Worldwide Technical Support and Product Information

Visit ni.com/niglobal to access the branch office websites, which provide up-to-date contact information, support phone numbers, email addresses, and current events.

National Instruments Corporate Headquarters
11500 North Mopac Expressway Austin, Texas 78759-3504 USA Tel: 512 683 0100

For further support information, refer to the *NI Services* appendix. To comment on NI documentation, refer to the NI website at ni.com/info and enter the Info Code *feedback*.

© 2009–2016 National Instruments. All rights reserved.
Legal Information

Limited Warranty
This document is provided ‘as is’ and is subject to being changed, without notice, in future editions. For the latest version, refer to ni.com/manuals. NI reviews this document carefully for technical accuracy; however, NI MAKES NO EXPRESS OR IMPLIED WARRANTIES AS TO THE ACCURACY OF THE INFORMATION CONTAINED HEREIN AND SHALL NOT BE LIABLE FOR ANY ERRORS.

NI warrants that its hardware products will be free of defects in materials and workmanship that cause the product to fail to substantially conform to the applicable NI published specifications for one (1) year from the date of invoice. For a period of ninety (90) days from the date of invoice, NI warrants that (i) its software products will perform substantially in accordance with the applicable documentation provided with the software and (ii) the software media will be free from defects in materials and workmanship.

If NI receives notice of a defect or non-conformance during the applicable warranty period, NI will, in its discretion: (i) repair or replace the affected product, or (ii) refund the fees paid for the affected product. Repaired or replaced Hardware will be warranted for the remainder of the original warranty period or ninety (90) days, whichever is longer. If NI elects to repair or replace the product, NI may use new or refurbished parts or products that are equivalent to new in performance and reliability and are at least functionally equivalent to the original part or product.

You must obtain an RMA number from NI before returning any product to NI. NI reserves the right to charge a fee for examining and testing Hardware not covered by the Limited Warranty.

This Limited Warranty does not apply if the defect of the product resulted from improper or inadequate maintenance, installation, repair, or calibration (performed by a party other than NI); unauthorized modification; improper environment; use of an improper hardware or software key; improper use or operation outside of the specification for the product; improper voltages; accident, abuse, or neglect; or a hazard such as lightning, flood, or other act of nature.

THE REMEDIES SET FORTH ABOVE ARE EXCLUSIVE AND THE CUSTOMER’S SOLE REMEDIES, AND SHALL APPLY EVEN IF SUCH REMEDIES FAIL OF THEIR ESSENTIAL PURPOSE.

EXCEPT AS EXPRESSLY SET FORTH HEREIN, PRODUCTS ARE PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND AND NI DISCLAIMS ALL WARRANTIES, EXPRESSED OR IMPLIED, WITH RESPECT TO THE PRODUCTS, INCLUDING ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, TITLE OR NON-INFRINGEMENT, AND ANY WARRANTIES THAT MAY ARISE FROM USAGE OF TRADE OR COURSE OF DEALING. NI DOES NOT WARRANT, GUARANTEE, OR MAKE ANY REPRESENTATIONS REGARDING THE USE OF OR THE RESULTS OF THE USE OF THE PRODUCTS IN TERMS OF CORRECTNESS, ACCURACY, RELIABILITY, OR OTHERWISE. NI DOES NOT WARRANT THAT THE OPERATION OF THE PRODUCTS WILL BE UNINTERRUPTED OR ERROR FREE.

In the event that you and NI have a separate signed written agreement with warranty terms covering the products, then the warranty terms in the separate agreement shall control.

Copyright
Under the copyright laws, this publication may not be reproduced or transmitted in any form, electronic or mechanical, including photocopying, recording, storing in an information retrieval system, or translating, in whole or in part, without the prior written consent of National Instruments Corporation.

National Instruments respects the intellectual property of others, and we ask our users to do the same. NI software is protected by copyright and other intellectual property laws. Where NI software may be used to reproduce software or other materials belonging to others, you may use NI software only to reproduce materials that you may reproduce in accordance with the terms of any applicable license or other legal restriction.

End-User License Agreements and Third-Party Legal Notices
You can find end-user license agreements (EULAs) and third-party legal notices in the following locations:

• Notices are located in the <National Instruments>_Legal Information and <National Instruments> directory.

• EULAs are located in the <National Instruments>\Shared\\Legal\license directory.

• Review <National Instruments>_Legal Information.txt for information on including legal information in installers built with NI products.

U.S. Government Restricted Rights
If you are an agency, department, or other entity of the United States Government (“Government”), the use, duplication, reproduction, release, modification, disclosure or transfer of the technical data included in this manual is governed by the Restricted Rights provisions under Federal Acquisition Regulation 52.227-14 for civilian agencies and Defense Federal Acquisition Regulation Supplement Section 252.227-7014 and 252.227-7015 for military agencies.

Trademarks
Refer to the NI Trademarks and Logo Guidelines at ni.com/trademarks for more information on NI trademarks.

ARM, Keil, and µVision are trademarks or registered of ARM Ltd or its subsidiaries.

LEGO, the LEGO logo, WEDO, and MINDSTORMS are trademarks of the LEGO Group.

TETRIX by Pitsco is a trademark of Pitsco, Inc.

FIELDBUS FOUNDATION™ and FOUNDATION™ are trademarks of the Fieldbus Foundation.

EtherCAT® is a registered trademark of and licensed by Beckhoff Automation GmbH.
Electromagnetic Compatibility Information

This hardware has been tested and found to comply with the applicable regulatory requirements and limits for electromagnetic compatibility (EMC) as indicated in the hardware’s Declaration of Conformity (DoC). These requirements and limits are designed to provide reasonable protection against harmful interference when the hardware is operated in the intended electromagnetic environment. In special cases, for example when either highly sensitive or noisy hardware is being used in close proximity, additional mitigation measures may have to be employed to minimize the potential for electromagnetic interference.

While this hardware is compliant with the applicable regulatory EMC requirements, there is no guarantee that interference will not occur in a particular installation. To minimize the potential for the hardware to cause interference to radio and television reception or to experience unacceptable performance degradation, install and use this hardware in strict accordance with the instructions in the hardware documentation and the DoC.

If this hardware does cause interference with licensed radio communications services or other nearby electronics, which can be determined by turning the hardware off and on, you are encouraged to try to correct the interference by one or more of the following measures:

- Reorient the antenna of the receiver (the device suffering interference).
- Relocate the transmitter (the device generating interference) with respect to the receiver.
- Plug the transmitter into a different outlet so that the transmitter and the receiver are on different branch circuits.

Some hardware may require the use of a metal, shielded enclosure (windowless version) to meet the EMC requirements for special EMC environments such as, for marine use or in heavy industrial areas. Refer to the hardware’s user documentation and the DoC for product installation requirements.

When the hardware is connected to a test object or to test leads, the system may become more sensitive to disturbances or may cause interference in the local electromagnetic environment.

Operation of this hardware in a residential area is likely to cause harmful interference. Users are required to correct the interference at their own expense or cease operation of the hardware.

Changes or modifications not expressly approved by National Instruments could void the user’s right to operate the hardware under the local regulatory rules.

1 The Declaration of Conformity (DoC) contains important EMC compliance information and instructions for the user or installer. To obtain the DoC for this product, visit ni.com/certification, search by model number or product line, and click the appropriate link in the Certification column.
Contents

Chapter 1
Getting Started
- Unpacking ... 1-1
- What You Need to Get Started ... 1-1
- Key Features ... 1-2
- Chassis Description .. 1-3
- Optional Equipment .. 1-4
 - EMC Filler Panels .. 1-4
 - Rack Mount Kit .. 1-4
 - Slot Blockers .. 1-5
- NI PXIe-1082 Chassis Backplane Overview .. 1-5
- Interoperability with CompactPCI .. 1-5
- System Controller Slot .. 1-6
- Hybrid Peripheral Slots .. 1-6
- PXI Express Peripheral Slots .. 1-6
- System Timing Slot .. 1-7
- PXI Local Bus .. 1-8
- PXI Trigger Bus ... 1-8
- System Reference Clock ... 1-9
- PXIe_SYNC_CTRL ... 1-11

Chapter 2
Installation and Configuration
- Safety Information .. 2-1
- Chassis Cooling Considerations ... 2-2
 - Providing Adequate Clearance ... 2-2
 - Chassis Ambient Temperature Definition .. 2-3
- Setting Fan Speed ... 2-4
- Installing Filler Panels .. 2-4
- Installing Slot Blockers .. 2-4
- Rack Mounting ... 2-4
- Connecting Safety Ground ... 2-4
- Connecting to Power Source .. 2-5
- Installing a PXI Express System Controller ... 2-5
- Installing Peripheral Modules .. 2-7
- Power Inhibit Switch LED Indicator .. 2-9
- Remote Voltage Monitoring and Control ... 2-10
- Inhibit Mode Switch ... 2-11
- PXI_CLK10 Rear Connectors .. 2-11
- PXI Express System Configuration with MAX ... 2-12
- PXI-I System Configuration .. 2-12
- Using System Configuration and Initialization Files ... 2-13
Getting Started

This chapter describes the key features of the NI PXIe-1082 chassis and lists the kit contents and optional equipment you can order from National Instruments.

Unpacking

Carefully inspect the shipping container and the chassis for damage. Check for visible damage to the metal work. Check to make sure all handles, hardware, and switches are undamaged. Inspect the inner chassis for any possible damage, debris, or detached components. If damage appears to have been caused during shipment, file a claim with the carrier. Retain the packing material for possible inspection and/or reshipment.

What You Need to Get Started

The NI PXIe-1082 chassis kit contains the following items:

- NI PXIe-1082 chassis
- Filler panels
- AC power cable—refer to Table 1-1 for AC power cables
- NI PXIe-1082 User Manual
- Software media with PXI Platform Services 2.0 or higher
- Read Me First: Safety and Electromagnetic Compatibility
- Chassis number labels
Chapter 1 Getting Started

If you are missing any of the items listed in Table 1-1, or if you have the incorrect AC power cable, contact National Instruments.

Key Features

The NI PXIe-1082 chassis combines a high-performance 8-slot PXI Express backplane with a high-output power supply and a structural design that has been optimized for maximum usability in a wide range of applications. The chassis' modular design ensures a high level of maintainability, resulting in a very low mean time to repair (MTTR). The NI PXIe-1082 chassis fully complies with the PXI-5 PXI Express Hardware Specification, offering advanced timing and synchronization features.

The key features of the NI PXIe-1082 chassis include the following:

- High Performance for Instrumentation Requirements
 - Up to 2 GB/s (single direction) per PXI Express slot dedicated bandwidth (x4 PCIe)
 - 38 W per slot cooling meets increased PXIe cooling requirements
 - Low-jitter internal 10 MHz reference clock for PXI slots with ± 25 ppm stability
 - Low-jitter internal 100 MHz reference clock for PXIe slots with ± 25 ppm stability
 - Quiet operation for 0 to 30 °C at 43.6 dBA
 - Variable speed fan controller optimizes cooling and acoustic emissions
 - Remote power-inhibit control
 - Complies with PXI and CompactPCI Specifications

- High Reliability
 - 0 to 55 °C extended temperature range
 - Power supply, temperature, and fan monitoring
 - HALT tested for increased reliability
 - Field replaceable power supply shuttle

Table 1-1. AC Power Cables

<table>
<thead>
<tr>
<th>Power Cable</th>
<th>Reference Standards</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard 120 V (USA)</td>
<td>ANSI C73.11/NEMA 5-15-P/IEC83</td>
</tr>
<tr>
<td>Switzerland 220 V</td>
<td>SEV</td>
</tr>
<tr>
<td>Australia 240 V</td>
<td>AS C112</td>
</tr>
<tr>
<td>Universal Euro 230 V</td>
<td>CEE (7), II, IV, VII IEC83</td>
</tr>
<tr>
<td>North America 120 V</td>
<td>ANSI C73.20/NEMA 5-15-P/IEC83</td>
</tr>
<tr>
<td>United Kingdom 230 V</td>
<td>BS 1363/IEC83</td>
</tr>
</tbody>
</table>

If you are missing any of the items listed in Table 1-1, or if you have the incorrect AC power cable, contact National Instruments.
• **Multi-Chassis Support**
 – PXIe System Timing Slot for tight synchronization across chassis
 – Rear CLK10 I/O connectors
 – Switchless CLK10 routing
• **Optional Features**
 – Front and rear rack-mount kits
 – Replacement power supply shuttle
 – EMC filler panels
 – Slot blockers for improved cooling performance
 – System Assurance Plans

Chassis Description

Figures 1-1 and 1-2 show the key features of the NI PXIe-1082 chassis front and back panels. Figure 1-1 shows the front view of the NI PXIe-1082. Figure 1-2 shows the rear view of the NI PXIe-1082.

Figure 1-1. Front View of the NI PXIe-1082 Chassis
Optional Equipment

Contact National Instruments to order the following options for the NI PXIe-1082 chassis.

EMC Filler Panels
Optional EMC filler panel kits are available from National Instruments.

Rack Mount Kit
There are two optional kits for mounting the PXIe-1082 chassis into a rack. The first option is a pair of mounting brackets for use on the front of the chassis. The second option is a rear rack mount kit. The rear rack mount kit differs from the front kit to allow for easier installation into the rack. For more information, refer to Figure A-3, *NI Chassis Rack Mount Kit Components*.

1. Power Supply Shuttle
2. Push-Reset Circuit Breaker
3. Universal AC Input
4. Chassis Ground Screw
5. 10 MHz REF OUT BNC
6. 10 MHz REF IN BNC
7. Remote Inhibit and Voltage Monitoring Connector
8. Air Filter Retainer
9. Air Filter Retainer Screw
10. Power Supply Shuttle ID Label
11. Fan Speed Selector Switch
12. Inhibit Mode Selector Switch
13. Power Supply Shuttle Handle (2x)
14. Power Supply Shuttle Mounting Screws (8x)
Slot Blockers
Optional slot blocker kits are available from National Instruments for improved thermal performance when all slots are not used.

NI PXIe-1082 Chassis Backplane Overview
This section provides an overview of the backplane features for the NI PXIe-1082 chassis.

Interoperability with CompactPCI
The design of the NI PXIe-1082 provides you the flexibility to use the following devices in a single PXI Express chassis:

• PXI Express compatible products
• CompactPCI Express compatible 4-Link system controller products
• CompactPCI Express compatible Type-2 peripheral products
• PXI peripheral products
• Standard CompactPCI peripheral products

Refer to Figure 1-3 for an overview of the NI PXIe-1082 architecture.

Figure 1-3. NI PXIe-1082 Backplane Architecture
Chapter 1 Getting Started

System Controller Slot
The system controller slot is Slot 1 of the chassis and is a 4-Link configuration system slot as defined by the CompactPCI Express and PXI Express specifications. It has three system controller expansion slots for system controller modules that are wider than one slot. These slots allow the system controller to expand to the left to prevent the system controller from using peripheral slots.

The backplane routes three of the system slot’s x4 PCI Express (PCIe) links to a PCIe switch. The three PCIe switches have x4 PCIe links routed to each peripheral slot as well as a x1 link to a PCIe-to-PCI bridge providing a 32-bit/33 MHz PCI bus to the hybrid slots. Slot 2 directly connects to the remaining link of the system slot. Refer to Figure 1-3 for the connectivity of PCIe and PCI.

By default, the system controller will control the power supply with the PS_ON# signals. A logic low on this line will turn the power supply on.

Note The Inhibit Mode switch on the rear of the chassis must be in the Default position for the system controller to have control of the power supply. Refer to the Inhibit Mode Switch section of Chapter 2, Installation and Configuration, for details about the Inhibit Mode switch.

Hybrid Peripheral Slots
The chassis provides four hybrid peripheral slots as defined by the PXI-5 PXI Express Hardware Specification: slots 5 to 8. A hybrid peripheral slot can accept the following peripheral modules:

• A PXI Express Peripheral with x4 or x1 PCI Express link to the system slot
• A CompactPCI Express Type-2 Peripheral with x4 or x1 PCI Express link to the system slot
• A hybrid-compatible PXI Peripheral module that has been modified by replacing the J2 connector with an XJ4 connector installed in the upper eight rows of J2. Refer to the PXI Express Specification for details. The PXI Peripheral communicates through the backplane’s 32-bit PCI bus.
• A CompactPCI 32-bit peripheral on the backplane’s 32-bit PCI bus

The hybrid peripheral slots provide full PXI Express functionality and 32-bit PXI functionality except for PXI Local Bus. The hybrid peripheral slot only connects to PXI Local Bus 6 left and right.

PXI Express Peripheral Slots
There are two PXI Express peripheral slots: slot 2 and slot 3. PXI Express peripheral slots accept the following modules:

• A PXI Express Peripheral with x4 or x1 PCI Express link to the system slot
• A CompactPCI Express Type-2 Peripheral with x4 or x1 PCI Express link to the system slot
System Timing Slot

The System Timing Slot is slot 4. The system timing slot will accept the following peripheral modules:

- A PXI Express System Timing Module with x4 or x1 PCI Express link to the system slot
- A PXI Express Peripheral with x4 or x1 PCI Express link to the system slot
- A CompactPCI Express Type-2 Peripheral with x4 or x1 PCI Express link to the system slot

The system timing slot has 3 dedicated differential pairs (PXIe_DSTAR) connected from the TP2 connector to the XP3 connector for each hybrid peripheral slot, as well as routed back to the XP3 connector of the system timing slot as shown in Figure 1-4. The PXIe_DSTAR pairs can be used for high-speed triggering, synchronization and clocking. Refer to the PXI Express Specification for details.

The system timing slot also has a single-ended (PXI Star) trigger connected to every slot. Refer to Figure 1-4 for details.

The system timing slot has a pin (PXI_CLK10_IN) through which a system timing module may source a 10MHz clock to which the backplane will phase-lock. Refer to the System Reference Clock section for details.

The system timing slot has a pin (PXIe_SYNC_CTRL) through which a system timing module can control the PXIe_SYNC100 timing. Refer to the PXI Express Specification and the PXIe_SYNC_CTRL section of this chapter for details.

Figure 1-4. PXIe_DSTAR and PXI Star Connectivity Diagram
Chapter 1 Getting Started

PXI Local Bus

The PXI backplane local bus is a daisy-chained bus that connects each peripheral slot with adjacent peripheral slots to the left and right.

The backplane routes PXI Local Bus 6 between adjacent PXI slots. The left Local Bus 6 from slot 1 is not routed anywhere. The right Local Bus 6 from slot 8 is also not routed anywhere.

Local bus signals may range from high-speed TTL signals to analog signals as high as 42 V.

Initialization software uses the configuration information specific to each adjacent peripheral module to evaluate local bus compatibility.

Figure 1-5. PXI Trigger Bus Connectivity Diagram

PXI Trigger Bus

All slots share eight trigger lines. You can use these trigger lines in a variety of ways. For example, you can use triggers to synchronize the operation of several different PXI peripheral modules. In other applications, one module can control carefully timed sequences of operations performed on other modules in the system. Modules can pass triggers to one another, allowing precisely timed responses to asynchronous external events the system is monitoring or controlling.
System Reference Clock

The PXIe-1082 chassis supplies PXI_CLK10, PXIe_CLK100, and PXIe_SYNC100 to every peripheral slot with an independent driver for each signal.

An independent buffer (having a source impedance matched to the backplane and a skew of less than 500 ps between slots) drives PXI_CLK10 to each peripheral slot. You can use this common reference clock signal to synchronize multiple modules in a measurement or control system.

An independent buffer drives PXIe_CLK100 to each peripheral slot. These clocks are matched in skew to less than 100 ps. The differential pair must be terminated on the peripheral with LVPECL termination for the buffer to drive PXIe_CLK100 so that when there is no peripheral or a peripheral that does not connect to PXIe_CLK100, there is no clock being driven on the pair to that slot.

An independent buffer drives PXIe_SYNC100 to each peripheral slot. The differential pair must be terminated on the peripheral with LVPECL termination for the buffer to drive PXIe_SYNC100 so that when there is no peripheral or a peripheral that does not connect to PXIe_SYNC100, there is no clock being driven on the pair to that slot.

PXI_CLK10, PXIe_CLK100 and PXIe_SYNC100 have the default timing relationship described in Figure 1-6.

To synchronize the system to an external clock, you can drive PXI_CLK10 from an external source through the PXI_CLK10_IN pin on the System Timing Slot. Refer to Table B-7, **XP4 Connector Pinout for the System Timing Slot**, for the pinout. When a 10MHz clock is detected on this pin, the backplane automatically phase-locks the PXI_CLK10, PXIe_CLK100, and PXIe_SYNC100 signals to this external clock and distributes these signals to the slots. Refer to Appendix A, **Specifications**, for the specification information for an external clock provided on the PXI_CLK10_IN pin of the system timing slot.

You also can drive a 10MHz clock on the 10 MHz REF IN connector on the rear of the chassis. Refer to Figure 1-2 for the location of this connector. When a 10MHz clock is detected on this connector, the backplane automatically phase-locks the PXI_CLK10, PXIe_CLK100, and PXIe_SYNC100 signals to this external clock and distributes these signals to the slots. Refer to Appendix A, **Specifications**, for the specification information for an external clock provided on the 10 MHz REF IN connector on the rear panel of the chassis.

If the 10 MHz clock is present on both the PXI_CLK10_IN pin of the System Timing Slot and the 10 MHz REF IN connector on the rear of the chassis, the signal on the System Timing Slot...
is selected. Refer to Table 1-2 which explains how the 10 MHz clocks are selected by the backplane.

Table 1-2. Backplane External Clock Input Truth Table

<table>
<thead>
<tr>
<th>System Timing Slot PXI_CLK10_IN</th>
<th>Rear Chassis Panel 10 MHz REF IN</th>
<th>Backplane PXI_CLK10, PXIe_CLK100 and PXIe_SYNC100</th>
</tr>
</thead>
<tbody>
<tr>
<td>No clock present</td>
<td>No clock present</td>
<td>Backplane generates its own clocks</td>
</tr>
<tr>
<td>No clock present</td>
<td>10 MHz clock present</td>
<td>PXI_CLK10, PXIe_CLK100 and PXIe_SYNC100 all phase-locked to Rear Chassis Panel—10 MHz REF IN</td>
</tr>
<tr>
<td>10 MHz clock present</td>
<td>No clock present</td>
<td>PXI_CLK10, PXIe_CLK100 and PXIe_SYNC100 all phase-locked to System Timing Slot—PXI_CLK10_IN</td>
</tr>
<tr>
<td>10 MHz clock present</td>
<td>10 MHz clock present</td>
<td>PXI_CLK10, PXIe_CLK100 and PXIe_SYNC100 all phase-locked to System Timing Slot—PXI_CLK10_IN</td>
</tr>
</tbody>
</table>

A copy of the backplane’s PXI CLK10 is exported to the 10 MHz REF OUT connector on the rear of the chassis. Refer to Figure 1-2 for the location of this connector. This clock is driven by an independent buffer. Refer to Appendix A, *Specifications*, for the specification information for the 10 MHz REF OUT signal on the rear panel of the chassis.
PXie_SYNC_CTRL

PXie_SYNC100 is by default a 10 ns pulse synchronous to PXI_CLK10. The frequency of PXie_SYNC100 is $10/n$ MHz, where n is a positive integer. The default for n is 1, giving PXie_SYNC100 a 100 ns period. However, the backplane allows n to be programmed to other integers. For instance, setting $n = 3$ gives a PXie_SYNC100 with a 300 ns period while still maintaining its phase relationship to PXI_CLK10. The value for n may be set to any positive integer from 1 to 255.

The system timing slot has a control pin for PXie_SYNC100 called PXie_SYNC_CTRL for use when $n > 1$. Refer to Table B-6, XP3 Connector Pinout for the System Timing Slot, for system timing slot pinout. Refer to Appendix A, Specifications, for the PXie_SYNC_CTRL input specifications.

By default, a high-level detected by the backplane on the PXie_SYNC_CTRL pin causes a synchronous restart for the PXie_SYNC100 signal. On the next PXI_CLK10 edge the PXie_SYNC100 signal will restart. This will allow several chassis to have their PXie_SYNC100 in phase with each other. Refer to Figure 1-7 for timing details with this method.

Figure 1-7. PXie_SYNC100 at 3.33 MHz Using PXie_SYNC_CTRL as Restart
Installation and Configuration

This chapter describes how to prepare and operate the NI PXIe-1082 chassis.

Before connecting the chassis to a power source, read this chapter and the Read Me First: Safety and Electromagnetic Compatibility document included with your kit.

Safety Information

⚠️ **Caution** Before undertaking any troubleshooting, maintenance, or exploratory procedure, carefully read the following caution notices.

This equipment contains voltage hazardous to human life and safety, and is capable of inflicting personal injury.

- **Chassis Grounding**—The chassis requires a connection from the premise wire safety ground to the chassis ground. The earth safety ground must be connected during use of this equipment to minimize shock hazards. Refer to the Connecting Safety Ground section for instructions on connecting safety ground.

- **Live Circuits**—Operating personnel and service personnel must not remove protective covers when operating or servicing the chassis. Adjustments and service to internal components must be undertaken by qualified service technicians. During service of this product, the mains connector to the premise wiring must be disconnected. Dangerous voltages may be present under certain conditions; use extreme caution.

- **Explosive Atmosphere**—Do not operate the chassis in conditions where flammable gases are present. Under such conditions, this equipment is unsafe and may ignite the gases or gas fumes.

- **Part Replacement**—Only service this equipment with parts that are exact replacements, both electrically and mechanically. Contact National Instruments for replacement part information. Installation of parts with those that are not direct replacements may cause harm to personnel operating the chassis. Furthermore, damage or fire may occur if replacement parts are unsuitable.

- **Modification**—Do not modify any part of the chassis from its original condition. Unsuitable modifications may result in safety hazards.
Chapter 2 Installation and Configuration

Chassis Cooling Considerations

The NI PXIe-1082 chassis is designed to operate on a bench or in an instrument rack. Regardless of the configuration you must provide the cooling clearances as outlined in the following sections.

Providing Adequate Clearance

The primary cooling exhaust vent for the NI PXIe-1082 is on the top of the chassis. The primary intake vent is on the rear of the chassis where the air is filtered as it enters the power supply shuttle. The secondary intake and exhaust vents are located along the sides of the chassis. Adequate clearance between the chassis and surrounding equipment or blockages must be maintained to ensure proper cooling of the chassis power supply as well as the modules plugged into the chassis. These clearances are outlined in Figure 2-1. The vent locations for the NI PXIe-1082 chassis are shown in Figure 2-2. Failure to provide these clearances may result in thermal-related failures in the chassis or modules.

Figure 2-1. NI PXIe-1082 Cooling Clearances

- 1.75 in. (44.45 mm)
- 1.75 in. (44.45 mm)
- 3.00 in. (76.20 mm)

Figure 2-2. NI PXIe-1082 Cooling Clearances
Chassis Ambient Temperature Definition

The chassis fan control system uses intake air temperature as the input for controlling fan speeds when in Auto Fan Speed mode. Because of this, the chassis ambient temperature is defined as the temperature that exists just outside of the fan intake vents on the rear of the chassis. Note that this temperature may be higher than ambient room temperature depending on the surrounding equipment and/or blockages present. It is the user’s responsibility to ensure that this ambient temperature does not exceed the rated ambient temperature as stated in Appendix A, Specifications. If the temperature exceeds the stated spec the power switch LED will blink green, as discussed in the Power Inhibit Switch LED Indicator section of this chapter.
Chapter 2 Installation and Configuration

Setting Fan Speed
The fan-speed selector switch is on the rear panel of the NI PXIe-1082 chassis. Refer to Figure 1-2, *Rear View of the NI PXIe-1082 Chassis*, to locate the fan-speed selector switch. Select **High** for maximum cooling performance or **Auto** for improved acoustic performance. When set to **Auto**, the fan speed is determined by chassis intake air temperature.

Installing Filler Panels
To maintain proper module cooling performance, install filler panels (provided with the chassis) in unused or empty slots. Secure with the captive mounting screws provided.

Installing Slot Blockers
The cooling performance of the chassis can be improved by installing optional slot blockers. Refer to ni.com for more details.

Rack Mounting
Rack mount applications require the optional rack mount kits available from National Instruments. Refer to the instructions supplied with the rack mount kits to install your NI PXIe-1082 chassis in an instrument rack. Refer to Figure A-3, *NI Chassis Rack Mount Kit Components*.

Note You may want to remove the feet from the NI PXIe-1082 chassis when rack mounting. To do so, remove the screws holding the feet in place.

Connecting Safety Ground

Caution The NI PXIe-1082 chassis are designed with a three-position NEMA 5-15 style plug for the U.S. that connects the ground line to the chassis ground. To minimize shock hazard, make sure the electrical power outlet you use to power the chassis has an appropriate earth safety ground.

If your power outlet does not have an appropriate ground connection, you must connect the premise safety ground to the chassis grounding screw located on the rear panel. Refer to Figure 1-2, *Rear View of the NI PXIe-1082 Chassis*, to locate the chassis grounding screw. To connect the safety ground, complete the following steps:

1. Connect a 16 AWG (1.3 mm) wire to the chassis grounding screw using a grounding lug. The wire must have green insulation with a yellow stripe or must be noninsulated (bare).
2. Attach the opposite end of the wire to permanent earth ground using toothed washers or a toothed lug.
Connecting to Power Source

⚠️ **Caution** Do not install modules prior to performing the following power-on test.

To completely remove power, you must disconnect the AC power cable.

Attach input power through the rear AC inlet using the appropriate AC power cable supplied. Refer to Figure 1-2, *Rear View of the NI PXIe-1082 Chassis*, to locate the AC inlet.

The Inhibit Mode switch allows you to power on the chassis or place it in standby mode. Set the Inhibit Mode switch on the back of the chassis to the **Manual** position. Observe that all fans become operational and the power switch LED is a steady green. Switching the Inhibit Mode switch to the **Default** position allows the system controller to control the power supply.

Installing a PXI Express System Controller

This section contains general installation instructions for installing a PXI Express system controller in a NI PXIe-1082 chassis. Refer to your PXI Express system controller user manual for specific instructions and warnings. To install a system controller, complete the following steps:

1. Inspect the slot 1 pins on the chassis backplane for any bending or damage prior to installation.
2. Connect the AC power source to the PXI Express chassis before installing the system controller. The AC power cord grounds the chassis and protects it from electrical damage while you install the system controller.
3. Install the system controller into the system controller slot (slot 1, indicated by the red card guides) by first placing the system controller PCB into the front of the card guides (top and bottom). Slide the system controller to the rear of the chassis, making sure that the injector/ejector handle is pushed down as shown in Figure 2-3.
Chapter 2 Installation and Configuration

Figure 2-3. Installing a PXIe System Controller

4. When you begin to feel resistance, push up on the injector/ejector handle to seat the system controller fully into the chassis frame. Secure the system controller front panel to the chassis using the system controller front-panel mounting screws.

5. Connect the keyboard, mouse, and monitor to the appropriate connectors. Connect devices to ports as required by your system configuration.

6. Power on the chassis. Verify that the system controller boots. If the system controller does not boot, refer to your system controller user manual.
Figure 2-4 shows a PXI Express system controller installed in the system controller slot of a NI PXIe-1082 chassis. You can place CompactPCI, CompactPCI Express, PXI, or PXI Express modules in other slots depending on the slot type.

Figure 2-4. NI PXI Express System Controller Installed in a NI PXIe-1082 Chassis

1. Inspect the slot pins on the chassis backplane for any bending or damage prior to installation.

1. **Caution** The NI PXIe-1082 chassis has been designed to accept a variety of peripheral module types in different slots. To prevent damage to the chassis, ensure that the peripheral module is being installed into a slot designed to accept it. Refer to Chapter 1, *Getting Started*, for a description of the various slot types.

This section contains general installation instructions for installing a peripheral module in a NI PXIe-1082 chassis. Refer to your peripheral module user manual for specific instructions and warnings. To install a module, complete the following steps:

1. Inspect the slot pins on the chassis backplane for any bending or damage prior to installation.
Chapter 2 Installation and Configuration

2. Connect the AC power source to the PXI Express chassis before installing the module. The AC power cord grounds the chassis and protects it from electrical damage while you install the module.

3. Ensure that the chassis is powered off.

4. Install a module into a chassis slot by first placing the module card PCB into the front of the card guides (top and bottom), as shown in Figure 2-5. Slide the module to the rear of the chassis, making sure that the injector/ejector handle is pushed down as shown in Figure 2-5.

5. When you begin to feel resistance, push up on the injector/ejector handle to fully seat the module into the chassis frame. Secure the module front panel to the chassis using the module front-panel mounting screws.

Figure 2-5. Installing PXI, PXI Express, or CompactPCI Peripheral Modules
Power Inhibit Switch LED Indicator

The chassis power inhibit switch has an integrated LED. This LED indicates one of four different conditions:

- If the inhibit switch LED is steady green (not flashing), the chassis is powered on and operating normally.
- If the inhibit switch LED is flashing green, the air-intake temperature has exceeded the chassis operating range.
- If the inhibit switch LED is flashing red, the power supply outputs are not within voltage regulation requirements.
- If the inhibit switch LED is steady red, the system fans or power supply fan has failed. The remaining fans will automatically be driven high.

Note If both system fans or the power supply fan fails the chassis will shut down automatically, preventing the chassis and modules from damage due to overheating.
Remote Voltage Monitoring and Control

The NI PXIe-1082 chassis supports remote voltage monitoring and inhibiting through a female 9-pin D-SUB (DB-9) connector located on the rear panel. Table 2-1 shows the pinout of the 9-pin D-SUB (DB-9) connector.

Table 2-1. Remote Inhibit and Voltage Monitoring Connector Pinout

<table>
<thead>
<tr>
<th>DB-9 Pin</th>
<th>Signal</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Logic Ground</td>
</tr>
<tr>
<td>2</td>
<td>+5 VDC</td>
</tr>
<tr>
<td>3</td>
<td>Reserved</td>
</tr>
<tr>
<td>4</td>
<td>+3.3 VDC</td>
</tr>
<tr>
<td>5</td>
<td>Inhibit (Active Low)</td>
</tr>
<tr>
<td>6</td>
<td>+12 VDC</td>
</tr>
<tr>
<td>7</td>
<td>Reserved</td>
</tr>
<tr>
<td>8</td>
<td>-12 VDC</td>
</tr>
<tr>
<td>9</td>
<td>Logic Ground</td>
</tr>
</tbody>
</table>

Caution When connecting digital voltmeter probes to the rear 9-pin D-SUB (DB-9) connector, be careful not to short the probe leads together. Doing so could damage the power supply.

You can use a digital voltmeter to ensure all voltage levels in the NI PXIe-1082 chassis are within the allowable limits. Referring to Table 2-2, connect one lead of the voltmeter to a supply pin on the remote voltage monitoring connector (9-pin D-SUB) on the rear panel. Refer to Table 2-1 for a pinout diagram of the remote voltage monitoring connector. Connect the reference lead of the voltmeter to one of the ground pins. Compare each voltage reading to the values listed in Table 2-2.

Note Use the rear-panel 9-pin D-SUB connector to check voltages only. Do not use the connector to supply power to external devices.
If the voltages fall within the specified ranges, the chassis complies with the CompactPCI voltage-limit specifications.

Inhibit Mode Switch

On the rear panel of the chassis there is an Inhibit Mode switch. Refer to Figure 1-2, Rear View of the NI PXIe-1082 Chassis, for the location. The Inhibit Mode switch is recessed to prevent it from accidentally being switched.

The Inhibit Mode switch should be in the Default position when normal power inhibit switch functionality is desired. If the user needs to power on a chassis without a system controller installed the switch should be in the Manual position.

When the Inhibit Mode switch is set to the Manual position, the power supplies are enabled, and you can use the Inhibit signal (active low) on pin 5 of the Remote Inhibit and Voltage Monitoring connector to power off the chassis. To remotely power off the chassis, connect the Inhibit pin (pin 5) to a Logic Ground pin (pin 1 or 9). As long as this connection exists, the chassis will remain off (standby); when you remove this connection, the chassis turns on.

>Note For the Remote Inhibit signal to control the On/Off (standby) state of the chassis, the Inhibit Mode switch must be in the Manual position.

PXI_CLK10 Rear Connectors

There are two BNC connectors on the rear of the NI PXIe-1082 chassis for PXI_CLK10. The connectors are labeled IN and OUT. You can use them for supplying the backplane with PXI_CLK10 or routing the backplane’s PXI_CLK10 to another chassis. Refer to the System Reference Clock section of Chapter 1, Getting Started, for details about these signals.

<table>
<thead>
<tr>
<th>Pin</th>
<th>Supply</th>
<th>Acceptable Voltage Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>+5 V</td>
<td>4.75 to 5.25 V</td>
</tr>
<tr>
<td>4</td>
<td>+3.3 V</td>
<td>3.135 to 3.465 V</td>
</tr>
<tr>
<td>6</td>
<td>+12 V</td>
<td>11.4 to 12.6 V</td>
</tr>
<tr>
<td>8</td>
<td>-12 V</td>
<td>-12.6 to -11.4 V</td>
</tr>
<tr>
<td>1, 9</td>
<td>Logic Ground</td>
<td>0 V</td>
</tr>
</tbody>
</table>
Chapter 2 Installation and Configuration

PXI Express System Configuration with MAX

The PXI Platform Services software included with your chassis automatically identifies your PXI Express system components to generate a pxiesys.ini file. You can configure your entire PXI system and identify PXI-1 chassis through Measurement & Automation Explorer (MAX), included with your system controller. MAX creates the pxiesys.ini and pxisys.ini file, which define your PXI system parameters. MAX also provides an interface to route and reserve triggers so dynamic routing, through drivers such as DAQmx, avoids double-driving and potentially damaging trigger lines. For more information about routing and reserving PXI triggers, refer to KnowledgeBase 3TJDOND8 at ni.com/support.

The configuration steps for single or multiple-chassis systems are the same.

Figure 2-6. Multichassis Configuration in MAX

PXI-1 System Configuration

1. Launch MAX.
2. In the Configuration tree, click the Devices and Interfaces branch to expand it.
3. If the PXI system controller has not yet been configured, it is labeled PXI System (Unidentified). Right-click this entry to display the pop-up menu, then select the appropriate system controller model from the Identify As submenu.
4. Click the PXI system controller. The chassis (or multiple chassis, in a multichassis configuration) is listed below it. Identify each chassis by right-clicking its entry, then selecting the appropriate chassis model through the Identify As submenu. Further expanding the PXI System branch shows all devices in the system that can be recognized.
by NI-VISA. When your system controller and all your chassis are identified, the required
pxsys.ini file is complete.

The PXI specification allows for many combinations of PXI chassis and system modules. To
assist system integrators, the manufacturers of PXI chassis and system modules must document
the capabilities of their products. PXI Express devices must provide a driver and .ini file for
identification. These files are provided as part of the PXI Platform Services software included
with your system controller. The minimum documentation requirements for PXI-1 are contained
in .ini files, which consist of ASCII text. System integrators, configuration utilities, and device
drivers can use these .ini files.

The capability documentation for a PXI-1 chassis is contained in a chassis.ini file provided
by the chassis manufacturer. The information in this file is combined with information about
the system controller to create a single PXI-1 system initialization file called pxisys.ini
(PXI System Initialization). The NI system controller uses MAX to generate the pxisys.ini
file from the chassis.ini file.

Device drivers and other utility software read the pxsys.ini and pxisys.ini file to
obtain system information. For detailed information about initialization files, refer to the PXI
specification at www.pxisa.org.

Using System Configuration and Initialization
Files
The PXI Express specification allows many combinations of PXI Express chassis and system
modules. To assist system integrators, the manufacturers of PXI Express chassis and system
modules must document the capabilities of their products. The minimum documentation
requirements are contained in .ini files, which consist of ASCII text. System integrators,
documentation utilities, and device drivers can use these .ini files.

The capability documentation for the NI PXIe-1082 chassis is contained in the chassis.ini
file on the software media that comes with the chassis. The information in this file is combined
with information about the system controller to create a single system initialization file called
pxsys.ini (PXI System Initialization). The system controller manufacturer either provides
a pxisys.ini file for the particular chassis model that contains the system controller or
provides a utility that can read an arbitrary chassis.ini file and generate the corresponding
pxsys.ini file. System controllers from NI provide the pxisys.ini file for the
NI PXIe-1082 chassis, so you should not need to use the chassis.ini file. Refer to the
documentation provided with the system controller or to ni.com/support for more
information on pxisys.ini and chassis.ini files.

Device drivers and other utility software read the pxsys.ini file to obtain system
information. The device drivers should have no need to directly read the chassis.ini file.
For detailed information regarding initialization files, refer to the PXI Express specification at
www.pxisa.org.
Maintenance

This chapter describes basic maintenance procedures you can perform on the NI PXIe-1082 chassis.

⚠️ **Caution** Disconnect the power cable prior to servicing a NI PXIe-1082 chassis.

Service Interval

Clean the chassis fan filters at a maximum interval of six months. Depending on the amount of use and ambient dust levels in the operating environment, the filters may require more frequent cleaning.

Clean dust from the chassis exterior (and interior) as needed, based on the operating environment. Periodic cleaning increases reliability and cooling performance.

Preparation

The information in this section is designed for use by qualified service personnel. Read the *Read Me First: Safety and Electromagnetic Compatibility* document included with your kit before attempting any procedures in this chapter.

⚠️ **Caution** Many components within the chassis are susceptible to static discharge damage. Service the chassis only in a static-free environment. Observe standard handling precautions for static-sensitive devices while servicing the chassis. Always wear a grounded wrist strap or equivalent while servicing the chassis.

Cleaning

Cleaning procedures consist of exterior and interior cleaning of the chassis and cleaning the fan filters. Refer to your module user documentation for information on cleaning the individual CompactPCI or PXI Express modules.

⚠️ **Caution** Always disconnect the AC power cable before cleaning or servicing the chassis.

Interior Cleaning

Use a dry, low-velocity stream of air to clean the interior of the chassis. Use a soft-bristle brush for cleaning around components.
Chapter 3 Maintenance

Exterior Cleaning
Clean the exterior surfaces of the chassis with a dry lint-free cloth or a soft-bristle brush. If any dirt remains, wipe with a cloth moistened in a mild soap solution. Remove any soap residue by wiping with a cloth moistened with clear water. Do not use abrasive compounds on any part of the chassis.

⚠️ Caution Avoid getting moisture inside the chassis during exterior cleaning, especially through the top vents. Use just enough moisture to dampen the cloth.

Do not wash the front- or rear-panel connectors or switches. Cover these components while cleaning the chassis.

Do not use harsh chemical cleaning agents; they may damage the chassis. Avoid chemicals that contain benzene, toluene, xylene, acetone, or similar solvents.

Cleaning the Fan Filters
Dirty fan filters can dramatically affect the cooling performance of a NI PXIe-1082 chassis. Clean the filters whenever they become visibly dirty. You can easily remove the chassis air filters from the rear of the chassis by removing the filter retainer. To remove the filter retainer, loosen the retainer screw. The filter cover and retainer are shown in Figure 1-2, *Rear View of the NI PXIe-1082 Chassis*.

Clean the fan filters by washing them in a mild soap solution and then vacuuming or blowing air through them. Rinse the filters with water and allow them to dry before reinstalling them on the chassis.

Resetting the AC Mains Circuit Breaker
If the NI PXIe-1082 chassis is connected to an AC source and encounters an over-current condition, the circuit breaker on the rear panel will trip to prevent damage to the chassis. Complete the following steps to reset the circuit breaker.
1. Turn off the chassis.
2. Disconnect the AC power cable.
3. Depress the circuit breaker to reset it.
4. Reconnect the AC power cable.
5. Turn on the chassis.

If the circuit breaker trips again, complete the following steps:

1. Turn off the chassis.
2. Disconnect the AC power cable.
3. Remove all modules from the chassis.
4. Complete the procedure described in the Connecting to Power Source section of Chapter 2, Installation and Configuration. If the power switch LED is not a steady green, contact National Instruments.

5. Verify that the NI PXIe-1082 chassis can meet the power requirements of your CompactPCI or PXI Express modules. Overloading the chassis can cause the breaker to trip. Refer to Appendix A, Specifications.

6. The over-current condition that caused the circuit breaker to trip may be due to a faulty CompactPCI or PXI Express module. Refer to the documentation supplied with the modules for troubleshooting information.

Replacing the Modular Power Supply

This section describes how to remove, configure, and install the AC power supply shuttle in the NI PXIe-1082 chassis. For more information, refer to the NI PXIe-1082 Power Supply Shuttle User Guide included with your replacement power supply shuttle module.

⚠️ **Caution** Disconnect the power cable prior to replacing the power supply.

Do not attempt to use a power supply shuttle from another chassis such as the NI PXI-1042 or NI PXIe-1062. Doing so may damage your chassis and the power supply shuttle.

Before connecting the power supply shuttle to a power source, read this section and the Read Me First: Safety and Electromagnetic Compatibility document included with the kit.

Removal

The NI PXIe-1082 AC power supply is a replacement part for the NI PXIe-1082 AC chassis. Before attempting to replace the power supply shuttle, verify that there is adequate clearance behind the chassis. Disconnect the power cable from the power supply shuttle on the back of the chassis. Identify the eight mounting screws for the NI PXIe-1082 that attach the power supply shuttle to the chassis. Refer to Figure 1-2, Rear View of the NI PXIe-1082 Chassis, for the screw locations. Using a Phillips screwdriver, remove the screws. Pull on the two rear handles of the power supply shuttle to remove it from the back of the chassis.

Installation

Ensure that there is no visible damage to the new power supply shuttle. Verify that the housing and connector on the new power supply shuttle have no foreign material inside. Remove the protective cap on the PXI_CLK10 connector. Install the new power supply shuttle into the opening on the rear of the chassis. Replace and tighten the eight screws with a Phillips screwdriver.
Configuration

The fan-speed selector switch is on the rear panel of the power supply shuttle. Refer to Figure 1-2, *Rear View of the NI PXIe-1082 Chassis*, to locate the fan-speed selector. Select **High** for maximum cooling performance (recommended) or **Auto** for quieter operation. Set the Inhibit Mode switch to the **Default** position.

Connecting Safety Ground

Refer to the *Connecting Safety Ground* section of Chapter 2, *Installation and Configuration*.

Connecting to Power Source

Refer to the *Connecting to Power Source* section of Chapter 2, *Installation and Configuration*.
Specifications

This appendix contains specifications for the NI PXIe-1082 chassis.

⚠️ **Caution** Specifications are subject to change without notice.

Electrical

AC Input

<table>
<thead>
<tr>
<th>Specification</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input voltage range</td>
<td>100 to 240 VAC</td>
</tr>
<tr>
<td>Operating voltage range¹</td>
<td>90 to 264 VAC</td>
</tr>
<tr>
<td>Input frequency</td>
<td>50/60 Hz</td>
</tr>
<tr>
<td>Operating frequency range¹</td>
<td>47 to 63 Hz</td>
</tr>
<tr>
<td>Input current rating</td>
<td>8 to 4 A</td>
</tr>
<tr>
<td>Over-current protection</td>
<td>10 A circuit breaker</td>
</tr>
<tr>
<td>Line regulation</td>
<td></td>
</tr>
<tr>
<td>3.3 V</td>
<td><±0.2%</td>
</tr>
<tr>
<td>5 V</td>
<td><±0.1%</td>
</tr>
<tr>
<td>±12 V</td>
<td><±0.1%</td>
</tr>
<tr>
<td>Efficiency</td>
<td>70% typical</td>
</tr>
<tr>
<td>Power disconnect</td>
<td>The AC power cable provides main power disconnect. The front-panel power switch causes the internal chassis power supply to provide DC power to the CompactPCI/PXI Express backplane. You also can use the rear-panel D-SUB 9-pin connector and power mode switch to control the internal chassis power supply.</td>
</tr>
</tbody>
</table>

¹ The operating range is guaranteed by design.
Appendix A Specifications

DC Output

DC current capacity (I_{MP})

<table>
<thead>
<tr>
<th>Voltage</th>
<th>Maximum Current</th>
</tr>
</thead>
<tbody>
<tr>
<td>+3.3 V</td>
<td>32 A</td>
</tr>
<tr>
<td>+5 V</td>
<td>27 A</td>
</tr>
<tr>
<td>+12 V</td>
<td>32 A</td>
</tr>
<tr>
<td>-12 V</td>
<td>2.0 A</td>
</tr>
<tr>
<td>5 V_{AUX}</td>
<td>2.0 A</td>
</tr>
</tbody>
</table>

Note Maximum total usable power is 420 W.

Backplane slot current capacity

<table>
<thead>
<tr>
<th>Slot</th>
<th>+5 V</th>
<th>V(I/O)</th>
<th>+3.3 V</th>
<th>+12 V</th>
<th>-12 V</th>
<th>5 V_{AUX}</th>
</tr>
</thead>
<tbody>
<tr>
<td>System Controller Slot</td>
<td>15 A</td>
<td>—</td>
<td>15 A</td>
<td>30 A</td>
<td>—</td>
<td>1 A</td>
</tr>
<tr>
<td>System Timing Slot</td>
<td>—</td>
<td>—</td>
<td>6 A</td>
<td>4 A</td>
<td>—</td>
<td>1 A</td>
</tr>
<tr>
<td>Hybrid Peripheral Slot with PXI-1 Peripheral</td>
<td>6 A</td>
<td>5 A</td>
<td>6 A</td>
<td>1 A</td>
<td>1 A</td>
<td>—</td>
</tr>
<tr>
<td>Hybrid Peripheral Slot with PXI-5 Peripheral</td>
<td>—</td>
<td>—</td>
<td>6 A</td>
<td>4 A</td>
<td>—</td>
<td>1 A</td>
</tr>
</tbody>
</table>

Note Total system slot current should not exceed 45 A.

PCI V(I/O) pins in hybrid slots are connected to +5 V.

The maximum power dissipated in the system slot should not exceed 140 W.

The maximum power dissipated in a peripheral slot should not exceed 38.25 W.
Load regulation

<table>
<thead>
<tr>
<th>Voltage</th>
<th>Load Regulation</th>
</tr>
</thead>
<tbody>
<tr>
<td>+3.3 V</td>
<td><5%</td>
</tr>
<tr>
<td>+12 V</td>
<td><5%</td>
</tr>
<tr>
<td>+5 V</td>
<td><5%</td>
</tr>
<tr>
<td>-12 V</td>
<td><5%</td>
</tr>
</tbody>
</table>

Maximum ripple and noise (20 MHz bandwidth)

<table>
<thead>
<tr>
<th>Voltage</th>
<th>Maximum Ripple and Noise</th>
</tr>
</thead>
<tbody>
<tr>
<td>+3.3 V</td>
<td>50 mV<sub>pp</sub></td>
</tr>
<tr>
<td>+12 V</td>
<td>50 mV<sub>pp</sub></td>
</tr>
<tr>
<td>+5 V</td>
<td>50 mV<sub>pp</sub></td>
</tr>
<tr>
<td>-12 V</td>
<td>50 mV<sub>pp</sub></td>
</tr>
</tbody>
</table>

Over-current protection
All outputs protected from short circuit and overload with automatic recovery

Over-voltage protection 3.3 V and 5 V
Clamped at 20 to 30% above nominal output voltage

Power supply shuttle MTTR
Replacement in under 5 minutes

Chassis Cooling

Module cooling system
Forced air circulation (positive pressurization) through two 110 cfm fans with High/Auto speed selector

Slot airflow direction
Bottom of module to top of module

Module cooling intake
Bottom rear of chassis

Module cooling exhaust
Along both sides and top of chassis

Power supply cooling system
Forced air circulation through integrated fan

Power supply cooling intake
Right side of chassis

Power supply cooling exhaust
Left side of chassis
Appendix A Specifications

Environmental

<table>
<thead>
<tr>
<th>Specification</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum altitude</td>
<td>2,000 m (800 mbar) (at 25 °C ambient)</td>
</tr>
<tr>
<td>Pollution Degree</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>For indoor use only.</td>
</tr>
</tbody>
</table>

Operating Environment

<table>
<thead>
<tr>
<th>Specification</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ambient temperature range</td>
<td>0 to 55 °C (Tested in accordance with IEC 60068-2-1 and IEC 60068-2-2. Meets MIL-PRF-28800F Class 3 low temperature limit and MIL-PRF-28800F Class 2 high temperature limit.)</td>
</tr>
<tr>
<td>Relative humidity range</td>
<td>10 to 90%, noncondensing (Tested in accordance with IEC 60068-2-56.)</td>
</tr>
</tbody>
</table>

Storage Environment

<table>
<thead>
<tr>
<th>Specification</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ambient temperature range</td>
<td>-40 to 71 °C (Tested in accordance with IEC 60068-2-1 and IEC 60068-2-2. Meets MIL-PRF-28800F Class 3 limits.)</td>
</tr>
<tr>
<td>Relative humidity range</td>
<td>5 to 95%, noncondensing (Tested in accordance with IEC 60068-2-56.)</td>
</tr>
</tbody>
</table>

Shock and Vibration

<table>
<thead>
<tr>
<th>Specification</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operational shock</td>
<td>30 g peak, half-sine, 11 ms pulse (Tested in accordance with IEC 60068-2-27. Meets MIL-PRF-28800F Class 2 limits.)</td>
</tr>
<tr>
<td>Random vibration</td>
<td>5 to 500 Hz, 0.3 g<sub>rms</sub></td>
</tr>
<tr>
<td>Non-operating</td>
<td>5 to 500 Hz, 2.4 g<sub>rms</sub> (Tested in accordance with IEC 60068-2-64. Nonoperating test profile exceeds the requirements of MIL-PRF-28800F, Class 3.)</td>
</tr>
</tbody>
</table>
Acoustic Emissions

Sound Pressure Level (at Operator Position)
(Tested in accordance with ISO 7779. Meets MIL-PRF-28800F requirements.)

<table>
<thead>
<tr>
<th>Condition</th>
<th>Level (dBA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Auto fan (up to ~30 °C ambient)</td>
<td>43.6</td>
</tr>
<tr>
<td>High fan</td>
<td>62</td>
</tr>
</tbody>
</table>

Sound Power

<table>
<thead>
<tr>
<th>Condition</th>
<th>Level (dBA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Auto fan (up to ~30 °C ambient)</td>
<td>52.8</td>
</tr>
<tr>
<td>High fan</td>
<td>72</td>
</tr>
</tbody>
</table>

Note Specifications are subject to change without notice.

Safety

This product is designed to meet the requirements of the following standards of safety for information technology equipment:

- IEC 61010-1, EN 61010-1
- UL 61010-1, CSA 61010-1

Note For UL and other safety certifications, refer to the product label or the Online Product Certification section.

Electromagnetic Compatibility

This product meets the requirements of the following EMC standards for electrical equipment for measurement, control, and laboratory use:

- EN 61326 (IEC 61326): Class A emissions; Basic immunity
- EN 55011 (CISPR 11): Group 1, Class A emissions
- AS/NZS CISPR 11: Group 1, Class A emissions
- FCC 47 CFR Part 15B: Class A emissions
- ICES-001: Class A emissions

Note For the standards applied to assess the EMC of this product, refer to the Online Product Certification section.

Note For EMC compliance, operate this device with shielded cabling.
Appendix A Specifications

CE Compliance

This product meets the essential requirements of applicable European Directives as follows:
• 2006/95/EC; Low-Voltage Directive (safety)
• 2004/108/EC; Electromagnetic Compatibility Directive (EMC)

Online Product Certification

Refer to the product Declaration of Conformity (DoC) for additional regulatory compliance information. To obtain product certifications and the DoC for this product, visit ni.com/certification, search by model number or product line, and click the appropriate link in the Certification column.

Environmental Management

NI is committed to designing and manufacturing products in an environmentally responsible manner. NI recognizes that eliminating certain hazardous substances from our products is beneficial to the environment and to NI customers.

For additional environmental information, refer to the Minimize Our Environmental Impact webpage at ni.com/environment. This page contains the environmental regulations and directives with which NI complies, as well as other environmental information not included in this document.

Waste Electrical and Electronic Equipment (WEEE)

EU Customers

At the end of the product life cycle, all products must be sent to a WEEE recycling center. For more information about WEEE recycling centers, National Instruments WEEE initiatives, and compliance with WEEE Directive 2002/96/EC on Waste and Electronic Equipment, visit ni.com/environment/weee.

电子信息产品污染控制管理办法（中国 RoHS）

中国客户

National Instruments 符合中国电子信息产品中限制使用某些有害物质指令 (RoHS), 关于 National Instruments 中国 RoHS 合规性信息，请登录 ni.com/environment/rohs_china. (For information about China RoHS compliance, go to ni.com/environment/rohs_china.)

Backplane

| Size | 3U-sized; one system slot (with three system expansion slots) and seven peripheral slots. Compliant with IEEE 1101.10 mechanical packaging. PXI Express Specification compliant. Accepts both PXI Express and CompactPCI (PICMG 2.0 R 3.0) 3U modules. |

A-6 | ni.com
Backplane bare-board material	UL 94 V-0 Recognized
Backplane connectors | Conforms to IEC 917 and IEC 1076-4-101, and are UL 94 V-0 rated

System Synchronization Clocks
(PXI_CLK10, PXIe_CLK100, PXIe_SYNC100)

10 MHz System Reference Clock: PXI_CLK10

<table>
<thead>
<tr>
<th>Specification</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum slot-to-slot skew</td>
<td>500 ps</td>
</tr>
<tr>
<td>Accuracy</td>
<td>±25 ppm max (guaranteed over the operating temperature range)</td>
</tr>
<tr>
<td>Maximum jitter</td>
<td>5 ps RMS phase-jitter (10 Hz to 1 MHz range)</td>
</tr>
<tr>
<td>Duty-factor</td>
<td>45% to 55%</td>
</tr>
<tr>
<td>Unloaded signal swing</td>
<td>3.3 V ±0.3 V</td>
</tr>
</tbody>
</table>

⚠️ **Note** For other specifications refer to the *PXI-1 Hardware Specification*.

100 MHz System Reference Clock: PXIe_CLK100 and PXIe_SYNC100

<table>
<thead>
<tr>
<th>Specification</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum slot-to-slot skew</td>
<td>100 ps</td>
</tr>
<tr>
<td>Accuracy</td>
<td>±25 ppm max (guaranteed over the operating temperature range)</td>
</tr>
<tr>
<td>Maximum jitter</td>
<td>3 ps RMS phase-jitter (10 Hz to 12 kHz range)</td>
</tr>
<tr>
<td>Duty-factor for PXIe_CLK100</td>
<td>45% to 55%</td>
</tr>
<tr>
<td>Absolute differential voltage (When terminated with a 50 Ω load to 1.30 V or Thévenin equivalent)</td>
<td>400 to 1000 mV</td>
</tr>
</tbody>
</table>

⚠️ **Note** For other specifications refer to the *PXI-5 PXI Express Hardware Specification*.
Appendix A Specifications

External 10 MHz Reference Out (BNC on rear panel of chassis)

<table>
<thead>
<tr>
<th>Specification</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accuracy</td>
<td>±25 ppm max (guaranteed over the operating temperature range)</td>
</tr>
<tr>
<td>Maximum jitter</td>
<td>5 ps RMS phase-jitter (10 Hz to 1 MHz range)</td>
</tr>
<tr>
<td>Output amplitude</td>
<td>1 (V_{pp}) ±20% square-wave into 50 (\Omega)</td>
</tr>
<tr>
<td></td>
<td>2 (V_{pp}) unloaded</td>
</tr>
<tr>
<td>Output impedance</td>
<td>50 (\Omega) ±5 (\Omega)</td>
</tr>
</tbody>
</table>

External Clock Source

<table>
<thead>
<tr>
<th>Specification</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency</td>
<td>10 MHz ±100 PPM</td>
</tr>
<tr>
<td>Input amplitude</td>
<td></td>
</tr>
<tr>
<td>Rear panel BNC</td>
<td>200 m(V_{pp}) to 5 (V_{pp}) square-wave or sine-wave</td>
</tr>
<tr>
<td>System timing slot PXI_CLK10_IN</td>
<td>5 V or 3.3 V TTL signal</td>
</tr>
<tr>
<td>Rear panel BNC input impedance</td>
<td>50 (\Omega) ±5 (\Omega)</td>
</tr>
<tr>
<td>Maximum jitter introduced by backplane</td>
<td>1 ps RMS phase-jitter (10 Hz to 1 MHz range)</td>
</tr>
</tbody>
</table>

PXIe_SYNC_CTRL

<table>
<thead>
<tr>
<th>Specification</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>(V_{IH})</td>
<td>2.0 to 5.5 V</td>
</tr>
<tr>
<td>(V_{IL})</td>
<td>0 to 0.8 V</td>
</tr>
</tbody>
</table>

PXI Star Trigger

<table>
<thead>
<tr>
<th>Specification</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum slot-to-slot skew</td>
<td>250 ps</td>
</tr>
<tr>
<td>Backplane characteristic impedance</td>
<td>65 (\Omega) ±10%</td>
</tr>
</tbody>
</table>

Note For PXI slot to PXI Star mapping refer to the *System Timing Slot* section of Chapter 1, *Getting Started*.

For other specifications refer to the *PXI-1 Hardware Specification*.
PXI Differential Star Triggers (PXIe-DSTARA, PXIe-DSTARB, PXIe-DSTARC)

<table>
<thead>
<tr>
<th>Specification</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum slot-to-slot skew</td>
<td>150 ps</td>
</tr>
<tr>
<td>Maximum differential skew</td>
<td>25 ps</td>
</tr>
<tr>
<td>Backplane differential impedance</td>
<td>100 Ω ±10%</td>
</tr>
</tbody>
</table>

Note For PXIe slot to PXI_DSTAR mapping refer to the *System Timing Slot* section of Chapter 1, *Getting Started*.

For other specifications, the NI PXIe-1082 complies with the *PXI-5 PXI Express Hardware Specification*.

Mechanical

Overall dimensions

<table>
<thead>
<tr>
<th>Dimension</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard chassis</td>
<td></td>
</tr>
<tr>
<td>Height</td>
<td>6.97 in. (177.1 mm)</td>
</tr>
<tr>
<td>Width</td>
<td>10.68 in. (271.4 mm)</td>
</tr>
<tr>
<td>Depth</td>
<td>15.61 in. (396.5 mm)</td>
</tr>
</tbody>
</table>

Note 0.57 in. (14.5 mm) is added to height when feet are installed. When tilted with front feet extended on table top, height is increased approximately 2.08 in. (52.8 mm) in front and 0.583 in. (14.8 mm) in rear.

<table>
<thead>
<tr>
<th>Specification</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weight</td>
<td>19.4 lb (8.8 kg)</td>
</tr>
</tbody>
</table>

| Chassis materials | Sheet Aluminum (5052-H32, 3003-H14, and 6061-T6), Extruded Aluminum (6060-T6), and Cold Rolled Steel, PC-ABS, Santoprene, Nylon |

| Finish | Conductive Clear Iridite on Aluminum Clear Chromate Zinc Plating on Cold Rolled Steel Polyurethane Enamel |
Figures A-1 and A-2 show the NI PXIe-1082 chassis dimensions. The holes shown are for the installation of the optional rack mount kits. You can install those kits on the front or rear of the chassis, depending on which end of the chassis you want to face toward the front of the instrument cabinet. Notice that the front and rear chassis mounting holes (size M4) are symmetrical.

Figure A-1. NI PXIe-1082 Chassis Dimensions (Front and Side)
Figure A-2. NI PXIe-1082 Chassis Dimensions (Bottom)

12.700 in. (322.58 mm)
1.01 in.
(25.7 mm)

1.02 in.
(25.8 mm)

8.650 in.
(219.7 mm)
Appendix A Specifications

Figure A-3 shows the chassis rack mount kit components.

Figure A-3. NI Chassis Rack Mount Kit Components

1. Front Rack Mount Kit
2. NI Chassis
3. Optional Rear Rack Mount Kit

Note The chassis shown in Figure A-3 is representative of the NI PXI-1042/NI PXIe-1062Q/NI PXIe-1082 product lines.
This appendix describes the connector pinouts for the NI PXIe-1082 chassis backplane.

Table B-1 shows the XP1 Connector Pinout for the System Controller slot.
Table B-2 shows the XP2 Connector Pinout for the System Controller slot.
Table B-3 shows the XP3 Connector Pinout for the System Controller slot.
Table B-4 shows the XP4 Connector Pinout for the System Controller slot.
Table B-5 shows the TP2 Connector Pinout for the System Timing slot.
Table B-6 shows the XP3 Connector Pinout for the System Timing slot.
Table B-7 shows the XP4 Connector Pinout for the System Timing slot.
Table B-8 shows the P1 Connector Pinout for the Hybrid peripheral slots.
Table B-9 shows the XP3 Connector Pinout for the Hybrid peripheral slots.
Table B-10 shows the XP4 Connector Pinout for the Hybrid peripheral slots.

For more detailed information, refer to the PXI-5 PXI Express Hardware Specification, Revision 2.0. Contact the PXI Systems Alliance for a copy of the specification.

System Controller Slot Pinouts

Table B-1. XP1 Connector Pinout for the System Controller Slot

<table>
<thead>
<tr>
<th>Pins</th>
<th>Signals</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>GND</td>
</tr>
<tr>
<td>B</td>
<td>3.3V</td>
</tr>
<tr>
<td>C</td>
<td>5V</td>
</tr>
<tr>
<td>D</td>
<td>GND</td>
</tr>
<tr>
<td>E</td>
<td>12V</td>
</tr>
</tbody>
</table>
Table B-1. XP1 Connector Pinout for the System Controller Slot (Continued)

<table>
<thead>
<tr>
<th>Pins</th>
<th>Signals</th>
</tr>
</thead>
<tbody>
<tr>
<td>F</td>
<td>12V</td>
</tr>
<tr>
<td>G</td>
<td>GND</td>
</tr>
</tbody>
</table>

Table B-2. XP2 Connector Pinout for the System Controller Slot

<table>
<thead>
<tr>
<th>Pin</th>
<th>A</th>
<th>B</th>
<th>ab</th>
<th>C</th>
<th>D</th>
<th>cd</th>
<th>E</th>
<th>F</th>
<th>ef</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3PETp1</td>
<td>3PETn1</td>
<td>GND</td>
<td>3PERp1</td>
<td>3PERn1</td>
<td>GND</td>
<td>3PETp2</td>
<td>3PETn2</td>
<td>GND</td>
</tr>
<tr>
<td>2</td>
<td>3PETp3</td>
<td>3PETn3</td>
<td>GND</td>
<td>3PERp3</td>
<td>3PERn3</td>
<td>GND</td>
<td>3PETp2</td>
<td>3PETn2</td>
<td>GND</td>
</tr>
<tr>
<td>3</td>
<td>4PETp0</td>
<td>4PETn0</td>
<td>GND</td>
<td>4PERp0</td>
<td>4PERn0</td>
<td>GND</td>
<td>4PETp1</td>
<td>4PETn1</td>
<td>GND</td>
</tr>
<tr>
<td>4</td>
<td>4PETp2</td>
<td>4PETn2</td>
<td>GND</td>
<td>4PERp2</td>
<td>4PERn2</td>
<td>GND</td>
<td>4PERp1</td>
<td>4PERn1</td>
<td>GND</td>
</tr>
<tr>
<td>5</td>
<td>4PETp3</td>
<td>4PETn3</td>
<td>GND</td>
<td>4PERp3</td>
<td>4PERn3</td>
<td>GND</td>
<td>RSV</td>
<td>RSV</td>
<td>GND</td>
</tr>
<tr>
<td>6</td>
<td>RSV</td>
<td>RSV</td>
<td>GND</td>
<td>RSV</td>
<td>GND</td>
<td>RSV</td>
<td>RSV</td>
<td>RSV</td>
<td>GND</td>
</tr>
<tr>
<td>7</td>
<td>RSV</td>
<td>RSV</td>
<td>GND</td>
<td>RSV</td>
<td>GND</td>
<td>RSV</td>
<td>RSV</td>
<td>RSV</td>
<td>GND</td>
</tr>
<tr>
<td>8</td>
<td>RSV</td>
<td>RSV</td>
<td>GND</td>
<td>RSV</td>
<td>GND</td>
<td>RSV</td>
<td>RSV</td>
<td>RSV</td>
<td>GND</td>
</tr>
<tr>
<td>9</td>
<td>RSV</td>
<td>RSV</td>
<td>GND</td>
<td>RSV</td>
<td>GND</td>
<td>RSV</td>
<td>RSV</td>
<td>RSV</td>
<td>GND</td>
</tr>
<tr>
<td>10</td>
<td>RSV</td>
<td>RSV</td>
<td>GND</td>
<td>RSV</td>
<td>GND</td>
<td>RSV</td>
<td>RSV</td>
<td>RSV</td>
<td>GND</td>
</tr>
</tbody>
</table>
Table B-3. XP3 Connector Pinout for the System Controller Slot

<table>
<thead>
<tr>
<th>Pin</th>
<th>A</th>
<th>B</th>
<th>ab</th>
<th>C</th>
<th>D</th>
<th>cd</th>
<th>E</th>
<th>F</th>
<th>ef</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>RSV</td>
<td>RSV</td>
<td>GND</td>
<td>RSV</td>
<td>RSV</td>
<td>GND</td>
<td>RSV</td>
<td>RSV</td>
<td>GND</td>
</tr>
<tr>
<td>2</td>
<td>RSV</td>
<td>RSV</td>
<td>GND</td>
<td>PWR_</td>
<td>PS_ON</td>
<td>GND</td>
<td>LINKC</td>
<td>PWRB</td>
<td>GND</td>
</tr>
<tr>
<td>3</td>
<td>SMB</td>
<td>SMB</td>
<td>DAT</td>
<td>CLK</td>
<td>4Ref</td>
<td>4Ref</td>
<td>Clk+</td>
<td>Clk-</td>
<td>2Ref</td>
</tr>
<tr>
<td>4</td>
<td>RSV</td>
<td>PER</td>
<td>ST#</td>
<td>GND</td>
<td>3Ref</td>
<td>3Ref</td>
<td>Clk+</td>
<td>Clk-</td>
<td>1Ref</td>
</tr>
<tr>
<td>5</td>
<td>1PETp0</td>
<td>1PETn0</td>
<td>GND</td>
<td>1PERp0</td>
<td>1PERn0</td>
<td>GND</td>
<td>1PETp1</td>
<td>1PETn1</td>
<td>GND</td>
</tr>
<tr>
<td>6</td>
<td>1PETp2</td>
<td>1PETn2</td>
<td>GND</td>
<td>1PERp2</td>
<td>1PERn2</td>
<td>GND</td>
<td>1PERp1</td>
<td>1PERn1</td>
<td>GND</td>
</tr>
<tr>
<td>7</td>
<td>1PETp3</td>
<td>1PETn3</td>
<td>GND</td>
<td>1PERp3</td>
<td>1PERn3</td>
<td>GND</td>
<td>1PETp0</td>
<td>1PETn0</td>
<td>GND</td>
</tr>
<tr>
<td>8</td>
<td>2PETp1</td>
<td>2PETn1</td>
<td>GND</td>
<td>2PERp1</td>
<td>2PERn1</td>
<td>GND</td>
<td>2PETp0</td>
<td>2PETn0</td>
<td>GND</td>
</tr>
<tr>
<td>9</td>
<td>2PETp2</td>
<td>2PETn2</td>
<td>GND</td>
<td>2PERp2</td>
<td>2PERn2</td>
<td>GND</td>
<td>2PETp3</td>
<td>2PETn3</td>
<td>GND</td>
</tr>
<tr>
<td>10</td>
<td>3PETp0</td>
<td>3PETn0</td>
<td>GND</td>
<td>3PERp0</td>
<td>3PERn0</td>
<td>GND</td>
<td>2PERp3</td>
<td>2PERn3</td>
<td>GND</td>
</tr>
</tbody>
</table>

Table B-4. XP4 Connector Pinout for the System Controller Slot

<table>
<thead>
<tr>
<th>Pin</th>
<th>Z</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>GND</td>
<td>GA4</td>
<td>GA3</td>
<td>GA2</td>
<td>GA1</td>
<td>GA0</td>
<td>GND</td>
</tr>
<tr>
<td>2</td>
<td>GND</td>
<td>5Vaux</td>
<td>GND</td>
<td>SYSEN#</td>
<td>WAKE#</td>
<td>ALERT#</td>
<td>GND</td>
</tr>
<tr>
<td>3</td>
<td>GND</td>
<td>RSV</td>
<td>RSV</td>
<td>RSV</td>
<td>RSV</td>
<td>RSV</td>
<td>GND</td>
</tr>
<tr>
<td>4</td>
<td>GND</td>
<td>RSV</td>
<td>RSV</td>
<td>RSV</td>
<td>RSV</td>
<td>RSV</td>
<td>GND</td>
</tr>
<tr>
<td>5</td>
<td>GND</td>
<td>PXI_TRIG3</td>
<td>PXI_TRIG4</td>
<td>PXI_TRIG5</td>
<td>GND</td>
<td>PXI_TRIG6</td>
<td>GND</td>
</tr>
<tr>
<td>6</td>
<td>GND</td>
<td>PXI_TRIG2</td>
<td>GND</td>
<td>RS V</td>
<td>PXI_STAR</td>
<td>PXI_CLK10</td>
<td>GND</td>
</tr>
<tr>
<td>7</td>
<td>GND</td>
<td>PXI_TRIG1</td>
<td>PXI_TRIG0</td>
<td>RS V</td>
<td>PXI_TRIG7</td>
<td>GND</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>GND</td>
<td>RSV</td>
<td>GND</td>
<td>RS V</td>
<td>PXI_LBR6</td>
<td>GND</td>
<td></td>
</tr>
</tbody>
</table>
System Timing Slot Pinouts

Table B-5. TP2 Connector Pinout for the System Timing Slot

<table>
<thead>
<tr>
<th>Pin</th>
<th>A</th>
<th>B</th>
<th>ab</th>
<th>C</th>
<th>D</th>
<th>cd</th>
<th>E</th>
<th>F</th>
<th>ef</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>PXIe_DS</td>
<td>PXIe_DS</td>
<td>GND</td>
<td>PXIe_DS</td>
<td>PXIe_DS</td>
<td>GND</td>
<td>PXIe_DS</td>
<td>PXIe_DS</td>
<td>GND</td>
</tr>
<tr>
<td></td>
<td>TARC0+</td>
<td>TARC0-</td>
<td></td>
<td>TARC8+</td>
<td>TARC8-</td>
<td></td>
<td>TARB8+</td>
<td>TARB8-</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>PXIe_DS</td>
<td>PXIe_DS</td>
<td>GND</td>
<td>PXIe_DS</td>
<td>PXIe_DS</td>
<td>GND</td>
<td>PXIe_DS</td>
<td>PXIe_DS</td>
<td>GND</td>
</tr>
<tr>
<td></td>
<td>TARA0+</td>
<td>TARA0-</td>
<td></td>
<td>TARC9+</td>
<td>TARC9-</td>
<td></td>
<td>TARA8+</td>
<td>TARA8-</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>PXIe_DS</td>
<td>PXIe_DS</td>
<td>GND</td>
<td>PXIe_DS</td>
<td>PXIe_DS</td>
<td>GND</td>
<td>PXIe_DS</td>
<td>PXIe_DS</td>
<td>GND</td>
</tr>
<tr>
<td></td>
<td>TARB0+</td>
<td>TARB0-</td>
<td></td>
<td>TARC1+</td>
<td>TARC1-</td>
<td></td>
<td>TARA9+</td>
<td>TARA9-</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>PXIe_DS</td>
<td>PXIe_DS</td>
<td>GND</td>
<td>PXI_</td>
<td>PXI_</td>
<td>GND</td>
<td>PXIe_DS</td>
<td>PXIe_DS</td>
<td>GND</td>
</tr>
<tr>
<td></td>
<td>TARB1+</td>
<td>TARB1-</td>
<td>STAR0</td>
<td>STAR0</td>
<td>STAR1</td>
<td></td>
<td>TARB9+</td>
<td>TARB9-</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>PXIe_DS</td>
<td>PXIe_DS</td>
<td>GND</td>
<td>PXI_</td>
<td>PXI_</td>
<td>GND</td>
<td>PXIe_DS</td>
<td>PXIe_DS</td>
<td>GND</td>
</tr>
<tr>
<td></td>
<td>TARA1+</td>
<td>TARA1-</td>
<td>STAR2</td>
<td>STAR2</td>
<td>STAR3</td>
<td></td>
<td>TARC10</td>
<td>TARC10</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>PXIe_DS</td>
<td>PXIe_DS</td>
<td>GND</td>
<td>PXI_</td>
<td>PXI_</td>
<td>GND</td>
<td>PXIe_DS</td>
<td>PXIe_DS</td>
<td>GND</td>
</tr>
<tr>
<td></td>
<td>TARC2+</td>
<td>TARC2-</td>
<td>STAR4</td>
<td>STAR4</td>
<td>STAR5</td>
<td></td>
<td>TARA10</td>
<td>TARA10</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>PXIe_DS</td>
<td>PXIe_DS</td>
<td>GND</td>
<td>PXI_</td>
<td>NC</td>
<td>GND</td>
<td>PXIe_DS</td>
<td>PXIe_DS</td>
<td>GND</td>
</tr>
<tr>
<td></td>
<td>TARB2+</td>
<td>TARB2-</td>
<td>STAR6</td>
<td>STAR6</td>
<td></td>
<td></td>
<td>TARB10</td>
<td>TARB10</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>PXIe_DS</td>
<td>PXIe_DS</td>
<td>GND</td>
<td>NC</td>
<td>NC</td>
<td>GND</td>
<td>PXIe_DS</td>
<td>PXIe_DS</td>
<td>GND</td>
</tr>
<tr>
<td></td>
<td>TARA2+</td>
<td>TARA2-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>TARC11</td>
<td>TARC11</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>NC</td>
<td>NC</td>
<td>GND</td>
<td>NC</td>
<td>NC</td>
<td>GND</td>
<td>PXIe_DS</td>
<td>PXIe_DS</td>
<td>GND</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>TARA11</td>
<td>TARA11</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>NC</td>
<td>NC</td>
<td>GND</td>
<td>NC</td>
<td>NC</td>
<td>GND</td>
<td>PXIe_DS</td>
<td>PXIe_DS</td>
<td>GND</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>TARB11</td>
<td>TARB11</td>
<td></td>
</tr>
</tbody>
</table>
Table B-6. XP3 Connector Pinout for the System Timing Slot

<table>
<thead>
<tr>
<th>Pin</th>
<th>A</th>
<th>B</th>
<th>ab</th>
<th>C</th>
<th>D</th>
<th>cd</th>
<th>E</th>
<th>F</th>
<th>ef</th>
<th>GND</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>PXIe_CLK100+</td>
<td>PXIe_CLK100-</td>
<td>GND</td>
<td>PXIe_SYN_C100+</td>
<td>PXIe_SY_NC100-</td>
<td>GND</td>
<td>PXIe_DS_TARC+</td>
<td>PXIe_DS_TARC-</td>
<td>GND</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>PRSNT#</td>
<td>PWREN#</td>
<td>GND</td>
<td>PXIe_DST_ARB+</td>
<td>PXIe_DS_TARB-</td>
<td>GND</td>
<td>PXIe_DS_TARA+</td>
<td>PXIe_DS_TARA-</td>
<td>GND</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>SMBIDAT</td>
<td>SMBCLK</td>
<td>GND</td>
<td>RSV</td>
<td>RSV</td>
<td>GND</td>
<td>RSV</td>
<td>RSV</td>
<td>GND</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>MPWRGD*</td>
<td>PERST#</td>
<td>GND</td>
<td>RSV</td>
<td>RSV</td>
<td>GND</td>
<td>1RefClk+</td>
<td>1RefClk-</td>
<td>GND</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>1PETp0</td>
<td>1PETn0</td>
<td>GND</td>
<td>1PERp0</td>
<td>1PERn0</td>
<td>GND</td>
<td>1PETp1</td>
<td>1PETn1</td>
<td>GND</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>1PETp2</td>
<td>1PETn2</td>
<td>GND</td>
<td>1PERp2</td>
<td>1PERn2</td>
<td>GND</td>
<td>1PERp1</td>
<td>1PERn1</td>
<td>GND</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>1PETp3</td>
<td>1PETn3</td>
<td>GND</td>
<td>1PERp3</td>
<td>1PERn3</td>
<td>GND</td>
<td>1PETp4</td>
<td>1PETn4</td>
<td>GND</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>1PETp5</td>
<td>1PETn5</td>
<td>GND</td>
<td>1PERp5</td>
<td>1PERn5</td>
<td>GND</td>
<td>1PERp4</td>
<td>1PERn4</td>
<td>GND</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>1PETp6</td>
<td>1PETn6</td>
<td>GND</td>
<td>1PERp6</td>
<td>1PERn6</td>
<td>GND</td>
<td>1PETp7</td>
<td>1PETn7</td>
<td>GND</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>RSV</td>
<td>RSV</td>
<td>GND</td>
<td>RSV</td>
<td>RSV</td>
<td>GND</td>
<td>1PERp7</td>
<td>1PERn7</td>
<td>GND</td>
<td></td>
</tr>
</tbody>
</table>

Table B-7. XP4 Connector Pinout for the System Timing Slot

<table>
<thead>
<tr>
<th>Pin</th>
<th>Z</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>GND</td>
<td>GA4</td>
<td>GA3</td>
<td>GA2</td>
<td>GA1</td>
<td>GA0</td>
<td>GND</td>
</tr>
<tr>
<td>2</td>
<td>GND</td>
<td>5Vaux</td>
<td>GND</td>
<td>SYSEN#</td>
<td>WAKE#</td>
<td>ALERT#</td>
<td>GND</td>
</tr>
<tr>
<td>3</td>
<td>GND</td>
<td>12V</td>
<td>12V</td>
<td>GND</td>
<td>GND</td>
<td>GND</td>
<td>GND</td>
</tr>
<tr>
<td>4</td>
<td>GND</td>
<td>GND</td>
<td>GND</td>
<td>3.3V</td>
<td>3.3V</td>
<td>3.3V</td>
<td>GND</td>
</tr>
<tr>
<td>5</td>
<td>GND</td>
<td>PXI_TRIG3</td>
<td>PXI_TRIG4</td>
<td>PXI_TRIG5</td>
<td>GND</td>
<td>PXI_TRIG6</td>
<td>GND</td>
</tr>
<tr>
<td>6</td>
<td>GND</td>
<td>PXI_TRIG2</td>
<td>GND</td>
<td>ATNLED</td>
<td>PXI_CLK10_IN</td>
<td>PXI_CLK10</td>
<td>GND</td>
</tr>
<tr>
<td>7</td>
<td>GND</td>
<td>PXI_TRIG1</td>
<td>PXI_TRIG0</td>
<td>ATNSW#</td>
<td>GND</td>
<td>PXI_TRIG7</td>
<td>GND</td>
</tr>
<tr>
<td>8</td>
<td>GND</td>
<td>PXIe_SYNC_CTRL</td>
<td>GND</td>
<td>RSV</td>
<td>PXI_LBL6</td>
<td>PXI_LBR6</td>
<td>GND</td>
</tr>
</tbody>
</table>
Hybrid Slot Pinouts

Table B-8. P1 Connector Pinout for the Hybrid Slot

<table>
<thead>
<tr>
<th>Pin</th>
<th>Z</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
<td>GND</td>
<td>5V</td>
<td>REQ64#</td>
<td>ENUM#</td>
<td>3.3V</td>
<td>5V</td>
<td>GND</td>
</tr>
<tr>
<td>24</td>
<td>GND</td>
<td>AD[1]</td>
<td>5V</td>
<td>V(I/O)</td>
<td>AD[0]</td>
<td>ACK64#</td>
<td>GND</td>
</tr>
<tr>
<td>18</td>
<td>GND</td>
<td>SERR#</td>
<td>GND</td>
<td>3.3V</td>
<td>PAR</td>
<td>C/BE[1]#</td>
<td>GND</td>
</tr>
<tr>
<td>17</td>
<td>GND</td>
<td>3.3V</td>
<td>IPMB_SCL</td>
<td>IPMB_SDA</td>
<td>GND</td>
<td>PERR#</td>
<td>GND</td>
</tr>
<tr>
<td>16</td>
<td>GND</td>
<td>DEVSSEL</td>
<td>GND</td>
<td>V(I/O)</td>
<td>STOP#</td>
<td>LOCK#</td>
<td>GND</td>
</tr>
<tr>
<td>15</td>
<td>GND</td>
<td>3.3V</td>
<td>FRAME#</td>
<td>IRDY#</td>
<td>BD_SEL</td>
<td>TRDY#</td>
<td>GND</td>
</tr>
<tr>
<td>12 to 14</td>
<td>Key Area</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>GND</td>
<td>C/BE[3]#</td>
<td>IDSEL</td>
<td>AD[23]</td>
<td>GND</td>
<td>AD[22]</td>
<td>GND</td>
</tr>
<tr>
<td>6</td>
<td>GND</td>
<td>REQ#</td>
<td>GND</td>
<td>3.3V</td>
<td>CLK</td>
<td>AD[31]</td>
<td>GND</td>
</tr>
<tr>
<td>5</td>
<td>GND</td>
<td>BRSPV1A5</td>
<td>BRSPV1B5</td>
<td>RST#</td>
<td>GND</td>
<td>GNT#</td>
<td>GND</td>
</tr>
<tr>
<td>4</td>
<td>GND</td>
<td>IPMB_PWR</td>
<td>HEALTHY#</td>
<td>V(I/O)</td>
<td>INTP</td>
<td>INTS</td>
<td>GND</td>
</tr>
<tr>
<td>3</td>
<td>GND</td>
<td>INTA#</td>
<td>INTB#</td>
<td>INTC#</td>
<td>5V</td>
<td>INTD#</td>
<td>GND</td>
</tr>
<tr>
<td>2</td>
<td>GND</td>
<td>TCK</td>
<td>5V</td>
<td>TMS</td>
<td>TDO</td>
<td>TDI</td>
<td>GND</td>
</tr>
<tr>
<td>1</td>
<td>GND</td>
<td>5V</td>
<td>-12V</td>
<td>TRST#</td>
<td>+12V</td>
<td>5V</td>
<td>GND</td>
</tr>
</tbody>
</table>
Table B-9. XP3 Connector Pinout for the Hybrid Slot

<table>
<thead>
<tr>
<th>Pin</th>
<th>A</th>
<th>B</th>
<th>ab</th>
<th>C</th>
<th>D</th>
<th>cd</th>
<th>E</th>
<th>F</th>
<th>ef</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>PXIe_CLK 100+</td>
<td>PXIe_CLK K100-</td>
<td>GND</td>
<td>PXIe_SYN C100+</td>
<td>PXIe_SYN NC100-</td>
<td>GND</td>
<td>PXIe_DST ARC+</td>
<td>PXIe_DS TAR+</td>
<td>GND</td>
</tr>
<tr>
<td>2</td>
<td>PRSNT#</td>
<td>PWREN#</td>
<td>GND</td>
<td>PXIe_DST ARB+</td>
<td>PXIe_DST ARB-</td>
<td>GND</td>
<td>PXIe_DST ARA+</td>
<td>PXIe_DS TAR-</td>
<td>GND</td>
</tr>
<tr>
<td>3</td>
<td>SMBDAT</td>
<td>SMBCLK</td>
<td>GND</td>
<td>RSV</td>
<td>RSV</td>
<td>GND</td>
<td>RSV</td>
<td>RSV</td>
<td>GND</td>
</tr>
<tr>
<td>4</td>
<td>MPWRGD*</td>
<td>PERST#</td>
<td>GND</td>
<td>RSV</td>
<td>RSV</td>
<td>GND</td>
<td>RefClk+</td>
<td>RefClk-</td>
<td>GND</td>
</tr>
<tr>
<td>5</td>
<td>1PETp0</td>
<td>1PETn0</td>
<td>GND</td>
<td>1PERp0</td>
<td>1PERn0</td>
<td>GND</td>
<td>1PETp1</td>
<td>1PETn1</td>
<td>GND</td>
</tr>
<tr>
<td>6</td>
<td>1PETp2</td>
<td>1PETn2</td>
<td>GND</td>
<td>1PERp2</td>
<td>1PERn2</td>
<td>GND</td>
<td>1PERp1</td>
<td>1PERn1</td>
<td>GND</td>
</tr>
<tr>
<td>7</td>
<td>1PETp3</td>
<td>1PETn3</td>
<td>GND</td>
<td>1PERp3</td>
<td>1PERn3</td>
<td>GND</td>
<td>1PETp4</td>
<td>1PETn4</td>
<td>GND</td>
</tr>
<tr>
<td>8</td>
<td>1PETp5</td>
<td>1PETn5</td>
<td>GND</td>
<td>1PERp5</td>
<td>1PERn5</td>
<td>GND</td>
<td>1PERp4</td>
<td>1PERn4</td>
<td>GND</td>
</tr>
<tr>
<td>9</td>
<td>1PETp6</td>
<td>1PETn6</td>
<td>GND</td>
<td>1PERp6</td>
<td>1PERn6</td>
<td>GND</td>
<td>1PETp7</td>
<td>1PETn7</td>
<td>GND</td>
</tr>
<tr>
<td>10</td>
<td>RSV</td>
<td>RSV</td>
<td>GND</td>
<td>RSV</td>
<td>RSV</td>
<td>GND</td>
<td>RSV</td>
<td>RSV</td>
<td>GND</td>
</tr>
</tbody>
</table>

Table B-10. XP4 Connector Pinout for the Hybrid Slot

<table>
<thead>
<tr>
<th>Pin</th>
<th>Z</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>GND</td>
<td>GA4</td>
<td>GA3</td>
<td>GA2</td>
<td>GA1</td>
<td>GA0</td>
<td>GND</td>
</tr>
<tr>
<td>2</td>
<td>GND</td>
<td>5Vaux</td>
<td>GND</td>
<td>SYSEN#</td>
<td>WAKE#</td>
<td>ALERT#</td>
<td>GND</td>
</tr>
<tr>
<td>3</td>
<td>GND</td>
<td>12V</td>
<td>12V</td>
<td>GND</td>
<td>GND</td>
<td>GND</td>
<td>GND</td>
</tr>
<tr>
<td>4</td>
<td>GND</td>
<td>GND</td>
<td>GND</td>
<td>3.3V</td>
<td>3.3V</td>
<td>3.3V</td>
<td>GND</td>
</tr>
<tr>
<td>5</td>
<td>GND</td>
<td>PXI_TRIG3</td>
<td>PXI_TRIG4</td>
<td>PXI_TRIG5</td>
<td>GND</td>
<td>PXI_TRIG6</td>
<td>GND</td>
</tr>
<tr>
<td>6</td>
<td>GND</td>
<td>PXI_TRIG2</td>
<td>GND</td>
<td>ATNLED</td>
<td>PXI_STAR</td>
<td>PXI_CLK10</td>
<td>GND</td>
</tr>
<tr>
<td>7</td>
<td>GND</td>
<td>PXI_TRIG1</td>
<td>PXI_TRIG0</td>
<td>ATNSW#</td>
<td>GND</td>
<td>PXI_TRIG7</td>
<td>GND</td>
</tr>
<tr>
<td>8</td>
<td>GND</td>
<td>RSV</td>
<td>GND</td>
<td>RSV</td>
<td>PXI_LBL6</td>
<td>PXI_LBR6</td>
<td>GND</td>
</tr>
</tbody>
</table>
NI Services

NI provides global services and support as part of our commitment to your success. Take advantage of product services in addition to training and certification programs that meet your needs during each phase of the application life cycle; from planning and development through deployment and ongoing maintenance.

To get started, register your product at ni.com/myproducts.

As a registered NI product user, you are entitled to the following benefits:
• Access to applicable product services.
• Easier product management with an online account.
• Receive critical part notifications, software updates, and service expirations.

Log in to your MyNI user profile to get personalized access to your services.

Services and Resources

• **Maintenance and Hardware Services**—NI helps you identify your systems’ accuracy and reliability requirements and provides warranty, sparing, and calibration services to help you maintain accuracy and minimize downtime over the life of your system. Visit ni.com/services for more information.
 – **Warranty and Repair**—All NI hardware features a one-year standard warranty that is extendable up to five years. NI offers repair services performed in a timely manner by highly trained factory technicians using only original parts at a NI service center.
 – **Calibration**—Through regular calibration, you can quantify and improve the measurement performance of an instrument. NI provides state-of-the-art calibration services. If your product supports calibration, you can obtain the calibration certificate for your product at ni.com/calibration.

• **System Integration**—If you have time constraints, limited in-house technical resources, or other project challenges, National Instruments Alliance Partner members can help. To learn more, call your local NI office or visit ni.com/alliance.
• **Training and Certification**—The NI training and certification program is the most effective way to increase application development proficiency and productivity. Visit ni.com/training for more information.

 − The Skills Guide assists you in identifying the proficiency requirements of your current application and gives you options for obtaining those skills consistent with your time and budget constraints and personal learning preferences. Visit ni.com/skills-guide to see these custom paths.

 − NI offers courses in several languages and formats including instructor-led classes at facilities worldwide, courses on-site at your facility, and online courses to serve your individual needs.

• **Technical Support**—Support at ni.com/support includes the following resources:

 − **Self-Help Technical Resources**—Visit ni.com/support for software drivers and updates, a searchable KnowledgeBase, product manuals, step-by-step troubleshooting wizards, thousands of example programs, tutorials, application notes, instrument drivers, and so on. Registered users also receive access to the NI Discussion Forums at ni.com/forums. NI Applications Engineers make sure every question submitted online receives an answer.

 − **Software Support Service Membership**—The Standard Service Program (SSP) is a renewable one-year subscription included with almost every NI software product, including NI Developer Suite. This program entitles members to direct access to NI Applications Engineers through phone and email for one-to-one technical support, as well as exclusive access to online training modules at ni.com/self-paced-training. NI also offers flexible extended contract options that guarantee your SSP benefits are available without interruption for as long as you need them. Visit ni.com/ssp for more information.

• **Declaration of Conformity (DoC)**—A DoC is our claim of compliance with the Council of the European Communities using the manufacturer’s declaration of conformity. This system affords the user protection for electromagnetic compatibility (EMC) and product safety. You can obtain the DoC for your product by visiting ni.com/certification.

For information about other technical support options in your area, visit ni.com/services, or contact your local office at ni.com/contact.

You also can visit the Worldwide Offices section of ni.com/niglobal to access the branch office websites, which provide up-to-date contact information, support phone numbers, email addresses, and current events.
Glossary

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Prefix</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>p</td>
<td>pico</td>
<td>10^{-12}</td>
</tr>
<tr>
<td>n</td>
<td>nano</td>
<td>10^{-9}</td>
</tr>
<tr>
<td>µ</td>
<td>micro</td>
<td>10^{-6}</td>
</tr>
<tr>
<td>m</td>
<td>milli</td>
<td>10^{-3}</td>
</tr>
<tr>
<td>k</td>
<td>kilo</td>
<td>10^3</td>
</tr>
<tr>
<td>M</td>
<td>mega</td>
<td>10^6</td>
</tr>
<tr>
<td>G</td>
<td>giga</td>
<td>10^9</td>
</tr>
<tr>
<td>T</td>
<td>tera</td>
<td>10^{12}</td>
</tr>
</tbody>
</table>

Symbols

° Degrees.
≥ Equal or greater than.
≤ Equal or less than.
% Percent.

A

A Amperes.
AC Alternating current.
ANSI American National Standards Institute.
Auto Automatic fan speed control.
AWG American Wire Gauge.
Glossary

B

backplane An assembly, typically a printed circuit board, with connectors and signal paths that bus the connector pins.

BNC Bayonet Neill Concelman connector; a commonly used coaxial connector.

C

C Celsius.

cfm Cubic feet per minute.

cm Centimeters.

CompactPCI An adaptation of the Peripheral Component Interconnect (PCI) Specification 2.1 or later for industrial and/or embedded applications requiring a more robust mechanical form factor than desktop PCI. It uses industry standard mechanical components and high-performance connector technologies to provide an optimized system intended for rugged applications. It is electrically compatible with the PCI Specification, which enables low-cost PCI components to be utilized in a mechanical form factor suited for rugged environments.

CSA Canadian Standards Association.

D
daisy-chain A method of propagating signals along a bus, in which the devices are prioritized on the basis of their position on the bus.

DB-9 A 9-pin D-SUB connector.

DC Direct current.

DoC Declaration of Conformity.

D-SUB Subminiature D connector.
E

efficiency Ratio of output power to input power, expressed as a percentage.
EIA Electronic Industries Association.
EMC Electromagnetic Compatibility.
EMI Electromagnetic Interference.

F

FCC Federal Communications Commission.
filler panel A blank module front panel used to fill empty slots in the chassis.

G

g (1) grams; (2) a measure of acceleration equal to 9.8 m/s².
GPIB General Purpose Interface Bus (IEEE 488).
g_{RMS} A measure of random vibration. The root mean square of acceleration levels in a random vibration test profile.

H

hr Hours.
Hz Hertz; cycles per second.

I

IEC International Electrotechnical Commission; an organization that sets international electrical and electronics standards.
IEEE Institute of Electrical and Electronics Engineers.
I_{MP} Mainframe peak current.
<table>
<thead>
<tr>
<th>Glossary</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>in.</td>
<td>Inches.</td>
</tr>
<tr>
<td>inhibit</td>
<td>To turn off.</td>
</tr>
<tr>
<td>J</td>
<td>jitter: A measure of the small, rapid variations in clock transition times from their nominal regular intervals. Units: seconds RMS.</td>
</tr>
<tr>
<td>K</td>
<td>kg: Kilograms.</td>
</tr>
<tr>
<td>km</td>
<td>Kilometers.</td>
</tr>
<tr>
<td>L</td>
<td>lb: Pounds.</td>
</tr>
<tr>
<td></td>
<td>LED: Light emitting diode.</td>
</tr>
<tr>
<td>line regulation</td>
<td>The maximum steady-state percentage that a DC voltage output will change as a result of a specified change in input AC voltage (step change from 90 to 132 VAC or 180 to 264 VAC).</td>
</tr>
<tr>
<td>load regulation</td>
<td>The maximum steady-state percentage that a DC voltage output will change as a result of a step change from no-load to full-load output current.</td>
</tr>
<tr>
<td>M</td>
<td>m: Meters.</td>
</tr>
<tr>
<td>MHz</td>
<td>Megahertz. One million Hertz; one Hertz equals one cycle per second.</td>
</tr>
<tr>
<td>mi</td>
<td>Miles.</td>
</tr>
<tr>
<td>ms</td>
<td>Milliseconds.</td>
</tr>
<tr>
<td>MTBF</td>
<td>Mean time between failure.</td>
</tr>
<tr>
<td>MTTR</td>
<td>Mean time to repair.</td>
</tr>
</tbody>
</table>
N
NEMA National Electrical Manufacturers Association.
NI National Instruments.

P
power supply shuttle A removable module that contains the chassis power supply.
PXI PCI eXtensions for Instrumentation.
PXI_CLK10 10 MHz PXI system reference clock.

R
RH Relative humidity.
RMS Root mean square.

S
s Seconds.
skew Deviation in signal transmission times.
slot blocker An assembly installed into an empty slot to improve the airflow in adjacent slots.
standby The backplane is unpowered (off), but the chassis is still connected to AC power mains.
System controller A module configured for installation in Slot 1 of a PXI chassis. This device is unique in the PXI system in that it performs the system controller functions, including clock sourcing and arbitration for data transfers across the backplane. Installing such a device into any other slot can damage the device, the PXI backplane, or both.
Glossary

<table>
<thead>
<tr>
<th>Term</th>
<th>Description</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>system reference clock</td>
<td>A 10 MHz clock, also called PXI_CLK10, that is distributed to all peripheral slots in the chassis, as well as a BNC connector on the rear of chassis labeled 10 MHz REF OUT. The system reference clock can be used for synchronization of multiple modules in a measurement or control system. The 10 MHz REF IN and OUT BNC connectors on the rear of the chassis can be used to synchronize multiple chassis to one reference clock. The PXI backplane specification defines implementation guidelines for PXI_CLK10.</td>
<td></td>
</tr>
<tr>
<td>System Timing slot</td>
<td>This slot is located at slot 4 and has dedicated trigger lines to other slots.</td>
<td></td>
</tr>
<tr>
<td>T</td>
<td>TTL</td>
<td>Transistor-transistor logic.</td>
</tr>
<tr>
<td>U</td>
<td>UL</td>
<td>Underwriter’s Laboratories.</td>
</tr>
<tr>
<td>V</td>
<td>V</td>
<td>Volts.</td>
</tr>
<tr>
<td>VAC</td>
<td>Vpp</td>
<td>Peak-to-peak voltage.</td>
</tr>
<tr>
<td>W</td>
<td>W</td>
<td>Watts.</td>
</tr>
</tbody>
</table>
Index

A
- AC power cables (table), 1-2

B
- backplane
 - hybrid peripheral slots, 1-6
 - interoperability with CompactPCI, 1-5
 - overview, 1-5
 - PXI Express peripheral slots, 1-6
 - PXI local bus, routing, 1-8
 - PXIe_SYNC_CTRL, 1-11
 - specifications, A-6
 - system controller slot, 1-6
 - system reference clock, 1-9
 - system timing slot, 1-7
 - trigger bus, 1-8

C
- cables, power (table), 1-2
- CE compliance, specifications, A-6
- chassis ambient temperature definitions, 2-3
- chassis cooling considerations
 - ambient temperature definitions, 2-3
 - clearances, 2-2
- chassis initialization file, 2-13
- cleaning fan filters, 3-1
- clearances for chassis cooling, 2-2
- CLK10 rear connectors, 2-11
- CompactPCI, interoperability with NI PXIe-1082 backplane, 1-5
- configuration. See installation, configuration, and operation
- connector pinouts. See pinouts cooling
 - air cooling of PXIe-1082 chassis, 2-2
 - filler panel installation, 2-4
 - setting fan speed, 2-4
 - slot blocker installation, 2-4

D
- DB-9 connector
 - pinout (table), 2-10
 - power supply voltages (table), 2-11

E
- electromagnetic compatibility, A-5
- EMC filler panel kit, 1-4
- external clock source specifications, A-8

F
- fan, setting speed, 2-4
- filler panel installation, 2-4

G
- ground, connecting, 2-4

H
- hybrid peripheral slots, description, 1-6
- hybrid slot pinouts
 - P1 connector (table), B-6
 - XP3 connector (table), B-7
 - XP4 connector (table), B-7

I
- IEC 320 inlet, 2-5
- inhibit mode switch, 2-11
- installation, configuration, and operation
 - chassis initialization file, 2-13
 - connecting safety ground, 2-4
 - filler panel installation, 2-4
 - installing a PXI Express system controller, 2-5
 - peripheral module installation, 2-7
 - PXI Express configuration in MAX, 2-12
 - PXI-1 configuration in MAX, 2-12
 - rack mounting, 2-4
 - remote voltage monitoring and inhibiting interface, 2-10
 - setting fan speed, 2-4

© National Instruments | I-1
Index

site considerations, 2-2
slot blocker installation, 2-4
testing power up, 2-5
unpacking the PXIe-1082, 1-1
interoperability with CompactPCI, 1-5

K
key features, 1-2
kit contents, 1-1

M
maintenance of NI PXIe-1082 chassis, 3-1
cleaning
 exterior cleaning, 3-2
 fan filters, 3-2
 interior cleaning, 3-1
preparation, 3-1
resetting the AC mains circuit breaker, 3-2
service interval, 3-1
static discharge damage (caution), 3-1

N
NI PXIe-1082
 fan speed, setting, 2-4
installation. See installation, configuration, and operation
 key features, 1-2
maintenance. See maintenance of
 NI PXIe-1082 chassis
optional equipment, 1-4
rack mounting, 2-4
safety ground, connecting, 2-4
unpacking, 1-1
NI PXIe-1082 backplane
 hybrid peripheral slots, 1-6
 interoperability with CompactPCI, 1-5
overview, 1-5
PXI Express peripheral slots, 1-6
PXI local bus, routing, 1-8
PXIe_SYNC_CTRL, 1-11
specifications, A-6
system controller slot, 1-6
system reference clock, 1-6
system timing slot, 1-7
trigger bus, 1-8

O
optional equipment, 1-4

P
pinouts, B-1
 DB-9 connector (table), 2-10
power cables (table), 1-2
power inhibit switch LED indicator, 2-9
power supply
 connecting to, 2-5
 remote voltage monitoring and inhibiting interface, 2-10
 replacing, 3-3
 configuration, 3-4
 connecting safety ground, 3-4
 connecting to power source, 3-4
 installation, 3-3
 removal, 3-3
voltages at voltage monitoring connector (DB-9) (table), 2-10
power up, testing, 2-5
PXI differential star trigger specifications
 (PXIe-DSTARA, PXIe-DSTARB, PXIe-DSTARC), A-9
PXI Express configuration in MAX, 2-12
PXI Express peripheral slots, description, 1-6
PXI Express system controller, 2-5
PXI local bus, routing, 1-8
PXI star trigger specifications, A-8
PXI-1 configuration in MAX, 2-12
PXIe.Sync_CTRL, 1-11
specifications, A-8
rack mount kit dimensions (figure), A-12
rack mounting, 2-4
kit, 1-4
remote voltage monitoring and inhibiting interface, 2-10
replacing the power supply, 3-3

safety and caution notices, 2-1
safety ground, connecting, 2-4
safety, specifications, A-5
service interval, 3-1
setting fan speed, 2-4
slot blocker
installation, 2-4
kit, 1-5
specifications
acoustic emissions
sound power, A-5
sound pressure level (at operator position), A-5
backplane
10 MHz system reference clock (PXI_CLK10), A-7
100 MHz Reference Out BNC, A-8
100 MHz system reference clock (PXIe_CLK100 and PXIe_SYNC100), A-7
CE compliance, A-6
chassis cooling, A-3
electrical
AC input, A-1
DC output, A-2
electromagnetic compatibility, A-5
environmental
operating environment, A-4
storage environment, A-4
external clock source, A-8
mechanical, A-9
PXI differential star triggers (PXIe-DSTARA, PXIe-DSTARB, PXIe-DSTARC), A-9
PXI star trigger, A-8
PXIe_SYNC_CTRL, A-8

rack mount kit dimensions (figure), A-12
safety, A-5
shock and vibration, A-4
system reference clocks, A-7
static discharge damage (caution), 3-1
system controller slot
description, 1-6
pinouts
XP1 connector (table), B-1
XP2 connector (table), B-2
XP3 connector (table), B-3
XP4 connector (table), B-3
system reference clock, 1-9
specifications, A-7
system timing slot
description, 1-7
pinouts
TP2 connector (table), B-4
XP3 connector (table), B-5
XP4 connector (table), B-5

testing power up, 2-5
trigger bus, 1-8

unpacking the NI PXIe-1082 chassis, 1-1

voltage monitoring connector. See DB-9 connector
voltages at voltage monitoring connector (DB-9) (table), 2-11