel toggle rate | NI 6541: 25 MHz
NI 6542: 50 MHz | _ | | Data position modes | Sample clock rising edge, Sample clock falling edge, or Delay from Sample clock rising edge | _ | | Generation data delay range (δ_G) | 0.0 to 1.0 Sample clock periods | Supported for clock frequencies ≥25 MHz | | $\begin{array}{c} \text{Generation} \\ \text{data delay} \\ \text{resolution } (\delta_G) \end{array}$ | 1/256 of Sample clock period | Supported for clock frequencies ≥25 MHz | | Exported
Sample clock
offset (t _{CO}) | 0.0 or 2.5 ns (default) | Software-
selectable | | Time delay from Sample clock (internal) to DDC connector (t _{SCDDC}) | 15 ns | Typical | #### **Generation Provided Setup and Hold Times** | Exported Sample
Clock Mode
and Offset | Voltage
Family | Time from Rising Clock Edge to Data Transition (t _{PCO}) | Minimum
Provided Setup
Time (t _{PSU}) | Minimum
Provided Hold
Time (t _{PH}) | |---|-------------------|--|---|---| | Noninverted, 2.5 ns | 1.8V | 2.5 ns, typical | $t_P - 5.5 \text{ ns}$ | 0.5 ns | | | 2.5V | | $t_P - 4.5 \text{ ns}$ | 0.9 ns | | | 3.3V/5.0V | | $t_P - 4.5 \text{ ns}$ | 1 ns | | Inverted, 0 ns | 1.8V | t _P /2 | $t_P/2 - 3.5 \text{ ns}$ | $(t_P/2) - 1.5 \text{ ns}$ | | | 2.5V | | $t_P/2 - 2.5 \text{ ns}$ | | | | 3.3V/5.0V | | $t_P/2 - 2 \text{ ns}$ | | To determine the appropriate exported Sample clock mode and offset for your NI 6541/6542 generation session, compare the setup and hold times from the datasheet of your device under test (DUT) to the values in this table. Select the exported Sample clock mode and offset such that the NI 6541/6542 provided setup and hold times are greater than the setup and hold times required for the DUT. Refer to Figure 1, *Generation Provided Setup and Hold Times Timing Diagram*, for a diagram illustrating the relationship between the exported Sample clock mode and the provided setup and hold times. **Notes**: This table assumes the data position is set to Sample clock rising edge and the Sample clock is exported to the DDC connector. This table includes worst-case effects of channel-to-channel skew, inter-symbol interference, and jitter. Other combinations of exported Sample clock mode and offset are also allowed. The preceding table presents only the values for the default case (noninverted clock with 2.5 ns offset) and the case for providing balanced setup and hold times (inverted clock with 0 ns offset). Specified timing relationships apply at the DDC connector and at high-speed DIO accessory terminals. Any signal routing, clock splitting, buffers, or translation logic can impact this relationship. If multiple copies of DDC_CLK_OUT are necessary, NI recommends using a zero delay buffer to preserve this relationship. Figure 1. Generation Provided Setup and Hold Times Timing Diagram **Note** Provided setup and hold times account for maximum channel-to-channel skew and jitter. Figure 2. Generation Timing Diagram ## Acquisition Timing (Data, STROBE, and PFI <0..3> Channels) | Specification | Value | Comments | |--|---|---| | Channel-to-
channel skew | ±600 ps | Typical skew
across all data
channels | | Data position modes | Sample clock rising edge, Sample clock falling edge, or Delay from Sample clock rising edge | _ | | Setup time to STROBE (t _{SUS}) | 3.1 ns | Maximum;
includes
maximum data
channel-to-
channel skew | | Hold time to
STROBE (t _{HS}) | 2.7 ns | Maximum;
includes
maximum data
channel-to-
channel skew | | Time delay
from DDC
connector data
to internal
Sample clock
(t _{DDCSC}) | 10 ns | Typical | | Setup time to
Sample clock
(t _{SUSC}) | 0.4 ns | Does not include data channel-to-channel skew, t _{DDCSC} , or t _{SCDDC} | | Hold time to
Sample clock
(t _{HSC}) | 0 ns | Does not include data channel-to-channel skew, t _{DDCSC} , or t _{SCDDC} | | Specification | Value | Comments | |--|---------------------------------|---| | Acquisition data delay range (δ_A) | 0.0 to 1.0 Sample clock periods | Supported for clock frequencies ≥25 MHz | | Acquisition data delay resolution (δ_A) | 1/256 of Sample clock period | Supported for clock frequencies ≥25 MHz | Figure 3. Acquisition Timing Diagram Using STROBE as the Sample Clock Figure 4. Acquisition Timing Diagram with Sample Clock Sources Other than STROBE ## **CLK IN (SMB Jack Connector)** | Specification | Value | | | | Comments | |--------------------------------------|--------------------------------|---|-------------------------------|-------------------------------|-------------------------| | Direction | Input into device | | | | _ | | Signal type | Single-ended | | | | _ | | Destinations | Reference clo Sample clock | | nase lock loop | (PLL)) | _ | | Input coupling | AC | | | | _ | | Input protection | ±10 VDC | | | | _ | | Input impedance | 50 Ω (default) or | r 1 kΩ | | | Software-
selectable | | Minimum
detectable pulse
width | 4 ns | | | | _ | | Clock requirements | Clock must be co | ontinuous and | l free-running. | | _ | | As Sample Clock | | | | | | | External Sample | | Square V | Vaves | | _ | | clock range | Voltage range | 0.65 V _{pp} to | 5.0 V _{pp} | | _ | | | Frequency | NI 6541: 20 | kHz to 50 M | Hz | _ | | | range | NI 6542: 20 | kHz to 100 N | MHz | _ | | | Duty cycle range | | : 25% to 75%
: 40% to 60% | | _ | | | | Sine W | aves | | _ | | | Voltage
range | 0.65 to 1.0 to 2.0 to 5.0 V _{pp} 5.0 V _{pp} | | | _ | | | Frequency range | NI 6541:
5.5 to
50 MHz | NI 6541:
3.5 to
50 MHz | NI 6541:
1.8 to
50 MHz | _ | | | | NI 6542:
5.5 to
100 MHz | NI 6542:
3.5 to
100 MHz | NI 6542:
1.8 to
100 MHz | _ | | Specification | Value | Comments | | |---------------------------------|-----------------------------|----------|--| | As Reference Clo | As Reference Clock | | | | Reference clock frequency range | 10 MHz ±50 ppm | _ | | | Reference clock voltage range | 0.65 to 5.0 V _{pp} | _ | | | Reference clock
duty cycle | 25 to 75% | _ | | ## STROBE (DDC Connector) | Specification | Val | Comments | | |--------------------------------------|---|---|--------| | Direction | Input into device | | _ | | Destinations | Sample clock (acquisition only |) | _ | | STROBE
frequency
range | NI 6541 : 48 Hz to 50 MHz
NI 6542 : 48 Hz to 100 MHz | | | | STROBE duty | NI 6541 : 25 to 75% for clock f | requencies <50 MHz | At the | | cycle range | NI 6542: 40 to 60% for clock f 25 to 75% for clock frequencie | programmed
thresholds | | | Minimum
detectable
pulse width | 4 ns | Required
at both
acquisition
voltage
thresholds | | | Voltage
thresholds | Refer to the Acquisition Timing PFI <03> Channels) specific Specifications section. | _ | | | Clock requirements | Clock must be continuous and | _ | | | Input impedance | Module Assemblies
Labeled A and B | Software-
selectable | | | | 10 kΩ | 50 kΩ | | #### PXI_STAR (PXI Backplane) | Specification | Value | Comments | |--------------------------------|---|----------| | Direction | Input into device | _ | | Signal type | Single-ended | _ | | Destinations | Sample clock Start trigger Reference trigger (acquisition sessions only) Advance trigger (acquisition sessions only) Pause trigger (generation sessions only) Script trigger <03> (generation sessions only) | _ | | PXI_STAR
frequency
range | NI 6541 : 48 Hz to 50 MHz
NI 6542 : 48 Hz to 100 MHz | _ | | Clock requirements | Clock must be continuous and free-running. | _ | ## **CLK OUT (SMB Jack Connector)** | Specification | Value | Comments | |----------------------------|---|----------| | Direction | Output from device | _ | | Sources | Sample clock (excluding STROBE) Reference clock (PLL) | _ | | Output impedance | 50 Ω nominal | _ | | Electrical characteristics | Refer to the <i>Generation Timing (Data, DDC CLK OUT, and PFI <03> Channels)</i> specifications in the <i>Channel Specifications</i> section. | | | Maximum
drive current | 8 mA at 1.8V, 16 mA at 2.5V, 32 mA at 3.3V | _ | | Logic type | Generation logic family setting (3.3V, 2.5V, 1.8V) | _ | ## **DDC CLK OUT (DDC Connector)** | Specification | Value | Comments | |----------------------------|---|---| | Direction | Output from device | _ | | Sources | Sample clock | STROBE cannot be routed to DDC CLK OUT. | | Electrical characteristics | Refer to the <i>Generation Timing (Data, DDC CLK OUT, and PFI < 03 > Channels)</i> specifications in the <i>Channel Specifications</i> section. | _ | #### Reference Clock (PLL) | Specification | Value | Comments | |-----------------------------------|--|--| | Reference clock sources | PXI_CLK10 (PXI backplane—PXI only) RTSI 7 (PCI only) CLK IN (SMB jack connector) None (On Board Clock not locked to a reference) | Provides the reference frequency for the PLL | | Lock time | 400 ms | Typical | | Reference
clock
frequencies | 10 MHz ±50 ppm | | | Reference clock duty cycle range | 25 to 75% | | | Reference clock destinations | CLK OUT (SMB jack connector) | _ | # **Waveform Specifications** #### **Memory and Scripting** | Specification | | Value | | Comments | |------------------------|---|--|---|---| | Memory
architecture | The NI 6541/6542 uses the Synchronization and Memory Core (SMC) technology in which waveforms and instructions share onboard memory. Parameters such as number of script instructions, maximum number of waveforms in memory, and number of samples (S) available for waveform storage are flexible and user-defined. | | | Refer to the Onboard Memory section in the NI Digital Waveform Generator/ Analyzer Help for more information. | | Onboard
memory size | 1 Mbit/channel
(for generation
sessions) 1 Mbit/channel
(for acquisition
sessions) | Maximum limit for generation sessions assumes no scripting instructions. | | | | Generation modes | Single-waveform n
Generate a single wa | , or continuously. | _ | | | | Scripted mode:
Generate a simple of
scripts to describe the
in which the waveforms are gene
Script triggers. | merated, the order w many times the | | | | Specification | | Comments | | | |--|------------------------|-----------------------------------|-------------------|--| | Generation
minimum
waveform size
in samples (S) | Configuration | Samp
100 MHz
(NI 6542 only) | le Rate
50 MHz | Sample rate dependent. Increasing sample rate | | in samples (3) | Single waveform | 2 S | 2 S | increases | | | Continuous
waveform | 32 S | 16 S | minimum
waveform size
requirement. | | | Stepped sequence | 128 S | 64 S | For information | | | Burst sequence | 512 S | 256 S | on these configurations, refer to Common Scripting Use Cases topic in the NI Digital Waveform Generator/ Analyzer Help. | | Generation finite repeat count | 1 to 16,777,216 | | | _ | | Generation
waveform
quantum | Waveform size must | t be an integer multipl | e of 2 S. | Regardless of
waveform size,
NI-HSDIO
allocates
waveforms
into block
sizes of 32 S
of physical
memory. | | Acquisition minimum record size | 1 S | | | Regardless of
waveform size,
NI-HSDIO
allocates at
least 128 bytes
for a record. | | Acquisition record quantum | 1 S | | | _ | | Specification | Value | Comments | |--|---------------------|----------| | Acquisition
maximum
number of
records | 2,147,483,647 | _ | | Acquisition
number of
pre-Reference
trigger
samples | 0 up to full record | | | Acquisition
number of
post-
Reference
trigger
samples | 0 up to full record | _ | ## Triggers (Inputs to the NI 6541/6542) | Specification | Value | Comments | |---------------|--|----------| | Trigger types | 1. Start trigger | _ | | | 2. Pause trigger | | | | 3. Script trigger <03> (generation sessions only) | | | | 4. Reference trigger (acquisition sessions only) | | | | 5. Advance trigger (acquisition sessions only) | | | Sources | 1. PFI 0 (SMB jack connector) | _ | | | 2. PFI <13> (DDC connector) | | | | 3. PXI_TRIG<07> (PXI backplane—PXI only)/
RTSI <07> (RTSI bus—PCI only) | | | | 4. PXI_STAR (PXI backplane—PXI only) | | | | 5. Pattern match (acquisition sessions only) | | | | 6. Software (user function call) | | | | 7. Disabled (do not wait for a trigger) | | | Specification | | Va | lue | | Comments | |--|--|-------|-----------------------|--|--------------| | Trigger
detection | Start trigger (edge detection: rising or falling) Pause trigger (level detection: high or low) Script trigger <03> (edge detection: rising or falling; level detection: high or low) Reference trigger (edge detection: rising or falling) Advance trigger (edge detection: rising or falling) | | | | _ | | Minimum required | Generation Tri | ggers | _ | isition Triggers | _ | | trigger pulse
width | 30 ns | | _ | on triggers must
up and hold time
ents. | | | Trigger rearm time | Start to
Reference
Trigger | Adv | rt to
ance
gger | Reference to
Reference
Trigger | _ | | | 57 S, typical;
64 S, maximum | 7.2 | | | | | Destinations | PFI 0 (SMB jack connectors) PFI <13> (DDC connector) PXI_TRIG<06> (PXI backplane—PXI only)/
RTSI<06> (RTSI bus—PCI only) | | | Each trigger can be routed to any destination except the Pause trigger. The Pause trigger cannot be exported for acquisition sessions. | | | Delay from | Generation Ses | sions | Acqu | usition Sessions | Use the Data | | Pause trigger
to Pause state | 32 Sample clock periods + 150 ns Synchronous with the data | | | Active event
during
generation to
determine
when the
NI 6541/6542
enters the
Pause state. | | | Delay from
trigger to
digital data
output | 32 Sample clock periods + 160 ns | | | _ | | ## Events (Generated from the NI 6541/6542) | Specification | Value | Comments | |------------------------------------|---|--| | Event type | Marker <03> (generation sessions only) Data Active event (generation sessions only) Ready for Start event Ready for Advance event (acquisition sessions only) End of Record event (acquisition sessions only) | _ | | Destinations | PFI 0 (SMB jack connectors) PFI <13> (DDC connector) PXI_TRIG<06> (PXI backplane—PXI only)/
RTSI<06> (RTSI bus—PCI only) | Each event can be routed to any destination, except the Data Active event. The Data Active event can be routed only to the PFI channels. | | Marker time resolution (placement) | Markers must be placed at an integer multiple of 2 S. | _ | #### Miscellaneous | Specification | Value | Comments | |---|-------------------|----------| | Warm-up time | 15 minutes | _ | | On Board Clock characteristics (valid when PLL reference source is set to None) | | | | Frequency accuracy | ±100 ppm | _ | | Temperature stability | ±30 ppm | _ | | Aging | ±5 ppm first year | _ | #### **Power** | Specification | Value | | Comments | |---------------|---------|---------|----------| | | Typical | Maximum | | | +3.3 VDC | 1.6 A | 1.8 A | _ | | +5 VDC | 1.2 A | 1.7 A | _ | | +12 VDC | 0.25 A | 0.40 A | _ | | -12 VDC | 0.06 A | 0.10 A | _ | | Total power | 15 W | 20.5 W | _ | ## **Physical Specifications** | Specification | Value | | Comments | | |------------------------------|--|-------------------------------------|----------|--| | Dimensions | PXI | PCI | _ | | | | 3U, One Slot, PXI/cPCI
Module
21.6 × 2.0 × 13.1 cm
(8.5 × 0.8 × 5.16 in.) | 12.6 × 35.5 cm
(4.95 × 13.9 in.) | | | | Weight | PXI | PCI | _ | | | | 343 g (12.1 oz) | PCI : 410 g (14.5 oz) | | | | Front Panel Co | Front Panel Connectors | | | | | Label | Function(s) | Connector Type | | | | CLK IN | External Sample clock, external PLL reference input | SMB jack connector | _ | | | PFI 0 | Events, triggers | SMB jack connector | _ | | | CLK OUT | Exported Sample clock, exported Reference clock | SMB jack connector | _ | | | DIGITAL
DATA &
CONTROL | Digital data channels,
exported Sample clock,
STROBE, events, triggers | 68-pin VHDCI connector | _ | | #### Software | Specification | Value | Comments | |----------------------|--|---| | Driver software | NI-HSDIO driver software 1.2 or later. NI-HSDIO allows you to configure and control the NI 6541/6542. NI-HSDIO provides application interfaces for many development environments. NI-HSDIO follows IVI application programming interface (API) guidelines. | _ | | Application software | NI-HSDIO provides programming interfaces for the following application development environments (ADEs): • National Instruments LabVIEW • National Instruments LabWindows™/CVI™ • Microsoft Visual C/C++ | Refer to the NI-HSDIO Instrument Driver Readme for more information about supported ADE versions. | | Test panel | National Instruments Measurement & Automation Explorer (MAX) provides test panels with basic acquisition and generation functionality for the NI 6541/6542. MAX is included on the NI-HSDIO driver CD. | _ | #### **Environment** **Note** To ensure that the NI 6541/6542 cools effectively, follow the guidelines in the *Maintain Forced Air Cooling Note to Users* included with the NI 6541/6542. The NI 6541/6542 is intended for indoor use only. | Specification | Value | Comments | |-----------------------|---|----------| | Operating temperature | PXI: 0 to +55 °C in all NI PXI chassis except the following: 0 to +45 °C when installed in an NI PXI-1000/B and NI PXI-101X chassis (Meets IEC 60068-2-1 and IEC 60068-2-2.) PCI: 0 to +45 °C | _ | | Storage temperature | −20 to 70 °C | _ | | Specification | Value | Comments | |---------------------------------|--|----------| | Operating relative humidity | 10 to 90% relative humidity, noncondensing (Meets IEC 60068-2-56.) | _ | | Storage
relative
humidity | 5 to 95% relative humidity, noncondensing (Meets IEC 60068-2-56.) | | | Operating shock | 30 g, half-sine, 11 ms pulse (Meets IEC 60068-2-27. Test profile developed in accordance with MIL-PRF-28800F.) | _ | | Storage
shock | 50 g, half-size, 11 ms pulse (Meets IEC 60068-2-27. Test profile developed in accordance with MIL-PRF-28800F.) | _ | | Operating vibration | 5 to 500 Hz, 0.31 g _{rms} (Meets IEC 60068-2-64.) | _ | | Storage vibration | 5 to 500 Hz, 2.46 g _{rms} (Meets IEC 60068-2-64. Test profile exceeds requirements of MIL-PRF-28800F, Class B.) | _ | | Altitude | 0 to 2,000 m above sea level (at 25 °C ambient temperature.) | _ | | Pollution
Degree | 2 | _ | ## Safety, Electromagnetic Compatibility, and CE Compliance | Specification | Value | Comments | |---------------|---|--| | Safety | The NI 6541/6542 meets the requirements of the following standards of safety for electrical equipment for measurement, control, and laboratory use: • IEC 61010-1, EN 61010-1 • UL 61010-1, CSA 61010-1 | For UL and other safety certifications, refer to the product label or to the Online Product Certification section. | | Specification | Value | Comments | |---------------------------------------|---|--| | Electro-
magnetic
Compatibility | This product meets the requirements of the following EMC standards for electrical equipment for measurement, control, and laboratory use: | To meet EMC compliance: | | Directive (EMC) | • EN 61326-1 (IEC 61326-1): Class A emissions;
Basic immunity | SHC68-C68-D4 or
SHC68-C68-D2
shielded cable | | | • EN 55011 (CISPR 11): Group 1, Class A emissions | must be used when | | | AS/NZS CISPR 11: Group 1, Class A emissions | operating the NI 6541/6542. | | | FCC 47 CFR Part 15B: Class A emissions | 141 0541/0542. | | | ICES-001: Class A emissions | EMI filler panels | | | For the standards applied to assess the EMC of this product, refer to the <i>Online Product Certification</i> section below. | (NI P/N 778700-01) must be installed in all empty slots of the NI 6541/6542. | | CE
Compliance | This product meets the essential requirements of applicable European Directives as follows: | _ | | | • 2006/95/EC; Low-Voltage Directive (safety) | | | | 2004/108/EC; Electromagnetic Compatibility Directive
(EMC) | | | Online Product
Certification | Refer to the product Declaration of Conformity (DoC) for additional regulatory compliance information. To obtain product certifications and the DoC for this product, visit ni.com/certification, search by model number or product line, and click the appropriate link in the Certification column. | _ | | Environmental
Management | NI is committed to designing and manufacturing products in an environmentally responsible manner. NI recognizes that eliminating certain hazardous substances from our products is beneficial to the environment and to NI customers. | _ | | | For additional environmental information, refer to the NI and the Environment Web page at ni.com/environment. This page contains the environmental regulations and directives with which NI complies, as well as other environmental information not included in this document. | | | Specification | Value | Comments | |--|--|----------| | Waste Electrical and Electronic Equipment (WEEE) | EU Customers: At the end of the product life cycle, all products <i>must</i> be sent to a WEEE recycling center. For more information about WEEE recycling centers, National Instruments WEEE initiatives and compliance with WEEE Directive 2002/96/EC on Waste Electrical and Electronic Equipment, visit ni.com/environment/weee. | | #### 电子信息产品污染控制管理办法 (中国 RoHS) 中国客户 National Instruments 符合中国电子信息产品中限制使用某些有害物质指令 (RoHS)。 关于 National Instruments 中国 RoHS 合规性信息,请登录 ni.com/environment/rohs_china。 (For information about China RoHS compliance, go to ni.com/environment/rohs_china.)