
LabWindows
TM

/CVI
TM

Getting Started with LabWindows/CVI

Getting Started with LabWindows/CVI

August 2015
373552K-01

Support

Worldwide Technical Support and Product Information
ni.com

Worldwide Offices

Visit ni.com/niglobal to access the branch office websites, which provide up-to-date
contact information, support phone numbers, email addresses, and current events.

National Instruments Corporate Headquarters

11500 North Mopac Expressway Austin, Texas 78759-3504 USA Tel: 512 683 0100

For further support information, refer to the NI Services appendix. To comment on National
Instruments documentation, refer to the National Instruments website at ni.com/info and
enter the Info Code feedback.

© 1994–2015 National Instruments. All rights reserved.

http://ni.com
http://ni.com/niglobal
http://ni.com/info

Legal Information

Limited Warranty
This document is provided ‘as is’ and is subject to being changed, without notice, in future editions. For the latest version,
refer to ni.com/manuals. NI reviews this document carefully for technical accuracy; however, NI MAKES NO EXPRESS
OR IMPLIED WARRANTIES AS TO THE ACCURACY OF THE INFORMATION CONTAINED HEREIN AND
SHALL NOT BE LIABLE FOR ANY ERRORS.
NI warrants that its hardware products will be free of defects in materials and workmanship that cause the product to fail to
substantially conform to the applicable NI published specifications for one (1) year from the date of invoice.
For a period of ninety (90) days from the date of invoice, NI warrants that (i) its software products will perform substantially
in accordance with the applicable documentation provided with the software and (ii) the software media will be free from
defects in materials and workmanship.
If NI receives notice of a defect or non-conformance during the applicable warranty period, NI will, in its discretion: (i) repair
or replace the affected product, or (ii) refund the fees paid for the affected product. Repaired or replaced Hardware will be
warranted for the remainder of the original warranty period or ninety (90) days, whichever is longer. If NI elects to repair or
replace the product, NI may use new or refurbished parts or products that are equivalent to new in performance and reliability
and are at least functionally equivalent to the original part or product.
You must obtain an RMA number from NI before returning any product to NI. NI reserves the right to charge a fee for
examining and testing Hardware not covered by the Limited Warranty.
This Limited Warranty does not apply if the defect of the product resulted from improper or inadequate maintenance,
installation, repair, or calibration (performed by a party other than NI); unauthorized modification; improper environment;
use of an improper hardware or software key; improper use or operation outside of the specification for the product; improper
voltages; accident, abuse, or neglect; or a hazard such as lightning, flood, or other act of nature.
THE REMEDIES SET FORTH ABOVE ARE EXCLUSIVE AND THE CUSTOMER’S SOLE REMEDIES, AND SHALL
APPLY EVEN IF SUCH REMEDIES FAIL OF THEIR ESSENTIAL PURPOSE.
EXCEPT AS EXPRESSLY SET FORTH HEREIN, PRODUCTS ARE PROVIDED "AS IS" WITHOUT WARRANTY OF
ANY KIND AND NI DISCLAIMS ALL WARRANTIES, EXPRESSED OR IMPLIED, WITH RESPECT TO THE
PRODUCTS, INCLUDING ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE, TITLE OR NON-INFRINGEMENT, AND ANY WARRANTIES THAT MAY ARISE FROM
USAGE OF TRADE OR COURSE OF DEALING. NI DOES NOT WARRANT, GUARANTEE, OR MAKE ANY
REPRESENTATIONS REGARDING THE USE OF OR THE RESULTS OF THE USE OF THE PRODUCTS IN TERMS
OF CORRECTNESS, ACCURACY, RELIABILITY, OR OTHERWISE. NI DOES NOT WARRANT THAT THE
OPERATION OF THE PRODUCTS WILL BE UNINTERRUPTED OR ERROR FREE.
In the event that you and NI have a separate signed written agreement with warranty terms covering the products, then the
warranty terms in the separate agreement shall control.
Copyright
Under the copyright laws, this publication may not be reproduced or transmitted in any form, electronic or mechanical,
including photocopying, recording, storing in an information retrieval system, or translating, in whole or in part, without the
prior written consent of National Instruments Corporation.
National Instruments respects the intellectual property of others, and we ask our users to do the same. NI software is protected
by copyright and other intellectual property laws. Where NI software may be used to reproduce software or other materials
belonging to others, you may use NI software only to reproduce materials that you may reproduce in accordance with the
terms of any applicable license or other legal restriction.
End-User License Agreements and Third-Party Legal Notices
You can find end-user license agreements (EULAs) and third-party legal notices in the following locations:
• Notices are located in the <National Instruments>_Legal Information and <National Instruments>

directories.
• EULAs are located in the <National Instruments>\Shared\MDF\Legal\license directory.
• Review <National Instruments>_Legal Information.txt for information on including legal information in

installers built with NI products.
U.S. Government Restricted Rights
If you are an agency, department, or other entity of the United States Government (“Government”), the use, duplication,
reproduction, release, modification, disclosure or transfer of the technical data included in this manual is governed by the
Restricted Rights provisions under Federal Acquisition Regulation 52.227-14 for civilian agencies and Defense Federal
Acquisition Regulation Supplement Section 252.227-7014 and 252.227-7015 for military agencies.
Trademarks
Refer to the NI Trademarks and Logo Guidelines at ni.com/trademarks for more information on National Instruments
trademarks.
ARM, Keil, and µVision are trademarks or registered of ARM Ltd or its subsidiaries.
LEGO, the LEGO logo, WEDO, and MINDSTORMS are trademarks of the LEGO Group.
TETRIX by Pitsco is a trademark of Pitsco, Inc.
FIELDBUS FOUNDATION™ and FOUNDATION™ are trademarks of the Fieldbus Foundation.

EtherCAT® is a registered trademark of and licensed by Beckhoff Automation GmbH.
CANopen® is a registered Community Trademark of CAN in Automation e.V.
DeviceNet™ and EtherNet/IP™ are trademarks of ODVA.
Go!, SensorDAQ, and Vernier are registered trademarks of Vernier Software & Technology. Vernier Software & Technology
and vernier.com are trademarks or trade dress.
Xilinx is the registered trademark of Xilinx, Inc.
Taptite and Trilobular are registered trademarks of Research Engineering & Manufacturing Inc.
FireWire® is the registered trademark of Apple Inc.
Linux® is the registered trademark of Linus Torvalds in the U.S. and other countries.
Handle Graphics®, MATLAB®, Real-Time Workshop®, Simulink®, Stateflow®, and xPC TargetBox® are registered
trademarks, and TargetBox™ and Target Language Compiler™ are trademarks of The MathWorks, Inc.
Tektronix®, Tek, and Tektronix, Enabling Technology are registered trademarks of Tektronix, Inc.
The Bluetooth® word mark is a registered trademark owned by the Bluetooth SIG, Inc.
The ExpressCard™ word mark and logos are owned by PCMCIA and any use of such marks by National Instruments is under
license.
The mark LabWindows is used under a license from Microsoft Corporation. Windows is a registered trademark of Microsoft
Corporation in the United States and other countries.
Other product and company names mentioned herein are trademarks or trade names of their respective companies.
Members of the National Instruments Alliance Partner Program are business entities independent from National Instruments
and have no agency, partnership, or joint-venture relationship with National Instruments.
Patents
For patents covering National Instruments products/technology, refer to the appropriate location: Help»Patents in your
software, the patents.txt file on your media, or the National Instruments Patent Notice at ni.com/patents.
Export Compliance Information
Refer to the Export Compliance Information at ni.com/legal/export-compliance for the National Instruments global
trade compliance policy and how to obtain relevant HTS codes, ECCNs, and other import/export data.
WARNING REGARDING USE OF NATIONAL INSTRUMENTS PRODUCTS
YOU ARE ULTIMATELY RESPONSIBLE FOR VERIFYING AND VALIDATING THE SUITABILITY AND
RELIABILITY OF THE PRODUCTS WHENEVER THE PRODUCTS ARE INCORPORATED IN YOUR SYSTEM OR
APPLICATION, INCLUDING THE APPROPRIATE DESIGN, PROCESS, AND SAFETY LEVEL OF SUCH SYSTEM
OR APPLICATION.
PRODUCTS ARE NOT DESIGNED, MANUFACTURED, OR TESTED FOR USE IN LIFE OR SAFETY CRITICAL
SYSTEMS, HAZARDOUS ENVIRONMENTS OR ANY OTHER ENVIRONMENTS REQUIRING FAIL-SAFE
PERFORMANCE, INCLUDING IN THE OPERATION OF NUCLEAR FACILITIES; AIRCRAFT NAVIGATION; AIR
TRAFFIC CONTROL SYSTEMS; LIFE SAVING OR LIFE SUSTAINING SYSTEMS OR SUCH OTHER MEDICAL
DEVICES; OR ANY OTHER APPLICATION IN WHICH THE FAILURE OF THE PRODUCT OR SERVICE COULD
LEAD TO DEATH, PERSONAL INJURY, SEVERE PROPERTY DAMAGE OR ENVIRONMENTAL HARM
(COLLECTIVELY, “HIGH-RISK USES”). FURTHER, PRUDENT STEPS MUST BE TAKEN TO PROTECT AGAINST
FAILURES, INCLUDING PROVIDING BACK-UP AND SHUT-DOWN MECHANISMS. NI EXPRESSLY DISCLAIMS
ANY EXPRESS OR IMPLIED WARRANTY OF FITNESS OF THE PRODUCTS OR SERVICES FOR HIGH-RISK
USES.

© National Instruments | v

Contents

About This Manual
Related Documentation .. ix

Chapter 1
Introduction to LabWindows/CVI
LabWindows/CVI Environment... 1-3
Standard Libraries... 1-5
User Interface Development ... 1-7

Generating a Program Shell with CodeBuilder .. 1-7
Developing and Editing Source Code .. 1-8
Instrument Control and Data Acquisition... 1-8

Using the Instrument Control and Data Acquisition Libraries................................. 1-8
Using the DAQ Assistant ... 1-8
Developing Instrument Drivers .. 1-9

Learning about LabWindows/CVI ... 1-9
Where to Go Next... 1-10

Chapter 2
Building a Graphical User Interface
Project Templates ... 2-1

Selecting a Project Template .. 2-1
User Interface Editor .. 2-2

Building a User Interface Resource (.uir) File ... 2-3
Editing a .uir File .. 2-3
Adding Command Buttons ... 2-4
Adding a Graph Control ... 2-5

Source Code Connection .. 2-8
CodeBuilder.. 2-9
Completing the Program Shell with CodeBuilder.. 2-9
Analyzing the Source Code .. 2-11

main Function ... 2-11
AcquireData Function... 2-12
QuitCallback Function.. 2-13

Running the Generated Code.. 2-13
Where to Go Next... 2-13

Contents

vi | ni.com

Chapter 3
Using Function Panels and Libraries
Function Panel Fundamentals ...3-1

Accessing Function Panels ...3-1
Function Panel Controls..3-2
Function Panel Help..3-2

Generating an Array of Data...3-3
Building the PlotY Function Call Syntax ...3-4
Running the Completed Project ..3-7
Where to Go Next ...3-7

Chapter 4
Editing and Debugging Tools
Editing Tools...4-1
Step Mode Execution..4-4
Breakpoints ...4-6

Fixed Breakpoints ...4-6
Conditional Breakpoints ...4-8

Displaying and Editing Data...4-9
Variables and Call Stack Window ..4-9

Editing Variables ..4-11
Array Display Window...4-12
Memory Display Window ..4-12
Watch Window ...4-13
Tooltips ...4-14
Graphical Array View...4-14
Resource Tracking Window ...4-15

Where to Go Next ...4-17

Chapter 5
Adding Analysis to Your Program
Setting Up ...5-1

Modifying the User Interface..5-1
Writing the Callback Function..5-3
Running the Program ..5-6

Where to Go Next ...5-6

Chapter 6
Distributing Your Application
Creating a New Distribution ...6-1
Editing the Distribution ..6-2
Deploying the Application to a Target Computer ..6-3
Where to Go Next ...6-4

Getting Started with LabWindows/CVI

© National Instruments | vii

Chapter 7
Additional Exercises
Exercise 1: Setting User Interface Attributes Programmatically...................................... 7-1

Assignment ... 7-1
Hints.. 7-2
Solution... 7-2

Exercise 2: Storing the Waveform on Disk .. 7-2
Assignment ... 7-3

Hints.. 7-3
Solution... 7-3

Exercise 3: Using Pop-Up Panels ... 7-3
Assignment ... 7-4

Hints.. 7-4
Solution... 7-5

Exercise 4: Adding User Interface Events.. 7-5
Assignment ... 7-6

Hints.. 7-6
Solution... 7-7

Exercise 5: Timed Events ... 7-7
Assignment ... 7-7

Hints.. 7-7
Solution... 7-8

Chapter 8
Related Software Packages

Appendix A
NI Services

Index

© National Instruments | ix

About This Manual

Getting Started with LabWindows/CVI is a hands-on introduction to the LabWindows™/CVI™
software package. This manual is intended for first-time LabWindows/CVI users, as well as
users evaluating LabWindows/CVI. To use this manual effectively, you should be familiar with
Microsoft Windows and the C programming language.

Related Documentation
The following documents contain information that you may find helpful as you read this manual:
• Harbison, Samuel P. and Guy L. Steele, Jr. C: A Reference Manual. Englewood Cliffs, NJ:

Prentice-Hall, Inc. 1995.
• LabWindows/CVI Help
• LabWindows/CVI Release Notes
• IVI Driver Development Help
• NI-DAQmx Help
• DAQ Getting Started Guide
• DAQ Assistant Help
• Traditional NI-DAQ (Legacy) C Function Reference Help
• NI-VISA Help
• NI-488.2 Help

© National Instruments | 1-1

1
Introduction to
LabWindows/CVI

LabWindows/CVI is a software development environment for C programmers.
LabWindows/CVI provides powerful function libraries and a comprehensive set of software
tools for data acquisition, analysis, and presentation that you can use to interactively develop
data acquisition and instrument control applications.

LabWindows/CVI combines the power and flexibility of ANSI C with easy-to-use tools
for building virtual instrumentation systems. A virtual instrument consists of an
industry-standard computer or workstation equipped with powerful application software,
cost-effective hardware such as a plug-in board, and driver software, which together perform
the functions of traditional instruments. However, virtual instruments can provide more
customization, scalability, and modularity than traditional instruments.

You can edit, compile, link, and debug ANSI C programs in the LabWindows/CVI development
environment. Additionally, you can use compiled C object modules, DLLs, C libraries, and
instrument drivers in conjunction with ANSI C source files when you develop programs.

Typical LabWindows/CVI applications include the following elements:
• User interface
• Data acquisition
• Data analysis
• Program control

1-2 | ni.com

Chapter 1 Introduction to LabWindows/CVI

Figure 1-1 illustrates the relationship between these program elements. Program control
elements receive input from the user interface, data acquisition, and data analysis elements. Each
element has several sub-components.

Figure 1-1. Relationship Between Program Elements in LabWindows/CVI

When you create a virtual instrument using LabWindows/CVI and NI hardware, keep in mind
the three-step process for creating virtual instruments: acquire, analyze, and present.

Acquire—Acquire your data through a hardware interface. Use the user interface you create to
control data acquisition from an instrument or from a plug-in DAQ device. The user interface
you create also can display the data you acquire.

Analyze—After you acquire data, you must analyze it. For example, you might want to perform
formatting, scaling, signal processing, statistical analysis, and curve fitting. The
LabWindows/CVI Formatting and I/O Library and Analysis Library (Base package) or
Advanced Analysis Library (Full Development System) contain functions that allow you to
perform these operations.

Present—Present your data in a user interface that can contain graphs, strip charts, and other
controls. You also can display graphics, create pull-down menus, and prompt users for input with
pop-up dialog boxes. You can use the User Interface Editor to create these items interactively, or
you can use the User Interface Library to create and configure them programmatically.

The program control portion of the program coordinates the data acquisition, data analysis, and
user interface. Program control contains the control logic for managing the flow of program
execution and user-defined support functions.

Use callback functions to control the flow of applications. Callback functions enable your
program to execute code in response to user actions, timer ticks, and operating system events.

User Interface

• Control Panels
• Menus
• Dialog Boxes

Data Acquisition

• Plug-In Data Acquisition
• Instrument Drivers
• Modular Instruments

Data Analysis
• Formatting
• Digital Signal Processing
• Statistics
• Curve Fitting

Program Control
• Control Logic
• Data Storage

© National Instruments | 1-3

Getting Started with LabWindows/CVI

LabWindows/CVI Environment
The LabWindows/CVI environment is structured around the Workspace window, which is
shown in the following figure:

Figure 1-2. Workspace Window

Figure 1-2 displays the following areas in the Workspace window:
• Project Tree—Contains the list of files in each project in the workspace. Right-click the

different elements of the Project Tree to see the list of options available for files and folders.
• Library Tree—Contains a tree view of the functions in LabWindows/CVI libraries and

instruments. You can arrange the library functions in alphabetical order, by function name
or function panel title, or in a flat list instead of a hierarchical class structure. Enter a
function name in the Find text box at the top of the Library Tree to search for a specific
function within the tree.

• Window Confinement Region—Contains open Source, User Interface Editor, Function
Tree Editor, and function panel windows.

• Debugging Region—Contains the Variables and Call Stack, Watch, Memory, and
Resource Tracking windows. Use these windows to view and edit variable values, view the
order of functions on the stack, program memory, and track the allocation and deallocation
of resources during debugging.

1 Project Tree
2 Library Tree
3 Window Confinement Region
4 Debugging Region

5 Output Region
6 Source Code Browser
7 Status Bar

3

4

1

2
5

6

7

1-4 | ni.com

Chapter 1 Introduction to LabWindows/CVI

• Output Region—Contains the Build Output, Run-Time Errors, Source Code Control
Errors, Debug Output, and Find Results windows. These windows contain lists of errors,
output, and search matches.

• Source Code Browser—Contains browser overview information for selected files,
functions, variables, data types, and macros in a program.

• Status Bar—Contains a status bar that displays the status of various aspects of the file,
such as line and column number, save status, messages, and so on.

Select Window»Release Window to move a window that is contained within the Window
Confinement Region, Debugging Region, Output Region, or Source Code Browser outside of
the Workspace window.

Note You cannot release the Project Tree or Library Tree from the Workspace
window. However, you can select Options»Environment and then enable the Auto
hide Project Tree and Library Tree option to remove the Project Tree and Library
Tree from the Workspace window when they are not in focus.

When you open a .uir file in the Workspace window, the User Interface Browser and Attribute
Browser appear to the right of the User Interface Editor, which is shown in the following figure:

Figure 1-3. User Interface Browser and Attribute Browser

1 User Interface Browser 2 Attribute Browser

1

2

© National Instruments | 1-5

Getting Started with LabWindows/CVI

Figure 1-3 displays the following areas in the Workspace window:
• User Interface Browser—Contains a tree view of the user interface objects, such as

panels, controls, and menu bars, related to the selected .uir. Double-click a control, array
of controls, or panel to highlight the object in the User Interface Editor and display the
attributes related to the selected object in the Attribute Browser, where you can then edit
the attributes.

• Attribute Browser—Use the Attribute Browser to edit attributes for the user interface
objects. Enter an attribute name in the Filter text box at the top of the Attribute Browser to
filter the attribute list down to those attributes with similar names. Alternately, you can
click Filter to switch to the Find text box and search for a specific attribute within the
browser.

Note The menus and toolbar buttons available within the LabWindows/CVI
Workspace window differ depending on which window is active. To learn about what
each menu item does, right-click the menu and select Menu Help. LabWindows/CVI
launches the LabWindows/CVI Help topic that describes the items in the selected
menu.

Standard Libraries
LabWindows/CVI provides a large set of built-in run-time libraries you can use to develop
applications. You can browse the Library Tree or press <Ctrl-Shift-P> in a Source window to
find a specific library function.

LabWindows/CVI includes the following standard libraries:

Table 1-1. Standard Libraries

Library Description

User Interface Library Functions for creating and controlling a
graphical user interface

Analysis Library (Base Package)/Advanced
Analysis Library (Full Development
System)

Functions that operate on arrays to simulate
and analyze large sets of numerical data
quickly and efficiently

Formatting and I/O Library Functions for inputting and outputting data
to files and manipulating the format of data
in a program

Utility Library Functions that perform various operations,
including using the system timer, managing
disk files, launching another executable, and
using multiple threads in a program

1-6 | ni.com

Chapter 1 Introduction to LabWindows/CVI

ANSI C Library The ANSI C standard library functions

VXI Library Functions for communicating with and
controlling VXI devices

GPIB/GPIB 488.2 Library Functions for communicating with and
controlling devices on the GPIB

RS-232 Library Functions for controlling multiple RS-232
ports using interrupt-driven I/O

VISA Library Functions for controlling VXI, GPIB, serial,
and other types of instruments

TCP Support Library Functions that provide a
platform-independent interface to the
reliable, connection-oriented, byte-stream,
network communication protocol

UDP Support Library Functions that provide a
platform-independent interface to the
unicast, broadcast, and multicast capabilities
of the User Datagram Protocol (UDP)

Internet Library (Full Development System) Functions that communicate with and
receive files and commands from remote
servers

Network Variable Library Functions for streaming data continuously
between two LabWindows/CVI applications

Network Streams Library Functions for streaming data continuously
between two LabWindows/CVI applications

DDE Support Library Functions that you can use to create an
interface with other Windows applications
using the Dynamic Data Exchange (DDE)
standard

ActiveX Library Functions that create and control ActiveX
servers

DIAdem Connectivity Library Functions that you can use to log test data in
National Instruments DIAdem file format
(.tdm)

Table 1-1. Standard Libraries (Continued)

Library Description

© National Instruments | 1-7

Getting Started with LabWindows/CVI

Note You must install the LabWindows/CVI Real-Time Module to gain access to
the Real-Time Utility Library.

User Interface Development
Use LabWindows/CVI to develop GUIs that consist of panels, command buttons, pull-down
menus, graphs, and many other controls and indicators. You can build a GUI interactively in the
User Interface Editor or programmatically using the functions in the User Interface Library.

Note To learn more about the available user interface elements and the functions
that you can use to connect your interface to the rest of your program, refer to the
Creating Applications»Developing a Graphical User Interface section and the
Library Reference»User Interface Library section of the LabWindows/CVI Help.

Generating a Program Shell with CodeBuilder
After you design a GUI in the User Interface Editor, you can use CodeBuilder to automatically
generate a program shell based on the components in the GUI. CodeBuilder writes code for all
control callback functions and creates a program skeleton that loads and displays GUI windows
at program startup. To produce skeleton code after you design a GUI, select Code»Generate.

CodeBuilder saves development time by automating many of the common coding tasks required
for writing a program. You use CodeBuilder later in this tutorial.

TDM Streaming Library Functions that store and retrieve test and
measurement data using the .tdms file
format. This file format is optimized for high
performance data streaming

.NET Library Functions that facilitate calling .NET
assemblies

OpenMP Runtime Library (Full
Development System)

Functions that you can use to create
multithreaded applications using the
OpenMP (Open Multi-Processing) model

Real-Time Utility Library Functions for replicating a real-time (RT)
system, configuring timing, creating and
configuring trace sessions, and configuring
RT targets

Table 1-1. Standard Libraries (Continued)

Library Description

1-8 | ni.com

Chapter 1 Introduction to LabWindows/CVI

Developing and Editing Source Code
Use the Source window in LabWindows/CVI to develop C source files for projects.
LabWindows/CVI is compatible with the full ANSI C language specification. You can use any
ANSI C language structures or standard library functions in the source code you develop in this
window. LabWindows/CVI provides code generation tools that streamline source code
development.

You can use the menu items in the Source window to edit files, debug code, compile files, and
so on. You use Source window features in activities later in this tutorial.

Note For more information about the Source window, refer to LabWindows/CVI
Fundamentals»Writing Source Code section in the LabWindows/CVI Help.

Instrument Control and Data Acquisition
You can use LabWindows/CVI to develop instrument control and data acquisition applications.
LabWindows/CVI libraries provide functions for controlling GPIB, RS-232, serial, Ethernet,
and National Instruments DAQ devices and modular instruments. LabWindows/CVI also
provides interactive assistants you can use to generate code to communicate with different
devices and to create and edit NI-DAQmx tasks.

Using the Instrument Control and Data Acquisition
Libraries
LabWindows/CVI installs the GPIB/GPIB 488.2, VISA, and VXI libraries , but does not install
the GPIB, NI-VISA, or NI-VXI drivers. While the GPIB/GPIB 488.2, VISA, and VXI libraries
are listed in the Library Tree, you must install the drivers from the NI Device Drivers media to
use the functions in an application.

Other driver-related libraries are not available in the Library Tree until you install the drivers.
You can install drivers from ni.com or from the NI Device Drivers media.

For a list of hardware library documentation resources, refer to the Related Documentation
section of the About This Manual chapter.

Using the DAQ Assistant
Use the NI DAQ Assistant to configure measurement tasks, channels, and scales. You also can
use the DAQ Assistant to generate NI-DAQmx code from a task. To launch the DAQ Assistant
from within the LabWindows/CVI environment, select Tools»Create/Edit DAQmx Tasks.

Note You must install NI-DAQmx from the NI Device Drivers media to use the
DAQ Assistant.

http://www.ni.com/drivers/

© National Instruments | 1-9

Getting Started with LabWindows/CVI

Note For more information about using the DAQ Assistant, refer to the Hardware
Information»Data Acquisition»Where to Find Information about NI-DAQmx
section of the LabWindows/CVI Help.

Developing Instrument Drivers
If you plan to develop your own instrument driver, refer to the IVI Driver Development Help.
This help file provides information about developing and adding instrument drivers to
LabWindows/CVI. It is intended for programmers who develop instrument drivers to control
programmable instruments such as GPIB, PXI, and RS-232 instruments. Also refer to the
LabWindows/CVI Fundamentals»Instrument Drivers section of the LabWindows/CVI Help
for fundamental instrument driver information you must consider if you create or modify a
driver.

Learning about LabWindows/CVI
Complete the exercises in the remaining chapters of this tutorial to learn how to build, debug,
and deploy applications in LabWindows/CVI. The following solution folder includes completed
tutorial exercises you can use for reference:

Note The sample and exercise solutions in this folder are 64-bit compatible and
might differ from code you write during these exercises.

\Users\Public\Documents\National Instruments\CVIversion\
tutorial\solution

Note In the previous paths, version represents the version of LabWindows/CVI
you are using.

The development process for the tutorial application includes the following steps:
1. Create a user interface in the User Interface Editor (Chapter 2, Building a Graphical User

Interface).
2. Generate skeleton code for control callbacks using CodeBuilder (Chapter 2, Building a

Graphical User Interface).
3. Add source code to generate and display a waveform (Chapter 3, Using Function Panels

and Libraries).
4. Edit and debug the application (Chapter 4, Editing and Debugging Tools).
5. Develop a callback function to compute the maximum and minimum values of the

waveform (Chapter 5, Adding Analysis to Your Program).
6. Create a distribution to deploy your application on another computer (Chapter 6,

Distributing Your Application).

To view the example programs, navigate to the \Users\Public\Documents\National
Instruments\CVIversion\samples folder.

1-10 | ni.com

Chapter 1 Introduction to LabWindows/CVI

Refer to the following websites for additional support and information:
• ni.com/cvi—For general product information about LabWindows/CVI.
• ni.com/examples—For LabWindows/CVI example code and tutorials.
• ni.com/forums—To participate in discussion forums and exchange code with other

LabWindows/CVI users around the world.
• ni.com/cvinews—To subscribe to the LabWindows/CVI newsletter or review the

newsletter archive.
• ni.com/cvi/community—To participate in discussion forums and learn tips and tricks

for working efficiently in LabWindows/CVI.

Where to Go Next
Complete the exercises in Chapter 2, Building a Graphical User Interface. Refer to the
LabWindows/CVI documentation set for more information about the concepts presented in this
manual. Use the Guide to LabWindows/CVI Documentation topic in the LabWindows/CVI Help
to learn more about and access the documents in the LabWindows/CVI documentation set. To
launch the LabWindows/CVI Help, select Help»Contents.

http://www.ni.com/cvi
http://www.ni.com/zone
http://www.ni.com/forums
http://www.ni.com/cvinews
http://www.ni.com/cvi/community

© National Instruments | 2-1

2
Building a Graphical User
Interface

In the remaining chapters of this tutorial, you develop a project that consists of a GUI controlled
by a C source file, which acquires and displays a waveform on the GUI. In this chapter, you learn
to design a user interface with the User Interface Editor.

Project Templates
Using project and file templates can help reduce the time and effort required to configure a new
project or file. The template includes the basic settings for the new project or file and any
preliminary text to include by default, such as standard comments or headings. For more
information about project templates, refer to the Creating Applications»Managing Projects»
Creating Projects and Files from Templates»New Project and File Templates section in the
LabWindows/CVI Help.

Selecting a Project Template
Complete the following steps to select and set up a project template for the sample project:
1. Launch LabWindows/CVI by selecting Start»All Programs»National Instruments»

LabWindows CVI version»LabWindows CVI version.

Note (Windows 8) Click NI Launcher and select LabWindows/CVI version in the
window that appears.

2. The Welcome Page, shown in the following image, is displayed when you open
LabWindows/CVI for the first time. It displays options for opening files and examples,
helpful resources, and recently opened files. Select Project from Template to open the
New Project from Template dialog box.

2-2 | ni.com

Chapter 2 Building a Graphical User Interface

Figure 2-1. LabWindows/CVI Welcome Page

Note If you disable the Welcome Page, you see an empty workspace when you start
LabWindows/CVI. Select File»New»Project from Template to open the New
Project from Template dialog box.

3. Select User Interface Application.
4. Change Project name to sample1.
5. Change the Project folder to the tutorial folder.

\Users\Public\Documents\National Instruments\CVIversion\
tutorial\.

6. Verify that Add this project to the current workspace is not selected.
7. Click OK.

User Interface Editor
In the User Interface Editor, you can select a number of different controls from the Create menu
and position them on the panels you create. You can customize each control through a series of
dialog boxes in which you set attributes for the control appearance, source code connections, and
label appearance.

© National Instruments | 2-3

Getting Started with LabWindows/CVI

Building a User Interface Resource (.uir) File
Complete the following steps to design the user interface for the sample project, as shown in
Figure 2-2.

Figure 2-2. sample1.uir

Editing a .uir File
1. In the Project Tree, right-click sample1.uir. Select Open to open the file, shown in the

following figure.

Figure 2-3. Opening sample1.uir

2-4 | ni.com

Chapter 2 Building a Graphical User Interface

2. The Attribute Browser is located to the right of the User Interface Editor in the Workspace
window, below the User Interface Browser. In the Attribute Browser, the Find text box
highlights attributes in the list and the Filter text box displays only matching attributes in
the list. You can change between finding or filtering attributes in the list by clicking Find
or Filter, shown in the following figures.

Use the Find or the Filter text box to locate the Constant Name control in the Attribute
Browser. Notice that Constant Name is set to PANEL and Callback Function is set to
panelCB. These are the settings from the project template.

Note In the User Interface Editor, select the control(s) or panel you want to edit to
display the associated attributes in the Attribute Browser.

3. Enter Sample 1 for the Title and press the <Enter> key to commit any attribute value
changes.

You also can edit control and panel attribute values in the Edit Control or Edit Panel dialog box,
respectively. Double-click a control or panel in the .uir to open the edit dialog box. Notice that
some attributes have slightly different names in the edit dialog box compared to the names in the
Attribute Browser.

Adding Command Buttons
1. Select Create»Command Button»Square Command Button. LabWindows/CVI places

a button labeled OK on the panel.
2. To edit the button attributes, select the button. The attributes related to the button appear in

the Attribute Browser.
3. To change the label on the command button, enter Acquire in place of __OK in Label

Text. The change is displayed in the User Interface Editor, shown in the following figure.

Note If you type a double underscore before any letter in Label Text, the letter is
underlined on the user interface. The user can select the control by pressing <Alt>
and the underlined letter, provided that no accessible menu bars contain a menu with
the same underlined letter.

4. Assign a constant name to the button. In the C source code you use this constant name to
identify the button. Change the default Constant Name to ACQUIRE.

© National Instruments | 2-5

Getting Started with LabWindows/CVI

5. Assign a function name that the program calls when a user clicks the Acquire button. Enter
AcquireData as the Callback Function. In Chapter 3, Using Function Panels and
Libraries, you write the source code for the AcquireData function.

6. (Optional) Customize the label font appearance by changing the values in the Label Bold
field, the Label Character Set field, and so on.

7. To add the QUIT button, ensure the .uir file has focus, right-click the panel, and select
Custom Controls»Quit Button, shown in the following figure. Custom controls are
frequently used control configurations. The QUIT button already has a callback function,
QuitCallback, assigned. It is not necessary to modify the default settings for the QUIT
button.

Figure 2-4. Navigating to the Quit Button

Adding a Graph Control
1. Right-click the Sample 1 panel and select Graph»Graph. LabWindows/CVI places a

graph control labeled Untitled Control on the panel.
2. To size the panel, click and drag one of its corners. Use the commands in the Edit menu

and the Arrange menu to cut, copy, paste, align, and space user interface controls in the
editor. You also can use the grid lines on the panel to align the controls.

2-6 | ni.com

Chapter 2 Building a Graphical User Interface

3. To locate control attributes using the User Interface Browser located above the Attribute
Browser, click GRAPH in the User Interface Browser. Notice that the graph is highlighted
in the User Interface Editor, shown in the following figure. The attributes available in the
Attribute Browser are now attributes associated with the graph control.

Figure 2-5. Attribute Browser

To customize the graph attributes, enter the following values in the Attribute Browser:
a. Use the Find text box to locate the Constant Name attribute. If you prefer, use the

Filter text box accessible by toggling the Find label.
Enter WAVEFORM as the Constant Name.

Note Because the graph serves only as an indicator to display a waveform, the
graph does not require a callback function. Callback functions are necessary only
when the operation of the control initiates an action. Indicators generally do not
require callback functions.

b. Enter Acquired Data as the Label Text.
c. Enter Time for X Name.
d. To display time relative to the start of the application, set X Format to relative time.

© National Instruments | 2-7

Getting Started with LabWindows/CVI

e. Click the ... button in the value column of X Axis Date Time Format String to open
the Edit Relative Date/Time Format String dialog box. To display time in minutes and
seconds, delete %H: from the Format String field, shown in the following figure, and
click OK.

Figure 2-6. Edit Relative Date/Time Format String Dialog Box

f. Set Y Name to Voltage.
4. Verify that the completed user interface looks like the one shown in Figure 2-2.

2-8 | ni.com

Chapter 2 Building a Graphical User Interface

Source Code Connection
After you design a user interface in the User Interface Editor, you can write C source code to
control the GUI. To connect elements on the user interface to the source code, you must assign
a constant name to each panel, menu, and control on your user interface, shown in Figure 2-7.
Then, you can use those names in the C source code to differentiate the controls on the GUI. You
also can assign a callback function to a control that is called automatically when you operate that
control during program execution. Use the Attribute Browser to associate a constant name and
a callback function with that control.

Figure 2-7. Assigning a Constant Name

After you save a user interface as a .uir file, LabWindows/CVI automatically generates an
include (.h) file that defines all the constants and callback functions you have assigned.

© National Instruments | 2-9

Getting Started with LabWindows/CVI

CodeBuilder
After you complete the .uir file, you can use CodeBuilder to expand on code in the project
template source file by generating the skeleton code for the remaining callback functions for the
controls on your panel.

Note For more information about CodeBuilder, refer to the Creating
Applications»Developing a Graphical User Interface»Generating Code from
the GUI section of the LabWindows/CVI Help.

Completing the Program Shell with CodeBuilder
Now that you have built a GUI in the User Interface Editor, use CodeBuilder to complete the
remainder of the program shell for your GUI. Generate the skeleton code for the control
callbacks.
1. To select default control events for your application, select Code»Preferences»Default

Events to open the Callback Events dialog box. Select All control types from the left tree
and select EVENT_COMMIT and EVENT_RIGHT_CLICK, shown in the following figure.
Verify that no other events are selected. Click OK.

Figure 2-8. Callback Events Dialog Box

In the main tutorial, you work only with the EVENT_COMMIT event. In Chapter 7,
Additional Exercises, you develop code to display help when a user right-clicks a GUI
control. For a complete list of events, refer to the Library Reference»User Interface
Library»Events topic of the LabWindows/CVI Help.

2. Select Code»Generate»All Callbacks. By default, CodeBuilder generates the
EVENT_RIGHT_CLICK and EVENT_COMMIT events for every panel or control for which
you define a callback function.

3. The Generate Code dialog box appears with the panelCB callback function highlighted in
the Source window, shown in the following figure. The project template provides the
panelCB callback function, so you do not need CodeBuilder to generate it. Click Skip.
CodeBuilder proceeds and generates the callback functions for all of the controls.

Figure 2-9. Generate Code Dialog Box

4. Insert a line after case EVENT_COMMIT: in the QuitCallback function with the
following code:
QuitUserInterface(0);

Note The project template provides only one option for closing the panel, clicking
the X button in the upper right corner. By inserting a call to QuitUserInterface
in QuitCallback, you add a second option for closing the panel, clicking the
QUIT button.

© National Instruments | 2-11

Getting Started with LabWindows/CVI

Analyzing the Source Code
The source code that you generated for the Sample 1 program is skeleton code. You must add
code to this skeleton that determines how the program responds when it generates events. The
program you generated consists of three functions.

main Function
Completing the main function is the first step you must take when you build your own
applications. The main function is shown in the following code:

int main (int argc, char *argv[])
{
 int error = 0;

 /* initialize and load resources */
 nullChk (InitCVIRTE (0, argv, 0));
 errChk (panelHandle = LoadPanel (0, "sample1.uir", PANEL));

 /* display the panel and run the user interface */
 errChk (DisplayPanel (panelHandle));
 errChk (RunUserInterface ());

Error:
 /* clean up */

if (panelHandle > 0)
 DiscardPanel (panelHandle);

 return 0;
}

Note The LabWindows/CVI macros errChk and nullChk provide convenient
error-handling. For more information about these macros, refer to toolbox.h.

To allow users to operate the user interface that you created, your program must perform the
following steps:
• LoadPanel loads the panel from the .uir file into memory.
• DisplayPanel displays the panel on the screen.
• RunUserInterface allows LabWindows/CVI to begin sending events from the user

interface to the C program you are developing. This function does not return until the
program calls QuitUserInterface.

When you no longer need the user interface, call DiscardPanel to remove the panel from
memory and from the screen.

2-12 | ni.com

Chapter 2 Building a Graphical User Interface

AcquireData Function
The AcquireData function automatically executes whenever you click Acquire on the user
interface. You add to this function later in this tutorial so you can plot the array on the graph
control that you created on the user interface. The AcquireData function is shown in the
following code:

int CVICALLBACK AcquireData (int panel, int control, int event,
void *callbackData, int eventData1, int eventData2)

{
switch (event)
{

case EVENT_COMMIT:

break;
case EVENT_RIGHT_CLICK:

break;
}
return 0;

}

Note Notice that the callback function returns 0. User callbacks must always return
0 unless they intend to swallow the event to which they are responding. To swallow
the event, the callback should return 1. This tutorial does not use callbacks that
swallow events. Refer to the Library Reference»User Interface Library»Events»
Swallowing Events topic in the LabWindows/CVI Help for more information about
swallowing events, including a list of events that are swallowable.

© National Instruments | 2-13

Getting Started with LabWindows/CVI

QuitCallback Function
The QuitCallback function automatically executes whenever you click QUIT on the user
interface. This function disables the user interface from sending event information to the
callback function and causes the RunUserInterface call in the main function to return.
The QuitCallback function is shown in the following code:

int CVICALLBACK QuitCallback (int panel, int control, int event,
void *callbackData, int eventData1, int eventData2)

{
switch (event)
{

case EVENT_COMMIT:
QuitUserInterface (0);

break;
case EVENT_RIGHT_CLICK:

break;
}
return 0;

}

Running the Generated Code
The code you generated using CodeBuilder is syntactically and programmatically correct code
that compiles and runs before you add to it. Select Run»Debug sample1.exe to run the
generated code. The program displays the user interface panel that is shown in Figure 2-2 and
exits when you press the QUIT button.

Where to Go Next
After you debug sample1.exe, ensure that the application matches Figure 2-2. Next, proceed
to Chapter 3 in which you will use LabWindows/CVI function panels to generate code.

© National Instruments | 3-1

3
Using Function Panels and
Libraries

In this chapter of the tutorial, you use LabWindows/CVI function panels to generate code. You
complete the source code that plots an array with a sine pattern on the graph control you created
in Chapter 2, Building a Graphical User Interface. If you have not completed the exercises in
Chapter 2, go back and do so now.

Function Panel Fundamentals
A function panel is a graphical view of a library function in LabWindows/CVI. Function panels
serve several important purposes.
• With function panels, you can execute each LabWindows/CVI function interactively before

incorporating it into the program. With this feature, you can experiment with the parameter
values until you are satisfied with the operation of the function.

• Function panels provide help that explains the purpose of each function in the
LabWindows/CVI libraries and of each parameter in the function call.

• Function panels generate code automatically so that you can insert the function call syntax
into your program source code.

Accessing Function Panels
The Library Tree includes function panels for all of the libraries in LabWindows/CVI. You can
scan quickly through the hierarchy of the library to find a given function. Alternatively, you can
use the Find text box located above the Library Tree and enter the name of the function, shown
in the following figure.

Figure 3-1. Find Text Box

3-2 | ni.com

Chapter 3 Using Function Panels and Libraries

For advanced searching options, right-click the Library Tree, select Find, enter the name of the
function, and select from several search options such as case-sensitivity, wrapping text, and
so on, shown in the following figure.

Figure 3-2. Find Dialog Box

Function Panel Controls
The controls on the function panel represent parameters. Enter values in the controls to specify
parameter values. Some controls have ... buttons next to them that provide additional dialog
boxes to select input for parameters.

Function Panel Help
You can access help for functions and parameters from function panels. Table 3-1 lists methods
for accessing the help.

Note A function must be documented in the LabWindows/CVI Help to have
combined help available through its function panel.

Table 3-1. Displaying Function Panel Help

Type of Help How to View Help

Function Help Select Help»Function.
or
Right-click anywhere on the background of the function panel.
or
Press <Shift-F1>.

Parameter Help Place the cursor in the control, then select Help»Control.
or
Right-click the control.
or
Press <F1> from the control.

Combined Help Select Help»Online Function Help.
or
Press <Ctrl-Shift-F1>.

© National Instruments | 3-3

Getting Started with LabWindows/CVI

Generating an Array of Data
When a user clicks Acquire, the program generates a random number using the ANSI C srand
and rand functions and then uses that number as the amplitude for the sine pattern. Complete
the following steps to implement the simulated data generation in the AcquireData callback
function:
1. Open sample1.c, if it is not already open.
2. In the AcquireData function, on the line following case EVENT_COMMIT:, enter the

following lines of code to generate the random numbers.
srand (time(NULL));
amp = rand ()/32767.0;

Note Refer to sample1.c in the solution folder for an example of the previous
code that is 64-bit compliant.

3. Position the cursor on a blank line immediately following amp = rand ()/32767.0.
4. Enter SinePattern in the Find text box above the Library Tree to locate the Sine Pattern

function panel and press the <Enter> key to highlight the function in the Library Tree. Then
press the <Enter> key again to open the function panel.

Note If LabWindows/CVI cannot find a match, right-click the Library Tree and
select Show Function Names. Then repeat step 4.

5. Select Code»Set Target File. Select sample1.c and click OK.
6. Enter 100 in the Number of Elements control.
7. Enter amp in the Amplitude control. Select Code»Declare Variable and ensure that only

the Add declaration to current block in target file “sample1.c” option is enabled. Click
OK.

8. Enter 180.0 in the Phase (Degrees) control.
9. Enter 2.0 in the Number of Cycles control.
10. Enter sine in the Sine Pattern control. Select Code»Declare Variable.

3-4 | ni.com

Chapter 3 Using Function Panels and Libraries

11. In the Declare Variable dialog box, enter 100 as the Number of Elements and ensure that
Add declaration to top of target file “sample1.c” option. Click OK. Ensure the function
panel matches the following image.

Figure 3-3. Function Panel

12. Select Code»Insert Function Call. LabWindows/CVI pastes the SinePattern function
from the function panel into the sample1.c source code at the position of the text cursor.

Tip In the Source window, you can place your cursor anywhere in a
LabWindows/CVI library function call and then select View»Recall Function Panel
to open the function panel for the selected function. When you recall a function panel,
the controls automatically reflect the state of the function call in the Source window.

Building the PlotY Function Call Syntax
Complete the following steps to generate a line of code that plots the random data array on the
graph control:
1. Position the cursor in the Source window on a blank line immediately following the

SinePattern function call within the AcquireData function.
2. Type PlotY and then press <Ctrl-P> to open the Plot Y function panel.

© National Instruments | 3-5

Getting Started with LabWindows/CVI

3. In the Panel Handle control, select Code»Select Variable. Enable the Show Project
Variables option. The dialog box contains a list of variable names used in your program.
Choose panelHandle from the list, shown in the following figure, and click OK.

Figure 3-4. Function Panel

4. For the Control ID control, you must specify the constant name assigned to the graph
control. While the cursor is in Control ID, press <Enter> to open a dialog box with a list
of the constant names for controls in the.uir files in the workspace. Verify sample1.uir
is selected in the User Interface Resource files section, select PANEL_WAVEFORM
from the list of constants, and click OK.

5. Type sine in the Y Array control. This name indicates which array in memory the
program displays on the graph.

6. Type 100 in the Number of Points control. This number indicates the number of elements
in the array to plot.

7. For Y Data Type, click the control to display a drop-down menu of possible data types.
Select double precision. When the Plot Y function panel matches the one in Figure 3-5,
proceed to the next step.

3-6 | ni.com

Chapter 3 Using Function Panels and Libraries

Figure 3-5. Completed Plot Y Function Panel

8. Select Code»Insert Function Call to paste the PlotY function call into the source code.
LabWindows/CVI displays a message that states text is selected on the current line. Click
Replace to replace the PlotY you typed with the complete function call.

9. Confirm that the AcquireData function matches the following source code:
int CVICALLBACK AcquireData (int panel, int control, int event,

void *callbackData, int eventData1, int eventData2)
{

double amp;
switch (event)
{

case EVENT_COMMIT:
srand (time(NULL));
amp = rand ()/32767.0;
SinePattern (100, amp, 180.0, 2.0, sine);
PlotY (panelHandle, PANEL_WAVEFORM, sine,

100, VAL_DOUBLE, VAL_THIN_LINE, VAL_EMPTY_SQUARE,
VAL_SOLID, 1, VAL_RED);

break;
case EVENT_RIGHT_CLICK:

break;
}
return 0;

}

10. Save the source file.

© National Instruments | 3-7

Getting Started with LabWindows/CVI

Running the Completed Project
You now have a completed project, saved as sample1.prj. Select Run»Debug sample1.exe
to execute the code. If prompted, click Yes to add ansi_c.h and analysis.h to the top of
the file.

Note If LabWindows/CVI prompts you to add a reference to a header file,
LabWindows/CVI also displays an error indicating that you are calling a function that
is not defined. When you add the header file, LabWindows/CVI can find the function
definition and no error occurs when you next execute the code.

When you run your program, the following actions take place:
1. LabWindows/CVI compiles the source code from sample1.c and links with the

appropriate libraries in LabWindows/CVI.
2. When the program starts, LabWindows/CVI launches the user interface, ready for keyboard

or mouse input.
3. When you click Acquire, LabWindows/CVI passes the event to the AcquireData

callback function.
4. The AcquireData function generates an array of data and plots it on the graph control on

the user interface.
5. When you click QUIT, LabWindows/CVI passes the event to the QuitCallback

function, which halts the program.

Where to Go Next
Complete the tutorial in Chapter 4 in which you will edit and debug in the LabWindows/CVI
environment.

© National Instruments | 4-1

4
Editing and Debugging Tools

This chapter uses the project you developed in Chapter 3, Using Function Panels and Libraries.
If you did not proceed directly from Chapter 3, go back and do so now.

In this chapter, you become acquainted with LabWindows/CVI editing and debugging tools.

Editing Tools
The LabWindows/CVI Source window has a number of quick editing features that are helpful
when you work with source files. Complete the following steps to view some of the editing
features available in LabWindows/CVI:
1. Open sample1.c if it is not already open. Select View»Line Numbers to display a

column to the left of the window that shows line numbers.
2. The programs you develop in LabWindows/CVI often refer to other files, such as header

files or user interface files. To view these additional files quickly, place the cursor on the
filename in the source code and select File»Open Quoted Text, press <Ctrl-U>, or
right-click the filename and select Open Quoted Text.
Place the cursor on the userint.h filename in sample1.c and press <Ctrl-U>.
LabWindows/CVI opens the userint.h header file in a separate Source window. Scroll
through and then close the header file.

3. If you want to view a portion of your source code while you make changes to another area
of the source code in the same file, you can split the window into top and bottom halves
called subwindows, as shown in Figure 4-1.

4. To split the window, click and drag the double line at the top of the Source window to the
middle of the screen. Notice how each half of the window scrolls independently to display
different areas of the same file simultaneously.

4-2 | ni.com

Chapter 4 Editing and Debugging Tools

Figure 4-1. Split Source Window

5. Drag the dividing line between the two subwindows back to the top to make a single
window again.

6. If you want a cleaner view of your code, you can collapse certain regions. Click the minus
button to the left of the main function in sample1.c, shown in the following figure.

© National Instruments | 4-3

Getting Started with LabWindows/CVI

The function collapses into a single line of code with a dotted line beneath it, shown in the
following figure. The minus button is now a plus button, signaling there is hidden collapsed
code. Click the plus button to reveal the code.

Tip To recursively collapse the region and any subregions of code, right-click the
minus button and select Collapse Region and Subregions.

7. Place your mouse over the collapsible region to highlight the region in the column that
corresponds to the code block. The highlight persists until you move your mouse to another
part of the collapsible region. If you move your mouse away from the collapsible region
and into the source code, the highlight persists in a lighter shade.

Note LabWindows/CVI defines collapsible regions for multiline code blocks
delimited by curly braces or multiline comments. For more information about
collapsible regions, refer to the LabWindows/CVI Fundamentals»Writing Source
Code»Source Window Overview»Collapsible Regions section in the
LabWindows/CVI Help.

8. To quickly move to a particular line of code in your source file, select View»Line to open
the Line dialog box. Then enter the line number in the Go to Line control and click the OK
button.

9. To set a tag, place the cursor on line 48. Select View»Toggle Tag. A green square appears
in the left-hand column of the Source window. Place the cursor on line 64 of the Source
window and add another tag, shown in the following figure.

Figure 4-2. . Adding Tags

10. Press <F2> to move between tags. Select View»Clear Tags, make sure all of the tags are
checked, and then click OK to remove the tags from the source file.

11. To find specific text in the code, select Edit»Find to enter the text you want to locate and
specify various searching preferences. Enter panelHandle in the Find what control and
leave the remaining controls set to their default values. Then click Find Next.

4-4 | ni.com

Chapter 4 Editing and Debugging Tools

LabWindows/CVI highlights the first match in the text and displays a list of all matches in
the Find Results window. Click an entry in the Find Results window to locate the
corresponding text in the Source window.

12. To complete a quick search, select Edit»Quick Search and type argc. Notice that
LabWindows/CVI finds matches of the letters you type. The selection changes as you type
more letters.

Step Mode Execution
In LabWindows/CVI, you can compile and build a program in debug configuration or release
configuration by selecting the configuration from the Build»Configuration submenu. The
debug configuration executes similarly to the release version of the program but also offers you
tools for debugging the program, including breakpoints and step mode execution. After
debugging your program, select a release configuration to remove debugging information and
increase the execution speed of your program. The following debugging exercises use debug
configuration.

Note Refer to the Creating Applications»Managing Projects»Setting the
Project Configuration topic in the LabWindows/CVI Help for more information
about project configurations.

Step mode execution is a useful run-time tool for debugging programs. To step through
sample1.c, complete the following steps:
1. Select Run»Break on»First Statement to stop execution at the first statement in the

source code.
2. Select Run»Debug sample1.exe to begin program execution. After the program compiles,

the main function line in the program is highlighted in the Source window, shown in the
following figure. This indicates that program execution is currently suspended.

3. To execute the highlighted line, select Run»Step Into.

© National Instruments | 4-5

Getting Started with LabWindows/CVI

Tip Alternatively, use the icons in the toolbar and the shortcut key combinations
listed in Table 4-1 to execute these commands.

4. To find the definition of the SinePattern function, place the cursor on the function
in sample1.c and select Edit»Go to»Go to Definition.
The Go to Definition command immediately finds the definition of the function, even
when the function resides in a different source or header file. However, the target source
file must have been compiled in the project. You also can use this command to find variable
declarations.
In this case, LabWindows/CVI opens analysis.h and highlights the SinePattern
function declaration. To return to your previous source code location, select Edit»Go to»
Go Back.

Tip Many of the commands in this exercise also are available in the Source window
context menu. Right-click within the Source window to view the available
commands.

5. Use the Step Into button to begin stepping through the program. Notice that when the main
function is executed, the highlighting moves to the function and traces the instructions

Table 4-1. Quick Keys for Step Mode Execution

Command
Shortcut Key
Combination

Toolbar
Icon Description

Continue <F5> Causes the program to continue operation
until it completes or reaches a breakpoint

Go to
Cursor

<F7> Continues program execution until the
program reaches the location of the cursor

Set Next
Statement

<Ctrl-Shift-F7> Changes the next statement to execute

Step Into <F8> Single-steps through the code of the function
call being executed

Step Over <F10> Executes a function call without
single-stepping through the function code itself

Finish
Function

<Ctrl-F10> Resumes execution through the end of the
current function and breaks on the next
statement

Terminate
Execution

<Ctrl-F12> Halts execution of the program during step
mode

4-6 | ni.com

Chapter 4 Editing and Debugging Tools

inside the function. Continue to step through the program until the following statement is
highlighted:
errChk(DisplayPanel (panelHandle));

6. Place the cursor on the line with the call to DiscardPanel (panelHandle);.
Select Run»Set Next Statement to select the next statement to execute. The highlighting
moves to that line.

7. Press <F5> to continue program execution. Notice that the program exits without having
run the user interface because the program execution skipped over the
RunUserInterface function call.

Breakpoints
Breakpoints are another run-time tool that you can use to debug programs in LabWindows/CVI.
A breakpoint is a location in a program at which LabWindows/CVI suspends execution of your
program. You can invoke a breakpoint in LabWindows/CVI in the following ways:
• Fixed Breakpoint—Insert a breakpoint at a particular location in the Source window. You

can turn breakpoints on or off even while your program is executing.
• Instant Breakpoint—When an application is running, press <Ctrl-F12> while a window

is active in the LabWindows/CVI environment.
• Breakpoint on Library Errors—Select Run»Break on»Library Errors to cause

LabWindows/CVI to pause at a particular location when a library function returns an error.
• Conditional Breakpoint—Cause LabWindows/CVI to pause at a particular location when

a user-specified condition becomes true.
• Programmatic Breakpoint—In your code, call the Breakpoint function.
• Watch Expression Breakpoint—Cause LabWindows/CVI to pause when the value of a

watch expression changes.

Fixed Breakpoints
To insert a breakpoint at a specific location in your source code, click in the left column of
the Source window on the line on which you want to suspend execution. Complete the following
steps to insert a breakpoint inside the AcquireData function:
1. Stop program execution by selecting Run»Terminate Execution, if necessary.
2. Disable Run»Break on»First Statement.
3. In the Source window, click to the left of the line that contains the following statement:

SinePattern (100, amp, 180.0, 2.0, sine);

© National Instruments | 4-7

Getting Started with LabWindows/CVI

A red diamond, which represents a breakpoint, appears beside that line as shown in
Figure 4-3.

Figure 4-3. Breakpoint Beside a Line of Code

Note You do not need to suspend or terminate execution to insert a breakpoint. If
you insert a breakpoint while the program is running, LabWindows/CVI suspends the
program when it reaches that line of code.

4. Begin execution of the program by selecting Run»Debug sample1.exe. Click Acquire to
generate a commit event for AcquireData. When LabWindows/CVI encounters the
breakpoint during execution, it suspends program execution and highlights the line where
you inserted the breakpoint.

5. At a breakpoint, you can complete the following actions:
• Press <F5> to continue execution. Program execution continues until the next

breakpoint or until completion.
• Single-step through any line of code by selecting Run»Step Over or Run»Step Into.
• Stop the program at a breakpoint by pressing <Ctrl-F12> or by selecting Run»

Terminate Execution.
6. To remove the breakpoint from the program, click the red diamond.

4-8 | ni.com

Chapter 4 Editing and Debugging Tools

Conditional Breakpoints
Use conditional breakpoints to halt program execution only when the specified condition is true.
Complete the following steps to use conditional breakpoints in your program:
1. Select Run»Breakpoints to open the Breakpoints dialog box
2. In the Breakpoints dialog box, click Add/Edit Item to open the Edit Breakpoint dialog box.

Figure 4-4. Edit Breakpoint Dialog Box

3. In the Edit Breakpoint dialog box, enter 82 for Line, and enter amp > 0 as the Condition.
Notice the default values for the remaining controls, but do not change them. Click Add.
The Breakpoints dialog box appears as shown in the following image.

Figure 4-5. Entering Breakpoint Information

4. Click OK to exit the Breakpoints dialog box. LabWindows/CVI displays a yellow square
to the left of line 82 to indicate the conditional breakpoint.

5. Select Run»Debug sample1.exe to begin program execution. Click Acquire to run the
code in the commit event case for AcquireData. LabWindows/CVI halts execution at
line 82 because the breakpoint condition was met. Hover the mouse cursor over amp to
verify its value is greater than 0.

6. Select Run»Terminate Execution to stop the program.

© National Instruments | 4-9

Getting Started with LabWindows/CVI

7. Right-click the conditional breakpoint icon to the left of line 82 and select Breakpoints to
open the Breakpoints dialog box.

8. Click Add/Edit Item to open the Edit Breakpoint dialog box. Replace the Condition text
with amp < 0 and click Replace. Then click OK to exit the Breakpoints dialog box.

9. Repeat step 5. Notice that LabWindows/CVI does not halt execution at line 82 because the
breakpoint condition is no longer true.

10. Press <Ctrl-F12> twice to stop the program. To remove the breakpoint, select Run»
Breakpoints, ensure the breakpoint is highlighted, and click Delete Item. Then click OK
to exit the dialog box.

Note For more information about breakpoints, refer to breakpoints in the
LabWindows/CVI Help index.

Displaying and Editing Data
Step mode execution and breakpoints are useful tools for high-level testing. However, you often
need to look beyond your source code to test your programs. LabWindows/CVI provides
displays for viewing and editing the data for your program. In the following exercises, you use
a variety of these displays to view data generated by your application.

Variables and Call Stack Window
The Variables and Call Stack window shows all variables currently declared in the
LabWindows/CVI interactive program. To view the Variables and Call Stack window, select
Window»Variables and Call Stack.

Figure 4-6. Variables and Call Stack Window

The Variables and Call Stack window lists the name, value, and type of currently active
variables. LabWindows/CVI displays variables in categories according to how they are defined,
such as global or local. The Call Stack section shows the current call stack of functions. To view
variables that are active elsewhere in the call stack, double-click the corresponding function in
the Call Stack.

4-10 | ni.com

Chapter 4 Editing and Debugging Tools

You can view the Variables and Call Stack window at any time to inspect variable values. This
feature is especially useful when you step through a program during execution. Complete the
following steps to step through the program and view the Variables and Call Stack window at
different points in the execution of the program:
1. Select Run»Break on»First Statement, as follows.

Figure 4-7. Breaking On First Statement

2. Select Run»Debug sample1.exe to run the program. When the program begins execution,
LabWindows/CVI highlights the main function in the Source window.

3. Select Window»Variables and Call Stack to view the Variables and Call Stack window,
shown in Figure 4-8.

Figure 4-8. Variables and Call Stack Window During Execution of main

Note The values you see for your project might differ from the values shown in
Figure 4-8.

© National Instruments | 4-11

Getting Started with LabWindows/CVI

4. Insert a breakpoint on the line with the following code:
SinePattern (100, amp, 180.0, 2.0, sine);

5. Press <F5> to continue program execution. Click Acquire. LabWindows/CVI halts
program execution on the statement with the breakpoint. In the Variables and Call Stack
window, LabWindows/CVI now lists AcquireData in the Call Stack section. The
Variables and Call Stack window shows the variables that are declared locally to that
function in the Local variables section of the window.

6. Leave the program suspended and continue to the next section, Editing Variables.

Editing Variables
In addition to displaying variables, you can use the Variables and Call Stack window to edit the
contents of a variable. Complete the following steps to use the Variables and Call Stack window
for this purpose:
1. Make sure the sample1.c program is still suspended on the following line:

SinePattern (100, amp, 180.0, 2.0, sine);

2. Highlight the amp variable in the Source window and select Run»View Variable Value.
LabWindows/CVI highlights the amp variable in the Variables and Call Stack window.

Figure 4-9. Highlighting the amp variable

3. From the Variables and Call Stack window, press <Enter> to edit the value of amp. Enter
0.2 in the value column and press <Enter>.

4. In the Source window, select Run»Continue. Notice that the sine pattern amplitude is now
0.2. The change you made using the Variables and Call Stack window took effect
immediately in the execution of the program.

Note Notice that LabWindows/CVI displays in red text those variable values that
changed since the program was last suspended. In the Variables and Call Stack
window, LabWindows/CVI now displays the value for the amp variable in red text to
indicate a changed value.

4-12 | ni.com

Chapter 4 Editing and Debugging Tools

Array Display Window
The Array Display window shows the contents of an array of data or a string. You can use the
Array Display window to edit array or string elements in the same way that you edited variables
using the Variables and Call Stack window.
1. Click Acquire to put the program in breakpoint mode again.
2. Right-click sine in the Variables and Call Stack window and select View»Array Display

to view the array values as shown in Figure 4-10.

Figure 4-10. Array Display Window

Note The actual values in your array might differ from the values shown in
Figure 4-10.

The Array Display window shows the values of array elements in tabular format.
In Figure 4-10, the sine array is a one-dimensional array, so the display consists of
one column of numbers. The numbers in the column on the left side of the display indicate
the index number.
Take a moment to view the display. You can edit individual elements in the array just as you
edited variables in the Variables and Call Stack window.

3. Close the Array Display window.

Memory Display Window
You can use the Memory Display window to view and edit the memory of the program you are
debugging. Use the Memory Display window as follows:
1. With your program still suspended, select Window»Memory to display the Memory

Display window.
2. Click the Variables and Call Stack tab to return to the Variables and Call Stack window.

© National Instruments | 4-13

Getting Started with LabWindows/CVI

3. Click the sine variable in the Variables and Call Stack window and drag it to the Memory
tab. LabWindows/CVI displays the sine array memory in the Memory Display window,
shown in Figure 4-11.

Figure 4-11. Memory Display Window

4. To edit the program memory, right-click in the Memory Display window and select Edit
Mode. When the Memory Display window is in edit mode, double-click a value to edit it.
Similar to the Variables and Call Stack window, the Memory Display window also displays
changed values in red text.

5. When you are finished, click <Ctrl-F12> to terminate program execution.

Watch Window
The Watch window is a powerful debugging tool. In addition to viewing values of variables
changing dynamically as your program executes, you also can use the Watch window to view
expression values and set conditional breakpoints when variable or expression values change.
Complete the following steps to use the Watch window to view variables during program
execution:
1. With sample1.prj still loaded as the current project, ensure that Run»Break on»

First Statement is enabled. Click the breakpoint on the SinePattern line of code to
remove it.

2. Select Run»Debug sample1.exe to start program execution. Execution breaks with the
main function highlighted.

3. In the Variables and Call Stack window, right-click the sine variable and select Add
Watch Expression to add the sine variable to the Watch window.

4-14 | ni.com

Chapter 4 Editing and Debugging Tools

4. Enable the Break On Change option so that the window matches the one shown in
Figure 4-12. You might need to resize the Watch window to expose the Break On Change
option. Expand the sine variable within the Watch window to view the individual
elements within the array.

Figure 4-12. Watch Window

5. Select Run»Continue to continue program execution.
6. Click QUIT on the user interface to exit the program. Remove the watch expression by

clicking the sine variable in the Watch window and pressing <Delete>.

Tooltips
You also can use the following method to edit variables:
1. Disable the Run»Break on»First Statement option and set a breakpoint on the line of code

that includes the SinePattern function call. Then, select Run»Debug sample1.exe.
2. Click Acquire on the user interface. Program execution breaks on the SinePattern

statement.
3. Position the mouse cursor on the amp variable in the SinePattern statement.
4. The variable value appears in a tooltip. Highlight the current value and enter 3.0.
5. Select Run»Continue to complete program execution. Notice the amplitude of the graphed

sine pattern is the value you specified in the tooltip, not the amplitude calculated in the
program. Click QUIT on the user interface to exit the program.

Graphical Array View
The Graphical Array View shows the values of arrays in a graph view. This display is available
for 1D and 2D arrays during debugging. To open the Graphical Array View, complete the
following steps:
1. Clear the existing breakpoint. Then, set a breakpoint on the line of code that includes the

call to PlotY.
2. Select Run»Debug sample1.exe and click Acquire on the user interface.

© National Instruments | 4-15

Getting Started with LabWindows/CVI

3. In the Variables and Call Stack window, highlight the sine variable and select
View»Graphical Array View to view the sine values in a graph.

Figure 4-13. Graphical Array View

4. Select Run»Continue to complete program execution. Then click QUIT on the user
interface to exit the program.

Resource Tracking Window
Use the Resource Tracking window to detect memory leaks in a LabWindows/CVI application.
The Resource Tracking window displays resources that LabWindows/CVI has allocated, or
recently deallocated, in the application. If the Resource Tracking window displays no resources
when the program has completed execution, all allocated resources were subsequently
deallocated. Resource tracking is enabled by default in extended debugging mode. Complete the
following steps to view resources during program execution:

Note The Resource Tracking window is available only in the Full Development
System.

1. Select Options»Build Options to open the Build Options dialog box. Ensure that the value
in the Debugging level pull-down menu is Extended.

4-16 | ni.com

Chapter 4 Editing and Debugging Tools

Figure 4-14. Build Options Dialog Box

2. Click OK to exit the Build Options dialog box.
3. Verify the breakpoint still exists on the line of code that includes the call to PlotY. If not,

add a breakpoint on that line of code.

Note The Resource Tracking window displays information only when the program
is suspended. Therefore, the program must execute to the breakpoint before the
window displays any information.

4. Select Window»Resource Tracking to open the Resource Tracking window.
5. Select Run»Debug sample1.exe to execute the program.
6. Click the Acquire button.

The Resource Tracking window appears similar to the following image.

Figure 4-15. Resource Tracking Window

© National Instruments | 4-17

Getting Started with LabWindows/CVI

Notice the user interface resource for the panel that appears in the Resources column.
LabWindows/CVI displays newly allocated resources in red text. Double-click the panel in the
Resources column. LabWindows/CVI highlights the resource allocation of the panel in the
Source window. The Call Stack column displays the call stack of functions when the resource
was allocated.

Right-click on a resource in the Resource Tracking Window. The allocation is highlighted. Call
the appropriate function to deallocate memory.

Where to Go Next
Refer to the LabWindows/CVI Fundamentals»Debugging Tools»Resource Tracking
Window topic in the LabWindows/CVI Help for more information about the Resource Tracking
window. When ready, proceed to the exercises in Chapter 5.

© National Instruments | 5-1

5
Adding Analysis to Your
Program

This chapter builds on the concepts that you learned in Chapter 3, Using Function Panels and
Libraries. If you did not complete the exercise in Chapter 3, go back and do so now.

In Chapter 3, Using Function Panels and Libraries, you generated code to plot the sine pattern
array on the graph control. You placed the plotting function in a callback function that triggers
by clicking the Acquire button. In this chapter, you add analysis code to write a callback
function that finds the maximum and minimum values of the array and displays them in numeric
indicators on the user interface.

Setting Up

1. Remove all breakpoints and close all windows except the Workspace window.
2. Run sample1.prj to verify the operation of the program. Click QUIT to terminate the

execution.

Modifying the User Interface
Complete the following steps to modify the existing user interface:
1. Open sample1.c. Place the cursor at the end of the file. CodeBuilder uses that location

for the new callback function that it generates later in this chapter.
2. Without closing the sample1.c source code, open sample1.uir. Your goal is to modify

the .uir to match the user interface shown in Figure 5-1.

5-2 | ni.com

Chapter 5 Adding Analysis to Your Program

Figure 5-1. Sample User Interface

3. Add a command button to the panel.

Figure 5-2. Command Button

4. Select the new command button then enter the following information in the Attribute
Browser.

5. Use CodeBuilder to add code to your program for an individual control callback function.
Right-click the Max & Min command button and select Generate Control Callback.

Note The lightning bolt cursor appears while CodeBuilder generates code in the
sample1.c source file. When you finish updating the user interface for Sample 1,
you will add code to the FindMaxMin callback function to compute and display the
maximum and minimum values of the array.

Control Value

Constant Name MAXMIN

Callback Function FindMaxMin

Label Text Max & Min

© National Instruments | 5-3

Getting Started with LabWindows/CVI

6. In the User Interface Editor, right-click the panel and select Numeric»Numeric.
7. Ensure the numeric control has focus and enter the following information in the Attribute

Browser.

8. Add a second numeric control to the panel.
9. Ensure the numeric control has focus and enter the following information in the Attribute

Browser.

10. Position the new controls on the user interface to match those shown in Figure 5-1.

Tip You can use the Arrange»Alignment command to position controls on the
panel.

11. Save the modified .uir file.

Writing the Callback Function
Now that you have modified the .uir file and generated the shell for the callback function for
the Max & Min command button, you must complete the FindMaxMin function in the source
file, as follows:
1. To quickly locate the FindMaxMin callback function in your source file, right-click the

Max & Min button in the User Interface Editor and select View Control Callback.
LabWindows/CVI displays the sample1.c source file with the FindMaxMin callback
function highlighted.

2. Position the cursor on the blank line just after the case EVENT_COMMIT: statement.

Note LabWindows/CVI provides source code completion options within the
Source window. You can use the Edit»Show Completions option to view a list of
potential matches for functions or variables you are typing.

Control Value

Constant Name MAX

Control Mode indicator

Label Text Maximum

Control Value

Constant Name MIN

Control Mode indicator

Label Text Minimum

5-4 | ni.com

Chapter 5 Adding Analysis to Your Program

3. Type Max and then press <Ctrl-Space> to view the drop-down list of matches. Select
MaxMin1D from the list.

4. Type an open parenthesis after the function name to display the function prototype. If you
do not see the prototype after you type the parenthesis, press <Ctrl-Shift-Space>.

Note The prototype provides many of the same features as a function panel. As you
type, LabWindows/CVI highlights the appropriate parameter name in the prototype
tooltip. When you press <F1>, LabWindows/CVI displays help for the highlighted
item.

5. MaxMin1D finds the maximum and minimum values of an array. Enter the following values
for the parameters:

6. Before you proceed, you must declare the max, max_index, min, and min_index
variables. Place the cursor over the max variable name and press <Ctrl-D>.
LabWindows/CVI inserts a copy of the max variable declaration at the top of the code block
that contains your current position.

7. Repeat step 6 for the max_index, min, and min_index variables.
8. Enter a new line after the call to MaxMin1D and type SetCtrlVal (to display the

function prototype for SetCtrlVal. If LabWindows/CVI does not display the prototype,
press <Ctrl-Shift-Space> to view the tooltip.

9. The SetCtrlVal function sets the value of a control on your user interface. Enter
panelHandle for the PanelHandle parameter. Then enter a comma to highlight the
ControlID parameter in the prototype.

10. When ControlID is the highlighted parameter in the function prototype, LabWindows/CVI
displays a ... button next to the parameter name. This button indicates that

Parameter Value

InputArray sine

NumberofElements 100

MaximumValue &max

MaximumIndex &max_index

MinimumValue &min

MinimumIndex &min_index

© National Instruments | 5-5

Getting Started with LabWindows/CVI

LabWindows/CVI provides an input selection dialog box or list of constant values for the
current parameter.

11. Click this button or press <Ctrl-Shift-Enter> to launch the Select UIR Constant dialog box.
Select sample1.uir in the User Interface Resource files list and select PANEL_MAX
from the list of constants. Then click OK.

Figure 5-3. Select UIR Constant Dialog Box

12. Enter max for the value parameter, which is indicated by a ... in the function prototype.
13. On the next line, include another instance of SetCtrlVal with the following parameter

values to set the value of the Minimum control on the user interface.

14. Confirm that the source code matches the following code:
int CVICALLBACK FindMaxMin (int panel, int control, int event,

void *callbackData, int eventData1, int eventData2)
{

ssize_t min_index;
double min;
ssize_t max_index;

Parameter Value

PanelHandle panelHandle

ControlID PANEL_MIN

Value (...) min

5-6 | ni.com

Chapter 5 Adding Analysis to Your Program

double max;
switch (event)
{

case EVENT_COMMIT:
MaxMin1D (sine, 100, &max, &max_index, &min,

&min_index);
SetCtrlVal (panelHandle, PANEL_MAX, max);
SetCtrlVal (panelHandle, PANEL_MIN, min);
break;

case EVENT_RIGHT_CLICK:

break;
}
return 0;

}

Tip Notice the ssize_t data type in the previous example code. ssize_t and
size_t are signed and unsigned integer data types, respectively, that do not rely on
a specific pointer size. The size of ssize_t and size_t depend on the bitness of
your application. When writing code to execute on both 32- and 64-bit systems, use
data types that are not fixed-sized. Refer to the Creating Applications»Creating
64-bit Applications Versus 32-bit Applications»Porting 32-bit Code to 64-bit
Code topic in the LabWindows/CVI Help for more information about writing code
for 64-bit applications.

Running the Program
You have now successfully written the callback function. Save the files and run the project.

During program execution, the FindMaxMin function is called when you click Max & Min.
When you click Max & Min, three separate events occur:
1. First, clicking the left mouse button generates an EVENT_LEFT_CLICK event.
2. Next, releasing the left mouse button generates an EVENT_COMMIT event. You wrote the

function so that it finds the minimum and maximum values and displays them only when
your program receives the EVENT_COMMIT event.

3. Finally, the button gets the input focus. For more practice with user interface events,
complete Exercise 4: Adding User Interface Events of Chapter 7, Additional Exercises.

Where to Go Next
Stop debugging the application and proceed to Chapter 6, Distributing Your Application.

© National Instruments | 6-1

6
Distributing Your Application

This chapter describes how to distribute an application you create LabWindows/CVI. If you did
not complete the tutorial exercises in Chapters 2 through 5, go back and do so now.

You can use the LabWindows/CVI distribution creation and management features to develop
and edit multiple distributions for 32-bit or 64-bit applications. This tutorial includes steps for
creating a basic 32-bit Windows Installer (.msi). The steps for creating a 64-bit installer are
similar. For information about porting 32-bit code to 64-bit code and creating a 64-bit Windows
Installer, refer to the Creating Applications»Creating 64-bit Applications Versus 32-bit
Applications section in the LabWindows/CVI Help.

For more advanced information about distributing applications, refer to the Distributing
Applications»Creating and Editing an Installer topic of the LabWindows/CVI Help.

Creating a New Distribution
Complete the following steps to create a new installer for your application:
1. Select Build»Distributions»Manage Distributions to open the Manage Distributions

dialog box.

Figure 6-1. Manage Distributions Dialog Box

2. Click New to launch the New Distribution dialog box. Enter Sample Distribution as
the Name. Verify the path in the Settings file field is the following:
\Users\Public\Documents\National Instruments\CVIversion\
tutorial\Sample1.cds.

3. Click OK to close the dialog box.

6-2 | ni.com

Chapter 6 Distributing Your Application

Editing the Distribution
When you create a new distribution, LabWindows/CVI launches the Edit Installer dialog box
where you can specify various distribution components and features. Complete the following
steps to verify and edit the distribution settings for your application:
1. In the General tab, verify the Output directory. LabWindows/CVI builds the installer in

this location. Ensure that the Output directory is the following folder:
\Users\Public\Documents\National Instruments\CVIversion\
tutorial\cvidistkit.%name.

2. Verify that the Auto-increment option is enabled. This option ensures that
LabWindows/CVI increments the version number each time you build the installer.

Note National Instruments recommends you install an upgrade installer—an
installer that has a later version number than the previous installer—every time you
install an application to a location where another version of that application might be
installed. Upgrade installers uninstall the previous version of the application before
installing the updated version.

3. Click the Files tab. By default, LabWindows/CVI adds the project output (sample1.exe)
and dependencies to the installation. These files are listed in the Installation Files &
Directories section of the dialog box.

Note Notice that Sample1 32-bit Output (sample1.exe) is listed in red text. Red
text indicates that LabWindows/CVI cannot locate the file on your computer. In this
case, you must build the release executable for LabWindows/CVI to include it in the
installer. It is not necessary to exit the Edit Installer dialog box to build the
executable. LabWindows/CVI builds the target automatically when it builds the
distribution, as it does in step 9.

4. Click the Shortcuts tab. Notice that, by default, LabWindows/CVI includes a shortcut for
sample1.exe in the [Start»Programs]\Sample Distribution directory.

5. Click the Drivers & Components tab. Notice that LabWindows/CVI includes the
NI LabWindows/CVI Shared Runtime in the installer.

Note Refer to the Distributing Applications»Creating and Distributing Release
Executables and DLLs»LabWindows/CVI Runtime»Side-By-Side Runtime
section of the LabWindows/CVI Help for more information about the shared and
side-by-side runtime options.

6. Click Check Module Dependencies to ensure that any merge modules on which the
selected drivers and components depend are included in the installer. LabWindows/CVI
displays a message indicating that there are no missing dependencies and the LED on the
button glows green.

© National Instruments | 6-3

Getting Started with LabWindows/CVI

7. (Optional) Click the Registry Keys and Advanced tabs to view the available options. For
this application, it is not necessary to modify any of the settings in either of these tabs.

8. When you finish viewing and verifying the Edit Installer dialog box settings, click OK to
exit the dialog box. Then click OK to exit the Manage Distributions dialog box.

9. Select Build»Distributions»Build Sample Distribution.
10. Click Yes in the message box LabWindows/CVI displays to prompt you to build the

project. In some cases, LabWindows/CVI prompts you to insert the NI product installation
media during the build.

Figure 6-2. LabWindows/CVI Message

11. During the build process, LabWindows/CVI launches a dialog box that displays the build
status. When LabWindows/CVI finishes building the installer, click Close. You are now
ready to deploy the application to the target computer.

Figure 6-3. Build Status

Note Refer to the Distributing Applications section of the LabWindows/CVI Help
for more information about managing distributions, as well as creating patches for
existing distributions.

Deploying the Application to a Target Computer
In the previous steps, you built an installer that generated the files in the
\tutorial\cvidistkit.Sample Distribution folder. In this exercise, there is only
one folder, Volume. However, the folder can contain one or more Volume folders, the number
of which depends on the size of the installer and the distribution media size. Once you create the
installer, you can deploy it to a target computer.

6-4 | ni.com

Chapter 6 Distributing Your Application

Complete the following steps to copy the installer files and run the installer on the target
computer:
1. Copy the Volume folder and its contents to the target computer. For this exercise, the target

computer can be your development computer.
2. Double-click setup.exe to launch the installer for your application.
3. The installer displays a series of panels in which the user specifies the installation

preferences. When the installer finishes updating the target system, click Finish.
4. To uninstall the application, use the Programs and Features option in the Windows Control

Panel.

Note If you install the application to a computer other than your development
computer, the installer includes the LabWindows/CVI Runtime and other National
Instruments software necessary for your application, which you may want to remove.

5. To uninstall the NI LabWindows/CVI Runtime and other National Instruments software
necessary for your application, use the Programs and Features option in the Windows
Control Panel.

6. Select National Instruments Software from the list of currently installed programs and
click Uninstall/Change. Select the NI products you want to remove and click Remove.

Where to Go Next
Proceed to the exercises in Chapter 7.

© National Instruments | 7-1

7
Additional Exercises

All of the exercises in this chapter build on the sample project that you completed in Chapter 5,
Adding Analysis to Your Program. If you did not complete the sample project, go back and do
so now. If you have trouble successfully completing the Chapter 5 exercise, start with
sample1.prj.

This chapter provides additional exercises that build on the concepts you have used throughout
this tutorial. Each exercise adds to the code that you develop in the preceding exercise. If you
have trouble completing one of the exercises but would like to continue to the next topic, use the
solution from the previous exercise.

The solutions are located in the following folder:
\Users\Public\Documents\National Instruments\CVIversion\
tutorial\solution.

Exercise 1: Setting User Interface Attributes
Programmatically
Each control on the .uir file has a number of control attributes that you can set to customize
the look and feel of the control. When you build a user interface, you set the control attributes in
the Attribute Browser or the Edit dialog boxes for the controls. For example, text font, size, and
color are user interface control attributes.

Use GetCtrlAttribute and SetCtrlAttribute to get and set attributes of a control in a
method similar to the one you used to set the value of a control. You can build a customized GUI
in the User Interface Editor and dynamically change the look and feel of the controls at run time.

Hundreds of attributes are defined in the User Interface Library as constants, such as
ATTR_LABEL_BGCOLOR for setting the background color of the label on a control. You can use
these constants in the GetCtrlAttribute and SetCtrlAttribute functions.

Assignment
In this exercise, use SetCtrlAttribute to change the operation of a command button on the
user interface. Because the Max & Min command button does not operate correctly until you
acquire the data, you can disable the Max & Min button until a user clicks the Acquire button.
Use SetCtrlAttribute to enable the Max & Min button when a user clicks the
Acquire button.

7-2 | ni.com

Chapter 7 Additional Exercises

Tip To ensure multiple plots do not accumulate on the graph control, add a line of
code to delete any existing plots before you call PlotY.

Hints
• Start by dimming the Max & Min command button in the User Interface Editor.
• Use SetCtrlAttribute from the User Interface Library to enable the Max & Min

button.

Solution
Figure 7-1 displays the solution for this exercise. The solution for this exercise also can be found
in the \solution folder under the filename exer1.prj.

Figure 7-1. Exercise 1 Solution

Exercise 2: Storing the Waveform on Disk
Users often acquire large amounts of data and want to save it on disk for future analysis or
comparison. LabWindows/CVI provides a selection of functions from the ANSI C Library for
reading from and writing to data files. If you are already familiar with ANSI C, you know these
functions as the stdio library. In addition to the stdio library, LabWindows/CVI has its own set
of file I/O functions in the Formatting and I/O Library.

Tip When you must store very large data sets, National Instruments recommends
that you use the TDM Streaming Library, which is optimized for handling large
amounts of data.

© National Instruments | 7-3

Getting Started with LabWindows/CVI

Assignment
Use the file I/O functions in the ANSI C Library to save the sine array to a text file. Write the
program so that the file is overwritten, not appended, each time you acquire the data.

Hints
• Remember that you must first open a file before you can write to it.
• Open the file as a text file so you can view the contents in any text editor later.
• Open the file with the Create/Open flag and not the Append flag so that the file is

overwritten each time.
• Use the fprintf function in a loop to write the data to disk.
• Use the Utility Library GetProjectDir and MakePathname functions to create the

pathname for the file.

Solution
Figure 7-2 displays the solution for this exercise. The solution for this exercise also can be found
in the \solution folder under the filename exer2.prj.

Figure 7-2. Exercise 2 Solution

Exercise 3: Using Pop-Up Panels
The User Interface Library has a set of predefined panels called pop-up panels. Pop-up panels
provide a quick and easy way to display information on the screen without developing a
complete .uir file. You can use pop-up panels to prompt the user for input, confirm a selection,
or display a message.

One of the most useful pop-up panels is generated with the FileSelectPopupEx function.
With this pop-up panel, you can use a File Load or File Save dialog box, shown in Figure 7-3,

7-4 | ni.com

Chapter 7 Additional Exercises

to prompt the user to select or input a filename whenever your program must write to or read
from a file.

Figure 7-3. Pop-Up Panel

Assignment
Add a Save button to the .uir file so that the data in the array is saved only after the user clicks
the Save button. When the user clicks the Save button, your program should launch a dialog box
in which the user can define the drive, directory, and filename of the data file. When you finish,
the .uir file should look similar to the one shown in Figure 7-4.

Hints
• When you create the Save button, assign a callback function to it.
• You must move the source code that you developed in Exercise 2 for writing the array to

disk into the callback function.
• Before you write the data to disk, prompt the user for a filename with the

FileSelectPopupEx function from the User Interface Library.

© National Instruments | 7-5

Getting Started with LabWindows/CVI

Solution
Figure 7-4 displays the solution for this exercise. The solution for this exercise can be found in
the \solution folder under the filename exer3.prj.

Figure 7-4. Exercise 3 Solution

Exercise 4: Adding User Interface Events
Throughout this tutorial, you have been developing an event-driven program. When you place a
control on a .uir file, you are defining a region of the screen that can generate events during
program execution. Your C source files are written to respond to these events in callback
functions.

So far, you have written functions that respond only to the EVENT_COMMIT event from the user
interface. An EVENT_COMMIT event occurs whenever the end user commits on a control, which
usually happens when that user releases the left mouse button after clicking a control.

User interface controls can generate many different types of events. For example, an event
can be a left-click or a right-click. Or, an event can be a left double-click. Events in
LabWindows/CVI can be more than just mouse clicks. An event can be the press of a key
or a move or size operation performed on a panel. Each time one of these events occurs,
the callback function associated with the user interface called executes.

To view the events that each user action generates, click the following icon, which puts the User
Interface Editor into operate mode.

7-6 | ni.com

Chapter 7 Additional Exercises

When the User Interface Editor is in operate mode, LabWindows/CVI displays events in the
status bar located at the bottom of the Workspace window. Refer to the Events Overview topic
in the LabWindows/CVI Help for a list of the events you can generate from a GUI.

When the callback function is called, the event type is passed through the event parameter to the
callback function. Performing one simple operation on the user interface, such as clicking a
command button, can call the callback function for that button three times.

The first time, the callback function is called to process the EVENT_LEFT_CLICK event.
The second time, it is called to process the EVENT_COMMIT event. The third time, the callback
function is called to process the EVENT_GOT_FOCUS event if the button did not have the input
focus before you clicked it. For this reason, all of the callback functions you have worked
on check the event type first and execute only when the event is an EVENT_COMMIT. Therefore,
the operations in the callback functions happen only once with each event click, rather than
three times.

Assignment
Many times, the person operating a LabWindows/CVI program is not the person who developed
the program. The GUI might be very easy to use, but usually it is preferable to add help for the
controls on .uir panels to assist the operator. Modify exer3.prj to display a short
description for each command button when the user right-clicks the button.

Hints
• Use MessagePopup to display the help.
• Remember that the event type is passed to each callback function in the event parameter.
• The event that you must respond to is EVENT_RIGHT_CLICK.

Tip If you want to add pop-up documentation to controls, use the
SetCtrlAttribute function and specify text with the ATTR_TOOLTIP_TEXT
attribute.

© National Instruments | 7-7

Getting Started with LabWindows/CVI

Solution
Figure 7-5 displays the solution for this exercise. The solution for this exercise can be found in
the \solution folder under the filename exer4.prj.

Figure 7-5. Exercise 4 Solution

Exercise 5: Timed Events
You have developed an event-driven program that responds to events generated by mouse clicks
or keypresses from the user. With the LabWindows/CVI timer control, you can generate events
at specified time intervals to trigger program actions without requiring an action from the user.

You can include timer controls in your program by creating them in the User Interface Editor.
The timer control is visible only at design time in the User Interface Editor. At run time, the timer
control does not appear. You can specify a constant name, callback function, and timer event
interval in the Attribute Browser or the Edit Timer dialog box. LabWindows/CVI automatically
calls the specified timer callback function with an event of type EVENT_TIMER_TICK each time
the specified time interval elapses. The interval value is specified in seconds with a resolution
of 1 millisecond between timer events.

Assignment
Add a thermometer control to the user interface and use a timer control to generate a random
number and display it on the thermometer once each second.

Hints
• Set the timer interval to 1.
• Use CodeBuilder to generate the shell for the timer control callback function.
• Use SetCtrlVal to display the random number on the thermometer.

© National Instruments | I-1

Index

A
accessing function panels, 1-3, 3-1
ANSI C specifications, 1-8
Arrange menu, 2-5
arrays

declaring from function panels, 3-3
displaying, 4-12
displaying in graph, 4-14

Attribute Browser, 1-5, 2-4
attributes, setting programmatically, 7-1

B
Break on First Statement command, Run

menu, 4-4, 4-10, 4-13
breakpoints

breakpoint on error, 4-6
conditional, 4-6
definition, 4-6
fixed breakpoints, 4-6
instant breakpoints, 4-6
programmatic breakpoints, 4-6
watch expression breakpoints, 4-6

C
Call Stack (Variables and Call Stack

window), 4-9
callback functions

adding with CodeBuilder, 5-2
locating with CodeBuilder, 5-3
processing events (example), 7-5
writing, 5-3

code generation, automatic. See CodeBuilder
Code menu

Function Panel windows
Insert Function Call command, 3-6

code. See source files
CodeBuilder, 2-9

adding control callback function, 5-2
generating program shell, 2-9

commit events, 5-6, 7-5
conditional breakpoints, 4-6
constant name, 2-4, 2-8

constants, displaying in .uir file, 3-5
Continue command, Run menu (table), 4-5
controls

command button control, 2-4, 5-2
graph control, 2-5
numeric control, 5-3
timer control, 7-7

Create/Edit DAQmx Tasks command, 1-8
custom controls, 2-5

D
DAQ Assistant, 1-8
data

displaying and editing variables, 4-9
displaying Graphical Array View, 4-14
generating array of data, 3-3

data acquisition, 1-8
libraries, using, 1-8

data files, functions for reading and
writing, 7-2

debugging programs
breakpoints

fixed breakpoints, 4-6
instant breakpoints, 4-6
programmatic breakpoints, 4-6
watch expression breakpoints, 4-6

displaying and editing data
Variables and Call Stack

window, 4-9
displaying data, Graphical Array

View, 4-14
step mode execution, 4-4

Debugging Region, 1-3
deploying applications, 6-3
developing graphical user interfaces (GUI).

See graphical user interface (GUI),
building

DiscardPanel, 2-11
displaying and editing data, variables, 4-9
DisplayPanel, 2-11
distributing applications, 6-1
documentation

related documentation, ix

Index

I-4 | ni.com

S
Select Variable command, 3-5
Set Next Statement command, Run menu, 4-5
SetCtrlAttribute, 7-1
shells, building. See CodeBuilder
Source Code Browser, 1-4
source files

analyzing code, 2-11
displaying in Source window, 1-8
displaying referenced files, 4-1
moving to specific lines of code, 4-3
source code connection, 2-9

Source window
compatibility with ANSI C

specifications, 1-8
displaying generated code, 2-10
opening subwindows, 4-1

standard libraries, 1-5
starting LabWindows/CVI, 2-1
status bar, 1-4
Step Into command, Run menu, 4-4, 4-5, 4-7
step mode execution, 4-4
Step Over command, Run menu, 4-5, 4-7
subwindows, opening subwindows for one

source file, 4-1

T
Terminate Execution command, Run menu,

4-5, 4-7
timed events, 7-7
timer controls, adding to user interface, 7-7
Toggle Tag command, View menu, 4-3
tooltips, editing variables, 4-14

U
uir files. See user interface resource (.uir) files
upgrade installer, 6-2
User Interface Browser, 1-5
user interface development, 1-7
User Interface Editor window

operate mode, 7-5
purpose and use, 2-2

user interface events. See events
User Interface Library, 1-7

user interface resource (.uir) files,
building, 2-3

adding a graph control, 2-5
adding command button controls, 2-4

user interface. See graphical user interface
(GUI)

V
variables

displaying, 4-9
editing, 4-11
editing using tooltips, 4-14

Variables and Call Stack window
opening, 4-9
stepping through programs, 4-10

View Control Callback command, 5-3
View menu

Line command, 4-3
Line Numbers command, 4-1
Toggle Tag command, 4-3

View Variable Value command, Run menu,
4-11

W
watch expressions, 4-6
Watch window

displaying variables during program
execution, 4-13

purpose and use, 4-13
waveform generation project, storing

waveform on disk, 7-2
Window Confinement Region, 1-3
Windows Installer, 6-1
Workspace window, 1-3

	Getting Started with LabWindows/CVI
	Support
	Worldwide Technical Support and Product Information
	Worldwide Offices
	National Instruments Corporate Headquarters

	Legal Information
	Limited Warranty
	Copyright
	End-User License Agreements and Third-Party Legal Notices
	U.S. Government Restricted Rights
	Trademarks
	Patents
	Export Compliance Information
	WARNING REGARDING USE OF NATIONAL INSTRUMENTS PRODUCTS

	Contents
	About This Manual
	Related Documentation

	Chapter 1 Introduction to LabWindows/CVI
	Figure 1-1. Relationship Between Program Elements in LabWindows/CVI
	LabWindows/CVI Environment
	Figure 1-2. Workspace Window
	Figure 1-3. User Interface Browser and Attribute Browser

	Standard Libraries
	Table 1-1. Standard Libraries

	User Interface Development
	Generating a Program Shell with CodeBuilder

	Developing and Editing Source Code
	Instrument Control and Data Acquisition
	Using the Instrument Control and Data Acquisition Libraries
	Using the DAQ Assistant
	Developing Instrument Drivers

	Learning about LabWindows/CVI
	Where to Go Next

	Chapter 2 Building a Graphical User Interface
	Project Templates
	Selecting a Project Template
	Figure 2-1. LabWindows/CVI Welcome Page

	User Interface Editor
	Building a User Interface Resource (.uir) File
	Figure 2-2. sample1.uir

	Editing a .uir File
	Figure 2-3. Opening sample1.uir

	Adding Command Buttons
	Figure 2-4. Navigating to the Quit Button

	Adding a Graph Control
	Figure 2-5. Attribute Browser
	Figure 2-6. Edit Relative Date/Time Format String Dialog Box

	Source Code Connection
	Figure 2-7. Assigning a Constant Name

	CodeBuilder
	Completing the Program Shell with CodeBuilder
	Figure 2-8. Callback Events Dialog Box
	Figure 2-9. Generate Code Dialog Box

	Analyzing the Source Code
	main Function
	AcquireData Function
	QuitCallback Function

	Running the Generated Code
	Where to Go Next

	Chapter 3 Using Function Panels and Libraries
	Function Panel Fundamentals
	Accessing Function Panels
	Figure 3-1. Find Text Box
	Figure 3-2. Find Dialog Box

	Function Panel Controls
	Function Panel Help
	Table 3-1. Displaying Function Panel Help

	Generating an Array of Data
	Figure 3-3. Function Panel

	Building the PlotY Function Call Syntax
	Figure 3-4. Function Panel
	Figure 3-5. Completed Plot Y Function Panel

	Running the Completed Project
	Where to Go Next

	Chapter 4 Editing and Debugging Tools
	Editing Tools
	Figure 4-1. Split Source Window
	Figure 4-2. . Adding Tags

	Step Mode Execution
	Table 4-1. Quick Keys for Step Mode Execution

	Breakpoints
	Fixed Breakpoints
	Figure 4-3. Breakpoint Beside a Line of Code

	Conditional Breakpoints
	Figure 4-4. Edit Breakpoint Dialog Box
	Figure 4-5. Entering Breakpoint Information

	Displaying and Editing Data
	Variables and Call Stack Window
	Figure 4-6. Variables and Call Stack Window
	Figure 4-7. Breaking On First Statement
	Figure 4-8. Variables and Call Stack Window During Execution of main
	Editing Variables
	Figure 4-9. Highlighting the amp variable

	Array Display Window
	Figure 4-10. Array Display Window

	Memory Display Window
	Figure 4-11. Memory Display Window

	Watch Window
	Tooltips
	Graphical Array View
	Figure 4-13. Graphical Array View

	Resource Tracking Window
	Figure 4-14. Build Options Dialog Box
	Figure 4-15. Resource Tracking Window

	Where to Go Next

	Chapter 5 Adding Analysis to Your Program
	Setting Up
	Modifying the User Interface
	Figure 5-1. Sample User Interface
	Figure 5-2. Command Button

	Writing the Callback Function
	Figure 5-3. Select UIR Constant Dialog Box

	Running the Program

	Where to Go Next

	Chapter 6 Distributing Your Application
	Creating a New Distribution
	Figure 6-1. Manage Distributions Dialog Box

	Editing the Distribution
	Figure 6-2. LabWindows/CVI Message
	Figure 6-3. Build Status

	Deploying the Application to a Target Computer
	Where to Go Next

	Chapter 7 Additional Exercises
	Exercise 1: Setting User Interface Attributes Programmatically
	Assignment
	Hints
	Solution
	Figure 7-1. Exercise 1 Solution

	Exercise 2: Storing the Waveform on Disk
	Assignment
	Hints

	Exercise 3: Using Pop-Up Panels
	Figure 7-3. Pop-Up Panel
	Assignment

	Exercise 4: Adding User Interface Events
	Assignment
	Hints

	Exercise 5: Timed Events
	Assignment
	Hints
	Solution
	Figure 7-6. Exercise 5 Solution

	Chapter 8 Related Software Packages
	Appendix A NI Services
	Index
	A-D
	E-L
	M-R
	S-W

