Worldwide Technical Support and Product Information

ni.com

Worldwide Offices
Visit ni.com/niglobal to access the branch office Web sites, which provide up-to-date contact information, support phone numbers, email addresses, and current events.

National Instruments Corporate Headquarters
11500 North Mopac Expressway Austin, Texas 78759-3504 USA Tel: 512 683 0100

For further support information, refer to the Technical Support and Professional Services appendix. To comment on National Instruments documentation, refer to the National Instruments Web site at ni.com/info and enter the Info Code feedback.

© 2011–2012 National Instruments. All rights reserved.
Important Information

Warranty
The NI PXI-8115 is warranted against defects in materials and workmanship for a period of one year from the date of shipment, as evidenced by receipts or other documentation. National Instruments will, at its option, repair or replace equipment that proves to be defective during the warranty period. This warranty includes parts and labor.

The media on which you receive National Instruments software are warranted not to fail to execute programming instructions, due to defects in materials and workmanship, for a period of 90 days from date of shipment, as evidenced by receipts or other documentation. National Instruments will, at its option, repair or replace software media that do not execute programming instructions if National Instruments receives notice of such defects during the warranty period. National Instruments does not warrant that the operation of the software shall be uninterrupted or error free.

A Return Material Authorization (RMA) number must be obtained from the factory and clearly marked on the outside of the package before any equipment will be accepted for warranty work. National Instruments will pay the shipping costs of returning to the owner parts which are covered by warranty.

National Instruments believes that the information in this document is accurate. The document has been carefully reviewed for technical accuracy. In the event that technical or typographical errors exist, National Instruments reserves the right to make changes to subsequent editions of this document without prior notice to holders of this edition. The reader should consult National Instruments if errors are suspected. In no event shall National Instruments be liable for any damages arising out of or related to this document or the information contained in it.

Except as specified herein, National Instruments makes no warranties, express or implied, and specifically disclaims any warranty of merchantability or fitness for a particular purpose. Customer’s right to recover damages caused by fault or negligence on the part of National Instruments shall be limited to the amount therefore paid by the customer. National Instruments will not be liable for damages resulting from loss of data, profits, use of products, or incidental or consequential damages, even if advised of the possibility thereof. This limitation of the liability of National Instruments will apply regardless of the form of action, whether in contract or tort, including negligence. Any action against National Instruments must be brought within one year after the cause of action accrues. National Instruments shall not be liable for any delay in performance due to causes beyond its reasonable control. The warranty provided here does not cover damages, defects, malfunctions, or service failures caused by owner’s failure to follow the National Instruments installation, operation, or maintenance instructions; owner’s modification of the product; owner’s abuse, misuse, or negligent acts; and power failure or surges, fire, flood, accident, actions of third parties, or other events outside reasonable control.

Copyright
Under the copyright laws, this publication may not be reproduced or transmitted in any form, electronic or mechanical, including photocopying, recording, storing in an information retrieval system, or translating, in whole or in part, without the prior written consent of National Instruments Corporation.

National Instruments respects the intellectual property of others, and we ask our users to do the same. NI software is protected by copyright and other intellectual property laws. Where NI software may be used to reproduce software or other materials belonging to others, you may use NI software only to reproduce materials that you may reproduce in accordance with the terms of any applicable license or other legal restriction.

End-User License Agreements and Third-Party Legal Notices
You can find end-user license agreements (EULAs) and third-party legal notices in the following locations:

- Notices are located in the `<National Instruments>_\Legal Information and `<National Instruments>_\directories.`
- EULAs are located in the `<National Instruments>_\Shared\MDF\Legal\License directory`,
- Review `<National Instruments>_\Legal Information.txt` for more information on including legal information in installers built with NI products.

Trademarks
CVL, LabVIEW, National Instruments, NI, ni.com, the National Instruments corporate logo, and the Eagle logo are trademarks of National Instruments Corporation. Refer to the `Trademark Information` at `ni.com/trademarks` for other National Instruments trademarks.

The ExpressCard™ word mark and logos are owned by PCMCIA and any use of such marks by National Instruments is under license. The mark LabWindows is used under a license from Microsoft Corporation. Windows is a registered trademark of Microsoft Corporation in the United States and other countries. Other product and company names mentioned herein are trademarks or trade names of their respective companies. Members of the National Instruments Alliance Partner Program are business entities independent from National Instruments and have no agency, partnership, or joint-venture relationship with National Instruments.

Patents
For patents covering National Instruments products/technology, refer to the appropriate location: `Help=Patents` in your software, the `patents.txt` file on your media, or the `National Instruments Patent Notice` at `ni.com/patents`.

Export Compliance Information
Refer to the `Export Compliance Information` at `ni.com/legal/export-compliance` for the National Instruments global trade compliance policy and how to obtain relevant HTS codes, ECCNs, and other import/export data.

WARNING REGARDING USE OF NATIONAL INSTRUMENTS PRODUCTS
(1) NATIONAL INSTRUMENTS PRODUCTS ARE NOT DESIGNED WITH COMPONENTS AND TESTING FOR A LEVEL OF RELIABILITY SUITABLE FOR USE IN OR IN CONNECTION WITH SURGICAL IMPLANTS OR AS CRITICAL COMPONENTS IN ANY LIFE SUPPORT SYSTEMS WHOSE FAILURE TO PERFORM CAN REASONABLY BE EXPECTED TO CAUSE SIGNIFICANT INJURY TO A HUMAN.

(2) IN ANY APPLICATION, INCLUDING THE ABOVE, RELIABILITY OF OPERATION OF THE SOFTWARE PRODUCTS CAN BE IMPAIRED BY ADVERSE FACTORS, INCLUDING BUT NOT LIMITED TO FLUCTUATIONS IN ELECTRICAL POWER SUPPLY, CONSTRUCTIVE HARDWARE MALFUNCTIONS, COMPUTER OPERATING SYSTEM SOFTWARE, INCOMPATIBILITY OF DEVELOPMENT SOFTWARE USED TO DEVELOP AN APPLICATION, INSTALLATION ERRORS, SOFTWARE AND HARDWARE COMPATIBILITY PROBLEMS, MALFUNCTIONS OR FAILURES OF ELECTRONIC MONITORING OR CONTROL DEVICES, TRANSIENT FAILURES OF ELECTRONIC SYSTEMS (HARDWARE AND/OR SOFTWARE), UNANTICIPATED USES OR MISUSES, OR ERRORS ON THE PART OF THE USER OR APPLICATIONS DESIGNER (ADVERSE FACTORS SUCH AS THESE ARE HEREAFTER COLLECTIVELY TERMED “SYSTEM FAILURES”). ANY APPLICATION WHERE A SYSTEM FAILURE WOULD CREATE A RISK OF HARM TO PROPERTY OR PERSONS (INCLUDING THE RISK OF BODILY INJURY AND DEATH) SHOULD NOT BE RELIANT SOLELY...
UPON ONE FORM OF ELECTRONIC SYSTEM DUE TO THE RISK OF SYSTEM FAILURE, TO AVOID DAMAGE, INJURY, OR DEATH, THE USER OR APPLICATION DESIGNER MUST TAKE REASONABLY PRUDENT STEPS TO PROTECT AGAINST SYSTEM FAILURES, INCLUDING BUT NOT LIMITED TO BACK-UP OR SHUT DOWN MECHANISMS. BECAUSE EACH END-USER SYSTEM IS CUSTOMIZED AND DIFFERS FROM NATIONAL INSTRUMENTS TESTING PLATFORMS AND BECAUSE A USER OR APPLICATION DESIGNER MAY USE NATIONAL INSTRUMENTS PRODUCTS IN COMBINATION WITH OTHER PRODUCTS IN A MANNER NOT EVALUATED OR CONTEMPLATED BY NATIONAL INSTRUMENTS, THE USER OR APPLICATION DESIGNER IS ULTIMATELY RESPONSIBLE FOR VERIFYING AND VALIDATING THE SUITABILITY OF NATIONAL INSTRUMENTS PRODUCTS WHENEVER NATIONAL INSTRUMENTS PRODUCTS ARE INCORPORATED IN A SYSTEM OR APPLICATION, INCLUDING, WITHOUT LIMITATION, THE APPROPRIATE DESIGN, PROCESS AND SAFETY LEVEL OF SUCH SYSTEM OR APPLICATION.
Compliance

Electromagnetic Compatibility Information

This product was tested and complies with the regulatory requirements and limits for electromagnetic compatibility (EMC) as stated in the product specifications. These requirements and limits are designed to provide reasonable protection against harmful interference when the product is operated in its intended operational electromagnetic environment.

This product is intended for use in industrial locations. There is no guarantee that harmful interference will not occur in a particular installation, when the product is connected to a test object, or if the product is used in residential areas. To minimize the potential for the product to cause interference to radio and television reception or to experience unacceptable performance degradation, install and use this product in strict accordance with the instructions in the product documentation.

Furthermore, any changes or modifications to the product not expressly approved by National Instruments could void your authority to operate it under your local regulatory rules.

⚠️ **Caution** To ensure the specified EMC performance, product installation requires either special considerations or user-installed, add-on devices. See the product installation instructions for further information.

⚠️ **Caution** To ensure the specified EMC performance, operate this product only with shielded cables and accessories.
Contents

About This Manual
- How to Use the Documentation Set ...xi
- Conventions ...xi
- Related Documentation ..xii

Chapter 1
Introduction
- Benefits of PXI ..1-1
- NI PXI-8115 ..1-2
 - Description ..1-2
 - Functional Overview ..1-3
 - NI PXI-8115 Functional Description ..1-3
- National Instruments Software ..1-5

Chapter 2
Installation and Configuration
- Installing the NI PXI-8115 ..2-1
- How to Remove the Controller from the PXI Chassis ...2-4
- BIOS Setup Utility ..2-4
 - Accessing BIOS Setup Utility ...2-4
 - Main Setup Menu ..2-5
 - Advanced Setup Menu ..2-6
 - SATA Configuration Submenu ..2-7
 - CPU Configuration Submenu ...2-7
 - Video Configuration Submenu ..2-8
 - Power/Wake Configuration Submenu ..2-8
 - ExpressCard Configuration Submenu ..2-9
 - USB Configuration Submenu ..2-9
 - Serial/Parallel Port Configuration Submenu ...2-10
 - Serial Port Configuration Submenu ...2-11
 - Parallel Port Configuration Submenu ..2-11
 - LabVIEW RT Setup Menu ...2-11
 - LabVIEW RT Configuration Overrides Submenu ..2-12
 - Boot Setup Menu ...2-12
 - Boot Settings Configuration Submenu ..2-13
 - Hard Drive BBS Priorities Submenu ..2-14
 - CD/DVD ROM Drive BBS Priorities Submenu ..2-14
Contents

Floppy Drive BBS Priorities Submenu .. 2-14
Network Device BBS Priorities Submenu .. 2-14
Security Menu ... 2-14
Save & Exit Menu ... 2-15
BIOS Diagnostic Utilities .. 2-16
Accessing BIOS Diagnostic Utilities .. 2-16
Hard Drive Diagnostic Utility .. 2-16
Memory Diagnostic Utility ... 2-16
System CMOS .. 2-17
LabVIEW RT Installation ... 2-18
LabVIEW RT Software Installation ... 2-18
LabVIEW RT Configuration Switches ... 2-20
Drivers and Software .. 2-22
PXI Features ... 2-22
PXI Trigger Connectivity ... 2-22
Chassis Configuration .. 2-22
Basic PXI System Configuration ... 2-23
Upgrading RAM ... 2-23
Hard Drive Recovery .. 2-24
Installing an OS ... 2-25
Installing from a USB CD/DVD-ROM .. 2-25
ExpressCard .. 2-25
Installing an ExpressCard ... 2-25
Removing an ExpressCard .. 2-26
Power Budgeting ... 2-26

Chapter 3
I/O Information

Front Panel Connectors .. 3-1
Front Panel ... 3-2
DisplayPort ... 3-3
COM1 .. 3-5
Ethernet .. 3-6
Parallel Port .. 3-7
Universal Serial Bus .. 3-9
Trigger ... 3-10
GPIB (IEEE 488.2) ... 3-11
ExpressCard/34 Slot .. 3-13
Front Panel Features .. 3-15
Data Storage .. 3-15
Chapter 4
Common Configuration Questions

General Questions ... 4-1
Boot Options ... 4-1
Cables and Connections .. 4-3
Software Driver Installation .. 4-4
Upgrade Information .. 4-5
PXI Configuration ... 4-6

Chapter 5
Troubleshooting

Appendix A
Specifications

Appendix B
Technical Support and Professional Services

Glossary

Index
About This Manual

This manual contains detailed instructions for installing and configuring the National Instruments PXI-815 embedded computer kit.

How to Use the Documentation Set

Begin by reading the *NI PXI-8115 Installation Guide*, a brief quick-start guide that describes how to install and get started with your controller.

This manual, the *NI PXI-8115 User Manual*, contains more details about changing the installation or configuration from the defaults and using the hardware.

Conventions

The following conventions appear in this manual:

»

The » symbol leads you through nested menu items and dialog box options to a final action. The sequence **Options**»**Settings**»**General** directs you to pull down the **Options** menu, select the **Settings** item, and select **General** from the last dialog box.

This icon denotes a tip, which alerts you to advisory information.

This icon denotes a note, which alerts you to important information.

This icon denotes a caution, which advises you of precautions to take to avoid injury, data loss, or a system crash.

bold

Bold text denotes items that you must select or click in the software, such as menu items and dialog box options. Bold text also denotes parameter names.

italic

Italic text denotes variables, emphasis, a cross-reference, or an introduction to a key concept. Italic text also denotes text that is a placeholder for a word or value that you must supply.
About This Manual

Text in this font denotes text or characters that you should enter from the keyboard, sections of code, programming examples, and syntax examples. This font is also used for the proper names of disk drives, paths, directories, programs, subprograms, subroutines, device names, functions, operations, variables, filenames, and extensions.

Bold text in this font denotes the messages and responses that the computer automatically prints to the screen. This font also emphasizes lines of code that are different from the other examples.

Related Documentation

The following documents contain information you may find helpful as you read this manual:

- **PICMG 2.0 R3.0 CompactPCI Specification**, PCI Industrial Computers Manufacturers Group
- **PCI Local Bus Specification**, Revision 2.3, PCI Special Interest Group
- **PXI Hardware Specification**, Revision 2.2, PXI Systems Alliance
- **PXI Software Specification**, Revision 2.1, PXI Systems Alliance
- **Serialized IRQ Support for PCI Systems Specification**, Revision 6.0, Compaq Computer et al.
- **ExpressCard Standard**, Release 1.0, PCMCIA
- **Universal Serial Bus (USB) Specification**, Revision 2.0
Introduction

This chapter provides overview information for PXI and the NI PXI-8115 embedded controller.

Benefits of PXI

The PXI (PCI eXtensions for Instrumentation) industry standard, an open specification governed by the PXI Systems Alliance (PXISA), defines a compact modular PC platform for test, measurement, and control systems. Since PXI leverages the PCI bus, PXI users receive all the benefits of PCI within an architecture that supports mechanical, electrical, and software features tailored to industrial instrumentation, data acquisition, industrial automation, and control applications.

Well-suited for industrial applications, PXI leverages from the CompactPCI specification, which defines a rugged form factor for PCI that offers superior mechanical integrity and easy installation and removal of hardware components. PXI products offer higher and more carefully defined levels of environmental performance required by the vibration, shock, temperature, and humidity extremes of industrial environments. PXI adds mandatory environmental testing and active cooling to the CompactPCI mechanical specification to ease system integration and ensure multivendor interoperability.

Additionally, PXI meets the more specific needs of instrumentation users by adding an integrated trigger bus and reference clock for multiple-board synchronization, a star trigger bus for very precise timing, and local buses for side-band communication between adjacent peripherals.
NI PXI-8115

Description

The NI PXI-8115 PXI/CompactPCI embedded computer is a high-performance PXI/CompactPCI system controller. The NI PXI-8115 controller integrates standard I/O features in a single unit by using state-of-the-art packaging. Combining an NI PXI-8115 embedded controller with a PXI-compatible chassis, such as the NI PXI-1042, results in a fully PC-compatible computer in a compact, rugged package.

The standard I/O on each module includes two DP video, one RS-232 serial port, a parallel port, six high-speed USB 2.0 ports, a PCI-based GPIB controller, two Gigabit Ethernet connectors, a reset button, and PXI triggers.

The NI PXI-8115 has a dual-core Intel® Core™ i5-2510E Processor with 3 MB cache 2.50 GHz, Single Channel DDR3, 1333 MHz memory controller, all the standard I/O, and an integrated hard drive. It also has an ExpressCard/34 expansion slot.
Functional Overview

This section contains functional descriptions of each major logic block on the NI PXI-8115 embedded computer.

NI PXI-8115 Functional Description

The NI PXI-8115 is a modular PC in a PXI 3U-size form factor. Figure 1-1 is a functional block diagram of the NI PXI-8115. Following the diagram is a description of each logic block shown.

Figure 1-1. NI PXI-8115 Block Diagram
Chapter 1 Introduction

The NI PXI-8115 consists of the following logic blocks on the CPU module and the I/O (daughter card) module. The CPU module has the following logic blocks:

- The **processor** is an Intel® Core™ i5-2510E Processor (3 M cache, 2.5 GHz). The processor connects to the SO-DIMM block through the DDR3 interface supporting up to 1333 MHz SO-DIMMs, the PCH through a x4 DMI2 (Direct Media Interface) interface supporting up to 5 GT/s and through x4 FDI (Flexible Display Interface) supporting up to 2.7 GT/s.
- The **SO-DIMM** blocks consists of one 64-bit DDR3 SDRAM socket that can hold up to 8GB of memory.
- The **PCH** (Platform Controller Hub) provides the DisplayPort, USB, PCI Express, LPC and SPI interfaces that connect to the peripherals on the NI PXI-8115.
- The **DisplayPort** block consists of 2 DisplayPort connectors.
- The **USB** block consists of 6 Hi-Speed USB 2.0 connectors.
- The **GPIB** block contains the GPIB interface.
- The **ExpressCard/34** slot accommodates an ExpressCard/34 module.
- The **Ethernet Port 1** block consists of an Intel® 82579LM Gigabit Network Connection.
- The **Ethernet Port 2** block consists of an Intel® 82574L Gigabit Network Connection.
- The **Super I/O** block connects to 1 serial port and 1 ECP/EPP parallel port.
- The **SMB Front Panel Trigger** provides a routable connection of the PXI triggers to/from the SMB on the front panel.
- The **Watchdog** block consists of a watchdog timer that can reset the controller or generate triggers.
- The **PXI Connectors** connect the NI PXI-8115 to the PXI/CompactPCI Express backplane.
National Instruments has developed several software tools you can use with the NI PXI-8115.

National Instruments’ hardware and software work together to help you make the most of your PXI system. The LabVIEW, Measurement Studio, and LabWindows™/CVI™ application development environments combine with leading hardware drivers such as NI-DAQmx to provide exceptional control of NI hardware. Instrument drivers are available at ni.com/idnet to simplify communication with instruments over a variety of buses.

LabVIEW is a powerful and easy-to-use graphical programming environment you can use to acquire data from thousands of different instruments including USB, IEEE 488.2, VXI, serial, PLCs, and plug-in boards. LabVIEW helps you convert acquired data into meaningful results using powerful data analysis routines. Add-on tools provide additional specialized functionality. For more information visit ni.com/labview and ni.com/toolkits.

If you prefer to use Microsoft’s Visual Basic, Visual C++, and Visual Studio .NET for the core of your application, Measurement Studio adds tools for Measurement and Automation to each language. For more information visit ni.com/mstudio.

LabWindows/CVI is an interactive ANSI C programming environment designed for building virtual instrument applications. LabWindows/CVI delivers a drag-and-drop editor for building user interfaces, a complete ANSI C environment for building your test program logic, and a collection of automated code generation tools, as well as utilities for building automated test systems, monitoring applications, or laboratory experiments. For more information visit ni.com/lwcvi.

NI-DAQmx provides an extensive library of functions that you can call from your application development environment or interactive environment such as NI Signal Express. These functions provide an intuitive API for National Instruments’ multifunction DAQ products. Features available include analog input (A/D conversion), buffered data acquisition (high-speed A/D conversion), analog output (D/A conversion), waveform generation, digital I/O, counter/timer operations, SCXI signal conditioning, RTSI or PXI synchronization, self-calibration, messaging, and acquiring data to extended memory. For more information visit ni.com/daq.
National Instruments’ Modular Instruments use specialized drivers suited to each product’s specialization. Express VIs provide customized, interactive programming of instruments in a single interface and soft front panels provide an interface for testing the functionality of each instrument with no programming required. NI Switches, DMMs, High-Speed DIO, High-Speed Digitizers, and Sources each have customized drivers for high-end modular instrumentation systems. RF applications leverage two drivers, NI-RFSG and NI-RFSA and Dynamic Signal Acquisition is available through NI-DAQmx. For more information visit ni.com/modularinstruments.

You can expand the timing and triggering functionality of your PXI system with PXI Timing and Synchronization products. These products provide precision clock sources, custom routing of triggers for multi-chassis synchronization, clock sharing, and more and are programmed with NI-Sync. For more information visit ni.com/pxi.

NI-VISA is the National Instruments implementation of the VISA specification. VISA is a uniform API for communicating and controlling USB, Serial, GPIB, PXI, VXI, and various other types of instruments. This API aids in the creation of portable applications and instrument drivers. For information on writing your own PXI instrument driver with NI-VISA, refer to the NI-VISA Getting Started Manual and the readme.txt file in the NI-VISA directory. For more information visit ni.com/visa.

With LabVIEW for Linux and support for over two hundred devices on Linux with the NI-DAQmx driver, you can now create Virtual Instruments based on the Linux OS. Instrument control in Linux has been improved by the NI-VISA driver for Linux and NI Modular Instruments are partially supported. For more information visit ni.com/linux.
Installation and Configuration

This chapter contains information about installing and configuring your NI PXI-8115 controller.

Installing the NI PXI-8115

This section contains general installation instructions for the NI PXI-8115. Consult your PXI chassis user manual for specific instructions and warnings.

1. Plug in your chassis before installing the NI PXI-8115. The power cord grounds the chassis and protects it from electrical damage while you install the module.

Caution To protect both yourself and the chassis from electrical hazards, leave the chassis powered off until you finish installing the NI PXI-8115 module.

2. Remove any filler panels blocking access to the system controller slot (Slot 1) in the chassis.

3. Touch the metal part of the case to discharge any static electricity that might be on your clothes or body.
4. Remove the protective plastic covers from the four bracket-retaining screws as shown in Figure 2-1.

5. Make sure the injector/ejector handle is in its downward position. Align the NI PXI-8115 with the card guides on the top and bottom of the system controller slot.

Caution Do not raise the injector/ejector handle as you insert the NI PXI-8115. The module will not insert properly unless the handle is in its downward position so that it does not interfere with the injector rail on the chassis.

6. Hold the handle as you slowly slide the module into the chassis until the handle catches on the injector/ejector rail.

7. Raise the injector/ejector handle until the module firmly seats into the backplane receptacle connectors. The front panel of the NI PXI-8115 should be even with the front panel of the chassis.

8. Tighten the four bracket-retaining screws on the top and bottom of the front panel to secure the NI PXI-8115 to the chassis.

9. Check the installation.
10. Connect the keyboard and mouse to the appropriate connectors. If you are using a PS/2 keyboard and a PS/2 mouse, a Y-splitter adapter is available to connect both to a single USB connector. Refer to Figure 4-1, Y-Splitter Cable.

11. Connect the DisplayPort monitor video cable to the DisplayPort connector, or use the DisplayPort-to-VGA adapter included with your controller to connect a VGA monitor to the DisplayPort connector.

12. Connect devices to ports using only shielded cables as required by your system configuration.

13. Power on the chassis.

14. Verify that the controller boots. If the controller does not boot, refer to the What if the NI PXI-8115 does not boot? section of Chapter 5, Troubleshooting.

Figure 2-2 shows an NI PXI-8115 installed in the system controller slot of a National Instruments NI PXI-1042 chassis.

![Figure 2-2. NI PXI-8115 Controller Installed in a PXI Chassis](image_url)
How to Remove the Controller from the PXI Chassis

The NI PXI-8115 controller is designed for easy handling. To remove the unit from the PXI chassis, complete the following steps:

1. Power off the chassis.
2. Loosen the 4 bracket-retaining screws in the front panel.
3. Press the injector/ejector handle down.

BIOS Setup Utility

You can change the NI PXI-8115 configuration settings in the BIOS setup program. The BIOS is the low-level interface between the hardware and operating system software that configures and tests your hardware when you boot the system. The BIOS setup program includes menus for configuring settings and enabling NI PXI-8115 controller features.

Most users do not need to use the BIOS setup program, as the NI PXI-8115 controller ships with default settings that work well for most configurations.

Caution Changing BIOS settings may lead to incorrect controller behavior and possibly an unbootable controller. If this happens, follow the instructions for restoring default settings in the System CMOS section. In general, do not change a setting unless you are absolutely certain what it does.

Accessing BIOS Setup Utility

Complete the following steps to start the BIOS setup program.

1. Power on or reboot your NI PXI-8115 controller.
2. When the message Press to enter setup appears, press the <Delete> key. The setup program loads after a short delay.

 The Main menu is displayed when you first enter the BIOS setup program.

Use the following keys to navigate through the BIOS setup program:

- **Left Arrow, Right Arrow**—Use these keys to move between the different setup menus. If you are in a submenu, these keys have no effect, and you must press <Esc> to leave the submenu first. (To use the arrows on the numeric keypad, you must turn off Num Lock.)
- **Up Arrow, Down Arrow**—Use these keys to move between the options within a setup menu. (To use the arrows on the numeric keypad, you must turn off Num Lock.)
Chapter 2 Installation and Configuration

• **<Enter>**—Use this key either to enter a submenu or display all available settings for a highlighted configuration option.

• **<Esc>**—Use this key to return to the parent menu of a submenu. At the top-level menus, this key serves as a shortcut to the **Exit** menu.

• **<+> and <–>**—Use these keys to cycle between all available settings for a selected configuration option.

• **<Tab>**—Use this key to select time and date fields.

• **<F9>**—Use this key to load the optimal default values for BIOS configuration settings. The optimal default values are the same as the shipping configuration default values.

Main Setup Menu

The most commonly accessed and modified BIOS settings are in the **Main** setup menu. The **Main** setup menu reports the following configuration information:

• **BIOS Version and Build Date**—These values indicate the version of the NI PXI-8115 controller BIOS and the date on which the BIOS was built.

• **Embedded Firmware Version**—This value helps identify the built-in hardware capabilities.

• **Processor Type, Processor Base Frequency, and Maximum Processor Core Count**—These values indicate the type of processor used in the NI PXI-8115 controller, the speed of the processor, and the maximum number of processor cores.

• **Total Memory**—This value indicates the size of system RAM detected by the BIOS.

The **Main** setup menu also includes the following settings:

• **System Time**—This setting controls the time of day, which is stored in a battery-backed real-time clock. Most operating systems also include a way to change this setting. Use <+> and <+> in conjunction with <Enter> and <Tab> to change these values.

• **System Date**—This setting controls the date, which is stored in a battery-backed real-time clock. Most operating systems also include a way to change this setting. Use <+> and <+> in conjunction with <Enter> and <Tab> to change these values.
Advanced Setup Menu

This menu contains BIOS settings that normally do not require modification. If you have specific problems such as unbootable disks or resource conflicts, you may need to examine these settings.

⚠ **Caution** Changing settings in this menu may result in an unstable or unbootable controller. If this happens, follow the procedures outlined in the *System CMOS* section to restore BIOS settings to their factory defaults.

The Advanced setup menu includes the following settings and submenus:

- **SATA Configuration**—Use this setting to access the SATA Configuration submenu. Refer to the *SATA Configuration Submenu* section for more information.
- **CPU Configuration**—Use this setting to access the CPU Configuration submenu. Refer to the *CPU Configuration Submenu* section for more information.
- **Video Configuration**—Use this setting to access the Video Configuration submenu. Refer to the *Video Configuration Submenu* section for more information.
- **Power/Wake Configuration**—Use this setting to access the Power/Wake Configuration submenu. Refer to the *Power/Wake Configuration Submenu* section for more information.
- **ExpressCard Configuration**—Use this setting to access the ExpressCard Configuration submenu. Refer to the *ExpressCard Configuration Submenu* section for more information.
- **USB Configuration**—Use this setting to access the USB Configuration submenu. Refer to the *USB Configuration Submenu* section for more information.
- **Serial/Parallel Port Configuration**—Use this setting to access the Serial/Parallel Port Configuration submenu. Refer to the *Serial/Parallel Port Configuration Submenu* section for more information.
SATA Configuration Submenu

Use this submenu to apply alternate settings to the hard disk drive (HDD) interfaces. Normally, you do not need to modify these settings, as the factory default settings provide the most compatible and optimal configuration possible.

- **SATA Controller**—This setting specifies whether or not the onboard SATA controller is enabled or disabled. The default value is **Enabled**.
 - **SATA Mode Selection**—This setting determines whether AHCI mode is enabled or disabled for the SATA port. Some operating systems, such as Windows 2000, do not support AHCI mode. You can use this setting to disable AHCI mode and enable IDE mode so that non-compatible OSes function correctly. The default value is **AHCI**.

- **Internal Drive (SATA)**—This item displays the onboard SATA drive detected in the system.

CPU Configuration Submenu

Use this submenu to apply alternate settings to the CPU. Normally, you do not need to modify these settings, as the factory default settings provide the most compatible and optimal configuration possible.

- **Hyper Threading**—This setting enables or disables Intel Hyper-Threading technology. The default value is **Enabled**. Enabling Hyper-Threading increases performance for some applications by adding virtual CPU cores. Hyper-Threading can increase application jitter, so care should be taken when enabling this setting on a Real Time system. When the BIOS is configured to boot LabVIEW Real-Time, Hyper-Threading will be automatically disabled. In order to manually enable Hyper-Threading performance when in LabVIEW Real-Time mode, see the LabVIEW RT Configuration Overrides Submenu.

- **Enabled CPU Cores**—This setting selects the number of active CPU cores for the processor. Valid values are 2 or 1. The default value is **2**.

- **Turbo Boost**—This setting enables or disables Intel Turbo Boost technology. The default value is **Enabled**. Enabling Turbo Boost allows CPU cores to run at higher than their base frequency for short durations, while other cores are idle. Enabling Turbo Boost can also increase application jitter, so care should be taken when enabling this setting on a Real Time system. To achieve maximum possible Turbo Boost frequencies, also enable the C-States setting.
- **C-States**—This setting enables or disables CPU power management. The default value is **Enabled**. Enabling C-States allows the processor to put idle CPU cores to sleep, allowing active cores to run at higher than base frequencies when Turbo Boost is enabled. Enabling C-States can increase application jitter, so care should be taken when enabling this setting on a Real Time system. When the BIOS is configured to boot LabVIEW Real-time, C-States will be automatically disabled. In order to manually enable C-States when in LabVIEW Real-Time mode, see the *LabVIEW RT Configuration Overrides Submenu*.

- **Hardware Prefetcher**—This setting enables or disables CPU cache hardware prefetching. The default value is **Enabled**. Enabling hardware prefetching can increase system performance for some applications, but can cause control algorithms to behave less deterministically.

- **Adjacent Cache Line Prefetch**—This setting enables or disables prefetching of adjacent cache lines from memory to the CPU cache. The default value is **Enabled**. Enabling adjacent cache line prefetching can increase system performance for some applications, but can cause control algorithms to behave less deterministically.

Video Configuration Submenu

Use this submenu to apply alternate settings to the video configuration. Normally, you do not need to modify these settings, as the factory default settings provide the most compatible and optimal configuration possible.

- **Primary Display**—This setting specifies which video adapter the BIOS should use as the primary adapter if more than one is present. To use an external video adapter as the primary graphics adapter, choose **Add-in Board Video**. To disable the primary graphics adapter, choose **Disabled**. The default value is **Onboard Video**.

Power/Wake Configuration Submenu

Use this submenu to apply alternate configurations to the power and wake features of the chipset and controller. Normally, you do not need to modify these settings, as the factory default settings provide the most compatible and optimal configuration possible.

- **OS Soft Off Support**—This setting specifies whether the OS soft off support is enabled or disabled. The default value is **Enabled**. Disabling this option will remove the S5 state from the OS ACPI table, which enables Windows XP to display the shutdown screen.
ExpressCard Configuration Submenu

Use this submenu to apply alternate settings to the ExpressCard configuration. These settings determine how much memory space, I/O space, and PCI bus numbers will be pre-allocated for the ExpressCard port, allowing non-PCI Express-aware operating systems to support hot-plugging ExpressCard devices. Normally, you do not need to modify these settings, as the factory default settings provide the most compatible and optimal configuration possible.

- **ExpressCard Resources**—This setting enables or disables the setting of the Reserved Buses, Reserved Memory, and Reserved I/O settings. The default value for this setting is Enabled. If this setting is disabled, the bus, memory, and I/O options disappear from this submenu. Disabling this setting effectively sets Reserved Buses to 0, Reserved Memory to 0M, and Reserved I/O to 0K.

- **Reserved Buses**—This setting determines the number of PCI buses that will be reserved by the BIOS for ExpressCard PCI-PCI bridges that may be hot-plugged in the ExpressCard slot. The default value for this setting is 8 PCI buses.

- **Reserved Memory**—This setting determines the amount of memory space, in bytes, that will be reserved by the BIOS for PCI-PCI bridges that may be hot-plugged in the ExpressCard slot. The default value for this setting is 64M bytes of memory.

- **Reserved I/O**—This setting determines the amount of I/O space, in bytes, that will be reserved by the BIOS for PCI-PCI bridges that may be hot-plugged in the ExpressCard slot. The default value for this setting is 4K bytes of I/O space.

USB Configuration Submenu

Use this submenu to apply alternate configurations to the USB ports. Normally, you do not need to modify these settings, as the factory default settings provide the most compatible and optimal configuration possible.

- **USB Devices**—This item lists the total number of devices detected in the system, categorized by device type.

- **Legacy USB Support**—This setting specifies whether or not legacy USB support is enabled. Legacy USB support refers to the ability to use a USB keyboard and mouse during system boot or in a legacy operating system such as DOS. The default value is Enabled. This option is automatically Disabled when booting LabVIEW Real-Time in order to reduce application jitter.
• **Overcurrent Reporting**—This setting allows the BIOS to notify the operating system of any USB ports which sources too much current. The default value for this setting is **Disabled**.

• **Transfer Timeout**—This setting specifies the timeout value for Control, Bulk, and Interrupt USB transfers. The default value for this setting is **20 seconds**.

• **Device Reset Timeout**—This setting specifies the number of seconds the Power-On Self Test will wait for a USB mass storage device to start. The default is **20 seconds**.

• **Device Power-up Delay**—This setting specifies the maximum time a device will take before it properly reports itself to the host controller. When set to **Auto**, a root port is granted 100 ms, and for a hub port, the delay value is taken from the hub descriptor. The default value for this setting is **Auto**.

• **Device Power-Up Delay in Seconds**—This setting specifies the number of seconds the Power-On Self Test will wait for a USB device or hub to power on. This setting is only visible if **Device Power-Up Delay** is set to **Manual**. The default is **5 seconds**.

In addition, the following option is available for each detected device if a USB mass storage device is present:

• **Emulation Type**—This setting specifies how the BIOS will present the USB mass storage device to the system. This option can be used to present a USB mass storage device as a floppy, Zip, hard disk, or CD-ROM drive. The default is **Auto**, which allows the BIOS to treat small USB flash disk drives as floppy drives and larger USB flash disk drives as hard disk drives.

Serial/Parallel Port Configuration Submenu

Use this submenu to apply alternate configurations to the serial and parallel ports. Normally, you do not need to modify these settings, as the factory default settings provide the most compatible and optimal configuration possible.

• **Serial Port Configuration**—Use this setting to access the **Serial Port Configuration** submenu. Refer to the **Serial Port Configuration Submenu** section for more information.

• **Parallel Port Configuration**—Use this setting to access the **Parallel Port Configuration** submenu. Refer to the **Parallel Port Configuration Submenu** section for more information.
Serial Port Configuration Submenu

- **Serial Port**—This setting enables or disables the onboard serial port. The default value is **Enabled**.

- **Device Settings**—This item displays the current base address and interrupt request level (IRQ) information for the onboard serial port.

- **Change Settings**—This setting changes the base address and interrupt request level (IRQ) information for the onboard serial port. The default value is **Auto**.

Parallel Port Configuration Submenu

- **Parallel Port**—This setting enables or disables the onboard parallel port. The default value is **Enabled**.

- **Device Settings**—This item displays the current base address and interrupt request level (IRQ) information for the onboard parallel port.

- **Change Settings**—This setting changes the base address and interrupt request level (IRQ) information for the onboard parallel port. The default value is **Auto**. Note that the options available vary based upon the **Device Mode** selected for the parallel port.

- **Device Mode**—This setting enables alternate modes of operation for the parallel port. Usually the default setting works for all applications. The default is **STD Printer Mode**.

LabVIEW RT Setup Menu

Use this menu to configure boot options for LabVIEW RT if it is installed on the controller. If you are not using LabVIEW RT, you should leave these settings at default.

Note The settings below override the behavior of the switches shown in Figure 2-4. Refer to the **LabVIEW RT Configuration Switches** section for more information. To use the settings from the switches, select **Use Switch Setting** for each option.

- **Boot Configuration**—This setting selects whether the controller should boot LabVIEW RT, LabVIEW RT Safe Mode, or an installed OS such as Windows 7. The default is **Use Switch Setting**.

- **Reset IP Address**—If the controller is deployed to a different subnet from which it was originally configured, or if the current IP address is invalid, use this switch to reset the IP address and other TCP/IP settings to their factory defaults during LabVIEW RT startup. The default is **Use Switch Setting**.
Note By default, the target will automatically attempt to connect to the network using DHCP. If the target is unable to initiate a DHCP connection, the target connects to the network with a link-local IP address or 169.254.x.x.

- **Disable Startup VI**—If the controller becomes inaccessible because of a startup VI, this switch can prevent VIs from automatically running at startup. The default is **Use Switch Setting**.

- **LabVIEW RT Configuration Overrides**—Use this setting to access the LabVIEW RT Configuration Overrides submenu. Refer to the LabVIEW RT Configuration Overrides Submenu section for more information.

LabVIEW RT Configuration Overrides Submenu

In order to minimize jitter when booting into LabVIEW Real-Time mode, the features listed here are automatically disabled. These features can be manually enabled. Refer to the **CPU Configuration Submenu** for specific details on what each feature enables.

- **CPU Hyper Threading**—The default is **Use RT Default**.
- **CPU C-States**—The default is **Use RT Default**.

Boot Setup Menu

Use this menu to configure settings related to the boot process and boot device priority.

- **Boot Settings Configuration**—Use this setting to access the Boot Settings Configuration submenu. Refer to the Boot Settings Configuration Submenu section for more information.

- **PXI Drive Boot**—This setting specifies whether or not boot support is enabled for legacy mass storage devices, such as SCSI drives. When enabled, legacy mass storage controllers with boot support will be displayed in the Boot Option Priorities menu. The default value is **Enabled**.

- **PXE Network Boot**—This setting specifies whether or not the PXE network boot agent is enabled. When enabled, the Intel Boot Agent will be displayed in the Boot Option Priorities menu, allowing you to boot from a PXE server on the local subnet. Note that the Intel Boot Agent device names are preceded by IBA GE Slot in the Boot Option Priorities menu. The system must be restarted for this setting to take effect. The default value is **Disabled**.

- **Boot Option Priorities**—These settings specify the order in which the BIOS checks for bootable devices, including the local hard disk drive,
removable devices such as USB flash disk drives or USB CD-ROM drives, or the PXE network boot agent. The BIOS will first attempt to boot from the device associated with **Boot Option #1**, followed by **Boot Option #2**, and **Boot Option #3**. If multiple boot devices are not present, the BIOS setup utility will not display all of these configuration options. To select a boot device, press <Enter> on the desired configuration option and select a boot device from the resulting menu. You can also disable certain boot devices by selecting **Disabled**.

Note Only one device of a given type will be shown in this list. If more than one device of the same type exists, use the **Device BBS Priorities** submenus to re-order the priority of devices of the same type.

The following submenus will be displayed if one or more bootable devices of the corresponding type is present:

- **Hard Drive BBS Priorities**—Use this setting to access the **Hard Drive BBS Priorities** submenu to re-order or disable bootable hard drive devices. Refer to the **Hard Drive BBS Priorities Submenu** section for more information.

- **CD/DVD ROM Drive BBS Priorities**—Use this setting to access the **CD/DVD ROM Drive BBS Priorities** submenu to re-order or disable bootable CD/DVD ROM drive devices. Refer to the **CD/DVD ROM Drive BBS Priorities Submenu** section for more information.

- **Floppy Drive BBS Priorities**—Use this setting to access the **Floppy Drive BBS Priorities** submenu to re-order or disable bootable floppy drive devices. Refer to the **Floppy Drive BBS Priorities Submenu** section for more information.

- **Network Device BBS Priorities**—Use this setting to access the **Network Device BBS Priorities** submenu to re-order or disable bootable network devices. Refer to the **Network Device BBS Priorities Submenu** section for more information.

Boot Settings Configuration Submenu

Use this submenu to apply alternate configurations to boot settings. Normally, you do not need to modify these settings, as the factory default settings provide the most compatible and optimal configuration.

- **Setup Prompt Timeout**—This setting specifies the number of seconds the system will wait for a BIOS Setup menu keypress (the <Delete> key). The default value is 2 seconds.

- **Bootup NumLock State**—This setting specifies the power-on state of the keyboard NumLock setting. The default value is **On**.
Hard Drive BBS Priorities Submenu

- **Boot Option #1, Boot Option #2, Boot Option #3**—These settings specify the boot priority of hard drive devices. The highest priority device is displayed on the main **Boot Option Priorities** list. Optionally, each device can also be **Disabled** if the device should never be used as a boot device.

CD/DVD ROM Drive BBS Priorities Submenu

- **Boot Option #1, Boot Option #2, Boot Option #3**—These settings specify the boot priority of CD/DVD ROM drive devices. The highest priority device is displayed on the main **Boot Option Priorities** list. Optionally, each device can also be **Disabled** if the device should never be used as a boot device.

Floppy Drive BBS Priorities Submenu

- **Boot Option #1, Boot Option #2, Boot Option #3**—These settings specify the boot priority of floppy drive devices. The highest priority device is displayed on the main **Boot Option Priorities** list. Optionally, each device can also be **Disabled** if the device should never be used as a boot device.

Network Device BBS Priorities Submenu

- **Boot Option #1, Boot Option #2, Boot Option #3**—These settings specify the boot priority of network devices. The highest priority device is displayed on the main **Boot Option Priorities** list. Optionally, each device can also be **Disabled** if the device should never be used as a boot device.

Security Menu

Use this menu to enable BIOS security options.

- **Setup Administrator Password**—This setting specifies a password that must be entered to access the BIOS Setup Utility. If only the Administrator’s password is set, then this only limits access to the BIOS setup program and is only asked for when entering the BIOS setup program. By default, no password is specified.

- **User Password**—This setting specifies a password that must be entered to access the BIOS Setup Utility or to boot the system. If only the User’s password is set, then this is a power on password and must be entered to boot or enter the BIOS setup program. In the BIOS setup
program, the User will have Administrator rights. By default, no password is specified.

Save & Exit Menu

The **Save & Exit** setup menu includes all available options for exiting, saving, and loading the BIOS default configuration. As an alternative to this screen, press <F9> to load optimal BIOS default settings and <F10> to save changes and exit setup.

The **Exit** setup menu includes the following settings:

- **Save Changes and Reset**—Any changes made to BIOS settings are stored in NVRAM. The setup program then exits and reboots the controller. The <F10> key can also be used to select this option.

- **Discard Changes and Reset**—Any changes made to BIOS settings during this session of the BIOS setup program are discarded. The setup program then exits and reboots the controller. The <Esc> key can also be used to select this option.

- **Save Changes**—Changes made to BIOS settings during this session are committed to NVRAM. The setup program remains active, allowing further changes.

- **Discard Changes**—Any changes made to BIOS settings during this session of the BIOS setup program are discarded. The BIOS setup continues to be active.

- **Restore Factory Defaults**—This option restores all BIOS settings to the factory default. This option is useful if the controller exhibits unpredictable behavior due to an incorrect or inappropriate BIOS setting. Notice that any nondefault settings such as boot order, passwords, and so on, are also restored to their factory defaults. The <F9> key can also be used to select this option.

- **Save As User Defaults**—This option saves a copy of the current BIOS settings as the User Defaults. This option is useful for preserving custom BIOS setup configurations.

- **Restore User Defaults**—This option restores all BIOS settings to the user defaults. This option is useful for restoring previously preserved custom BIOS setup configurations.

- **Boot Override**—This option lists all possible bootable devices and allows the user to override the **Boot Option Priorities** list for the current boot. If no changes have been made to the BIOS setup options, the system will continue booting to the selected device without first rebooting. If BIOS setup options have been changed and saved, a reboot will be required and the boot override selection will not be valid.
BIOS Diagnostic Utilities

You can test the hard drive and memory of your controller with the included BIOS diagnostic utilities.

Accessing BIOS Diagnostic Utilities

Complete the following steps to start the BIOS Diagnostic Utility.

1. Power on or reboot your controller.
2. When the message <F2> to run diagnostics appears, press the <F2> key. The first diagnostic utility loads after a short delay.

Hard Drive Diagnostic Utility

The hard drive is tested first upon entry into the BIOS Diagnostic Utilities. A quick test is performed initially, and a more comprehensive test is performed afterwards. The user may abort and skip any test by pressing the <Esc> key at any time during that test. After both tests have finished or been skipped, the user is presented with the testing results. If both tests have succeeded or been skipped, Press any key to continue is displayed. In order to continue with testing, user interaction is required to press a key on the keyboard.

Note If either hard drive test fails, the controller is not permitted to boot, and the user is instructed to turn off the controller and replace the hard drive.

Memory Diagnostic Utility

The memory diagnostic utility is started immediately after the user presses a key to exit the hard drive diagnostic utility. The user may abort and skip the memory test by pressing the <Esc> key at any time during this test. After the memory utility has finished or been skipped, the user is presented with the testing result. If the memory test was successful or skipped, Press any key to continue is displayed. In order to continue to boot the controller, user interaction is required to press a key on the keyboard.

Note If the memory test fails, the controller is not permitted to boot, and the user is instructed to turn off the controller and replace the memory.
System CMOS

The NI PXI-8115 contains memory backed up by a battery to store BIOS configuration information.

Complete the following steps to clear the CMOS contents:
1. Power off the chassis.
2. Remove the controller from the chassis.
3. Press and hold down the pushbutton switch SW1 for 2–3 seconds. The SW1 switch location is shown in Figure 2-3.
4. Reinstall the controller in the chassis.

Figure 2-3. Clearing the CMOS Contents
Chapter 2 Installation and Configuration

LabVIEW RT Installation

This section explains software installation and switch configuration for LabVIEW RT on your PXI controller.

LabVIEW RT Software Installation

The following section describes the necessary steps to get your PXI embedded controller setup to run LabVIEW Real-Time. In this section you will configure the boot mode of the controller, verify or change IP settings, and install LabVIEW Real-Time software.

Complete the following steps to install the LabVIEW RT software.

1. Boot the NI PXI embedded controller into the real-time operating system. Refer to the LabVIEW RT Configuration Switches section or the LabVIEW RT Setup Menu section in this manual to configure the controller for booting into LabVIEW RT.

 The PXI controller will automatically boot into LabVIEW RT Safe Mode when no software is installed. LabVIEW RT Safe Mode loads with the basic real-time operating system and will automatically attempt to connect to the network using DHCP. If DHCP is not available, it will then connect to the network with a link-local IP address.

 Tip You can connect a monitor to the desktop PC to display startup messages such as the IP address and MAC address.

2. Open Measurement & Automation Explorer (MAX) on another computer in the same subnet and expand the Remote Systems branch. MAX lists the PXI controller as the model name of the controller followed by the MAC address (for example, NI-PXI-8115 00802f108562).

 Note The other computer must have LabVIEW, LabVIEW RT, and any desired drivers installed.

 Tip Record the PXI controller MAC address, located on the side of the controller, for use in identifying the controller. The label also can be removed and placed on the front of the controller for easier access.

3. Click on the appropriate PXI controller entry to access the Network Settings tab in the right pane view.
4. (Optional) Enter a name for the RT target in the Name text box.

5. (Optional) Set the network configuration options of the RT target in the IP Settings section and click the Apply button.

 For information about configuring network settings, refer to the Configuring Network Settings book, accessible by browsing to MAX Remote Systems Help»LabVIEW Real-Time Target Configuration»Configuring Network Settings from the Contents tab of MAX Help.

 Note When any IP or identification settings are changed, you will be prompted to reboot the controller for the changes to take effect. Click Yes to automatically reboot the RT target. You may also reboot the controller by right-clicking on the target name under Remote Systems and selecting Reboot.

 After rebooting the PXI controller it will appear in the Remote Systems category with the assigned name.

6. Expand the PXI controller view in the Remote Systems branch and select Software.

7. Click the Add/Remove Software button in the toolbar to launch the LabVIEW Real-Time Software Wizard.

8. Install the LabVIEW Real-Time software and device drivers that you require on the RT target. Refer to the NI Web site at ni.com/info and enter the Info Code etspc for the latest information about supported software.

 After installation of the software the controller will automatically reboot and you will now be able to program it using LabVIEW Real-Time.

 Note Refer to the RT Getting Started Guide available on your host computer for more information about setting up your RT target.
LabVIEW RT Configuration Switches

Use the LabVIEW RT configuration switches to configure LabVIEW RT if it is installed on the controller. If you are not using LabVIEW RT, these switches should remain in the OFF position. The controller reads these switches only after a system reset.

The NI PXI-8115 controller includes the following LabVIEW RT configuration switches:

- **Switch 1—Boot LabVIEW RT**: Set this switch to ON to boot LabVIEW RT.
- **Switch 2—Boot Safe Mode**: Set this switch to ON to boot LabVIEW RT into safe mode to reconfigure TCP/IP settings and to download or update software from a host computer. This switch overrides the behavior of Switch 1. Booting the controller into safe mode does not start the embedded LabVIEW RT engine. After changing the settings or software, reboot the controller with this switch OFF to resume normal operation.
- **Switch 3—Disable Startup VI**: Set this switch to ON to prevent VIs from automatically running at startup if the controller becomes inaccessible because of a startup VI.
- **Switch 4—Reset IP Address**: Set this switch to ON to reset the IP address and other TCP/IP settings to their factory defaults. Use this switch if moving the controller to a different subnet or if the current TCP/IP settings are valid.

Note By default, the target will automatically attempt to connect to the network using DHCP. If the target is unable to initiate a DHCP connection, the target connects to the network with a link-local IP address or 169.254.x.x.
Figure 2-4 shows the location of the LabVIEW RT configuration switches. The switches are shown in the OFF position.
Drivers and Software

Your hard drive includes a directory called images in its root that contains software and soft copies of manuals for the peripherals. The directory structure under the images directory is logically organized into several levels.

In the images directory, you will find a manuals directory, an os directory, and a drivers directory.

The manuals directory contains quick reference guides, technical reference manuals, and National Instruments software manuals, all in Adobe Acrobat format. To access any manual, change your directory to c:\images\manuals and list the contents of that directory.

The os directory contains a subdirectory corresponding to the operating system installed on your computer.

The drivers directory contains driver installers for the system peripherals. These files and directories are copied exactly from the manufacturer distribution disks, so the naming conventions vary from peripheral to peripheral.

PXI Features

PXI Trigger Connectivity

The SMB connector on the NI PXI-8115 front panel can connect to or from any PXI backplane trigger line. A trigger allocation process is needed to prevent two resources from connecting to the same trigger line, resulting in the trigger being double-driven and possibly damaging the hardware. At the time of this manual’s publication, this software is not yet available for Windows. Contact National Instruments for more information.

Chassis Configuration

The PXI Platform Services software installed on your controller and available on the National Instruments Driver DVD or PXI Platform Services CD included with your kit automatically identifies your PXI system components to generate a pxisys.ini file. You can configure your entire PXI system and identify PXI-1 chassis through Measurement & Automation Explorer (MAX), included with your controller. MAX creates the pxisys.ini file, which defines your PXI system parameters. MAX
also provides an interface to route and reserve triggers so dynamic routing, through drivers such as DAQmx, avoids double-driving and potentially damaging trigger lines. For more information about routing and reserving PXI triggers, refer to KnowledgeBase 3TJDOND8, *Using PXI Timing and Triggering Functionality*, at ni.com/support.

The configuration steps for single or multiple-chassis systems are the same.

Basic PXI System Configuration

2. In the **Configuration** tree, expand **Devices and Interfaces**.
3. In the **Devices and Interfaces** tree, expand **PXI System**. Your PXI chassis is already identified and appears in the **PXI System** tree.
4. For each unidentified PXI chassis in the **PXI System** tree, right-click on the chassis and select the appropriate chassis model through the **Identify As** submenu. Further expanding the **PXI System** branch shows all devices in the system that NI-VISA can recognize.

The **PXI System** specification allows for many combinations of PXI chassis and system modules. To assist system integrators, PXI chassis and system module manufacturers must document their products’ capabilities.

The NI PXI Platform Services software uses the system module driver, chassis driver, and *chassis.ini* files to generate the **PXI** system description file (**pxisys.ini**). Device drivers and other utility software read the **pxisys.ini** file to obtain system information. For detailed information about initialization files, refer to the **PXI** specification at www.pxisa.org.

Upgrading RAM

You can change the amount of installed RAM on the NI PXI-8115 by upgrading the SO-DIMM.

National Instruments offers the following SO-DIMM for use with the NI PXI-8115 controller.

- **PC3-10600 2 GB, 256 MB × 64, 1.18 in. max** (NI part number 781734-2048)
- **PC3-10600 4 GB, 512 MB × 64, 1.18 in. max** (NI part number 781735-4096)
- **PC3-10600 8 GB, 1024 MB × 64, 1.18 in. max** (NI part number 781736-8192)
Note National Instruments has tested and verified that the DDR3 SO-DIMMs we sell work with the NI PXI-8115. We recommend you purchase your DDR3 SO-DIMM modules from National Instruments. Other off-the-shelf DDR3 SO-DIMM modules are not guaranteed to work properly.

Figure 2-5. Installing a DDR3 SO-DIMM in an NI PXI-8115 Controller

| 1 DDR3 SO-DIMM Module | 2 DDR3 SO-DIMM Socket |

Hard Drive Recovery

NI PXI-8115 controllers include two methods of restoring the original factory condition of your hard drive. Hard drive-based recovery stores a factory backup on a separate portion of your hard drive allowing you to restore your controller without additional media. The NI PXI-8115 controller also ships with an *OS Recovery* CD that allows you to reinstall your operating system onto your hard drive through an external USB CD/DVD-ROM. For more information on these tools, refer to KnowledgeBase 2ZKC02OK, *Hard Drive Recovery and OS Installation for PXI and VXI Controllers*, at ni.com/support.
Note The hard drive recovery hot key is <F4>. To access the hard drive-based recovery tool, press and hold <F4> when video first appears during the boot process.

If you need to recover your factory-installed operating system from a CD, you can use the included OS re-installation CD with an external USB CD/DVD-ROM drive. Boot the PXI controller using the OS re-installation CD to recover the OS. You also may need to reinstall other software after using the CD to recover the OS.

Note Recovering the OS erases the contents of your hard disk. Back up any files you want to keep.

Installing an OS

NI PXI-8115 controllers include a preinstalled OS. In some cases, you may want to install a different OS. When doing so, consider the following guidelines.

Installing from a USB CD/DVD-ROM

The NI PXI-8115 supports the installation of Windows 7 or Windows XP from a USB CD/DVD-ROM. As an alternative to a USB CD/DVD-ROM drive, you can use an external SCSI CD-ROM with a PXI-SCSI adapter.

Note For additional assistance with installing or changing an operating system, refer to KnowledgeBase 2ZKC02OK, Hard Drive Recovery and OS Installation for PXI and VXI Controllers, at ni.com/support.

ExpressCard

This section provides information on the installation and removal of ExpressCard™ modules.

Installing an ExpressCard

You can install an ExpressCard module while the NI PXI-8115 is running. The NI PXI-8115 will automatically detect the card. ExpressCards are generally marked with a symbol or a label to indicate which end to insert into the slot. The cards are keyed to prevent incorrect insertion.
To install an ExpressCard, complete the following steps.

1. Hold the card so the top side is facing left.
2. Insert the card until it is completely seated in its connector. The connector has an automatic eject mechanism. If you insert the card and it is ejected, simply re-insert the card until it is seated.

If you encounter too much resistance, do not force the card. Check the card orientation and try again.

The NI PXI-8115 will automatically recognize the ExpressCard and load the appropriate driver(s). Third-party cards may require that you install additional drivers. Contact your ExpressCard vendor for more information.

Removing an ExpressCard

To remove the ExpressCard module push in the module and then release to eject the card. Slide the card out of the slot.

⚠️ **Caution** To avoid data loss and other potential issues, stop communication with your ExpressCard device before removing it from the NI PXI-8115. In Windows, use the Safely Remove Hardware tool to safely stop the ExpressCard.

Power Budgeting

The NI PXI-8115 is a high power, high performance controller. It may be necessary to perform power budgeting to ensure that the chassis can adequately power all of the modules in the system. Refer to KnowledgeBase 3K69SDQT, *Performing a Power Budget on a PXI System*, for tips on budgeting power.
Front Panel Connectors

Table 3-1 lists various peripherals and their corresponding NI PXI-8115 external connectors, bus interfaces, and functions.

<table>
<thead>
<tr>
<th>Peripheral</th>
<th>External Connector</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Video</td>
<td>DisplayPort</td>
<td>Intel Extreme Graphics controller</td>
</tr>
<tr>
<td>Serial</td>
<td>COM1 (9-pin DSUB)</td>
<td>16550 RS-232 serial port</td>
</tr>
<tr>
<td>Ethernet</td>
<td>LAN (RJ45)</td>
<td>10/100/1000 Ethernet connection</td>
</tr>
<tr>
<td>Parallel</td>
<td>Parallel Port (36-pin champ)</td>
<td>IEEE 1284</td>
</tr>
<tr>
<td>USB</td>
<td>USB 4-pin Series A stacked receptacle</td>
<td>Hi-Speed USB</td>
</tr>
<tr>
<td>PXI trigger</td>
<td>Trigger (SMB)</td>
<td>Routing PXI triggers to or from the backplane trigger bus</td>
</tr>
<tr>
<td>GPIB device</td>
<td>GPIB (25-pin Micro D)</td>
<td>General-Purpose Interface Bus, IEEE 488.1</td>
</tr>
<tr>
<td>ExpressCard/34 module</td>
<td>ExpressCard/34 slot</td>
<td>ExpressCard/34 Expansion</td>
</tr>
</tbody>
</table>
Figure 3-1 shows the front panel layout and dimensions of the NI PXI-8115. Dimensions are in inches (millimeters).
DisplayPort

Figure 3-2 shows the location and pinouts for the DisplayPort connectors on the NI PXI-8115. Table 3-2 lists and describes the DisplayPort connector signals.

![Figure 3-2. DisplayPort Connector Location and Pinout](image)

<table>
<thead>
<tr>
<th>Pin</th>
<th>Signal Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>ML_Lane0(p)</td>
</tr>
<tr>
<td>2</td>
<td>GND</td>
</tr>
<tr>
<td>3</td>
<td>ML_Lane0(n)</td>
</tr>
<tr>
<td>4</td>
<td>ML_Lane1(p)</td>
</tr>
<tr>
<td>5</td>
<td>GND</td>
</tr>
<tr>
<td>6</td>
<td>ML_Lane1(n)</td>
</tr>
<tr>
<td>7</td>
<td>ML_Lane2(p)</td>
</tr>
<tr>
<td>8</td>
<td>GND</td>
</tr>
<tr>
<td>9</td>
<td>ML_Lane2(n)</td>
</tr>
</tbody>
</table>
Table 3-2. DisplayPort Connector Signals (Continued)

<table>
<thead>
<tr>
<th>Pin</th>
<th>Signal Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>ML_Lane3(p)</td>
</tr>
<tr>
<td>11</td>
<td>GND</td>
</tr>
<tr>
<td>12</td>
<td>ML_Lane3(n)</td>
</tr>
<tr>
<td>13</td>
<td>CONFIG1</td>
</tr>
<tr>
<td>14</td>
<td>CONFIG2</td>
</tr>
<tr>
<td>15</td>
<td>AUX CH (p)</td>
</tr>
<tr>
<td>16</td>
<td>GND</td>
</tr>
<tr>
<td>17</td>
<td>AUX CH (n)</td>
</tr>
<tr>
<td>18</td>
<td>Hot Plug Detect</td>
</tr>
<tr>
<td>19</td>
<td>Return</td>
</tr>
<tr>
<td>20</td>
<td>DP_PWR</td>
</tr>
</tbody>
</table>
COM1

Figure 3-3 shows the location and pinouts for the COM1 connector on the NI PXI-8115. Table 3-3 lists and describes the COM1 connector signal.

Figure 3-3. COM1 Connector Location and Pinout

<table>
<thead>
<tr>
<th>Pin</th>
<th>Signal Name</th>
<th>Signal Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>DCD#</td>
<td>Data Carrier Detect</td>
</tr>
<tr>
<td>2</td>
<td>RXD#</td>
<td>Receive Data</td>
</tr>
<tr>
<td>3</td>
<td>TXD#</td>
<td>Transmit Data</td>
</tr>
<tr>
<td>4</td>
<td>DTR#</td>
<td>Data Terminal Ready</td>
</tr>
<tr>
<td>5</td>
<td>GND</td>
<td>Ground</td>
</tr>
<tr>
<td>6</td>
<td>DSR#</td>
<td>Data Set Ready</td>
</tr>
<tr>
<td>7</td>
<td>RTS#</td>
<td>Ready to Send</td>
</tr>
<tr>
<td>8</td>
<td>CTS#</td>
<td>Clear to Send</td>
</tr>
<tr>
<td>9</td>
<td>RI#</td>
<td>Ring Indicator</td>
</tr>
</tbody>
</table>

Note: The pound symbol (#) indicates an active low signal.
Ethernet

Figure 3-4 shows the location and pinouts for the Ethernet connector on the NI PXI-8115. Table 3-4 lists and describes the Ethernet connector signals.

![Ethernet Connector Location and Pinout](image)

Table 3-4. Ethernet Connector Signals

<table>
<thead>
<tr>
<th>Pin</th>
<th>Fast Ethernet</th>
<th>Gigabit Ethernet</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>TX+</td>
<td>TX_A+</td>
</tr>
<tr>
<td>2</td>
<td>TX–</td>
<td>TX_A–</td>
</tr>
<tr>
<td>3</td>
<td>RX+</td>
<td>RX_B+</td>
</tr>
<tr>
<td>4</td>
<td>NC</td>
<td>TX_C+</td>
</tr>
<tr>
<td>5</td>
<td>NC</td>
<td>TX_C–</td>
</tr>
<tr>
<td>6</td>
<td>RX–</td>
<td>RX_B–</td>
</tr>
<tr>
<td>7</td>
<td>NC</td>
<td>RX_D+</td>
</tr>
<tr>
<td>8</td>
<td>NC</td>
<td>RX_D–</td>
</tr>
</tbody>
</table>

Note The Ethernet controller can perform an automatic crossover, thus eliminating the need for crossover cables.
Table 3-5. 10/100/1000 LAN Connector LED States

<table>
<thead>
<tr>
<th>LED</th>
<th>Color</th>
<th>LED State</th>
<th>Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Top</td>
<td>Green</td>
<td>Off</td>
<td>LAN link is not established.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>On (steady state)</td>
<td>LAN link is established.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>On (brighter and pulsing)</td>
<td>The controller is communicating with another computer on the LAN.</td>
</tr>
<tr>
<td>Bottom</td>
<td>Unlit</td>
<td>Off</td>
<td>10 Mbit/sec data rate is selected.</td>
</tr>
<tr>
<td></td>
<td>Green</td>
<td>On</td>
<td>100 Mbit/sec data rate is selected.</td>
</tr>
<tr>
<td></td>
<td>Amber</td>
<td>On</td>
<td>1000 Mbit/sec data rate is selected.</td>
</tr>
</tbody>
</table>

Parallel Port

Figure 3-5 shows the location and pinouts for the IEEE 1284 (parallel) connector on the NI PXI-8115. Table 3-6 lists and describes the IEEE 1284 connector signals.

Parallel port adapter cables are available from National Instruments, part number 777169-01.
Table 3-6. Parallel Port Connector Signals

<table>
<thead>
<tr>
<th>Pin</th>
<th>Default Configuration (LPT)</th>
<th>Signal Name</th>
<th>Signal Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>BUSY</td>
<td>Device Busy</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>SLCT</td>
<td>Select</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>ACK#</td>
<td>Acknowledge</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>FAULT#(ERROR#)</td>
<td>Fault</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>PAPEREND</td>
<td>Paper End</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>PD0</td>
<td>Data Bit 0</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>PD1</td>
<td>Data Bit 1</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>PD 2</td>
<td>Data Bit 2</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>PD3</td>
<td>Data Bit 3</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>PD4</td>
<td>Data Bit 4</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>PD5</td>
<td>Data Bit 5</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>PD6</td>
<td>Data Bit 6</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>PD7</td>
<td>Data Bit 7</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>INIT#</td>
<td>Initialize Printer</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>STROBE#</td>
<td>Strobe</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>SLCTIN#</td>
<td>Select Input</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>AUTOFD#</td>
<td>Auto Line Feed</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>+5V</td>
<td>+5 V</td>
<td></td>
</tr>
<tr>
<td>19–35</td>
<td>GND</td>
<td>Ground</td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>NC</td>
<td>Not Connected</td>
<td></td>
</tr>
</tbody>
</table>

Note: The pound symbol (#) indicates an active low signal.
Universal Serial Bus

Figure 3-6 shows the location and pinouts for the Universal Serial Bus (USB) connector on the NI PXI-8115. Each controller has six USB ports on the front panel. Table 3-7 lists and describes the USB connector signals.

![USB Connector Location and Pinout](image)

Table 3-7. USB Connector Signals

<table>
<thead>
<tr>
<th>Pin</th>
<th>Signal Name</th>
<th>Signal Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>VCC</td>
<td>Cable Power (+5 V)</td>
</tr>
<tr>
<td>2</td>
<td>-Data</td>
<td>USB Data –</td>
</tr>
<tr>
<td>3</td>
<td>+Data</td>
<td>USB Data +</td>
</tr>
<tr>
<td>4</td>
<td>GND</td>
<td>Ground</td>
</tr>
</tbody>
</table>

Caution Install a noise-suppression ferrite (included in your shipping kit) around all attached external USB cables to ensure that your device meets all EMC standards applicable to your country. Install the ferrite so that each USB cable loops through the ferrite as shown in Figure 3-7. The ferrite should be installed so that it is approximately 50–75 mm (2–3 in.) from the end of the cable that plugs into the controller. The ferrite should accommodate from 2–4 USB cables depending on cable diameter.
Figure 3-7. Installing a Ferrite on a Single USB Cable

Trigger

The TRIG connector is the software-controlled trigger connection for routing PXI triggers to or from the backplane trigger bus.

Figure 3-8 shows the TRIG connector location on the NI PXI-8115. Table 3-8 lists and describes the trigger connector signals.

Figure 3-8. TRIG Connector Location and Pinout
Table 3-8. TRIG Connector Signals

<table>
<thead>
<tr>
<th>Pin</th>
<th>Signal Name</th>
<th>Signal Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>TRIG</td>
<td>Trigger</td>
</tr>
<tr>
<td>2 (Shield)</td>
<td>GND</td>
<td>Ground</td>
</tr>
</tbody>
</table>

GPIB (IEEE 488.2)

Figure 3-9 shows the location and pinouts for the GPIB connector on the NI PXI-8115. Table 3-9 lists and describes the GPIB connector signals.

National Instruments provides a GPIB mating connector, part number 183285-0R2.

Table 3-9. GPIB Connector Signals

<table>
<thead>
<tr>
<th>Pin</th>
<th>Signal Name</th>
<th>Signal Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>DIO1#</td>
<td>Data Bit 1</td>
</tr>
<tr>
<td>2</td>
<td>DIO2#</td>
<td>Data Bit 2</td>
</tr>
<tr>
<td>3</td>
<td>DIO3#</td>
<td>Data Bit 3</td>
</tr>
<tr>
<td>4</td>
<td>DIO4#</td>
<td>Data Bit 4</td>
</tr>
</tbody>
</table>
Table 3-9. GPIB Connector Signals (Continued)

<table>
<thead>
<tr>
<th>Pin</th>
<th>Signal Name</th>
<th>Signal Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>EOI#</td>
<td>End or Identify</td>
</tr>
<tr>
<td>6</td>
<td>DAV#</td>
<td>Data Valid</td>
</tr>
<tr>
<td>7</td>
<td>NRFD#</td>
<td>Not Ready for Data</td>
</tr>
<tr>
<td>8</td>
<td>NDAC#</td>
<td>Not Data Accepted</td>
</tr>
<tr>
<td>9</td>
<td>IFC#</td>
<td>Interface Clear</td>
</tr>
<tr>
<td>10</td>
<td>SRQ#</td>
<td>Service Request</td>
</tr>
<tr>
<td>11</td>
<td>ATN#</td>
<td>Attention</td>
</tr>
<tr>
<td>12</td>
<td>SHIELD</td>
<td>Chassis ground</td>
</tr>
<tr>
<td>13</td>
<td>DIO5#</td>
<td>Data Bit 5</td>
</tr>
<tr>
<td>14</td>
<td>DIO6#</td>
<td>Data Bit 6</td>
</tr>
<tr>
<td>15</td>
<td>DIO7#</td>
<td>Data Bit 7</td>
</tr>
<tr>
<td>16</td>
<td>DIO8#</td>
<td>Data Bit 8</td>
</tr>
<tr>
<td>17</td>
<td>REN#</td>
<td>Remote Enable</td>
</tr>
<tr>
<td>18–25</td>
<td>GND</td>
<td>Logic Ground</td>
</tr>
</tbody>
</table>

Note: The pound symbol (#) indicates an active low signal.
ExpressCard/34 Slot

The NI PXI-8115 controller is equipped with an ExpressCard/34 slot on the front panel, which provides I/O expansion and options for removable storage, Ethernet, and a variety of other I/O.

Figure 3-10 shows the location and pinouts for the ExpressCard/34 slot on the NI PXI-8115. Table 3-10 lists and describes the ExpressCard connector signals.

![Figure 3-10. ExpressCard/34 Slot Location and Pinout](image)

Table 3-10. ExpressCard Connector Signals

<table>
<thead>
<tr>
<th>Pin</th>
<th>Signal Name</th>
<th>Signal Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>GND</td>
<td>Ground</td>
</tr>
<tr>
<td>2</td>
<td>USBD–</td>
<td>USB Data –</td>
</tr>
<tr>
<td>3</td>
<td>USBD+</td>
<td>USB Data +</td>
</tr>
<tr>
<td>4</td>
<td>CPUSB#</td>
<td>USB Presence</td>
</tr>
<tr>
<td>5</td>
<td>RESERVED</td>
<td>Reserved by spec for future use</td>
</tr>
<tr>
<td>6</td>
<td>RESERVED</td>
<td>Reserved by spec for future use</td>
</tr>
<tr>
<td>7</td>
<td>SMBCLK</td>
<td>SMBus Clock</td>
</tr>
</tbody>
</table>
Table 3-10. ExpressCard Connector Signals (Continued)

<table>
<thead>
<tr>
<th>Pin</th>
<th>Signal Name</th>
<th>Signal Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>SMBDATA</td>
<td>SMBus Data</td>
</tr>
<tr>
<td>9</td>
<td>+1.5V</td>
<td>Power</td>
</tr>
<tr>
<td>10</td>
<td>+1.5V</td>
<td>Power</td>
</tr>
<tr>
<td>11</td>
<td>WAKE#</td>
<td>PE Wake</td>
</tr>
<tr>
<td>12</td>
<td>+3.3V AUX</td>
<td>Power</td>
</tr>
<tr>
<td>13</td>
<td>PERST#</td>
<td>PE Reset</td>
</tr>
<tr>
<td>14</td>
<td>+3.3V</td>
<td>Power</td>
</tr>
<tr>
<td>15</td>
<td>+3.3V</td>
<td>Power</td>
</tr>
<tr>
<td>16</td>
<td>CLKREQ#</td>
<td>Clock Request</td>
</tr>
<tr>
<td>17</td>
<td>CPPE#</td>
<td>PE Presence</td>
</tr>
<tr>
<td>18</td>
<td>REFCLK–</td>
<td>Reference Clock –</td>
</tr>
<tr>
<td>19</td>
<td>REFCLK+</td>
<td>Reference Clock +</td>
</tr>
<tr>
<td>20</td>
<td>GND</td>
<td>Ground</td>
</tr>
<tr>
<td>21</td>
<td>PERn0</td>
<td>PE Data Receive –</td>
</tr>
<tr>
<td>22</td>
<td>PERp0</td>
<td>PE Data Receive +</td>
</tr>
<tr>
<td>23</td>
<td>GND</td>
<td>Ground</td>
</tr>
<tr>
<td>24</td>
<td>PETn0</td>
<td>PE Data Transmit –</td>
</tr>
<tr>
<td>25</td>
<td>PETp0</td>
<td>PE Data Transmit +</td>
</tr>
<tr>
<td>26</td>
<td>GND</td>
<td>Ground</td>
</tr>
</tbody>
</table>

Note: The pound symbol (#) indicates an active low signal.
Front Panel Features

The NI PXI-8115 has the following front-panel features:

- A controller reset pushbutton (press the button to generate a reset to the controller)
- Four front panel LEDs that show PC status
 - The PWR OK/FAULT LED indicates the power status of the controller. The LED will indicate one of the following states:
 - Green ON steady—PXI and onboard power is on and within regulation limits.
 - Green BLINKING—The controller has entered the soft off state and is safe to power down.
 - OFF—The controller is powered off.
 - Red BLINKING—The controller has detected a power rail fault when trying to boot.
 - Red ON steady—The controller has detected a thermal fault and has shut down to protect the system.
 - The DRIVE LED indicates when an access to the internal hard disk is occurring.
 - The USER1 LED is a bi-color green/yellow LED. You can define the USER1 LED to meet the needs of your LabVIEW application.
 - The USER2 LED is a bi-color green/yellow LED. You can define the USER2 LED to meet the needs of your LabVIEW application.

Please refer to Chapter 5, Troubleshooting, for more information about diagnosing fault conditions.

Data Storage

The NI PXI-8115 has the following data storage features:

- 2.5 in. SATA notebook internal hard drive
- USB storage support—USB CD/DVD-ROM, mass storage device, or floppy drive
This chapter answers common configuration questions you may have when using a NI PXI-8115 embedded controller.

General Questions

What do the LEDs on the NI PXI-8115 front panel mean?
Refer to the LED status descriptions in the *Front Panel Features* section of Chapter 3, *I/O Information*.

How do I check the configuration of the memory, hard drive, time/date, and so on?
You can view these parameters in the BIOS setup. To enter the BIOS setup, reboot the NI PXI-8115 and press <Delete> during the memory tests. Refer to the *Accessing BIOS Setup Utility* section of Chapter 2, *Installation and Configuration*, for more information.

Can I use the internal Serial ATA drive and an external hard drive at the same time?
Yes.

Boot Options

What devices can I boot from?
The NI PXI-8115 can boot from the following devices:

- The internal Serial ATA hard drive
- An external SCSI hard drive or CD/DVD-ROM if an SCSI adapter, such as the NI PXI-8214, is used
- A network PXE server on the same subnet
• An external USB mass storage device such as a USB hard drive, USB CD/DVD-ROM, or USB key
• An external USB floppy drive
• Most PCI or PCIe-based devices that provide an Option ROM

Note There are some limitations when booting from a USB device. Windows XP can be installed from a USB CD/DVD-ROM, but earlier versions of Windows cannot. The NI PXI-8115 BIOS configures the USB devices so that they will work in a DOS environment.

How do I configure the controller to boot from these devices?

There are two methods.

• Enter Setup and select the Boot menu. You will see a list of all bootable devices, ordered by device type. You can set the boot order using <+> and <–>. Set the order by device type and set the order for the devices listed within the device type.
• To boot from a different device without changing the boot order in the BIOS, press <F10> continuously while booting. After the BIOS completes the POST and just before the controller boots the OS, the Boot menu is displayed. You can select the device type you want to boot from.
Cables and Connections

How do I plug both a PS/2 mouse and PS/2 keyboard into the controller?

The NI PXI-8115 has no PS/2 connector, and you need to use a USB Y-splitter cable as shown in Figure 4-1, or a similar device, to connect both a PS/2 mouse and PS/2 keyboard. National Instruments part number 778713-01 is such a cable and is available through the online catalog at ni.com/products.

Figure 4-1. Y-Splitter Cable

What if I don’t have a Y-splitter cable? Can I still use a mouse and keyboard?

If you do not have a Y-splitter cable, plug a USB keyboard into any USB connector. You can also plug a USB mouse into any USB connector.

How do I connect a standard 25-pin LPT cable to the NI PXI-8115?

The NI PXI-8115 uses a type C LPT connector. Most parallel port devices use a type A connector. To use a device with a standard type A LPT connector, you need to use a type C-to-type A LPT adapter. Parallel port adapter cables, part number 777169-01, are available through the online catalog at ni.com/products.

How do I connect a VGA monitor to the NI PXI-8115?

A DisplayPort-to-VGA adapter (part number 782271-01) is included with your kit. You can use this adapter to connect a VGA monitor to a DisplayPort connector.

How do I connect two monitors to the NI PXI-8115?

The NI PXI-8115 offers two DisplayPort connectors that can each be connected to separate monitors for dual monitor support.
Software Driver Installation

How do I install or reinstall the video driver?
Refer to KnowledgeBase 3H3COSD8, What Peripheral Drivers Should I Use with My PXI or VXI Controller?, at ni.com/support.

How do I install or reinstall the Ethernet driver?
Refer to KnowledgeBase 3H3COSD8, What Peripheral Drivers Should I Use with My PXI or VXI Controller?, at ni.com/support.

How do I install or reinstall the GPIB driver?
The NI-488.2 driver for your GPIB port is installed by default when your controller is first shipped from the factory. To change the default installed driver, complete the following steps:
1. Download the latest GPIB driver from ni.com/downloads.
2. Install the driver and verify that the driver has properly detected the GPIB driver in the Device Manager. If you need more assistance, refer to ni.com/support/install.

How do I install software from a CD?
The compact size of the NI PXI-8115 does not allow for an integrated CD/DVD-ROM drive. You have the following options:
• USB CD/DVD-ROM—You can install from a USB CD/DVD-ROM using a bootable installation CD.
• SCSI CD-ROM—Other types of CD-ROM drives are available. Check with the vendor to make sure Windows XP supports the drive.
• Mapped network drive—You can use the Ethernet to connect to another computer. If you share the USB CD/DVD-ROM drive on the other computer, you can map the shared USB CD/DVD-ROM drive to a drive letter on the NI PXI-8115.

A USB CD/DVD-ROM drive is available from National Instruments, part number 778492-01.
Upgrade Information

How do I upgrade system memory?

You can change the amount of installed RAM on the NI PXI-8115 by upgrading the DDR3 SO-DIMM.

To upgrade the RAM, remove the NI PXI-8115 from the PXI chassis.

National Instruments offers the following types of SO-DIMMs for use with the NI PXI-8115 controller.

- PC3-10600 2 GB, 256 MB × 64, 1.18 in. max (NI part number 781734-2048)
- PC3-10600 4 GB, 512 MB × 64, 1.18 in. max (NI part number 781735-4096)
- PC3-10600 8 GB, 1024 MB × 64, 1.18 in. max (NI part number 781736-8192)

Note National Instruments has conducted thermal testing as well as mechanical shock and vibration testing, and has verified that the DDR3 SO-DIMMs we sell work with the NI PXI-8115. We recommend you purchase your DDR3 SO-DIMM modules from National Instruments. Other off-the-shelf DDR3 SO-DIMM modules are not guaranteed to work properly.
How do I flash a new BIOS?

You can download the new BIOS from ftp.ni.com/support/pxi. For more information, refer to KnowledgeBase 2GIKD0Z, Determining and Upgrading PXI and VXI Embedded Controller BIOS Versions.

Where do I get the latest software drivers?

The latest National Instruments software is available from ni.com/downloads. For peripheral drivers, refer to KnowledgeBase 3H3COSD8, What Peripheral Drivers Should I Use with My PXI or VXI Controller?, at ni.com.

PXI Configuration

How do I use the SMB trigger on the front panel?

For details, refer to the PXI Features section of Chapter 2, Installation and Configuration.
Troubleshooting

This chapter answers common troubleshooting questions you may have when using the NI PXI-8115 embedded computer.

What if the NI PXI-8115 does not boot?

Several problems can cause a controller not to boot. Here are some things to look for and possible solutions.

Things to Notice:

- Which LEDs come on? The PWR OK/FAULT LED should stay steady green. The Drive LED should blink during boot as the disk is accessed.
- What appears on the display? Does it hang at some particular point (BIOS, Operating System, and so on.)? If nothing appears on the screen, try a different monitor. Does your monitor work with a different PC? If it hangs, note the last screen output that you saw for reference when consulting National Instruments technical support.
- What has changed about the system? Did you recently move the system? Was there electrical storm activity? Did you recently add a new module, memory chip, or piece of software?
- Refer to your chassis user manual for additional troubleshooting steps.

Things to Try:

- Make sure the chassis is plugged in to a working power source.
- Check any fuses or circuit breakers in the chassis or other power supply (possibly a UPS).
- Make sure the controller module is firmly seated in the chassis.
- Remove all other modules from the chassis.
- Remove any nonessential cables or devices.
- Try the controller in a different chassis.
- Try a similar controller in this same chassis.
- Clear the CMOS. (Refer to the System CMOS section of Chapter 2, Installation and Configuration.)
• Recover the hard drive on the controller. (Refer to the Hard Drive Recovery section of Chapter 2, Installation and Configuration.)

• Make sure the RAM is properly seated.

My controller boots fine until I get to Windows, at which point I cannot read the screen. This may include garbled output, white screen, black screen, or an out of synch message from the monitor.

This problem usually results from having the video card output set past the limits of the monitor. You will need to boot Windows in Safe Mode. To do this, reboot the controller. As Windows begins to boot, hold down <F8>. You should now be able to reset the video driver to lower settings. Try setting the resolution to 640×480 and the refresh rate to 60 Hz. Once you reboot, you can raise these values again, using the test option in Windows. These settings are accessible through the Advanced tab of the Display item in the Control Panel. Alternately, you can try a different monitor, preferably a newer and larger one.

My system boots fine as long as a particular module is not in my chassis.

The most common cause of this is a damaged module. Try the module in a different chassis or with a different controller. Also, remove any external cables or terminal blocks connected to the system. If the module does not work in these cases, it is likely damaged. Contact the module manufacturer for further troubleshooting.

Refer to the KnowledgeBase or product manuals section at ni.com for more information specific to the chassis and controller with which you are having difficulties.

My CMOS is corrupted. How do I set it back to default?

1. Enter the BIOS setup program as described in the Accessing BIOS Setup Utility section of Chapter 2, Installation and Configuration.

2. Press <F9> to load BIOS defaults.

3. Answer Y (Yes) to the verification prompt.

4. Select Save and Exit Setup.

As an alternative method, complete the following steps:

1. Power off the chassis.

2. Remove the controller from the chassis.
3. Press and hold down the pushbutton switch SW1 for 2–3 seconds. The SW1 switch location is shown in Figure 5-1.

4. Reinstall the controller in the chassis.
Specifications

This appendix lists the electrical, mechanical, and environmental specifications of the NI PXI-8115 embedded controller.

Features

<table>
<thead>
<tr>
<th>NI PXI-8115</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPU</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>On-die L2 cache</td>
</tr>
<tr>
<td>Single-Channel DDR3 RAM, PC3 10600</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Hard Drive</td>
</tr>
<tr>
<td>Ethernet</td>
</tr>
<tr>
<td>GPIB (IEEE 488 Controller)</td>
</tr>
<tr>
<td>Serial Ports (RS-232)</td>
</tr>
<tr>
<td>Parallel Port</td>
</tr>
<tr>
<td>Hi-Speed USB (2.0) Ports</td>
</tr>
<tr>
<td>ExpressCard/34 Slot</td>
</tr>
<tr>
<td>PS/2 Keyboard/Mouse Connector</td>
</tr>
<tr>
<td>PXI Trigger Bus Input/Output</td>
</tr>
<tr>
<td>Installed Operating System</td>
</tr>
</tbody>
</table>

* Extended-temperature 24/7 option provides 80 GB minimum SATA hard drive.
† Controllers configured for LabVIEW RT provide a 80 GB (minimum) SATA hard drive.
Appendix A Specifications

Electrical

<table>
<thead>
<tr>
<th>Voltage (V)</th>
<th>Current (Amps)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Typical</td>
</tr>
<tr>
<td>+3.3 V</td>
<td>2.10 A</td>
</tr>
<tr>
<td>+5 V (+5 V_{DC} and +5 V_{IO})</td>
<td>7.75 A</td>
</tr>
<tr>
<td>+12 V</td>
<td>0.10 A</td>
</tr>
<tr>
<td>-12 V</td>
<td>0 A</td>
</tr>
</tbody>
</table>

Note: Does not include any attached USB devices or ExpressCard.

Physical

Board dimensions PXI 3U-size module
8.1 cm x 13 cm x 21.6 cm
(3.2 in. x 5.1 in. x 8.5 in.)

Slot requirements One system slot plus three controller expansion slots

Compatibility Fully compatible with PXI Specification

Weight 1.32 kg (2.91 lb) typical

Environment

Maximum altitude 2,000 m (800 mbar)
(at 25 °C ambient temperature)

Pollution Degree 2

Indoor use only.

Caution Clean the NI PXI-8115 with a soft nonmetallic brush. Make sure that the device is completely dry and free from contaminants before returning it to service.
Operating Environment

Ambient temperature\(^1,2\)

Base... 5 to 50 °C\(^3\)

(Tested in accordance with IEC-60068-2-1 and IEC-60068-2-2)

Extended Temperature Option................. 0 to 55 °C

(Tested in accordance with IEC-60068-2-1 and IEC-60068-2-2. Meets MIL-PRF-28800F Class 3 low temperature limit and MIL-PRF-28800F Class 2 high temperature limit.)

Relative humidity range....................... 10% to 90%, noncondensing

(Tested in accordance with IEC-60068-2-56.)

\[\textbf{Caution}\] The operating temperature must not be exceeded, even when used in a chassis with a higher temperature range.

Storage Environment

Ambient temperature range............... −40 to 65 °C

(Tested in accordance with IEC-60068-2-1 and IEC-60068-2-2. Meets MIL-PRF-28800F Class 3 low temperature limit.)

Extended Temperature Option............... −40 to 71 °C

(Tested in accordance with IEC-60068-2-1 and IEC-60068-2-2. Meets MIL-PRF-28800F Class 3 limits.)

\(^1\) For chassis that are not available in the online catalog at ni.com, contact National Instruments for supported operating temperatures.

\(^2\) Processor should not throttle CPU frequency under reasonable, worst case processor work loads in high operating temperatures.

\(^3\) 5–40 °C for the NI PXI-1000B DC.
Relative humidity range..........................5% to 95%, noncondensing
 (Tested in accordance with IEC-60068-2-56.)

Shock and Vibration

Operating Shock30 g peak, half-sine, 11 ms pulse
 (Tested in accordance with IEC-60068-2-27. Meets MIL-PRF-28800F Class 2 limits.)

Random Vibration

Operating ...5 to 500 Hz, 0.3 g_{rms}
 (with solid-state hard drive)

Nonoperating5 to 500 Hz, 2.4 g_{rms}
 (Tested in accordance with IEC-60068-2-64. Nonoperating test profile exceeds the requirements of MIL-PRF-28800F, Class 3.)

Note Specifications are subject to change without notice.

Safety

This product is designed to meet the requirements of the following standards of safety for electrical equipment for measurement, control, and laboratory use:

- IEC 61010-1, EN 61010-1
- UL 61010-1, CSA 61010-1

Note For UL and other safety certifications, refer to the product label or the Online Product Certification section.
Electromagnetic Compatibility

This product is designed to meet the requirements of the following standards of EMC for electrical equipment for measurement, control, and laboratory use:

- EN 61326 (IEC 61326): Class A emissions; Basic immunity
- EN 55011 (CISPR 11): Group 1, Class A emissions
- AS/NZS CISPR 11: Group 1, Class A emissions
- FCC 47 CFR Part 15B: Class A emissions
- ICES-001: Class A emissions

Note In the United States (per FCC 47 CFR), Class A equipment is intended for use in commercial, light-industrial, and heavy-industrial locations. In Europe, Canada, Australia and New Zealand (per CISPR 11) Class A equipment is intended for use only in heavy-industrial locations.

Note Group 1 equipment (per CISPR 11) is any industrial, scientific, or medical equipment that does not intentionally generates radio frequency energy for the treatment of material or inspection/analysis purposes.

Note For the standards applied to assess the EMC of this product, refer to the Online Product Certification section.

CE Compliance

This product meets the essential requirements of applicable European Directives as follows:

- 2006/95/EC; Low-Voltage Directive (safety)
- 2004/108/EC; Electromagnetic Compatibility Directive (EMC)

Online Product Certification

Refer to the product Declaration of Conformity (DoC) for additional regulatory compliance information. To obtain product certifications and the DoC for this product, visit ni.com/certification, search by model number or product line, and click the appropriate link in the Certification column.
Environmental Management

NI is committed to designing and manufacturing products in an environmentally responsible manner. NI recognizes that eliminating certain hazardous substances from our products is beneficial to the environment and to NI customers.

For additional environmental information, refer to the *NI and the Environment* Web page at ni.com/environment. This page contains the environmental regulations and directives with which NI complies, as well as other environmental information not included in this document.

Waste Electrical and Electronic Equipment (WEEE)

EU Customers
At the end of the product life cycle, all products *must* be sent to a WEEE recycling center. For more information about WEEE recycling centers, National Instruments WEEE initiatives, and compliance with WEEE Directive 2002/96/EC on Waste and Electronic Equipment, visit ni.com/environment/weee.

Battery Replacement and Disposal

Battery Directive
This device contains a long-life coin cell battery. If you need to replace it, use the Return Material Authorization (RMA) process or contact an authorized National Instruments service representative. For more information about compliance with the EU Battery Directive 2006/66/EC about Batteries and Accumulators and Waste Batteries and Accumulators, visit ni.com/environment/batterydirective.

电子信息产品污染控制管理办法（中国 RoHS）

中国客户
National Instruments 符合中国电子信息产品中限制使用某些有害物质指令 (RoHS)。关于 National Instruments 中国 RoHS 合规性信息，请登录 ni.com/environment/rohs_china。
(For information about China RoHS compliance, go to ni.com/environment/rohs_china.)
Technical Support and Professional Services

Log in to your National Instruments ni.com User Profile to get personalized access to your services. Visit the following sections of ni.com for technical support and professional services:

• **Support**—Technical support at ni.com/support includes the following resources:

 – **Self-Help Technical Resources**—For answers and solutions, visit ni.com/support for software drivers and updates, a searchable KnowledgeBase, product manuals, step-by-step troubleshooting wizards, thousands of example programs, tutorials, application notes, instrument drivers, and so on. Registered users also receive access to the NI Discussion Forums at ni.com/forums. NI Applications Engineers make sure every question submitted online receives an answer.

 – **Standard Service Program Membership**—This program entitles members to direct access to NI Applications Engineers via phone and email for one-to-one technical support, as well as exclusive access to eLearning training modules at ni.com/elearning. All customers automatically receive a one-year membership in the Standard Service Program (SSP) with the purchase of most software products and bundles including NI Developer Suite. NI also offers flexible extended contract options that guarantee your SSP benefits are available without interruption for as long as you need them. Visit ni.com/ssp for more information.

 For information about other technical support options in your area, visit ni.com/services, or contact your local office at ni.com/contact.

• **Training and Certification**—Visit ni.com/training for training and certification program information. You can also register for instructor-led, hands-on courses at locations around the world.
• **System Integration**—If you have time constraints, limited in-house technical resources, or other project challenges, National Instruments Alliance Partner members can help. To learn more, call your local NI office or visit ni.com/alliance.

• **Declaration of Conformity (DoC)**—A DoC is our claim of compliance with the Council of the European Communities using the manufacturer’s declaration of conformity. This system affords the user protection for electromagnetic compatibility (EMC) and product safety. You can obtain the DoC for your product by visiting ni.com/certification.

You also can visit the Worldwide Offices section of ni.com/niglobal to access the branch office Web sites, which provide up-to-date contact information, support phone numbers, email addresses, and current events.
Glossary

Symbol Prefix Value

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Prefix</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>nano</td>
<td>10^{-9}</td>
</tr>
<tr>
<td>μ</td>
<td>micro</td>
<td>10^{-6}</td>
</tr>
<tr>
<td>m</td>
<td>milli</td>
<td>10^{-3}</td>
</tr>
<tr>
<td>k</td>
<td>kilo</td>
<td>10^3</td>
</tr>
<tr>
<td>M</td>
<td>mega</td>
<td>10^6</td>
</tr>
<tr>
<td>G</td>
<td>giga</td>
<td>10^9</td>
</tr>
<tr>
<td>T</td>
<td>tera</td>
<td>10^{12}</td>
</tr>
</tbody>
</table>

Symbols

- **°** Degrees.
- **Ω** Ohms.
- **%** Percent.

A

- **A** Amperes.
- **AC** Alternating Current.

B

- **B** Bytes.
- **backplane** An assembly, typically a printed circuit board, with connectors and signal paths that bus the connector pins.
- **BIOS** Basic Input/Output System—BIOS functions are the fundamental level of any PC or compatible computer. BIOS functions embody the basic operations needed for successful use of the computer's hardware resources.
Glossary

C
- **C** (Celsius)
- **cache** Small portion of high-speed memory used for temporary storage of frequently used data.
- **CMOS** Complementary Metal Oxide Semiconductor—A process used in making chips.
- **CompactPCI Express** An adaptation of the PCI specification for industrial and/or embedded applications that require a more robust mechanical form factor than desktop PCI. CompactPCI Express provides a standard form factor for those applications requiring the high performance of PCI as well as the small size and ruggedness of a rack-mount system.

D
- **DC** Direct Current.
- **DDR** Double Data Rate.
- **DMA** Direct Memory Access—A method by which data is transferred between devices and internal memory without intervention of the central processing unit.
- **DVI** Digital Visual Interface—A video connector designed to maximize the visual quality of digital display devices such as flat panel LCD computer displays and digital projectors. It was developed by an industry consortium, the Digital Display Working Group (DDWG).

E
- **ECP** Extended Capabilities Parallel.
- **EEPROM** Electronically Erasable Programmable Read Only Memory.
- **EMC** Electromagnetic Compatibility.
- **EMI** Electromagnetic interference.
<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>EPP</td>
<td>Enhanced Parallel Port.</td>
</tr>
<tr>
<td>expansion ROM</td>
<td>An onboard EEPROM that may contain device-specific initialization and system boot functionality.</td>
</tr>
<tr>
<td>FCC</td>
<td>Federal Communications Commission.</td>
</tr>
</tbody>
</table>
| g | 1. Grams.
2. A measure of acceleration equal to 9.8 m/s^2. |
| GPIB | General Purpose Interface Bus (IEEE 488). |
| g$_{rms}$ | A measure of random vibration—The root mean square of acceleration levels in a random vibration test profile. |
| Hz | Hertz—Cycles per second. |
| I/O | Input/Output—The techniques, media, and devices used to achieve communication between machines and users. |
| IDE | Integrated Drive Electronics—Hard disk and built-in controller. |
| IEEE | Institute of Electrical and Electronics Engineers. |
| in. | Inches. |
| instrument driver | A set of routines designed to control a specific instrument or family of instruments, and any necessary related files for LabWindows/CVI or LabVIEW. |
| interrupt | A means for a device to request service from another device. |
| interrupt level | The relative priority at which a device can interrupt. |
Glossary

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>IRQ#</td>
<td>Interrupt signal.</td>
</tr>
<tr>
<td>ISA</td>
<td>Industry Standard Architecture—The original PC bus architecture, specifically the 16-bit AT bus.</td>
</tr>
<tr>
<td>KB</td>
<td>Kilobytes of memory.</td>
</tr>
<tr>
<td>LAN</td>
<td>Local Area Network—Communications network that serves users within a confined geographical area. It is made up of servers, workstations, a network operating system, and a communications link.</td>
</tr>
<tr>
<td>LED</td>
<td>Light-emitting diode.</td>
</tr>
<tr>
<td>m</td>
<td>Meters.</td>
</tr>
<tr>
<td>master</td>
<td>A functional part of a PXI device that initiates data transfers on the PXI backplane. A transfer can be either a read or a write.</td>
</tr>
<tr>
<td>MB</td>
<td>Megabytes of memory.</td>
</tr>
<tr>
<td>MTBF</td>
<td>Mean time between failure.</td>
</tr>
<tr>
<td>NI-488 or NI-488.2</td>
<td>The National Instruments software for GPIB systems.</td>
</tr>
<tr>
<td>NI-DAQ</td>
<td>The National Instruments software for data acquisition instruments.</td>
</tr>
<tr>
<td>NI-VISA</td>
<td>The National Instruments implementation of the VISA standard—An interface-independent software that provides a unified programming interface for VXI, GPIB, and serial instruments.</td>
</tr>
</tbody>
</table>
Glossary

P

PCI
Peripheral Component Interconnect—The PCI bus is a high-performance 32-bit or 64-bit bus with multiplexed address and data lines.

PCMCIA
Personal Computer Memory Card International Association.

peripheral
Any hardware device connected to a computer, such as a monitor, keyboard, printer, plotter, disk or tape drive, graphics tablet, scanner, mouse, and so on.

PXI Express
PCI eXtensions for Instrumentation—An open implementation of CompactPCI Express that adds electrical features that meet the high-performance requirements of instrumentation applications by providing triggering, local buses, and system clock capabilities. PXI Express also offers two-way interoperability with CompactPCI Express products.

R

RAM
Random Access Memory—The computer’s primary workspace.

resource
Hardware settings used by devices in a computer system, including ISA interrupt level, DMA channel, and I/O address.

RMS
Root mean squared. See also r_ms.

S

s
Seconds.

SDRAM
Synchronous Dynamic RAM (Random Access Memory)—Storage that the computer must refresh at frequent intervals.

SO-DIMM
Small Outline Dual In-line Memory Module.

SPI Bus
Serial Peripheral Interface—A standard for controlling most any digital electronics that accept a clocked serial stream of bits.
Glossary

<table>
<thead>
<tr>
<th>U</th>
<th>USB</th>
<th>Universal Serial Bus.</th>
</tr>
</thead>
<tbody>
<tr>
<td>V</td>
<td>V</td>
<td>Volts.</td>
</tr>
<tr>
<td></td>
<td>VGA</td>
<td>Video Graphics Array—The minimum video display standard for all PCs.</td>
</tr>
<tr>
<td>W</td>
<td>W</td>
<td>Watts.</td>
</tr>
</tbody>
</table>
Index

A
Advanced Setup menu, 2-6

B
basic PXI system configuration, 2-23
BIOS
 checking settings, 4-1
 Diagnostic Utilities, 2-16
 flashing new BIOS, 4-6
 setup
 Advanced Setup menu, 2-6
 Boot Settings Configuration menu, 2-13
 Boot Setup menu, 2-12
 CD/DVD ROM Drive BBS Priorities Configuration menu, 2-14
 CPU configuration menu, 2-7
 entering, 2-4
 ExpressCard Configuration menu, 2-9
 Floppy Drive BBS Priorities Configuration menu, 2-14
 Hard Drive BBS Priorities Configuration menu, 2-14
 LabVIEW RT options menu, 2-11
 LabVIEW RT Options Setup menu
 Configuration Overrides menu, 2-12
 Main Setup menu, 2-5
 Network Device BBS Priorities Configuration menu, 2-14
 SATA Configuration menu, 2-7
 Save & Exit menu, 2-15
 Serial/Parallel Port Configuration menu
 Parallel Port menu, 2-11
 Serial Port menu, 2-11
 USB configuration menu, 2-9
 Video Configuration menu, 2-8
 boot options, configuring controller, 4-2
 Boot Settings Configuration menu, 2-13
 Boot Setup menu, 2-12

C
calibration certificate (NI resources), B-2
CD/DVD ROM Drive BBS Priorities menu, 2-14
CE compliance, specifications, A-5
CMOS
 clearing contents (figure), 2-17, 5-3
 setting back to default, 5-2
COM1 connector
 connector locations and pinout (figure), 3-5
 connector signals (table), 3-5
common configuration questions
 boot options, 4-1
 cables and connections, 4-3
 chassis configuration, 2-22
 driver installation, 4-4
 general questions, 4-1
 PXI Express configuration, 4-6
 upgrade information, 4-5
CompactPCI specification, 1-1
configuration, common questions
 boot options, 4-1
 cables and connections, 4-3
 chassis configuration, 2-22
 driver installation, 4-4
 general questions, 4-1
 PXI Express configuration, 4-6
 upgrade information, 4-5
functional description of NI PXI-8115, 1-2
functional overview of NI PXI-8115, 1-3

G
GPIB (IEEE 488.2)
connector location and pinout (figure), 3-11
connector signals (table), 3-11
driver installation, 4-4
GPIB device connector, 3-1

H
hard drive, 3-15
files and directories installed on, 2-22
recovery, 2-24
hard drive BBS priorities menu, 2-14
help, technical support, B-1

I
IEEE 488.2, 3-11
images directory, 2-22
installation
See also configuration
injector/ejector handle position (caution), 2-2
NI PXI-8115 installed in a PXI chassis (figure), 2-3
procedure, 2-1
removing NI PXI-8115 from PXI chassis, 2-4
removing protective screw caps (figure), 2-2
installing an OS
from USB CD/DVD-ROM, 2-25
overview, 2-25
installing the GPIB driver, 4-4
installing the video driver, 4-4
instrument drivers (NI resources), B-1

K
keyboard, plugging PS/2 mouse and keyboard into controller, 4-3
KnowledgeBase, B-1

L
LabVIEW, 1-5
RT configuration switches, 2-20
RT installation and configuration, 2-18
RT options menu, 2-11
RT software installation, 2-18
LabVIEW RT Options Setup Menu
LabVIEW RT Configuration Overrides Submenu, 2-12
LabVIEW RT, configuration switches, (figure), 2-21
LabWindows/CVI, 1-5
LEDs, front panel LEDs, 3-15, 4-1
Linux support, 1-6
LPT cable, connecting to NI PXI-8115, 4-3

M
Main Setup menu, 2-5
manuals directory, 2-22
mating connector
GPIB (IEEE 488.2), 3-11
parallel port, 3-7
Measurement Studio, 1-5
modular instruments, 1-6
mouse, plugging PS/2 mouse and keyboard into controller, 4-3

N
National Instruments software, 1-5
support and services, B-1
Network Device BBS Priorities menu, 2-14
Index

NI PXI-8115

benefits of PXI, 1-1
BIOS setup utility, 2-4
block diagram, 1-3
connectors
 COM1 connector and signals, 3-5
 DisplayPort connector and signals (table), 3-3
 ExpressCard connector and signals, 3-13
 GPIB (IEEE 488.2) connector and signals, 3-11
 parallel port connector and signals, 3-7
 trigger connector and signals, 3-10
 Universal Serial Bus (USB) connector and signals, 3-9
data storage, 3-15
description, 1-2
front panel
 connectors, 3-1
 controller reset pushbutton, 3-15
 dimensions, 3-2
 features, 3-15
 LEDs, 4-1
functional overview, 1-3
hard drive recovery, 2-24
installing DDR SO-DIMMs (figure), 2-24, 4-6
installing in a PXI chassis, 2-1
 figure, 2-3
logic blocks, 1-4
peripheral expansion overview (table), 3-1
PXI trigger connectivity, 2-22
removing from a PXI chassis, 2-4
software, 1-5
specifications, A-1
troubleshooting, 5-1
upgrading RAM, 2-23, 4-5
NI support and services, B-1

NI-DAQmx, 1-5
NI-VISA, 1-6

O
operating environment specifications, A-2, A-3
OS directory, 2-22
OS installation
 from USB CD/DVD-ROM, 2-25
 overview, 2-25

P
parallel port connector, 3-1
 connector location and pinout (figure), 3-7
 connector signals (table), 3-8
peripheral expansion overview (table), 3-1
physical specifications, A-2
programming examples (NI resources), B-1
protective screw caps, removing (figure), 2-2
PS/2, plugging PS/2 mouse and keyboard into controller, 4-3
PWR OK/FAULT LED, 3-15
PXI
 features, 2-22
 trigger connectivity, 2-22
 PXI trigger connector, 3-1

R
RAM
 DDR2 SO-DIMMs from National Instruments (note), 4-5
 DDR3 SO-DIMMs from National Instruments (note), 2-24
upgrading, 2-23, 4-5
recycling, hardware, A-6
related documentation, xii
Index

S
safety specifications, A-4
SATA Configuration menu, 2-7
Save & Exit menu, 2-15
Serial ATA controller, using SCSI hard drive in addition, 4-1
serial port, 3-1
Serial/Parallel Port Configuration menu, 2-10
Parallel Port menu, 2-11
Serial Port menu, 2-11
setting up the NI PXI-8115 BIOS, 2-4
shock and vibration specifications, A-4
software
See also drivers
installed on your hard drive, 2-22
LabVIEW, 1-5
LabWindows/CVI, 1-5
Measurement Studio, 1-5
National Instruments software, 1-5
NI resources, B-1
NI-DAQmx, 1-5
NI-VISA, 1-6
specifications, A-1
CE compliance, A-5
electrical, A-2
electromagnetic compatibility, A-5
environmental management
WEEE information, A-6
online product certification, A-5
operating environment, A-2, A-3
physical, A-2
safety, A-4
shock and vibration, A-4
storage environment, A-3
storage environment specifications, A-3
support, technical, B-1
switches, LabVIEW RT configuration (figure), 2-21
system CMOS, 2-17

T
technical support, B-1
training and certification (NI resources), B-1
trigger, 3-10, 4-6
connector location and pinout (figure), 3-10
connector signals (table), 3-11
troubleshooting
CMOS reset, 5-2
controller does not boot, 5-1
damaged module, 5-2
NI resources, B-1
video display, 5-2

U
Universal Serial Bus (USB)
connector location and pinout (figure), 3-9
connector signals (table), 3-9
overview (table), 3-1
USB configuration menu, 2-9
USER LEDS
USER1, 3-15
USER2, 3-15

V
VGA
location and pinout (figure), 3-3
overview (table), 3-1
video, 3-1
See also VGA
driver installation, 4-4
Video Configuration menu, 2-8

W
Web resources, B-1
WEEE information, A-6
Index

Y

Y-splitter cable
 (figure), 4-3
 using mouse and keyboard without, 4-3
 using with PS/2 mouse and keyboard, 2-3