
LabVIEW Upgrade Notes
These upgrade notes describe the process of upgrading LabVIEW for Windows, Mac OS, and Linux
to version 8.6, issues you might encounter when you upgrade, and new features. To learn about any
potential compatibility issues, read these upgrade notes prior to loading any VIs you saved in a previous
version of LabVIEW in this new version of LabVIEW. Consider creating backup copies of all LabVIEW
files you saved in a previous version of LabVIEW before you load the files in this new version of
LabVIEW.

If you are upgrading from LabVIEW 7.1 or earlier to LabVIEW 8.6, National Instruments recommends
that you review the following documents in addition to these upgrade notes for more information about
enhancements, changes, and features added to LabVIEW between LabVIEW 7.1 and LabVIEW 8.6.

• LabVIEW 8.0 Upgrade Notes—The Upgrade and Compatibility Issues section and the
LabVIEW 8.0 Features and Changes section provide important information for upgrade users.
Refer to the National Instruments Web site at ni.com/info and enter the info code upnote8 to
access the LabVIEW 8.0 Upgrade Notes.

• LabVIEW 8.2 Upgrade Notes—The Upgrade and Compatibility Issues section and the
LabVIEW 8.2 Features and Changes section provide important information for upgrade users.
Refer to the National Instruments Web site at ni.com/info and enter the info code upnote82
to access the LabVIEW 8.2 Upgrade Notes.

• LabVIEW 8.5 Upgrade Notes—The Upgrade and Compatibility Issues section and the
LabVIEW 8.5 Features and Changes section provide important information for upgrade users.
Refer to the National Instruments Web site at ni.com/info and enter the info code upnote85
to access the LabVIEW 8.5 Upgrade Notes.

Refer to the LabVIEW Help for more information about LabVIEW 8.6 features, as well as for
information about LabVIEW programming concepts, step-by-step instructions for using LabVIEW, and
reference information about LabVIEW VIs, functions, palettes, menus, tools, properties, methods,
events, dialog boxes, and so on. The LabVIEW Help also lists the LabVIEW documentation resources
available from National Instruments. Access the LabVIEW Help by selecting Help»Search the
LabVIEW Help.

™

http://www.ni.com/cgi-bin/redirect.cgi?dest=infcoprod&src=lvhelp&openagent&code=upnote8
http://www.ni.com/cgi-bin/redirect.cgi?dest=infcoprod&src=lvhelp&openagent&code=upnote82
http://www.ni.com/cgi-bin/redirect.cgi?dest=infcoprod&src=lvhelp&openagent&code=upnote85

LabVIEW Upgrade Notes 2 ni.com

Contents
Upgrading to LabVIEW 8.6... 2

Converting VIs... 3
Upgrading Modules, Toolkits, and Instrument Drivers ... 4
Upgrading Additional National Instruments Software .. 5
Upgrading from Previous Versions of LabVIEW ... 6

Upgrade and Compatibility Issues ... 7
Upgrading from LabVIEW 8.5.. 7
Upgrading Remote Front Panel Licenses (Windows) ... 10
Shared Components of the Application Builder .. 10
Upgrading from LabVIEW 8.2.. 10
Upgrading from LabVIEW 8.0.. 15
Upgrading from LabVIEW 7.x .. 19
Upgrading from LabVIEW 6.x .. 33
Upgrading from LabVIEW 5.x or Earlier Versions... 36

LabVIEW 8.6 Features and Changes... 36
Installing LabVIEW... 36
LabVIEW Documentation ... 36
New Example VIs.. 36
Block Diagram Enhancements... 36
Front Panel Enhancements... 38
Environment Enhancements .. 38
New and Changed VI, Function, and Node Enhancements... 41
New Classes, Properties, Methods, and Events ... 45
Cleaning Up the Block Diagram Automatically.. 46
Placing Objects Using Quick Drop.. 46
Editing the Properties of Multiple Objects .. 46
LabVIEW Web Services (Windows, Not in Base Package) ... 46
NI Distributed System Manager .. 46
LabVIEW MathScript Enhancements (Not in Base Package)... 47
Managing Overflow for Fixed-Point Numbers.. 49
Merging LLBs (Not in Base Package)... 50

Upgrading to LabVIEW 8.6
If you are upgrading from a previous version of LabVIEW, read this section, Upgrading to
LabVIEW 8.6, and the Upgrading from LabVIEW x.x sections in the Upgrade and Compatibility Issues
section of this document first, where x.x is the version of LabVIEW from which you are upgrading.

The following procedure suggests the order in which you should complete the tasks associated with
upgrading to a new version of LabVIEW and which documents you should read as you complete these
tasks. National Instruments recommends that you read both the LabVIEW Release Notes and this
document before you upgrade to a new version of LabVIEW.

1. To verify that you are aware of all compatibility issues before you install LabVIEW, refer to the
following sections of this document prior to installing the new version of LabVIEW:

• Upgrading to LabVIEW 8.6—This section includes instructions for uninstalling toolkits and
modules, copying environment settings and user.lib files from a previous version of
LabVIEW, and converting VIs to LabVIEW 8.6.

• Upgrade and Compatibility Issues—This section includes compatibility issues that might
affect VIs you upgrade from a previous version of LabVIEW to the new version of LabVIEW.

© National Instruments Corporation 3 LabVIEW Upgrade Notes

Specifically refer to the subsection that applies to the version of LabVIEW from which you
are upgrading.

Note You also can refer to the National Instruments Web site at ni.com/info and enter the info
code exqmex to download tests that can evaluate VIs for some compatibility issues.

• (Optional) LabVIEW 8.6 Features and Changes—This section includes brief descriptions
of the new features in this version of LabVIEW. Refer to the LabVIEW Help for more
complete information about using these features. Access the LabVIEW Help by selecting
Help»Search the LabVIEW Help.

2. (Optional) Uninstall previous version(s) of LabVIEW.

3. Install and activate the upgrade version of LabVIEW. To verify that you complete all tasks
associated with installing LabVIEW, refer to the following sections of the LabVIEW Release Notes:

• System Requirements

• Installing LabVIEW 8.6 and the appropriate subsection for the platform to which you are
installing

• Installing LabVIEW Add-Ons if you are installing LabVIEW toolkits or modules from a CD
instead of the LabVIEW Platform DVD

• (Windows) Activating the LabVIEW License and all subsections

• (Optional) Installing and Configuring Hardware and the appropriate subsection for the
platform to which you are installing

• Where to Go from Here

4. Refer to the LabVIEW Readme for issues fixed in the new version of LabVIEW, information about
known issues in the new version of LabVIEW, and documentation additions that are not reflected
in the LabVIEW Help. To access the LabVIEW Readme, navigate to the labview\readme
directory and open the readme.html file.

5. Copy environment settings from a previous version of LabVIEW. Refer to the Copying
Environment Settings from a Previous Version of LabVIEW section of this document for more
information about copying environment settings.

6. Copy user.lib files from a previous version of LabVIEW. Refer to the Copying user.lib Files
from a Previous Version of LabVIEW section of this document for more information about copying
user.lib files.

7. Convert VIs to LabVIEW 8.6. Refer to the Converting VIs section of this document for more
information converting VIs saved in a previous version of LabVIEW.

Converting VIs
You cannot open a VI saved in a version of LabVIEW prior to LabVIEW 6.0 without contacting an
NI representative to obtain conversion software to upgrade your code to VI formats compatible with
LabVIEW 8.6. When you open a VI last saved in LabVIEW 6.0 or later, LabVIEW 8.6 automatically
converts and compiles the VI. You must save the VI in LabVIEW 8.6, or the conversion process, which
uses extra memory resources, occurs every time you access the VI. Also, you might experience a large
run-time degradation of performance for any VI that has unsaved changes, including a recompile.

Note VIs you save in LabVIEW 8.6 do not load in earlier versions of LabVIEW. Select File»Save
for Previous Version to save VIs so they can run in LabVIEW 8.5, 8.2, or 8.0. Before saving VIs in
LabVIEW 8.6 after you convert them, keep a backup copy of VIs you plan to use in LabVIEW 8.5,
8.2, or 8.0.

http://www.ni.com/cgi-bin/redirect.cgi?dest=infcoprod&src=lvhelp&openagent&code=exqmex

LabVIEW Upgrade Notes 4 ni.com

If your computer does not have enough memory to convert all the VIs at once, convert the VIs in stages.
Examine the hierarchy of VIs you want to convert and begin by loading and saving subVIs in the lower
levels of the hierarchy. Then progress gradually to the higher levels of the hierarchy. Open and convert
the top-level VI last. You also can select Tools»Advanced»Mass Compile to convert a directory of VIs.
However, mass compiling converts VIs in a directory or LLB in alphabetical order. If the conversion
process encounters a high-level VI first, mass compiling requires approximately the same amount of
memory as if you opened the high-level VI first.

You can monitor memory usage by selecting Help»About LabVIEW to display a summary of the
amount of memory you currently are using.

Upgrading Modules, Toolkits, and Instrument Drivers
If you are upgrading from a previous version of LabVIEW, you must install current, compatible versions
of any modules, toolkits, or instrument drivers that you installed for the previous version of LabVIEW.
The LabVIEW Platform DVDs include most modules and toolkits that are compatible with
LabVIEW 8.6. For those modules and toolkits that are not on the LabVIEW Platform DVDs, refer to the
National Instruments Web site at ni.com/info and enter the info code compat for more information
about which LabVIEW modules and toolkits are compatible with the current version of LabVIEW.

NI Modules and Toolkits
The following table lists whether to use the LabVIEW Platform DVDs or the module or toolkit
installation CD depending on your operating system and LabVIEW add-ons.

Operating System Media to Use Important Notes

Windows DVD Use the LabVIEW Platform DVDs to install
LabVIEW 8.6 and versions of modules and toolkits
that are compatible with LabVIEW 8.6. Additionally,
you can choose to evaluate modules or toolkits you
have not purchased. The LabVIEW Platform DVDs
allow you to install new versions of a toolkit with
LabVIEW 8.6 without uninstalling or modifying
previous versions. Refer to the LabVIEW Release
Notes for information about installing LabVIEW,
modules, and toolkits.

Windows, if the
LabVIEW Platform
DVDs do not include
the module or toolkit

CD Use the installation CD you received when you
purchased the module or toolkit. Before using the
installation CD, make sure you have a compatible
version of the module or toolkit you want to install.
Refer to the National Instruments Web site at
ni.com/info and enter the info code compat for
more information about which LabVIEW modules
and toolkits are compatible with the current version of
LabVIEW. Then install the compatible modules and
toolkits in the LabVIEW 8.6 directory. Mass compile
any VIs that you saved in previous versions of
LabVIEW.

Refer to the Mass Compiling LabVIEW section of this
document for more information.

Mac/Linux

http://www.ni.com/cgi-bin/redirect.cgi?dest=infcoprod&src=lvhelp&openagent&code=compat
http://www.ni.com/cgi-bin/redirect.cgi?dest=infcoprod&src=lvhelp&openagent&code=compat

© National Instruments Corporation 5 LabVIEW Upgrade Notes

Note Some versions of toolkits do not work with LabVIEW 8.6. Installing an incompatible toolkit
might cause some features in the toolkit or LabVIEW to behave incorrectly. National Instruments
recommends that you verify compatibility before attempting to install toolkits. Refer to the National
Instruments Web site at ni.com/info and enter the info code compat for more information about
which LabVIEW modules and toolkits are compatible with the current version of LabVIEW. If you
install an incompatible version and corrupt your LabVIEW 8.6 installation, first uninstall the toolkit
and then repair the LabVIEW installation using Add or Remove Programs.

Instrument Drivers
You must install current instrument drivers to control and communicate with any instrument hardware
you plan to use. If you installed an instrument driver with a previous version of LabVIEW, you must
reinstall that instrument driver with LabVIEW 8.6 support using one of the following methods.

• NI Modular Instrument drivers—Use the NI Device Drivers DVD or CD to install NI Modular
Instrument drivers.

• Plug and Play instrument drivers—Use the NI Instrument Driver Finder to search for and install
LabVIEW Plug and Play instrument drivers without leaving the LabVIEW development
environment.

• IVI driver or non-certified instrument drivers—Use the Instrument Driver Network on the
National Instruments Web site to search for and install an IVI driver or non-certified drivers.

Note If you reinstall instrument drivers using the NI Instrument Driver Finder, National Instruments
recommends that you mass compile the labview\instr.lib directory.

Third Party Add-Ons
Contact the vendor of third-party LabVIEW add-ons to determine if the add-on is compatible with
LabVIEW 8.6 for your operating system. Make sure you mass compile any VIs that are related to the
add-on.

Refer to the Mass Compiling LabVIEW section of this document for more information.

Mass Compiling LabVIEW
When you open a VI last saved in a previous version of LabVIEW, LabVIEW automatically converts
and compiles the VI. You must save the VI in the current version of LabVIEW or the conversion process,
which uses extra memory resources, occurs every time you access the VI. If you install LabVIEW
modules and toolkits that are not on the LabVIEW Platform DVDs or install any third-party add-ons,
National Instruments recommends that you mass compile any VIs installed by the module, toolkit, or
third-party add-on.

Refer to the Fundamentals»Creating VIs and SubVIs»How-To»Saving VIs»Mass Compiling VIs
topic for more information about mass compiling VIs.

Upgrading Additional National Instruments Software
You must use NI TestStand 3.5 or later with LabVIEW 8.x. Refer to the National Instruments Web site
at ni.com/info and enter the info code exd8yy to access the Upgrade Advisor and purchase
NI TestStand 3.5 or later.

NI TestStand 3.5 and NI TestStand 4.0 return an error when you attempt to configure the following
LabVIEW 8.6 Express VIs:

• Close Data Storage

• Formula

• Get Properties

http://www.ni.com/cgi-bin/redirect.cgi?dest=infcoprod&src=lvhelp&openagent&code=compat
http://www.ni.com/cgi-bin/redirect.cgi?dest=infcoprod&src=lvhelp&openagent&code=ex3mbp
http://www.ni.com/cgi-bin/redirect.cgi?dest=infcoprod&src=lvhelp&openagent&code=exd8yy

LabVIEW Upgrade Notes 6 ni.com

• Open Data Storage

• Read Data

• Set Properties

• Spectral Measurements

• Write Data

Refer to the National Instruments web site at ni.com/info and enter the info code rdtf10 for more
information about the error.

Note NI TestStand 4.1 or later resolves this issue.

Refer to the Readme.html file for the version of NI TestStand you use, located on the NI TestStand
CD and in the <TestStand>\Doc directory, for more information about LabVIEW and NI TestStand
issues.

You must use NI Spy 2.3 or later in LabVIEW 8.x. NI Spy 2.5 is available on the National Instruments
Device Drivers CD.

LabVIEW 8.6 supports Measurement Studio 8.0 or later. Refer to the National Instruments Web site at
ni.com/info and enter the info code exd8yy to access the Upgrade Advisor and order Measurement
Studio 8.0 or later.

Upgrading from Previous Versions of LabVIEW
You can install LabVIEW 8.6 without uninstalling previous versions of LabVIEW. While versions
of LabVIEW might share components, upgrading to new versions of LabVIEW does not affect the
performance of previous versions of LabVIEW on the computer because the new versions install in a
different directory. LabVIEW 5.x and earlier install in the labview directory. LabVIEW 6.0 and later
install in the labview x.x directory, where x.x is the version number.

Replacing an Existing Version of LabVIEW
To replace your existing version of LabVIEW, uninstall the existing version of LabVIEW, run the
LabVIEW 8.6 installer, and set the installation directory to the same labview directory where you
installed the previous version of LabVIEW.

(Windows) You also can replace the existing version of LabVIEW with LabVIEW 8.6 by using the
Add/Remove Programs applet in the Control Panel to uninstall the existing version of LabVIEW.
The uninstaller does not remove any files you created in the labview directory.

Note When you uninstall or reinstall LabVIEW, LabVIEW uninstalls the .llb files in the vi.lib
directory, including any VIs and controls you saved in the .llb files. Save your VIs and controls in
the user.lib directory to add them to the Controls and Functions palettes.

Copying Environment Settings from a Previous Version of LabVIEW
To use LabVIEW environment settings from a previous version of LabVIEW, copy the LabVIEW
preferences file from the labview directory in which the previous version is installed.

Caution If you replace the LabVIEW 8.6 preferences file with a preferences file from a previous
version, you might override preference settings added to LabVIEW since the previous version.

After you install LabVIEW 8.6, copy the LabVIEW preferences file to the LabVIEW 8.6 directory.

(Windows) LabVIEW stores preferences in the labview.ini file in the labview directory.

http://www.ni.com/cgi-bin/redirect.cgi?dest=infcoprod&src=lvhelp&openagent&code=rdtf10
http://www.ni.com/cgi-bin/redirect.cgi?dest=infcoprod&src=lvhelp&openagent&code=exd8yy

© National Instruments Corporation 7 LabVIEW Upgrade Notes

(Mac OS) LabVIEW stores preferences in the LabVIEW Preferences file in the
Library:Preferences folder in the home directory.

(Linux) LabVIEW stores preferences in the .labviewrc file in the home directory.

Copying user.lib Files from a Previous Version of LabVIEW
To use files from the user.lib directory of a previous version of LabVIEW, copy the files from the
labview directory in which the previous version is installed. After you install LabVIEW 8.6, copy the
files to the user.lib directory in the LabVIEW 8.6 directory.

Upgrade and Compatibility Issues
Refer to the following sections for upgrade and compatibility issues specific to different versions of
LabVIEW.

Refer to the readme.html file in the labview directory for information about known issues in the
new version of LabVIEW, additional compatibility issues, and information about late addition features
in LabVIEW 8.6.

Upgrading from LabVIEW 8.5
You might encounter the following compatibility issues when you upgrade to LabVIEW 8.6 from
LabVIEW 8.5.

Note You also can refer to the National Instruments Web site at ni.com/info and enter the info
code upnote85 for more information about additional issues you may encounter upgrading from
LabVIEW 8.5.x.

Platforms Supported
LabVIEW 8.6 includes the following changes in platforms supported:

• LabVIEW 8.6 does not support Macintosh computers with PowerPC processors.

System Requirements
(Windows) LabVIEW 8.6 requires at least 1.6 GB of disk space for the LabVIEW installation.

(Mac OS) LabVIEW 8.6 requires at least 262 MB of disk space for the minimum LabVIEW installation
or 828 MB disk space for the complete LabVIEW installation.

(Linux) LabVIEW 8.6 requires at least 365 MB of disk space for the minimum LabVIEW installation
or 651 MB disk space for the complete LabVIEW installation.

Printed Documentation
The following documents did not change for LabVIEW 8.6. Therefore, the content might not reflect
changes made in LabVIEW 8.6.

• Getting Started with LabVIEW manual

• (LabVIEW 8.2, 8.5, and 8.6) LabVIEW Fundamentals Manual

Note Because the LabVIEW Fundamentals Manual is a subset of the Fundamentals book in the
LabVIEW Help, refer to the Fundamentals book on the Contents tab of the LabVIEW Help for
updated content.

http://www.ni.com/cgi-bin/redirect.cgi?dest=infcoprod&src=lvhelp&openagent&code=upnote85

LabVIEW Upgrade Notes 8 ni.com

VI and Function Behavior Changes
The behavior of the following VIs and functions changed in LabVIEW 8.6.

Report Generation VIs
The Report Generation VIs were rewritten using LabVIEW classes. The report in control and report
out indicator changed from reference number data types to LabVIEW class data types. If you did not
create constants, controls, or indicators by right-clicking the typedef refnum, the VIs might not work
correctly because LabVIEW cannot update those objects for you. Additionally any Call By Reference
Node that calls the previous refnum data type of the report in and report out parameters will not work
as expected.

If you create HTML reports using the Report Generation VIs to run on a target, make sure you reference
the target when you create a report. If you create an HTML report on a host computer and then deploy
to a target without referencing the target, VIs appear broken and will not run.

External Code (DLLs and CINS)
The memory manager functions include only one zone of memory, DS (data space). If you work with
C or C++ CINs or DLLs that manage LabVIEW memory, replace all references to AZ (application zone)
memory functions with the DS equivalent function.

Miscellaneous VI and Function Behavior Changes
LabVIEW 8.6 includes the following miscellaneous VI and function behavior changes:

• Many of the Mathematics and Signal Processing VIs changed from non-reentrant VIs to reentrant
VIs. Because of these changes, you should not call many of these VIs from a reentrant VI set to
share clones between instances. Refer to the National Instruments Web site at ni.com/info and
enter the info code exrehi for more information about which VIs you cannot call from a VI set
to share clones between instances.

• LabVIEW forces single-process shared variables to be target-relative. You cannot configure
single-process shared variables to be absolute.

• If you wire an empty path to the path in input of the Call Library Function Node, LabVIEW no
longer returns an error.

Deprecated VIs and Functions
LabVIEW 8.6 does not support the following VIs and functions:

• Create Semaphore—Use the Obtain Semaphore Reference VI instead. The Obtain Semaphore
Reference VI differs from the Create Semaphore VI because if you use the Create Semaphore VI
multiple times to create more than one semaphore with the same name, LabVIEW creates multiple
copies of a single reference to that semaphore. However, if you use the Obtain Semaphore
Reference VI to obtain multiple references to the same semaphore, each reference number is
unique. Because LabVIEW does not automatically convert existing VIs to use the Obtain
Semaphore Reference VI, you must manually update VIs saved in a previous version of LabVIEW.

• Destroy Semaphore—Use the Release Semaphore Reference VI instead. The Release Semaphore
Reference VI differs from the Destroy Semaphore VI because if you use the Destroy Semaphore
VI to destroy a semaphore, LabVIEW also destroys any other copies of the reference to that
semaphore. However, if you use the Release Semaphore Reference VI to release a reference to a
semaphore, other references to that semaphore remain valid, and LabVIEW destroys the
semaphore only if no other references to the semaphore exist. Because LabVIEW does not
automatically convert existing VIs to use the Release Semaphore Reference VI, you must manually
update VIs saved in a previous version of LabVIEW.

http://www.ni.com/cgi-bin/redirect.cgi?dest=infcoprod&src=lvhelp&openagent&code=exrehi

© National Instruments Corporation 9 LabVIEW Upgrade Notes

Note To avoid unexpected results, do not pass references you use with the Create Semaphore VI or
the Destroy Semaphore VI to the Obtain Semaphore Reference VI or the Release Semaphore
Reference VI, and vice versa.

• Xmath script node—Use the MathScript Node instead. Because the MathScript syntax is different
from the Xmath syntax, you might need to modify existing scripts to work in the MathScript Node.

Property, Method, and Event Behavior Changes
The behavior of the following properties, methods, and events changed in LabVIEW 8.6:

• The Camera Controller:Type property of the SceneGraphDisplay class includes an Oriented value.

• The Camera Controller:Type property of the SceneWindow class includes an Oriented value.

Deprecated Properties, Methods, and Events
LabVIEW 8.6 and later does not support the following properties, methods, and events:

• Control Value:Set [Flattened] method of the VI class. Use the Control Value:Set method instead.

• Control Value:Get All [Flattened] method of the VI class. Use the Control Value:Get All method
instead.

• Control Value:Get [Flattened] method of the VI class. Use the Control Value:Get method instead.

• VIModificationBitSet property of the VI Properties (ActiveX) class. Use the
VIModificationBitSet2 property instead.

• Modifications:VI Modifications Bitset property of the VI Properties class. Use the new
Modifications:VI Modifications Bitset property instead. In LabVIEW 8.5 and earlier, the
Modifications:VI Modifications Bitset property returns a 32-bit value. In LabVIEW 8.6,
the new Modifications:VI Modifications Bitset property returns a 64-bit value.

Renamed Properties, Methods, and Events
The following properties, methods, and events are renamed in LabVIEW 8.6 and later:

Class LabVIEW 8.5 Name LabVIEW 8.6 Name Type

GObject Bounds:Height Bounds:Area Height Property

GObject Bounds:Width Bounds:Area Width Property

ProjectItem Disconnect from Disk Stop Auto-populating Method

TreeControl Expand/Contract
Symbol:Show at Indent
Level 0

Expand/Contract
Symbol:Show Symbol
at Root

Property

VI Control Value:Set [Variant] Control Value:Set Method

VI Control Value:Get [Variant] Control Value:Get Method

VI Control Value:Get All
[Variant]

Control Value:Get All Method

LabVIEW Upgrade Notes 10 ni.com

Upgrading Remote Front Panel Licenses (Windows)
You can allow clients to view an application or front panel remotely using LabVIEW. LabVIEW
supports licenses that allow 5, 20, 50, or unlimited clients to connect to a remote front panel at one time.
You can have only one license on the server computer. Purchase a license that allows enough
connections to accommodate the number of clients you want to allow. If you upgraded the remote front
panel license for LabVIEW 8.5.1 or earlier, you must use your existing serial number to activate a new
license of equal value in NI License Manager.

Shared Components of the Application Builder
LabVIEW installs a component for building shared libraries that is shared with all versions of LabVIEW
on the local computer. If you install an older version of LabVIEW after installing LabVIEW 8.6, the
shared component is replaced by an older version. If you then try to build a shared library in the most
current version of LabVIEW, you will receive an error because the shared component is missing
functionality that LabVIEW 8.6 relies on. To correct this issue, reinstall LabVIEW 8.6.

Upgrading from LabVIEW 8.2
You might encounter the following compatibility issues when you upgrade to LabVIEW 8.6 from
LabVIEW 8.2. Refer to the Upgrading from LabVIEW 8.5 section of this document for information
about other upgrade issues you might encounter.

Note You also can refer to the National Instruments Web site at ni.com/info and enter the info
code ex5d8c for more information about additional issues you may encounter upgrading from
LabVIEW 8.2.

Platforms Supported
LabVIEW 8.5 and later includes the following changes in platforms supported:

• LabVIEW 8.5 and later supports Windows Vista x86 and x64.

• LabVIEW 8.5 and later supports Macintosh computers with both Intel and PowerPC processors.

System Requirements
(Windows) LabVIEW 8.5 requires at least 1.2 GB of disk space for the LabVIEW installation.
LabVIEW 8.6 requires at least 1.6 GB of disk space for the LabVIEW installation.

(Mac OS) LabVIEW 8.5 requires at least 502 MB of disk space for the minimum LabVIEW installation
or 734 MB disk space for the complete LabVIEW installation. LabVIEW 8.6 requires at least 262 MB
of disk space for the minimum LabVIEW installation or 828 MB disk space for the complete LabVIEW
installation.

(Linux) LabVIEW 8.5 requires at least 450 MB of disk space for the minimum LabVIEW installation or
640 MB disk space for the complete LabVIEW installation. LabVIEW 8.6 requires at least 365 MB of
disk space for the minimum LabVIEW installation or 651 MB disk space for the complete LabVIEW
installation.

Windows Vista Compatibility Issues
LabVIEW 8.5 and later supports the Windows Vista OS on 32- and 64-bit systems with the following
functionality changes.

The In Port and Out Port VIs do not appear on the Functions palette because they allow read/write
access to any I/O port on the system, which is discouraged for security reasons on the Vista OS.

• (Windows Vista x86) VI components install properly but show up as unsigned in the Windows
Defender log. The VIs do run properly.

• (Windows Vista x64) These VIs return error –4850.

http://www.ni.com/cgi-bin/redirect.cgi?dest=infcoprod&src=lvhelp&openagent&code=ex5d8c

© National Instruments Corporation 11 LabVIEW Upgrade Notes

VI and Function Behavior Changes
The behavior of the following VIs and functions changed in LabVIEW 8.5 and later.

Enhancements to Analysis VIs and Functions
In each version of LabVIEW, National Instruments enhances many of the algorithms behind LabVIEW
and C functions. National Instruments also upgrades LabVIEW to use the latest compilers. These
enhancements, along with changes in computer hardware and software, might cause differences in the
numerical results between LabVIEW 8.2 or earlier and LabVIEW 8.5 and later. When you compare
double-precision, floating-point numbers, you might notice small differences on the order of 1E–16.
Refer to the National Instruments Web site at ni.com/info and enter the info code exiigr for more
information about comparing floating-point numbers.

Mathematics VIs
LabVIEW 8.5 and later includes changes to the following Mathematics VIs:

• Find All Zeroes of f(x)—This VI was renamed to the Find All Zeros of f(x) VI.

• Zeroes and Extrema of f(x)—This VI was renamed to the Zeros and Extrema of f(x) VI.

Numeric Functions
LabVIEW 8.5 and later includes changes to the following Numeric functions:

• Round To +Infinity—This function was renamed the Round Toward +Infinity function.

• Round To -Infinity—This function was renamed the Round Toward -Infinity function.

Signal Processing VIs
In the Transition Measurements VI, the preshoot output changed to pre-transition. This output also
changed from a 64-bit double-precision, floating-point numeric data type to a cluster data type. The
overshoot output changed to post-transition. This output also changed from a 64-bit double-precision,
floating-point numeric data type to a cluster data type.

Hyperbolic Functions
LabVIEW 8.5 and later includes changes to the following hyperbolic functions:

• The Inverse Hyperbolic Cosine function returns NaN when the input value is a real number that is
out of range for the function.

• The Inverse Hyperbolic Secant function returns NaN when the input value is a real number that is
out of range for the function.

Libraries & Executables VIs and Functions
In the Call Library Function Node, when configuring a Pascal string pointer, you must wire a value to
the string input on the block diagram. When configuring a C string pointer, you must wire a value to the
string input or specify the string size in the Minimum size pull-down menu on the Parameters tab of
the Call Library Function dialog box. You cannot run the VI until you specify values for the strings.

Open VI Reference Function
In LabVIEW 8.0 and 8.2, if the name of the VI from the vi path input matches the name of a VI in
memory on that target, LabVIEW returns a reference to the VI in memory and LabVIEW does not load
the VI specified in the vi path input. In LabVIEW 8.5 and later, if the name of the VI from the vi path
input matches the name of a VI in memory on that target but the paths differ, the Open VI Reference
function returns an error.

Polymorphic VI Terminals that Support 64-bit and Double-Precision Numeric Data Types
LabVIEW coerces extended-precision numeric data to double-precision numeric data if you wire it to a
terminal of a polymorphic VI that supports both the double-precision numeric and 64-bit integer types.
This coercion preserves a portion of the fractional component of the original data.

http://www.ni.com/cgi-bin/redirect.cgi?dest=infcoprod&src=lvhelp&openagent&code=exiigr

LabVIEW Upgrade Notes 12 ni.com

Miscellaneous VI and Function Behavior Changes
LabVIEW 8.5 and later includes the following miscellaneous VI and function behavior changes:

• The Instr Get Attribute VI and Instr Set Attribute VI no longer ship with LabVIEW. If you use
either of these VIs in an application, replace them with the Property Node on the VISA Advanced
palette for equivalent functionality.

• The All Folders parameter of the Recursive File List VI can contain folder shortcuts, but the VI
does not recurse them.

Property, Method, and Event Behavior Changes
The behavior of the following properties, methods, and events changed in LabVIEW 8.5 and later:

• The Data Binding:Path property of the Control class is read/write and settable when the VI is
running. To write this property, you must bind the control to an NI Publish-Subscribe-Protocol
URL before you begin writing.

• The Target:CPU property of the Application class includes the value AMD/Intel x64.

• The Target:Operation System property of the Application class includes the values Windows x64
and Linux x64.

• The Point to Row Column method of the TreeControl class returns the tag
TREE_COLUMN_HEADERS when you wire a point within the column headers of the tree.

• The LabVIEW Class:Create method includes a name input. If you do not wire the name input,
LabVIEW prompts the user to name the class at run time.

• The Control Value:Get [Variant], Control Value:Get [Flattened], Control Value:Set [Variant], and
Control Value:Set [Flattened] methods no longer trim leading and trailing whitespace when
searching for controls.

Deprecated Properties, Methods, and Events
LabVIEW 8.5 and later does not support the following properties, methods, and events:

• Default Instance property of the LVClassLibrary class. Use the Get LV Class Default Value VI
instead.

• Geometry property of the SceneObject class. Use the Drawable property instead.

• Grid Colors property of the GraphChart class. Use the Grid Colors property of the GraphScale class
instead.

• Grid Colors:X Color property of the GraphChart class. Use the Grid Colors:Major Color and Grid
Colors:Minor Color of the GraphScale class instead.

• Grid Colors:Y Color property of the GraphChart class. Use the Grid Colors:Major Color and Grid
Colors:Minor Color of the GraphScale class instead.

• Legend:Plots Shown property of the WaveformChart class. Use the Legend:Number of Rows
property instead.

• Legend:Plots Shown property of the WaveformGraph class. Use the Legend:Number of Rows
property instead.

• Pixel Width property of the ListBox class. Use the Bounds:Area Width property instead.

• Scrollbars Visible property of the Picture class. Use the Horizontal Scrollbar Visible and Vertical
Scrollbar Visible properties instead.

• Set Geometry method of the SceneObject class. Use the Set Drawable method instead.

• Scene:Geometry:New Mesh method of the Application class. Use the
Scene:Drawable:Geometry:New Mesh method instead.

© National Instruments Corporation 13 LabVIEW Upgrade Notes

• Drag Starting event of the Control class. Use the Drag Starting event of the appropriate control class
instead.

• Drag Starting? event of the Control class. Use the Drag Starting? event of the appropriate control
class instead.

Renamed Properties, Methods, and Events
The following properties, methods, and events are renamed in LabVIEW 8.5 and later:

Class LabVIEW 8.2 Name LabVIEW 8.5 Name Type

AbsTime, Numeric Data Range Data Entry Limits Property

AbsTime, Numeric Data Range:Increment Data Entry Limits:Increment Property

AbsTime, Numeric Data Range:Maximum Data Entry Limits:Maximum Property

AbsTime, Numeric Data Range:Minimum Data Entry Limits:Minimum Property

AbsTime, Numeric Out of Range Action Response to Value Outside
Limits

Property

AbsTime, Numeric Out of Range Action:Increment Response to Value Outside
Limits:Increment

Property

AbsTime, Numeric Out of Range Action:Maximum Response to Value Outside
Limits:Maximum

Property

AbsTime, Numeric Out of Range Action:Minimum Response to Value Outside
Limits:Minimum

Property

Application Library:Get Project Library File
Version

Library:Get File LabVIEW
Version

Method

Application Scene:Geometry:New Box Scene:Drawable:Geometry:
New Box

Method

Application Scene:Geometry:New Cone Scene:Drawable:Geometry:
New Cone

Method

Application Scene:Geometry:New Cylinder Scene:Drawable:Geometry:
New Cylinder

Method

Application Scene:Geometry:New Height
Field

Scene:Drawable:Geometry:
New Height Field

Method

Application Scene:Geometry:New Mesh Scene:Drawable:Geometry:
New Mesh

Method

Application Scene:Geometry:New Sphere Scene:Drawable:Geometry:
New Sphere

Method

Application (ActiveX) LibraryGetProjectLibFileVersion LibraryGetFileLVVersion Method

Digital, NumericText,
and Scale

Format & Precision Display Format Property

Digital, NumericText,
and Scale

Format & Precision:Format Display Format:Format Property

LabVIEW Upgrade Notes 14 ni.com

LabVIEW MathScript Behavior Changes (Windows, Not in Base Package)
LabVIEW 8.5 and later includes the following changes to LabVIEW MathScript:

• Changes you make to the search path list or the working directory using the following MathScript
functions apply only to the current instance of the LabVIEW MathScript Window or the
MathScript Node from which you call the function:

– addpath

– cd

– path

– rmpath

LabVIEW resets the search path list and the working directory to the default when you close the
LabVIEW MathScript Window or when the VI that contains the MathScript Node stops running.

• The syntax for the qz function changed from [q, z, alpha, beta, evec] = qz(a, b)
to [S, T, Q, Z, R, L] = qz(A, B, type).

LabVIEW Class Icons
If you created a LabVIEW class icon in LabVIEW 8.2 and you want the icon displayed when you place
a class control or indicator on the block diagram, you must update the class icon to occupy a smaller
space so that the class mask does not obscure any part of the class icon. Use an image no larger than
32 pixels wide by 19 pixels high.

Opening LLBs in LabVIEW
The Enable Windows Explorer for LLB files option on the Environment page of the Options dialog
box no longer exists. LabVIEW opens LLBs in the LLB Manager window. Refer to the National
Instruments Web site at ni.com/info and enter the info code exvfc5 for more information about
opening LLBs.

Timed Loop Priority Level Restriction
In LabVIEW 8.2.x and earlier, you can select up to 2 to the power of 32 for the priority level of a Timed
Loop. LabVIEW 8.5 and later supports only priority levels less than 65,535.

Waveform Data Type
When indexing beyond the bounds of an array of waveforms, the resulting waveform is a proper default
waveform with the dt value equal to 1, instead of an improper waveform with the dt value equal to 0.
This also is true when executing a For Loop with a scalar output tunnel zero times.

Digital, NumericText,
and Scale

Format & Precision:Precision Display Format:Precision Property

DigitalTable Column Headers Visible Signal Number Visible Property

DigitalTable Row Headers Visible Transitions Visible Property

SceneGraphDisplay
and SceneWindow

Clear Color Background Color Property

SceneObject Set Geometry Set Drawable Method

VI Connector Pane Connector Pane:Set Property

Class LabVIEW 8.2 Name LabVIEW 8.5 Name Type

http://www.ni.com/cgi-bin/redirect.cgi?dest=infcoprod&src=lvhelp&openagent&code=exvfc5

© National Instruments Corporation 15 LabVIEW Upgrade Notes

Upgrading from LabVIEW 8.0
You might encounter the following compatibility issues when you upgrade to LabVIEW 8.6 from
LabVIEW 8.0. Refer to the Upgrading from LabVIEW 8.2 and Upgrading from LabVIEW 8.5 sections
of this document for information about other upgrade issues you might encounter.

Refer to the LabVIEW Upgrade Notes for each version of LabVIEW between versions 8.0 and 8.5 at
ni.com/manuals for more information about the new features and changes in each version.

Platforms Supported
LabVIEW 8.2 and later includes the following changes in platforms supported:

• LabVIEW 8.2 and later does not support Windows XP x64.

• LabVIEW 8.2 and later does not support Mac OS X 10.3.8 or earlier.

• LabVIEW 8.2 provides some support for Macintosh computers with Intel processors. Refer to the
National Instruments Web site at ni.com/info and enter the info code macintel for more
information about Macintosh support. LabVIEW 8.5 provides support for Macintosh computers
with both Intel and PowerPC processors.

System Requirements
(Windows) LabVIEW 8.2 requires at least 1.2 GB for the LabVIEW installation. LabVIEW 8.6 requires
at least 1.6 GB for the LabVIEW installation.

(Mac OS) LabVIEW 8.2 requires at least 500 MB of disk space for the minimum LabVIEW installation
or 700 MB disk space for the complete LabVIEW installation. LabVIEW 8.6 requires at least 262 MB
of disk space for the minimum LabVIEW installation or 828 MB disk space for the complete LabVIEW
installation.

(Linux) LabVIEW 8.2 requires at least 430 MB of disk space for the minimum LabVIEW installation or
620 MB disk space for the complete LabVIEW installation. LabVIEW 8.6 requires at least 365 MB of
disk space for the minimum LabVIEW installation or 651 MB disk space for the complete LabVIEW
installation.

Printed Documentation
The following documents did not change for LabVIEW 8.2. Therefore, the content might not reflect
changes made in LabVIEW 8.2.

• LabVIEW Quick Reference Card

• LabVIEW Fundamentals Manual—Because the LabVIEW Fundamentals Manual is a subset of the
Fundamentals book in the LabVIEW Help, refer to the Fundamentals book on the Contents tab
of the LabVIEW Help for updated content.

VI and Function Behavior Changes
The behavior of the following VIs and functions changed in LabVIEW 8.2 and later.

Communicating between Application Instances
In LabVIEW 8.2 and later, you cannot use the Obtain Queue, Obtain Notifier, Create User Event, Create
Semaphore, and Create Rendezvous functions to communicate between LabVIEW application
instances. If you obtain or create a queue, notifier, user event, semaphore, or rendezvous reference in
one application instance, you cannot use that reference in another application instance.

Back Transform Eigenvectors VI
The index low, index high, and Scale inputs of the Back Transform Eigenvectors VI are required inputs.

http://www.ni.com/cgi-bin/redirect.cgi?dest=infcoprod&src=help&openagent&code=rdbp02
http://www.ni.com/cgi-bin/redirect.cgi?dest=infcoprod&src=lvhelp&openagent&code=macintel

LabVIEW Upgrade Notes 16 ni.com

DataSocket Write Function
In LabVIEW 8.0.1, the default behavior for DataSocket Write function changed to asynchronous. If you
have LabVIEW 8.0 and LabVIEW 8.2 or later installed on your computer, the DataSocket API Client
VI example in the labview\examples\Shared Variable directory returns an error when you
stop the VI. You must update LabVIEW 8.0 to LabVIEW 8.0.1 to use this example in LabVIEW 8.2 or
later.

File I/O VIs
The Write To Spreadsheet File VI and Read From Spreadsheet File VI are polymorphic VIs. The Write
to Spreadsheet File VI adapts to the value you wire to the format input. The Read From Spreadsheet
File VI includes the following instances: DBL, I64, and string.

GPIB Status Function
In LabVIEW 8.0, the GPIB Status function did not execute if the error in input received an error.
In LabVIEW 8.2 or later, the GPIB Status function always executes, even if the error in input receives
an error.

Histogram VI
The default for the intervals input of the Histogram VI changed to 10.

Open VI Reference Function
The default behavior for the options input of the Open VI Reference function is to display a loading
dialog box when searching for missing subVIs of the referenced VI. The user is not prompted to find
VIs that LabVIEW cannot find automatically. A new value, 0x20, specifies not to display the loading
dialog box to find missing subVIs of the referenced VI. To prompt the user to find missing subVIs, use
option the 0x10 value.

Polynomial Roots VI
If P(x) equals a nonzero constant, the Polynomial Roots VI does not return an error. However, if P(x)
equals 0, the Polynomial Roots VI returns error -20111. The input polynomial coefficients for this VI
cannot all be zeros.

Ramp Pattern VI
In the Ramp Pattern VI, if samples is 1 and exclude end? is TRUE, the VI returns an array with one
element of start, with no error. In LabVIEW 8.0, the VI returned an error with these conditions.

Read Registry Value Simple VI
LabVIEW 8.0 incorrectly handled REG_MULTI_SZ string formatting, which the VI used for a flattened
array of strings. This issue required you to write a parser to handle this type of data for the Read Registry
Value Simple VI. In LabVIEW 8.2 and later, the Read Registry Value Simple VI returns this type of data
in the same format used in the Write Registry Value Simple VI. You no longer need to add your own
parser. Using your own parser with these VIs in LabVIEW 8.2 and later causes the Read Registry Value
Simple VI to return bad data.

Resample Waveforms (single-shot) VI
The default value of the open interval? input of the Resample Waveforms (single shot) VI changed
from TRUE to FALSE, which selects a closed interval. If you do not update existing code accordingly,
the VI might not return the expected result.

Sound VIs
In the Sound Input Read and the Sound File Read Simple VIs, the t0 component of the data output
returns the time stamp for the first sample read. LabVIEW approximates the initial time that it reads the
first sample.

© National Instruments Corporation 17 LabVIEW Upgrade Notes

Calling The Sound Output Stop VI no longer is necessary to stop the sound on a continuous sound task.

The Sound Output Wait VI works in Continuous Samples mode and in Finite Samples mode.

Waveform VIs
LabVIEW 8.2 and later includes changes to the following Waveform VIs:

• Basic Level Trigger Detection VI—In both instances of this VI, the slope input changed to
trigger slope.

• Get Waveform Subset VI—Includes the following instances: WDT Get Waveform Subset DBL,
WDT Get Waveform Subset CDB, WDT Get Waveform Subset EXT, WDT Get Waveform Subset
I16, WDT Get Waveform Subset I32, WDT Get Waveform Subset I8, and WDT Get Waveform
Subset SGL. The start/duration format input no longer includes an Absolute Time option. The start
input changed to start samples/time, and the actual start output changed to actual start
samples/time.

• Get Waveform Time Array VI—The X array output changed from a double-precision,
floating-point numeric data type to a time stamp data type.

• Get Y Value VI—This VI and the corresponding polymorphic instances were renamed to Get XY
Value. The Get XY Value VI now includes an X value output, and the data value output changed
to Y value.

• Number of Waveform Samples VI—This VI is a polymorphic VI with the following instances:
WDT Number of Waveform Samples DBL, WDT Number of Waveform Samples CDB, WDT
Number of Waveform Samples EXT, WDT Number of Waveform Samples I16, WDT Number of
Waveform Samples I32, WDT Number of Waveform Samples I8, and WDT Number of Waveform
Samples SGL.

• Read Waveform from File VI—Returns an error status of TRUE in the error out output when
the error is end-of-file.

• Replace Subset VI—The start input changed to start samples/time, and the actual start value
output changed to actual start samples/time.

• Search for Digital Pattern VI—The start input changed to start index/time.

• Search Waveform VI—The time of best fit and time of fits outputs changed from a
double-precision, floating-point numeric data type to a time stamp data type.

• Waveform Min Max VI—The min time and max time outputs changed from a double-precision,
floating-point numeric data type to a time stamp data type.

• Waveform to XY Pairs VI—The x element of the XY pairs output changed from a
double-precision, floating-point numeric data type to a time stamp data type.

Property, Method, and Event Behavior Changes
The behavior of the following properties, methods, and events changed in LabVIEW 8.2 and later:

• The default behavior for the options input of the ActiveX GetVIReference method is to prompt
users to find missing subVIs of the referenced VI. A new value, 0x20, specifies not to display the
Find dialog box or prompt users to find missing subVIs of the referenced VI.

• The Add Item method of the ProjectItem class return an error when you try to add a shared variable
to a library that is not opened in a project.

• If the Auto Dispose Ref input of the Run VI method is TRUE and the method returns an error,
LabVIEW does not dispose of the reference.

• Valid values for the Application:Language property include zh-cn to indicate that Simplified
Chinese is the language of the LabVIEW environment.

LabVIEW Upgrade Notes 18 ni.com

• In LabVIEW 8.0, .NET methods that pass array data types by reference pass all data as the refnum
data type. In LabVIEW 8.2 and later, .NET methods that pass array data types by reference pass
the data as the actual data type.

• The Edit Position property of the DigitalTable, MulticolumnListbox, Table, and TreeControl
classes returns values of (–2, –2) to indicate that the user is not making edits to the text of the
control. The Edit Row property of the ListBox class returns a value of –2 to indicate that the user
is not making edits to the text of the control.

• In LabVIEW 8.0, the Defer Panel Updates property did not defer the update of front panels in a
subpanel. In LabVIEW 8.2 and later, the Defer Panel Updates property works with subpanels.

• The Application Instance Close and Application Instance Close? events replace the Application
Exit and Application Exit? events. When you use the Application Instance Close event in a VI
running outside a LabVIEW project, LabVIEW generates the event when you quit LabVIEW
through the user interface or programmatically. LabVIEW generates the Application Instance
Close? event when you quit LabVIEW through the user interface. When you register the
Application Instance Close and Application Instance Close? events for a VI running within a
LabVIEW project, LabVIEW generates the events when the application instance closes or when
you quit LabVIEW.

Deprecated Properties, Methods, and Events
LabVIEW 8.2 and later does not support the following properties, methods, and events.

• LabVIEW 8.2 and later does not support the Connector Pane property.

• LabVIEW 8.x does not support the Data Type property in the Variable class. Use the Data Type
(Variant) property in the Variable class instead.

Renamed Properties, Methods, and Events
The following properties, methods, and events are renamed in LabVIEW 8.2 and later:

Class LabVIEW 8.0 Name
LabVIEW 8.2 and

Later Name Type

Application Disconnect From Slave LVRT:Disconnect From Slave Method

Application Application Exit Application Instance Close Event

Application Application Exit? Application Instance Close? Event

IntensityGraph,
MixedSignalGraph,
and WaveformGraph

Cursor Palette Visible Cursor Legend Visible Property

Library Delete Library Tag Library Tag:Delete Method

Library Get Icon Icon:Get Method

Library Get Library Tag Library Tag:Get Method

Library Get Library Tag Names Library Tag:Get Names Method

Library Get Lock State Lock State:Get Method

Library Get Source Scope Source Scope:Get Method

Library Save Save:Library Method

Library Save a Copy Save:Copy Method

© National Instruments Corporation 19 LabVIEW Upgrade Notes

Application Builder Changes
In LabVIEW 8.2 and later, you cannot view the contents of a stand-alone application (EXE) or shared
library (DLL) by renaming the application or shared library to have a .llb file extension. You also
cannot access a VI in a stand-alone application or shared library by specifying the path to the VI from
outside of the application or shared library. Refer to the National Instruments Web site at ni.com/info
and enter the info code exjk3b for more information about viewing and accessing applications and
shared libraries.

Upgrading from LabVIEW 7.x
You might encounter the following compatibility issues when you upgrade to LabVIEW 8.6 from
LabVIEW 7.x. Refer to the Upgrading from LabVIEW 8.0, Upgrading from LabVIEW 8.2, and
Upgrading from LabVIEW 8.5 sections of this document for information about other upgrade issues
you might encounter.

Refer to the LabVIEW Upgrade Notes for each version of LabVIEW between versions 7.x and 8.5 at
ni.com/manuals for more information about the new features and changes in each version.

Note The LabVIEW Fundamentals Manual did not change for LabVIEW 8.6. You can access the
PDF versions of these documents in the labview\manuals directory. Because the LabVIEW
Fundamentals Manual is a subset of the Fundamentals book in the LabVIEW Help, refer to the
Fundamentals book on the Contents tab of the LabVIEW Help for updated content.

Library Set Icon Icon:Set Method

Library Set Library Tag Library Tag:Set Method

Library Set Lock State Lock State:Set Method

Library Set Source Scope Source Scope:Set Method

Listbox,
MulticolumnListbox,
and TreeControl

Drag/Drop:Allow Item Dragging Drag/Drop:Allow Dragging Property

Path and String Allow Drop Allow Dropping Property

ProjectItems Delete Tag Tag:Delete Property

ProjectItems Get Tag Tag:Get Tag Property

ProjectItems Get Tag Names Tag:Get Names Property

ProjectItems Get XML Tag Tag:Get XML Tag Property

ProjectItems Set Tag Tag:Set Tag Property

ProjectItems Set XML Tag Tag:Set XML Tag Property

ProjectItems Library Item Type String Library Item Type:String Property

ProjectItems Library Item Type Library Item:Type Property

Class LabVIEW 8.0 Name
LabVIEW 8.2 and

Later Name Type

http://www.ni.com/cgi-bin/redirect.cgi?dest=infcoprod&src=lvhelp&openagent&code=exjk3b
http://www.ni.com/cgi-bin/redirect.cgi?dest=infcoprod&src=help&openagent&code=rdbp02

LabVIEW Upgrade Notes 20 ni.com

Platforms Supported
LabVIEW 8.x includes the following changes in platforms supported:

• LabVIEW 7.1 and later do not support Windows Me/98/95. LabVIEW 8.x does not support
Windows NT.

• LabVIEW 8.x does not support Mac OS X 10.2 or earlier.

• LabVIEW 8.x does not support Sun Solaris.

System Requirements
LabVIEW 7.x requires a minimum of 128 MB of RAM, but National Instruments recommends 256 MB
of RAM. LabVIEW 8.5 requires a minimum of 256 MB of RAM, but National Instruments recommends
1 GB of RAM.

LabVIEW 7.x requires a screen resolution of 800 × 600 pixels, but National Instruments
recommends a screen resolution of 1,024 × 768 pixels. LabVIEW 8.x requires a screen resolution of
1,024 × 768 pixels.

Windows
LabVIEW 7.x requires a minimum of a Pentium III or greater or Celeron 600 MHz or equivalent
processor, but National Instruments recommends a Pentium 4 or equivalent processor. LabVIEW 8.x
requires a minimum of a Pentium III or Celeron 866 MHz or equivalent processor, but National
Instruments recommends a Pentium 4/M or equivalent processor.

LabVIEW 7.x requires at least 130 MB of disk space for the minimum LabVIEW installation or 550 MB
disk space for the complete LabVIEW installation. LabVIEW 8.6 requires 1.6 GB disk space for the
complete LabVIEW installation.

Mac OS
LabVIEW 7.x requires at least 280 MB of disk space for the minimum LabVIEW installation or 350 MB
disk space for the complete LabVIEW installation. LabVIEW 8.6 requires at least 262 MB of disk space
for the minimum LabVIEW installation or 828 MB disk space for the complete LabVIEW installation.

Linux
LabVIEW 7.x requires a minimum of a Pentium III or greater or Celeron 600 MHz or equivalent
processor, but National Instruments recommends a Pentium 4 or equivalent processor. LabVIEW 8.x
requires a minimum of a Pentium III or Celeron 866 MHz or equivalent processor, but National
Instruments recommends a Pentium 4/M or equivalent processor.

LabVIEW 7.x requires at least 200 MB of disk space for the minimum LabVIEW installation or 300 MB
disk space for the complete LabVIEW installation. LabVIEW 8.6 requires at least 365 MB of disk space
for the minimum LabVIEW installation or 651 MB disk space for the complete LabVIEW installation.

LabVIEW 7.x requires GNU C Library (glibc) version 2.1.3 or later, but National Instruments
recommends GNU C Library version 2.2.4 or later. LabVIEW 8.x requires GNU C Library version 2.2.4
or later.

LabVIEW 7.x runs on Red Hat Linux 7.0 or later, Mandrake Linux 8.0 or later, SuSE Linux 7.1 or later,
or Debian Linux 3.0 or later. LabVIEW 8.x runs on Red Hat Enterprise Linux WS 3 or later,
MandrakeLinux/Mandriva 10.0 or later, or SuSE Linux 9.1 or later.

Custom Palette Views
LabVIEW 8.x does not support custom palette views. You can edit a palette set without using a custom
palette view. Refer to the National Instruments Web site at ni.com/info and enter the info code
lv8palette for more information about palette changes in LabVIEW 8.0.

http://www.ni.com/cgi-bin/redirect.cgi?dest=infcoprod&src=lvhelp&openagent&code=lv8palette

© National Instruments Corporation 21 LabVIEW Upgrade Notes

VI and Function Behavior Changes
The behavior of the following VIs and functions changed in LabVIEW 7.1 or 8.0.

.NET VIs and Applications
You must have the .NET Framework 1.1 Service Pack 1 or later to use .NET functions and applications
in LabVIEW 8.x. You must remove Microsoft .NET Framework 1.1 Hotfix KB886904 before installing
the .NET Framework 1.1 Service Pack 1.

If you load a .NET VI last saved in LabVIEW 7.x, LabVIEW 8.x might prompt you to find the
assemblies to which that VI refers even if the assembly files are in the same directory as the VI or if you
registered them by selecting Tools»Advanced».NET Assembly References in LabVIEW 7.x.

Analyze VI Algorithms
In LabVIEW 7.1 and later, the Analyze VIs use the BLAS/LAPACK algorithms. These VIs now
produce more accurate results. In LabVIEW 8.x, these VIs are on the Mathematics and Signal
Processing palettes.

Append Signals Express VI
In LabVIEW 7.x, if Input Signal A of the Append Signals Express VI is empty or not wired and you
wire a single signal or a combined signal to Input Signal B, the Appended Signals output is empty. In
LabVIEW 8.x, if Input Signal A is empty or not wired and you wire a single signal to Input Signal B,
the Express VI returns Input Signal B. If you wire only a combined signal to Input Signal B, each
signal in the combined signal appends the following signal to create one signal as a result.

Comparison Functions
In LabVIEW 7.x and earlier, when you use the Comparison functions to compare variant data,
LabVIEW first compares the length of the two variants and then compares the variants bit by bit.
LabVIEW 8.x begins the comparison of variant data with the type codes, which encode the actual type
information of the variants, and then compares other type-specific attributes.

Dot Product VI
In LabVIEW 7.0, the Dot Product VI calculates the dot product of input vectors X and Y using the
following equation:

In LabVIEW 7.1 and later, the Dot Product VI calculates the dot product of complex inputs using the
following equation:

where yi* is the complex conjugate of yi.

Easy Text Report VI (Mac OS and Linux)
The connector pane of the Easy Text Report VI changed. In LabVIEW 8.x, when you open a VI last
saved in LabVIEW 7.x or earlier that uses the Easy Text Report VI, you must right-click the subVI and
select Relink To SubVI from the shortcut menu.

X∗Y xiyi
i 0=

n 1–

∑=

X *Y xiyi∗

i 0=

n 1–

∑=

LabVIEW Upgrade Notes 22 ni.com

Format Into String Function
In LabVIEW 7.x, using the %o, %b, or %x format specifier syntax elements with the Format Into String
function rounds a floating-point input to a 32-bit integer before converting that input to a string.

In LabVIEW 8.x, these format specifier syntax elements cause this function to round floating-point
inputs to 64-bit integers before converting the inputs to strings.

Join Numbers Function
In LabVIEW 7.x and earlier, the Join Numbers function coerces 32-bit integer inputs to 16-bit integers
to create one 32-bit integer. In LabVIEW 8.x, the Join Numbers function joins 32-bit integer inputs to
create one 64-bit integer.

Note If you open a LabVIEW 7.x VI in LabVIEW 8.x, LabVIEW coerces 32-bit integer inputs to
16-bit integers.

Mathematics VIs and Matrices
In LabVIEW 8.x, Mathematics VIs support the matrix data type. If you load a VI from LabVIEW 7.x in
LabVIEW 8.x and the VI contains a Mathematics VI wired to a function that can use the matrix data
type and is instead using a 2D array, a red 7.x glyph appears on the function. The red glyph indicates
that LabVIEW replaced the 2D array with the matrix data type.

Number to String Conversion Functions
In LabVIEW 7.x, the Number To Hexadecimal String, Number To Octal String, and Number To
Decimal String functions round a floating-point input to a 32-bit integer before converting that input to
a string.

In LabVIEW 8.x, these functions round floating-point inputs to 64-bit integers before converting the
inputs to strings. However, if you open a LabVIEW 7.x VI in LabVIEW 8.x, LabVIEW maintains
compatibility and functionality by rounding floating-point inputs to 32-bit integers.

Open VI Reference Function
In LabVIEW 7.x, if the vi path input of the Open VI Reference function is a path and a VI in memory
exists with the same name, LabVIEW returns a reference to the VI in memory, even if the path to the VI
in memory does not match the path you specified.

In LabVIEW 8.x, if the vi path input of the Open VI Reference function is a string, LabVIEW opens the
VI only if vi path matches the qualified VI name of a VI in memory on that target. If vi path is a path,
LabVIEW searches for a VI in memory with the same path on the same target. If LabVIEW does not
find a VI with a matching path, LabVIEW tries to load the VI from disk at the specified path. In
LabVIEW 8.5 and later, an error occurs if LabVIEW cannot find the file or if the VI name of the file is
the same as the qualified VI name as another VI in memory on that target.

Quick Scale VI
In LabVIEW 7.1 and earlier, if the X input of the Quick Scale 1D VI or the Quick Scale 2D VI is an
array of zeros, this VI returns max|X| as 0 and Y[i]=X[i]/Max|X| or Yij=Xij/Max|X| as an array of NaN.
In LabVIEW 8.x, if the X input of the Quick Scale VI is an array of zeros, this VI returns max|X| as 0
and Y[i]=X[i]/Max|X| or Yij=Xij/Max|X| as an array of zeros.

Read Key VI
In LabVIEW 7.x and earlier, you can use the string instance of the Read Key VI to read a Japanese
multibyte-character string encoded in Shift-JIS. You must wire 1 or <Shift-JIS> to the multibyte
encoding input. In LabVIEW 8.x, the string instance of the Read Key VI reads multibyte-character,
encoded strings by default if you set the operating system locale to the appropriate encoding.

© National Instruments Corporation 23 LabVIEW Upgrade Notes

Scale VI
In LabVIEW 7.1 and earlier, if the X input of the Scale 1D VI or the Scale 2D VI is an array of zeros,
this VI returns scale as 0, offset as 0, and Y=(X–offset)/scale as an array of NaN. In LabVIEW 8.x,
if the X input of the Scale VI is an array of zeros, this VI returns scale as 1, offset as 0, and
Y=(X–offset)/scale as an array of zeros.

Semaphore VIs
In LabVIEW 7.x, the Release Semaphore VI and the Acquire Semaphore VI do not attempt to run when
the error in input receives an error. In LabVIEW 8.x, these VIs attempt to run even if the error in input
receives an error. However, if you open a LabVIEW 7.x VI in LabVIEW 8.x, LabVIEW updates the VI
in order to maintain the LabVIEW 7.x functionality.

SMTP Email VIs
In LabVIEW 7.x and earlier, you can specify a character set by wiring a value to the character set input
of the SMTP Email VIs. In LabVIEW 8.x, the SMTP Email VIs assume the message is in the system
character set. These VIs encode the message into UTF-8 format before sending the email. The SMTP
Email VIs no longer have the character set or translit parameters.

Sort Complex Numbers VI
In LabVIEW 7.x and earlier, if you set the method input of the Sort Complex Numbers VI to
Magnitude, LabVIEW does not change the sequence of elements with the same magnitude. In
LabVIEW 8.x, if you set method to Magnitude, LabVIEW sorts elements of the same magnitude
first with respect to their real parts and then with respect to their imaginary parts.

Unit Vector VI
In LabVIEW 7.x and earlier, the Unit Vector VI calculates the norm of an input vector using the
following equation:

In LabVIEW 8.x, the Unit Vector VI calculates the norm of an input vector using the following equation:

where X is the input vector, ||X|| is the norm, and y is the norm type.

User VIs
VIs that you place in the labview\help, labview\project, or labview\wizard directories
appear in the Help, Tools, and File menus, respectively. VIs that you place in these directories in
LabVIEW 7.x and earlier might not work as expected in LabVIEW 8.x because LabVIEW 8.0 and later
opens these VIs in a private application instance.

Use the VIMemory Get VIs in Memory VI in the labview\vi.lib\Utility\
allVIsInMemory.llb to generate a list of all user VIs in memory in all application instances.
Use the Get User Application Reference VI in the labview\vi.lib\
Utility\allVIsInMemory.llb to create a reference to the current application instance.
Refer to the LabVIEW Help for more information about application instances.

X x0
2 x1

2 … xn 1–
2+ + +=

X x0
y x1

y … xn 1–
y+ + +

1
y

=

LabVIEW Upgrade Notes 24 ni.com

Deprecated VIs and Functions
LabVIEW 8.x does not support the following VIs and functions:

• LabVIEW 7.1 and later do not install the Polynomial Real Zero Counter VI. Use the Polynomial
Real Zeros Counter VI instead.

• (Mac OS) LabVIEW 7.1 and later do not install the PPC VIs. Use the TCP VIs instead.

• LabVIEW 8.x does not support the QR Factorization VI. Use the QR Decomposition VI instead.

• LabVIEW 8.x does not support the Levenberg Marquardt or the Nonlinear Lev-Mar Fit VIs.
Use the Nonlinear Curve Fit VI instead.

• In LabVIEW 8.x, the VISA Status Description function is not on the Functions palette. Use the
Simple Error Handler or General Error Handler VIs instead.

• LabVIEW 8.x does not support the Chi Square Distribution, F Distribution, Normal Distribution,
and T Distribution VIs. Use the Chi-Squared, F, Normal, and Student t instances, respectively,
of the Continuous CDF VI instead.

• LabVIEW 8.x does not support the Inv Chi Square Distribution, Inv F Distribution, Inv Normal
Distribution, and Inv T Distribution VIs. Use the Chi-Squared, F, Normal, and Student t instances,
respectively, of the Continuous Inverse CDF VI instead.

• In LabVIEW 8.x, the 1D Linear Evaluation VI and the 2D Linear Evaluation VI are not on the
Functions palette. Use the Linear Evaluation VI instead.

• In LabVIEW 8.x, the 1D Polynomial Evaluation VI and the 2D Polynomial Evaluation VI are not
on the Functions palette. Use the Polynomial Evaluation VI instead.

• In LabVIEW 8.x, the 1D Rectangular to Polar VI and the 1D Polar to Rectangular VI are not on
the Functions palette. Use the Re/Im To Polar function and the Polar To Re/Im function instead.

• In LabVIEW 8.x, the Harmonic Analyzer VI is not on the Functions palette. Use the Harmonic
Distortion Analyzer VI instead to measure the THD or component levels outputs, or use the
SINAD Analyzer VI to measure the SINAD or THD Plus Noise outputs.

• In LabVIEW 8.x, the Network Functions (avg) VI is not on the Functions palette. Use the
Frequency Response Function (Mag-Phase), Frequency Response Function (Real-Im), Cross
Spectrum (Mag-Phase), or Cross Spectrum (Real-Im) VIs instead.

• In LabVIEW 8.x, the Pulse Parameters VI is not on the Functions palette. Use the Transition
Measurements VI instead to measure the slew rate, duration, overshoot (the Transition
Measurements VI equivalent is the post-transition output), or preshoot (the Transition
Measurements VI equivalent is the pre-transition output) outputs, the Pulse Measurements VI to
measure the period, pulse duration, or duty cycle outputs, or the Amplitude and Levels VI to
measure the amplitude, high state level, or low state level outputs.

• In LabVIEW 8.x, the Transfer Function VI is not on the Functions palette. Use the Frequency
Response Function (Mag-Phase) or Frequency Response Function (Real-Im) VIs instead.

• In LabVIEW 8.x, the NI DIAdem Report Wizard Express VI is not on the Functions palette.
Use the DIAdem Report Express VI instead.

• In LabVIEW 8.x, the VISA resource name constant and the IVI logical name constant are not on
the Functions palette. To specify a VISA resource name, use the VISA resource name input of the
VISA VIs. To specify an IVI logical name, use the appropriate input of the appropriate driver VI
that initializes the instrument.

• In LabVIEW 8.x, the error ring constant is not on the Functions palette. Use a 32-bit signed integer
constant instead to enter the error code that you want.

© National Instruments Corporation 25 LabVIEW Upgrade Notes

• (Windows and Linux) In LabVIEW 8.x, the Sound VIs available on the Sound palette in
LabVIEW 7.x are not on the Functions palette. Use the Sound VIs in LabVIEW 8.x instead.
The examples shipped with LabVIEW 7.x do not ship with LabVIEW 8.x.

File I/O VIs and Functions
In LabVIEW 8.x, the Read Characters From File VI is not on the Functions palette. Use the Read from
Text File function instead.

In LabVIEW 8.x, the Open/Create/Replace File VI is not on the Functions palette. Use the
Open/Create/Replace File function instead. The following functions include some of the functionality
of the Open/Create/Replace File VI in LabVIEW 7.x and earlier:

• Use the Get File Size function to determine the size of a file.

• Use the File Dialog Express VI to specify the start path, file pattern, and default name of a file or
directory for a file dialog box.

• Use the Refnum to Path function to convert a reference to a path.

• Use the Write to Binary File function to create platform-independent text files or other types of
binary files, and use the Read from Binary File function to read the resulting binary files.

In LabVIEW 8.x, the Read File and Write File functions are not on the Functions palette. Use the Read
from Binary File and Write to Binary File functions instead.

In LabVIEW 8.x, the Write Characters To File VI is not on the Functions palette. Use the Write to Text
File function instead.

In LabVIEW 8.x, the Access Rights function is not on the Functions palette. Use the Get Permissions
and Set Permissions functions instead.

In LabVIEW 8.x, the EOF function is not on the Functions palette. Use the Get File Size and Set File
Size functions instead.

In LabVIEW 8.x, the List Directory function is not on the Functions palette. Use the List Folder
function instead.

In LabVIEW 8.x, the Lock Range function is not on the Functions palette. Use the Deny Access
function instead.

If you open a VI built in LabVIEW 7.x that includes the New Directory function on the block diagram,
LabVIEW 8.x replaces that function with the Create Folder function. If the folder you specified in the
path input does not exist, the Create Folder function creates the directory rather than returning an error,
as the New Directory function did.

In LabVIEW 8.x, the Seek function is not on the Functions palette. Use the Get File Position and Set
File Position functions instead.

In LabVIEW 8.x, the Type and Creator function is not on the Functions palette. Use the Get Type and
Creator and Set Type and Creator functions instead.

In LabVIEW 8.x, the Volume Info function is not on the Functions palette. Use the Get Volume Info
function instead.

In LabVIEW 8.x, the Open File and New File functions are not on the Functions palette. The Read
Lines From File VI is not on the Functions palette but ships with LabVIEW for compatibility.

LabVIEW Upgrade Notes 26 ni.com

In LabVIEW 8.x, the Read From I16 File, Read From SGL File, Write To I16 File, and Write To SGL
File VIs are not on the Functions palette. Use the Read from Binary File and Write to Binary File VIs
instead.

Property, Method, and Event Behavior Changes
The behavior of the following properties, methods, and events changed in LabVIEW 7.1 or 8.0.

Application Properties and Methods
In LabVIEW 8.x, the behavior of some Application properties and methods depends on the application
instance to which they belong. For example, the behavior of the Application:All VIs in Memory
property depends on the application instance in which you use it. This property returns a list of all VIs
in memory in the same application instance as the property. However, the behavior of the
Application:Directory Path property does not depend on the application instance in which you use it.
This property returns the absolute path to the directory in which the application is located. This
information does not change with each application instance.

Refer to the LabVIEW Help for more information about application instances.

Front Panel:Open Method
The LabVIEW 7.0 Open FP method was renamed to Old Open FP in LabVIEW 7.1. LabVIEW 7.1
includes a different Open FP method that does not return an error if the front panel is already open. The
LabVIEW 7.1 Open FP method was renamed to Front Panel:Open in LabVIEW 8.x. If you have VIs that
use the Old Open FP method from LabVIEW 7.0, replace the method with the Front Panel:Open
method.

Run VI Method
In LabVIEW 7.1, if you set the Auto Dispose Ref input of the Run VI method to TRUE, LabVIEW
automatically disposes the reference after the VI stops running. If the Run VI Method generates an error,
the reference is not automatically closed. In LabVIEW 8.0, LabVIEW automatically disposes the
reference if the method returns an error. This behavior might break a VI at run time if part of the block
diagram depends on the reference. In LabVIEW 8.2 and later, the behavior has been changed back to
the 7.1 behavior.

Key Down and Key Repeat Events
The VKey data field of the Key Down, Key Down?, Key Repeat, and Key Repeat? events for VIs and
controls now has separate values for the <Return> key on the alphanumeric section of the keyboard and
the <Enter> key on the numeric keypad. In LabVIEW 7.x and earlier, when the <Enter> key or the
<Return> key generates one of these events, LabVIEW returns <Enter> in the VKey data field. In
LabVIEW 8.x, when the <Enter> key or the <Return> key generates one of these events, LabVIEW
returns <Enter> or <Return>, respectively, in the VKey data field.

(Mac OS) LabVIEW 8.x accepts only <Control>-click for shortcut menus and does not receive the
<Command>-click key combination. If you are emulating this behavior with an Event structure, modify
your VIs to emulate the new behavior.

ListBox Properties
In LabVIEW 7.x and earlier, if you set the Top Row property of a listbox to a row that is below the
bottom item of the listbox, LabVIEW pins the row to the last visible item. In LabVIEW 8.x, the number
of visible items in the listbox does not limit the row number you can wire to this property.

LabVIEW 8.x does not support the Double-Click property for single-column listboxes. Use the Get
Double-Clicked Row method instead.

© National Instruments Corporation 27 LabVIEW Upgrade Notes

Owning VI Property
In LabVIEW 7.x and earlier, the Owning VI property returns a reference to the VI to which the object
belongs. This reference keeps the VI in memory. In LabVIEW 8.x, the reference the Owning VI property
returns does not keep the VI in memory. If the owning VI is removed from memory, this reference
becomes invalid. Use the Open VI Reference function to obtain a reference to a VI that stays in memory
until you explicitly close the reference.

Text Property
In LabVIEW 7.x and earlier, the Text property returns a string in normal display. In LabVIEW 8.x, the
Text property returns a string in the same text display as the front panel object. For example, if you
display a string control in password display, the Text property returns the string in password display.

TreeControl Properties
In LabVIEW 7.x and earlier, the Active Cell Properties:Cell Size:Height and Active Cell Properties:Cell
Size:Width properties return one less pixel for each line in the tree control than in LabVIEW 8.x. For
example, if you load a LabVIEW 7.x VI in LabVIEW 8.x that contains a property node which returns
the height and width of a tree control as 70 pixels and 16 pixels, any new property nodes you place to
determine height and width return 69 pixels and 15 pixels.

VI Strings Methods
Strings that you export from previous versions of LabVIEW using the Export VI Strings method might
not import properly in LabVIEW 8.x when you use the VI Strings:Import method.

Deprecated Properties, Methods, and Events
LabVIEW 8.x does not support the following properties, methods, and events.

Cursor Properties
LabVIEW 8.x does not support the Cursor Lock Style property. Use the Cursor Mode property instead.

ListBox, MulitcolumnListbox, Table, DigitalTable, and TreeControl Properties and Events
LabVIEW 8.x does not support the Cell Foreground Color property for multicolumn listboxes. Use the
Active Cell:Cell Font:Color property instead.

LabVIEW 8.x does not support the Cell FG Color property for tables or digital tables. Use the Active
Cell:Cell Font:Color property for tables and digital tables instead.

LabVIEW 8.x does not support the Active Cell Properties:Foreground Color property for tree controls.
Use the Active Cell:Cell Font:Color property instead.

LabVIEW 8.x does not support the Drag, Drag?, Drop, and Drop? events in the TreeControl class.
Use the Drag Ended, Drag Enter, Drag Leave, Drag Over, Drag Source Update, Drag Starting, Drag
Starting?, and Drop events in the Control class instead.

NamedNumeric Properties
LabVIEW 8.x does not support the Named Numeric Colors, Named Numeric Colors:BG Color, or
Named Numeric Colors:Text Color properties for named numeric objects. Use the Text Colors, Text
Colors:BG Color, and Text Colors:Text Color properties, respectively, instead.

Panel Properties
LabVIEW 8.x does not support the Color property in the Panel class. If you use this property in
LabVIEW 8.x, the property applies only to the upper-leftmost pane. Use the Pane Color property in
the Pane class instead.

LabVIEW Upgrade Notes 28 ni.com

Subpanel Properties
In LabVIEW 8.x, use the pane of a subVI in a subpanel to configure the visibility of scroll bars for
subpanel controls and to scale the front panel in subpanel controls.

LabVIEW 8.x does not support the X Scrollbar Visible property for subpanel controls. Use the
Horizontal Scrollbar Visibility property for panes instead.

LabVIEW 8.x does not support the Y Scrollbar Visible property for subpanel controls. Use the Vertical
Scrollbar Visibility property for panes instead.

LabVIEW 8.x does not support the Scale Panel property for subpanel controls. Use the Set Scaling
Mode method for panes instead.

VI Properties, Methods, and Events
LabVIEW 8.x does not support the Front Panel Window:Auto Center property. Use the Front
Panel:Center method instead.

LabVIEW 8.x does not support the Front Panel Window:Size to Screen property. Use the Front Panel
Window:State property instead.

LabVIEW 8.x does not support the Front Panel Window:Origin property in the VI class. If you use this
property in LabVIEW 8.x, the property applies only to the upper-leftmost pane. Use the Origin property
in the Pane class instead.

LabVIEW 8.x does not support the Front Panel Window:Show Scroll Bars property in the VI class.
If you use this property in LabVIEW 8.x, the property applies only to the upper-leftmost pane. Use the
Horizontal Scrollbar Visibility and Vertical Scrollbar Visibility properties in the Pane class instead.

LabVIEW 8.x does not support the Get Front Panel Scaling Mode or Set Front Panel Scaling Mode
methods in the VI class. If you use these methods in LabVIEW 8.x, the methods apply only to the
upper-leftmost pane. Use the Get Scaling Mode and Set Scaling Mode methods in the Pane class instead.

In LabVIEW 8.x you cannot select the Mouse Down, Mouse Down?, Mouse Move, or Mouse Up events
of the VI class in the Edit Events dialog box. Use the Mouse Down, Mouse Down?, Mouse Move, and
Mouse Up events in the Pane class, respectively, instead.

Changes from Previous Versions of the Application Builder
The Application Builder is integrated into the Project Explorer window. If you use the LabVIEW Base
Package or Full Development System, you can purchase the Application Builder separately by visiting
the National Instruments Web site at ni.com/info and entering the info code rdlv21.

Use Build Specifications in the Project Explorer window to create build specifications for and build
stand-alone applications (EXEs), shared libraries (DLLs), and zip files. (Windows) You also can use
Build Specifications to create build specifications for and build installers. Build specifications are
equivalent to .bld files in previous versions of the Application Builder, but they now are part of a
LabVIEW project instead of separate files.

Note You must use the Application Builder tools within a project.

You can convert a .bld file into a build specification in a new project. Select Tools»Convert Build
Script to navigate to and select the .bld file to convert. LabVIEW uses the file to create a project that
contains the source files and build specifications.

http://www.ni.com/cgi-bin/redirect.cgi?dest=infcoprod&src=lvhelp&openagent&code=rdlv21

© National Instruments Corporation 29 LabVIEW Upgrade Notes

Application Item Tags
The following list includes application item tags that have been removed from LabVIEW either because
the feature is no longer available or because it has been combined with another feature:

• APP_SAVE_WITH_OPTIONS

• APP_UPDATE_VXI

• APP_DSC_TOOLBAR

• APP_DSC_TAGEDITOR

• APP_DSC_TAGMONITOR

• APP_DSC_HTV

• APP_DSC_ENGINE

• APP_DSC_SECURITY

• APP_DSC_LOGOUT

• APP_DSC_CPWD

• APP_DSC_USERINFO

• APP_DSC_USEREDITOR

• APP_DSC_ADVANCED

• APP_DSC_STARTUP

• APP_DSC_SRVBRW

• APP_DSC_IST

• APP_DSC_IMAGENAV

• APP_DSC_OPTIONS

• APP_SRC_CODE_CTRL

• APP_BUILD_STANDALONE_APP

• APP_EDIT_VI_LIBRARY

• APP_DN_ASSEMBLY_REFS

• APP_SHOW_CLIPBOARD

• APP_VIEW_PRINTED_MANUALS

• APP_RT_ENGINE_INFO

• APP_SWITCH_EXEC_TARGET

• APP_REALTIME

When you use a run-time menu (.rtm) file that was saved in a previous version of LabVIEW and the
file contains a deleted tag, LabVIEW 8.x automatically removes the tag from the .rtm file when you
save the file in the Menu Editor dialog box. The deleted application item tags are reserved by LabVIEW
and you cannot use them as user tags.

HiQ Support
National Instruments does not support HiQ functionality in LabVIEW 8.x. If an application uses HiQ
VIs, consider replacing them with the Mathematics and Signal Processing VIs.

Error List Window
In LabVIEW 7.x and earlier, the VI List section of the Error list window shows errors for all VIs in
memory. In LabVIEW 8.x, the Items with errors section of the Error list window shows errors for all
items in memory, such as VIs and libraries. If two or more items have the same name, this section shows

LabVIEW Upgrade Notes 30 ni.com

the specific application instance for each ambiguous item. Refer to the LabVIEW Help for more
information about application instances.

VI String File Syntax
LabVIEW 8.x searches for a new set of tags, <GROUPER></GROUPER>, when you import VI string
files by selecting Tools»Advanced»Import Strings or by using the VI Strings:Import method. This set
of tags denotes front panel objects that are grouped together. Therefore, in LabVIEW 8.x, you cannot
import VI string files saved in previous versions of LabVIEW.

LabVIEW 7.1 and earlier lists listbox strings in the <ITEMS> section of its private data. LabVIEW 8.x
lists listbox strings in the <STRINGS> section of its private data. Also, in LabVIEW 7.1 and earlier, a
listbox can have only one font, which LabVIEW lists in the <LBLABEL> section of its private data. In
LabVIEW 8.x, the listbox can have multiple fonts, which LabVIEW lists in the <CELL_FONTS> section
of its private data.

LabVIEW 7.1 and earlier lists multicolumn listbox strings in its default data. However, the default data
for a multicolumn listbox is an integer or array of integers. LabVIEW 8.x lists multicolumn listbox
strings in its private data.

LabVIEW 7.1 and earlier exports neither strings nor fonts for tree controls. LabVIEW 8.x can export
both tree control strings and fonts, and it exports them in the same format as the listbox and multicolumn
listbox.

In LabVIEW 8.x, each line of an export file contains no more than two tags for private or default data.
LabVIEW 8.x also indents items once for each nesting level.

Complete the following steps to convert VI string files to the LabVIEW 8.x format.

1. Import the VI string file in the previous version of LabVIEW.

2. Save the VI.

3. Load the VI in LabVIEW 8.x.

4. Select Tools»Advanced»Export Strings to save the VI string file in the LabVIEW 8.x format.

Converting Type Descriptor Data to and from LabVIEW 7.x
The format in which LabVIEW stores type descriptors changed in LabVIEW 8.x. LabVIEW 7.x stores
type descriptors in 16-bit flat representation. LabVIEW 8.x stores type descriptors in 32-bit flat
representation. This change eliminates the 64 KB size limitation of type descriptors.

LabVIEW 8.x provides a mechanism for reading type descriptors written in LabVIEW 7.x and writing
type descriptors that LabVIEW 7.x can read. The Flatten To String function has a Convert 7.x Data
shortcut menu item. If you right-click the function and select this menu item, the function treats input
data as if it were written for LabVIEW 7.x. When you select the Convert 7.x Data shortcut menu item
and the data string output is wired, LabVIEW 8.x places a red 7.x glyph on the function to indicate
that it is converting data to or from LabVIEW 7.x format. To avoid the conversion of data, select the
Convert 7.x Data shortcut menu item again to remove the checkmark.

In LabVIEW 8.x, when you load a VI last saved in LabVIEW 7.x or earlier, LabVIEW 8.x automatically
sets the Convert 7.x Data attribute on the Flatten To String function. The function continues to operate
as in LabVIEW 7.x and earlier. If you want a VI to use the LabVIEW 8.x type descriptor format,
right-click the Flatten To String function and select Convert 7.x Data from the shortcut menu to remove
the checkmark. Use the LabVIEW 8.x type descriptor format if VIs do not need to manipulate files that
contain data written in LabVIEW 7.x or earlier and do not send or receive data to or from VIs running
in LabVIEW 7.x or earlier. Support for the previous type descriptor format might be discontinued in
future versions of LabVIEW.

© National Instruments Corporation 31 LabVIEW Upgrade Notes

Migrating from the LabVIEW Built-In Source Control Provider
The built-in source control provider from LabVIEW 7.x and earlier is not available in LabVIEW 8.x.
If you want to use source control in LabVIEW, you must select a third-party source control provider.
If you used the built-in provider in previous versions, you must migrate the files to another provider to
use source control in LabVIEW. Refer to the National Instruments Web site at ni.com/info and enter
the info code exgucn for the most current list of third-party source control providers supported in
LabVIEW.

When you migrate files to a new source control provider, you lose the revision history stored in the
built-in provider. You cannot transfer the previous versions of the files to the new provider.

Complete the following steps to migrate files from the built-in source control provider to a third-party
source control provider.

1. In the previous version of LabVIEW, make sure that the files included in the LabVIEW built-in
source control provider are checked in by all users.

2. On the computer where you want to add the files to the new source control provider, use the built-in
provider to get the latest versions of all the files.

3. Use the built-in provider to check out the files from source control.

4. In the third-party source control provider, configure the settings you want for the new source
control project.

5. Configure LabVIEW to work with the third-party source control provider.

Refer to the Fundamentals»Organizing and Managing a Project»How-To»Using Source
Control in LabVIEW book on the Contents tab of the LabVIEW Help for information about
configuring LabVIEW to work with a third-party source control provider.

6. Create a LabVIEW project. Add the files included in the built-in provider to the project. When
LabVIEW prompts you, add the files to source control. You also can add the files directly in the
third-party provider.

Refer to the Fundamentals»Organizing and Managing a Project»How-To»Creating a
LabVIEW Project book on the Contents tab of the LabVIEW Help for information about creating
a LabVIEW project.

Converting NaN Strings to Integer Types (Windows)
In LabVIEW 7.x, when you explicitly or implicitly convert NaN to an integer, the value becomes the
smallest value for that integer data type. For example, converting NaN to a 16-bit signed integer produces
the value –32,768, the smallest possible value for a 16-bit signed integer.

In LabVIEW 8.x, when you explicitly or implicitly convert NaN to an integer, the value becomes the
largest value for that integer data type. For example, converting NaN to a 16-bit signed integer produces
the value 32,767, the largest possible value for a 16-bit signed integer.

Constants Wired to Case Structures
In LabVIEW 7.x and earlier, you can keep subVIs in memory by wiring a constant to a Case structure
and placing the subVI in a case that does not execute. For example, if you wire a TRUE constant to a
Case structure and place a subVI in the FALSE case of the Case structure, LabVIEW loads the subVI
along with the calling VI. LabVIEW 8.x removes any code that does not execute. Therefore, if you load
a VI in LabVIEW 8.x that was saved in an earlier version of LabVIEW with a constant wired to a Case
structure, LabVIEW changes the constant to a hidden control to maintain the behavior from the earlier
version of LabVIEW.

http://www.ni.com/cgi-bin/redirect.cgi?dest=infcoprod&src=lvhelp&openagent&code=exgucn

LabVIEW Upgrade Notes 32 ni.com

Delaying Operating System Messages
In LabVIEW 7.x, LabVIEW processes operating system messages while running callback VIs for
handling .NET and ActiveX events. In LabVIEW 8.x, LabVIEW delays the processing of operating
system messages until the callback VI stops execution or until you load a modal dialog box. This delay
allows callback VIs to execute without interruption and prevents LabVIEW from firing an event within
another event, which can result in a deadlock state.

You cannot make synchronous calls to non-modal dialog boxes from a callback VI. You must
asynchronously call a non-modal dialog box from a callback VI by invoking a Run VI method on the
dialog and wiring a FALSE Boolean constant to the Wait Until Done input of the method.

In LabVIEW 7.x, LabVIEW processes operating system messages while running DLL or shared library
functions. In LabVIEW 8.x, LabVIEW delays the processing of operating system messages until the end
of calls to DLL functions or until you load a modal dialog box from the DLL. This delay allows DLL
functions to execute without interruption and prevents LabVIEW from calling the same DLL while a
DLL function is running, which can result in a deadlock state. Delaying the operating system messages,
such as keyboard messages from the users, is useful in order to avoid calling the same shared library file
while a shared library function runs. For example, if the shared library function is called in response to
the user pressing a button, the user should not be able to press the button again until the shared library
function has completed.

If you use this default behavior, you cannot make synchronous calls to non-modal dialog boxes while a
DLL runs. You must call a non-modal dialog box asynchronously from a DLL by invoking a Run VI
method on the dialog and wiring a FALSE Boolean constant to the Wait Until Done input of the method.

You can choose whether to delay operating system messages in DLLs that you build. Right-click the
DLL in the Project Explorer window, select Properties from the shortcut menu, select Advanced from
the Category list, and remove the checkmark from the Delay operating system messages in shared
library checkbox to process operating system messages while DLL functions run.

Resource Manager (Mac OS)
LabVIEW 7.x and earlier provide undocumented capabilities with which you can read and write
Macintosh resource files. In LabVIEW 8.x, these methods do not exist. Utilities that make use of these
undocumented capabilities do not work, and you therefore cannot read or write Macintosh resource files
from VIs.

One- and Two-Button Dialog Boxes
In LabVIEW 7.x and earlier, you cannot abort programmatically a VI displaying a one-button dialog box
or two-button dialog box. In LabVIEW 8.x, you can abort programmatically a VI displaying these dialog
boxes by using the Abort VI method.

Property and Invoke Nodes
If you create an implicitly linked Property Node or Invoke Node from a cursor legend in LabVIEW 7.x,
LabVIEW deletes the node when you open the VI in LabVIEW 8.x.

Updating Shared Libraries
If you build a shared library (DLL) in LabVIEW 7.x or earlier that links to labview.lib, link the
shared library to labviewv.lib instead in LabVIEW 8.x. Refer to the LabVIEW Help for more
information about linking shared libraries to labviewv.lib.

Margin Values for Printing
In LabVIEW 7.x and earlier, the Margins option on the Printing page of the Options dialog box uses
centimeters for margin values. In LabVIEW 8.x, the Margins option uses millimeters for margin values.

© National Instruments Corporation 33 LabVIEW Upgrade Notes

Upgrading from LabVIEW 6.x
You might encounter the following compatibility issues when you upgrade to LabVIEW 8.6 from
LabVIEW 6.x. Refer to the Upgrading from LabVIEW 7.x, Upgrading from LabVIEW 8.0, Upgrading
from LabVIEW 8.2 and Upgrading from LabVIEW 8.5 sections of this document for information about
other upgrade issues you might encounter.

Refer to the LabVIEW Upgrade Notes for each version of LabVIEW between versions 6.x and 8.6 at
ni.com/manuals for more information about the new features and changes in each version.

Changes to the Waveform Data Type
In LabVIEW 7.0, the waveform data type uses the time stamp data type for the t0 component rather than
a double-precision, floating-point number. If you save data in the waveform data type to a file without
including information about the data type in LabVIEW 6.x, you might encounter an error if you try to
retrieve that data in LabVIEW 7.x and later.

In the LabVIEW 7.x and later, the Read Waveform from File VI converts the old waveform data type
format in a file to the new waveform data type format. This VI displays a dialog box that prompts you
to accept the conversion. In the LabVIEW Run-Time Engine, the Read Waveform from File VI cannot
perform this conversion and returns an error instead. Refer to the National Instruments Web site at
ni.com/info and enter the info code exd9zq for more information about migrating waveform data
from LabVIEW 6.x to LabVIEW 7.x and later.

Serial Compatibility VIs
In LabVIEW 7.x and later, the Serial Compatibility VIs do not appear on the Functions palette. Use the
VISA VIs and functions to build VIs that communicate with serial devices.

In LabVIEW 7.x and later, LabVIEW does not use the serpdrv driver to communicate with the serial
driver of the operating system. LabVIEW includes compatible VIs based on VISA. For new
applications, use the VISA and Serial VIs and functions to control serial devices. Any VIs built in
previous versions of LabVIEW that include Serial VIs continue to work in LabVIEW 7.1 and later.

If you reconfigured the mapping of port numbers to ports, you must specify a mapping to those ports.
Use the set serial alias ports VI in the labview\vi.lib\Instr_sersup.llb to specify the serial
port mappings. Wire a string array to the VISA Aliases input of the VI and enter the port names you use
in the input array. Each element in the array should correspond to a port. For example, if you configured
port 0 to map to the VISA alias MySerialPort, enter MySerialPort as the first element of the VISA
Aliases input array. You must call the set serial alias ports VI before you call the VISA Configure Serial
Port VI.

Refer to the labview\examples\instr\smplserl.llb for examples of using the VISA VIs and
functions to control serial instruments.

Default Data in Loops
In LabVIEW 6.0 and earlier, For Loops produce undefined data if the loop does not execute. In
LabVIEW 6.1 and later, For Loops produce default data if you wire 0 to the count terminal of the For
Loop or if you wire an empty array to the For Loop as an input with auto-indexing enabled. The loop
does not execute, and any output tunnel with auto-indexing disabled contains the default value for the
tunnel data type.

Remote Front Panel License
The LabVIEW Full Development System and the Application Builder include a remote front panel
license that allows one client to view and control a front panel remotely. The LabVIEW Professional

http://www.ni.com/cgi-bin/redirect.cgi?dest=infcoprod&src=lvhelp&openagent&code=exd9zq
http://www.ni.com/cgi-bin/redirect.cgi?dest=infcoprod&src=lvhelp&openagent&code=exd9zq
http://www.ni.com/cgi-bin/redirect.cgi?dest=infcoprod&src=help&openagent&code=rdbp02

LabVIEW Upgrade Notes 34 ni.com

Development System includes a remote front panel license that allows five clients to view and control a
front panel remotely.

You can upgrade the remote front panel license to support more clients.

Multiple Thread Allocation
LabVIEW 7.1 and later allocate more threads for executing VIs than in versions earlier than
LabVIEW 7.1. Because of this change, you might encounter errors with multiple threads if you
incorrectly mark Call Library Function Nodes as reentrant when the DLL you call is not actually
reentrant. Refer to the LabVIEW Help for more information about the Call Library Function Node and
reentrancy.

To change how LabVIEW allocates threads, use the threadconfig VI in the labview\vi.lib\
Utility\sysinfo.llb. You also can disable reentrancy for VIs by selecting File»VI Properties,
selecting Execution from the Category pull-down menu, and removing the checkmark from the
Reentrant execution checkbox.

Refer to the LabVIEW Help for more information about thread allocation.

Instrument Drivers
The LabVIEW package in LabVIEW 7.x and later does not include the LabVIEW Instrument Driver
Library CD, which contains instrument drivers. Download instrument drivers from the National
Instruments Instrument Driver Network at ni.com/idnet. The National Instruments Device Drivers
CD includes NI-DAQ, NI-VISA, and other National Instruments drivers.

Units and Conversion Factors
In LabVIEW 7.x and later, you do not need to use the Convert Unit function to remove the extra unit
after using the Compound Arithmetic function.

The unit conversion factors in LabVIEW 7.1 and later more closely match the guidelines published by
the National Institute for Standards and Technology (NIST) in the Guide for the Use of the International
System of Units (SI). Also, the calorie unit now is calorie (thermal), and horse power now
is horsepower (electric). The abbreviations for these units did not change. The following table
details the changes in unit conversion factors between LabVIEW 6.1 and 7.x and later.

Unit 6.1 Definition 7.x and Later Definition

astronomical unit (AU) 149,498,845,000 m 149,597,900,000 m

British Thermal Unit (mean) 1055.79 J 1055.87 J

electron volt (eV) 1.602e–19 J 1.60217642e–19 J

foot-candle 10.764 lx 10.7639 lx

horse power versus horse power
(electric)

745.7 W 746 W.
The new conversion is exact.

imperial gallon 4.54596 l 4.54609 l

light year 9.4605 Pm 9.46073 Pm

pound force 4.448 N 4.448222 N

rod 16.5 ft 5.029210 m

© National Instruments Corporation 35 LabVIEW Upgrade Notes

Defer Panel Updates Property
In LabVIEW 6.1 and earlier, LabVIEW waits until the Defer Panel Updates property is FALSE to
redraw any front panel objects with pending changes. In LabVIEW 7.0 and later, when you set this
property to TRUE, LabVIEW redraws any front panel objects with pending changes and then defers all
new requests for front panel updates. In some cases, this change can cause LabVIEW to redraw the
changed elements of the front panel an extra time.

Data Ranges for Numeric Controls
In LabVIEW 6.1 and earlier, some numeric controls have a default minimum value of 0.00, maximum
value of 0.00, increment value of 0.00, and out of range action of Ignore. In LabVIEW 7.x and later,
these numeric controls use the default data range values for the data type.

Coercion Dots and Type Definitions
In LabVIEW 6.1 and later, wires include information about type definitions, so you might notice more
coercion dots on block diagrams. If you wire a type definition to a VI or function terminal that is not a
type definition terminal, a coercion dot appears. A coercion dot also appears if you wire an output
terminal that is a type definition to an indicator that is not a type definition. These coercion dots indicate
where you are not using type definitions consistently in the VIs. In this case, coercion dots do not affect
run-time performance.

Refer to the LabVIEW Help for information about using the Flatten To String function to flatten type
definitions.

File Dialog Box Button Label
In LabVIEW 6.1 and earlier, the file dialog box that the File Dialog function displays has a button label
of Save if the user can enter a new filename. Otherwise, the button label is Open. In LabVIEW 8.x, the
button label on the file dialog box that the File Dialog Express VI displays is OK in all cases unless you
change it. Use the button label input of the File Dialog Express VI to change the label of the button. If
you use the File Dialog Express VI in an existing VI, consider reviewing the behavior of the VI to make
sure the default label of OK is appropriate to the functionality of the VI.

Control Online Help Function
The Path to the help file input of the Control Online Help function now is required. You can wire a
compiled help filename (.chm or .hlp) or the full path to a compiled help file to the input. If you wire
only a compiled help filename, LabVIEW searches the labview\help directory for that file.

Displaying the Front Panel When Loaded
In LabVIEW 7.x and later, if you configure a VI to display the front panel when LabVIEW loads the VI
and you load the VI using the VI Server, LabVIEW does not display the front panel. You must use the
Front Panel:Open method to display the front panel programmatically.

Open VI Reference Function
In LabVIEW 6.1 and earlier, if you do not wire a value to the options parameter of the Open VI
Reference function, LabVIEW instantiates a VI from a template if the template is not already in
memory. If the template is in memory, LabVIEW opens a reference to the template. In LabVIEW 7.0
and 7.1, if you use the Open VI Reference function to create a reference to a template that is already
in memory, the function returns an error unless you specify 0x02 in the options parameter.

slug 32.174 lb 14.59390 kg

unified atomic mass (u) 1.66057e–27 kg 1.66053873e–27 kg

Unit 6.1 Definition 7.x and Later Definition

LabVIEW Upgrade Notes 36 ni.com

In LabVIEW 8.0 and later, if you use the Open VI Reference function to create a reference to a template,
LabVIEW instantiates a VI from the template even if that template is already in memory.

Exponential Representation
In LabVIEW 6.0 and earlier, the ^ operator represents exponentiation in the Formula Node. In
LabVIEW 6.1 and later, the operator for exponentiation is **—for example, x**y. The ^ operator
represents the bitwise exclusive or (XOR) operation.

IVI Configuration Store File
The IVI Configuration Store file format now requires that all names be case-sensitive. If you use logical
names, driver session names, or virtual names in your application, make sure that the name you use
matches the name defined in the IVI Configuration Store file exactly, without any variations in the case
of the characters in the name.

Upgrading from LabVIEW 5.x or Earlier Versions
Refer to the National Instruments Web site at ni.com/info and enter the info code ext8h9 for
information about upgrading to LabVIEW 8.6 from LabVIEW 5.x or earlier. This site provides
information about older versions of LabVIEW Upgrade Notes which you should read as well as more
information about converting your VIs so they work with LabVIEW 8.6.

LabVIEW 8.6 Features and Changes
Refer to the LabVIEW Help for more information about LabVIEW 8.6 features, including programming
concepts, step-by-step instructions, and reference information. Access the LabVIEW Help by selecting
Help»Search the LabVIEW Help.

Refer to the readme.html in the labview directory for known issues, a partial list of bugs fixed,
additional compatibility issues, and information about late addition features in LabVIEW 8.6.

Installing LabVIEW
(Windows) With LabVIEW 8.6 you can install LabVIEW and select modules and toolkits from the
LabVIEW Platform DVDs. Refer to the Upgrading Modules, Toolkits, and Instrument Drivers section
of this document or the Installing LabVIEW 8.6 section of the LabVIEW Release Notes for more
information.

LabVIEW Documentation
The LabVIEW Quick Reference Card is reorganized to include keyboard shortcuts, online resources,
and a documentation usage guide.

New Example VIs
Refer to the New Examples for LabVIEW 8.x folder on the Browse tab of the NI Example Finder to
view descriptions for and launch example VIs added to LabVIEW 8.x.

Block Diagram Enhancements
LabVIEW 8.6 includes the following enhancements to the block diagram and related functionality.

Creating and Editing Express VIs
Select Tools»Advanced»Create or Edit Express VI to create or edit an Express VI using the Create
or Edit Express VI dialog box. You can create an Express VI from an existing VI, from another Express
VI, or from a blank VI. In previous versions of LabVIEW, this functionality is available only if you have
the LabVIEW Express VI Development Toolkit installed.

http://www.ni.com/cgi-bin/redirect.cgi?dest=infcoprod&src=lvhelp&openagent&code=ext8h9

© National Instruments Corporation 37 LabVIEW Upgrade Notes

Refer to the Fundamentals»Building the Block Diagram»Concepts»Express VIs book on the
Contents tab in the LabVIEW Help for more information about creating Express VIs in LabVIEW.

Managing Breakpoints Using the Breakpoint Manager Window
You can right-click an object on the block diagram and select Breakpoint»Set Breakpoint from the
shortcut menu to create a breakpoint. To disable a breakpoint and prevent the VI from pausing at the
breakpoint without physically removing the breakpoint, right-click an object with a breakpoint and
select Breakpoint»Disable Breakpoint from the shortcut menu. You can enable a disabled breakpoint
by right-clicking an object with a disabled breakpoint and selecting Breakpoint»Enable Breakpoint
from the shortcut menu. To remove a breakpoint, right-click an object with a breakpoint and select
Breakpoint»Clear Breakpoint from the shortcut menu.

Use the Breakpoint Manager window to manage breakpoints in a VI. The Breakpoint Manager
window allows you to disable, enable, and clear breakpoints in the VI hierarchy individually or all at
once. Double-click a breakpoint in the Breakpoint Manager window to find the location of a specific
breakpoint on the block diagram.

Select View»Breakpoint Manager to display the Breakpoint Manager window, or right-click an
object and select Breakpoint»Breakpoint Manager from the shortcut menu. Select individual
breakpoints or click the Select All button to select all breakpoints. Click the Enable or Disable buttons
to enable or disable all selected breakpoints simultaneously.

Allowing Preallocation of Shared-Clone Reentrant VIs in Timed Structures
You can configure LabVIEW to either preallocate or share clones of a shared-clone reentrant VI within
a Timed Loop or Timed Sequence structure. For example, if you place a shared-clone reentrant VI inside
of a Timed Loop or Timed Sequence structure, you can set the structure to preallocate clones for
instances of the reentrant VI you call within the structure. Instances of the reentrant VI that you call
outside the structure continue to share clones. By default, LabVIEW preallocates clone VIs for timed
structures. To conserve memory usage among shared-clone reentrant VIs, configure the timed structure
to allocate clone VIs as needed. To set the allocation of a VI within a Timed Loop or a Timed Sequence
structure, right-click the structure, select Shared Clone Allocation from the shortcut menu, and select
one of the following options:

• Automatic—LabVIEW decides whether to set the structure as Preallocate or Allocate As Needed
based on the context of the structure. LabVIEW will append the shortcut menu item with text that
indicates the setting LabVIEW chooses. For example, if LabVIEW chooses Preallocate, the menu
item becomes Automatic (Preallocate).

• Preallocate—LabVIEW creates a clone VI for each call to the reentrant VI within the structure.
The Timed Loop or Timed Sequence structure displays a particular icon to indicate that LabVIEW
is preallocating clones for any reentrant VI in the structure.

• Allocate As Needed—LabVIEW does not create a clone VI until you make a call to the reentrant
VI within the structure. The Timed Loop or Timed Sequence structure displays a particular icon to
indicate that LabVIEW is sharing clones for any reentrant VI in the structure.

Wiring Tunnels Automatically in Structures with Multiple Cases
LabVIEW can wire input and output tunnels in multiple cases of a structure automatically. Configure an
input and output tunnel for automatic wiring by right-clicking the existing output tunnel and selecting
one of the following options from the Linked Input Tunnel shortcut menu:

• Create & Wire Unwired Cases—LabVIEW automatically wires the tunnels in any existing cases
that you have not wired previously. LabVIEW also wires the tunnels in any new cases you create.

• Create—LabVIEW automatically wires the tunnels in any new cases you create. Existing cases
remain unwired.

LabVIEW Upgrade Notes 38 ni.com

If you select one of the previous options, LabVIEW associates, or creates a link between, the output and
input tunnels. A white triangle glyph appears on both tunnels indicating LabVIEW linked the tunnels.
Right-click a linked output tunnel and select Linked Input Tunnel»Find or Linked Input Tunnel»
Clear from the shortcut menu to locate linked input tunnels or to remove the link between the tunnels,
respectively.

Note You cannot configure tunnels for automatic wiring on the Stacked Sequence structure.

Miscellaneous Block Diagram Enhancements
LabVIEW 8.6 includes the following miscellaneous block diagram enhancements:

• In LabVIEW 8.6, all comparison functions work with LabVIEW classes.

• LabVIEW 8.6 generates prototype information for Boolean controls and indicators on the
connector pane of a VI that you build into a shared library. If you call the shared library in
LabVIEW, LabVIEW handles the Boolean as an unsigned 8-bit integer. LabVIEW returns an error
if the label of the control is Boolean. Boolean is not case-sensitive.

Front Panel Enhancements
LabVIEW 8.6 includes the following enhancements to the front panel and related functionality.

3D Graph Enhancements
(Windows) The 3D Surface Graph, 3D Parametric Graph, and 3D Curve Graph that shipped with
LabVIEW 8.5 and earlier are renamed the ActiveX 3D Surface Graph, ActiveX 3D Parametric Graph,
and ActiveX 3D Curve Graph, respectively. The ActiveX 3D graphs use ActiveX technology and VIs
that handle 3D representation.

LabVIEW 8.6 includes an XControl version of the 3D graph that is available on all platforms. Use the
3D Surface, 3D Parametric, and 3D Line graphs to display 3D data on a 3D plot. Customize the
appearance of a 3D graph XControl using the 3D Graph Properties dialog box. You can configure the
general graph appearance; format the x, y, and z plots; format the graph axes; add value pairs; and add
cursors.

Miscellaneous Front Panel Enhancements
A private data control cannot contain an XControl or a strictly typed XControl refnum.

Environment Enhancements
LabVIEW 8.6 introduces the following enhancements to the LabVIEW environment.

Error List Window Enhancements
LabVIEW 8.6 includes enhancements to LabVIEW class error reporting that might result in fewer
unbroken class items listed in the Error List window.

Performance Enhancements
VI file size has decreased.

VI Hierarchy Window Enhancements
LabVIEW 8.6 includes the following enhancements to the VI Hierarchy window:

• The VI Hierarchy window displays LabVIEW classes and dynamic member VIs, XControls,
shared libraries, .m files you reference from MathScript Nodes, Express VIs, and static VI
references.

© National Instruments Corporation 39 LabVIEW Upgrade Notes

• To highlight the call chain of the VI, in the VI Hierarchy window right-click the VI icon of a
paused VI and select Show Call Chain from the shortcut menu. The call chain is the chain of
callers from the current VI to the top-level VI. When you highlight a hierarchy connection, the
connection appears as a thick, red line.

Refer to the Fundamentals»Creating VIs and SubVIs»How-To»Creating SubVIs»VI Hierarchy
book on the Contents tab in the LabVIEW Help for more information about the VI Hierarchy window.

Dialog Box Enhancements
LabVIEW 8.6 includes the following dialog box enhancements.

Warnings Dialog Box Enhancements
The Warnings dialog box is now the Load Warning Summary and Save for Previous Warning
Summary dialog boxes. Click the Show Details button on either summary dialog box to open the Load
and Save Warning List dialog box and view details for each warning category. You also can select
Load and Save Warning List from the View menu to open the Load and Save Warning List dialog
box.

The Load Warning Summary dialog box reports a list of warning categories for the top-level item you
attempt to load.

The Save for Previous Warning Summary dialog box reports a list of warning categories for the
top-level item you attempt to save.

Application Builder Dialog Box Changes
LabVIEW 8.6 includes the following changes to the LabVIEW Application Builder:

• On the Additional Installers page of the Installer Properties dialog box, the Installer source
location text box only displays the source location. You can no longer change the installer source
location in this dialog box. If LabVIEW cannot find the installer source automatically, LabVIEW
prompts you to locate the source manually later in the build process.

• When you build an installer that includes additional installers or components, you might be
prompted with the Distributions Needed dialog box if LabVIEW cannot locate the installer you
selected or any of the dependencies of the installer.

• (Windows) The Web service build specification allows you to build and deploy VIs in a LabVIEW
project as Web services. Right-click Build Specifications in the Project Explorer window and
select New»Web Service (RESTful) from the shortcut menu to display the Web Service
Properties dialog box. LabVIEW Web services are available only in the LabVIEW Full
Development System and the LabVIEW Professional Development System.

Shared Variable Properties Dialog Box Enhancements
LabVIEW 8.6 includes the following enhancements to the Shared Variable Properties dialog box:

• On the Variable page of the Shared Variable Properties dialog box, Bind to Source was
renamed to Enable Aliasing. When you place a checkmark in the Enable Aliasing checkbox,
you can specify the access type of the shared variable.

• The Use Buffering and Single Writer options on the Variable page were moved to the Network
page of the Shared Variable Properties dialog box.

• The Description page of the Shared Variable Properties dialog box appears without the DSC
module installed.

LabVIEW Upgrade Notes 40 ni.com

Options Dialog Box Enhancements
LabVIEW 8.6 includes the following enhancements to the Web Server: Configuration page of the
Options dialog box:

• You can configure more than one interface for the LabVIEW Web Server. The Server Label option
allows you to customize the name of a server interface and the Server Labels (Ports) listbox
displays all interfaces currently configured for the Web Server.

• The IP Address of Listener specifies the IP address of the selected Web Server interface.
The pull-down menu contains all addresses available on the local computer. The field does not
automatically populate when using a LabVIEW Real-Time Module target.

• The Allow Access options configure available features for the selected Web Server interface. In the
Allow Access section, you can activate remote front panels, scripting, Web services, static content,
and snapshots.

LabVIEW 8.6 also includes the new Web Services: Security page of the Options dialog box, which
allows you to configure security for LabVIEW Web services.

Miscellaneous Dialog Box Enhancements
LabVIEW 8.6 includes the following miscellaneous dialog box enhancements:

• The Conflict Resolution dialog box includes options to resolve conflicts LabVIEW detects during
deployment. For example, this dialog appears if you deploy a VI to a target that is turned off. If you
can resolve the conflict, a pull-down menu appears in the Conflict Resolution column. Select an
option from the list to resolve the conflict. This dialog box also includes the Previous and Next
buttons to highlight the previous or next item with a conflict in the Conflicts list.

• The Data Type page of the Numeric Properties dialog box and the Numeric Constant
Properties dialog box and the Output Configuration page of the Numeric Node Properties
dialog box include an Include overflow status checkbox that sets whether LabVIEW includes an
overflow status with the fixed-point number.

• The Find Missing Items dialog box finds all items in a LabVIEW project that reference an item
on disk that LabVIEW cannot find. Right-click the project root in the Project Explorer window
and select Find Missing Items from the shortcut menu to display this dialog box.

Palette Enhancements
LabVIEW 8.6 includes the following palette enhancements:

Editing the Controls and Functions Palette Set Programmatically
You can use the Palette Editing VIs to create and edit palette sets programmatically. Use the Palette
Editing VIs if you want to edit a large number of palettes, create new palettes, or validate the appearance
of a palette after you edit it.

Refer to the labview\examples\Palette API directory for examples of editing the Controls and
Functions palette set programmatically.

Refer to the VI and Function Reference»Programming VIs and Functions»Application Control
VIs and Functions»Palette Editing VIs book on the Contents tab in the LabVIEW Help for more
information about editing palettes programmatically.

© National Instruments Corporation 41 LabVIEW Upgrade Notes

Miscellaneous Palette Enhancements
LabVIEW 8.6 includes the following miscellaneous palette enhancements:

• The VIs and functions that appeared on the XML palette are now available on the LabVIEW
Schema palette. The LabVIEW Schema palette is a subpalette on the XML palette.

• When you upgrade, LabVIEW attempts to restore the palette format from the previously installed
version of LabVIEW.

Miscellaneous Environment Enhancements
LabVIEW 8.6 includes the following miscellaneous environment enhancements:

• You can silently uninstall a LabVIEW-built installer and the files it installs by entering the
following command in the command line window:

uninst.exe /qb /x product name where product name is the name of the product
you want to uninstall.

If the product name you enter does not exactly match the name of the product, the uninstall fails
without a prompt that notifies you of the failure. The uninst.exe file is in the C:\Program
Files\National Instruments\Shared\NIUninstaller directory. If the C:\Program
Files\National Instruments\Shared\NIUninstaller directory is not the working
directory, enter the complete path on disk to the uninst.exe file.

• Use the fileVersionInfo.llb located in the labview\vi.lib\Platform directory to
retrieve the version information of a stand-alone application or shared library programmatically.
The VI is not available on the Functions palette.

• The Breakpoints option in the Operate menu no longer exists. Select View»Breakpoint
Manager instead to manage breakpoints in a VI hierarchy.

• If you have a project library within a folder, the source control operations you perform now extend
to items within the project library.

• _goopsup.llb was moved to the labview\vi.lib\Utility\ directory.

New and Changed VI, Function, and Node Enhancements
LabVIEW 8.6 includes the following new and changed VIs and functions. Refer to the VI and Function
Reference book on the Contents tab of the LabVIEW Help for more information about VIs, functions,
and nodes.

New VIs and Functions
LabVIEW 8.6 includes the following new VIs and functions.

Advanced Notifier Waiting VIs and Functions
The Advanced Notifier Waiting palette includes the following new functions:

• Wait on Notification from Multiple with Notifier History

• Wait on Notification with Notifier History

Application Control VIs and Functions
The Application Control palette includes the new Palette Editing palette with the following new VIs:

• Read Palette

• Refresh Palettes

• Write Palette

LabVIEW Upgrade Notes 42 ni.com

Comparison Functions
The Comparison palette includes the following new function:

• Fixed-Point Overflow?

Connectivity VIs and Functions (Windows)
The Connectivity palette includes the new Web Services palette with the following new VIs:

Note The following VIs are available only in the LabVIEW Full and Professional Development
Systems.

• Check If Session Exists

• Create Session

• Delete Session Variable

• Destroy Session

• Flush Output

• Get Session ID Cookie

• Read All Form Data

• Read All Request Variables

• Read All Session Variables

• Read Form Data

• Read Postdata

• Read Request Variable

• Read Session Variable

• Render ESP Template

• Set ESP Variable

• Set HTTP Header

• Set HTTP Redirect

• Set HTTP Response Code

• Set HTTP Response MIME Type

• Write Response

• Write Session Variable

The Web Services palette includes the new Utilities palette with the following new VIs:

• Escape HTTP URL

• Unescape HTTP URL

Fixed-Point Functions
The Fixed-Point palette includes the following new functions:

• Clear Fixed-Point Overflow Status

• Include Fixed-Point Overflow Status

• Remove Fixed-Point Overflow Status

Helpers VIs
The Helpers palette includes the Sensor Mapping Express VI in the LabVIEW Full and Professional
Development Systems. Use the Sensor Mapping Express VI to map real-world data onto a 3D model.

© National Instruments Corporation 43 LabVIEW Upgrade Notes

Queue Operations Function
The Queue Operations palette includes the following new function:

• Lossy Enqueue Element

Semaphore VIs
The Semaphore palette includes the following new VIs:

• Obtain Semaphore Reference

• Release Semaphore Reference

XML VIs and Functions
The XML palette includes the new XML Parser palette with the following new VIs and functions:

• Close

• Get First Non-Text Child

• Get Next Non-Text Sibling

• Get Node Text Content

• Invoke Node (XML)

• Load

• New

• Property Node (XML)

• Save

VISA Advanced VIs and Functions
The VISA Advanced palette includes the following new node:

• VISA Property Node

Changed VIs, Functions, and Nodes
The following VIs, functions, and nodes changed in LabVIEW 8.6.

Advanced File VIs and Functions
The Advanced File palette includes the following changed function.

 The Get Volume Info function includes the sector size (bytes) output that indicates the size of the
smallest physical storage unit on disk. If you open a file without buffering, you must make the amount
of data in that file a multiple of the given sector size. You can disable buffering if you set the disable
buffering input of the Open/Create/Replace File function to TRUE.

Comparison Functions
The Comparison palette includes the following changed functions:

• In Range and Coerce—Supports the fixed-point data type.

• Max & Min—Supports the fixed-point data type.

File I/O VIs and Functions
The File I/O palette includes the following changed function.

The Open/Create/Replace File function includes the disable buffering input that allows you to specify
if LabVIEW opens, creates, or replaces the file without buffering.

Disable buffering to speed up data transfers in certain situations. For example, if you stream large
amounts of data or store data in a Redundant Array of Independent Disks (RAID), disable buffering to
force LabVIEW to write data directly to disk.

LabVIEW Upgrade Notes 44 ni.com

LabVIEW Schema
The LabVIEW Schema palette includes the following changed functions:

• Flatten To XML—Supports LabVIEW classes and the fixed-point data type.

• Unflatten From XML—Supports LabVIEW classes and the fixed-point data type.

Numeric Functions
The Numeric palette includes the following changed functions:

• Divide—Supports the fixed-point data type.

• Reciprocal—Supports the fixed-point data type.

• Square Root—Supports the fixed-point data type.

Report Generation VIs
The Report Generation palette includes VIs that have inputs and outputs that are specific to the
LabVIEW Report Generation Toolkit. The VIs ignore these inputs and outputs unless you install the
Report Generation Toolkit. The Report Generation palette also includes the following additionally
changed VIs:

• Append Horizontal Line to Report—The default value of the width input is changed from pixels
to percentage.

• Append Report Text—Includes a format string input that specifies the number formatting to use
when LabVIEW converts the numbers to characters.

• Append VI Block Diagram to Report—All instances include an alignment input that sets the
alignment of the image in a report.

• Append VI Hierarchy to Report—All instances include an alignment input that sets the
alignment of the image in a report.

• Append VI Icon to Report—All instances include an alignment input that sets the alignment of
the image in a report.

• Append VI List of Controls to Report—All instances include an alignment input that sets the
alignment of the image in a report.

• Append VI List of SubVIs to Report—All instances include an alignment input that sets the
alignment of the image in a report.

• New Report Line—Includes a number of lines input to specify how many lines the VI adds to the
report.

• Save Report to File—Includes a Prompt to Replace? input that determines whether the VI
displays a dialog box if you specify an existing filename.

Spectral Analysis VIs (Not in Base Package)
The Spectral Analysis palette includes the following changed VI.

The STFT Spectrograms VI includes a time-freq config input that specifies the configuration of the
frequency bins and determines the number of columns in STFT Spectrogram {X}. This VI also
includes an energy conservation? input that specifies whether to scale STFT Spectrogram {X} so that
the energy in the joint time-frequency domain equals the energy in the time domain.

© National Instruments Corporation 45 LabVIEW Upgrade Notes

Call Library Function Node
The Call Library Function dialog box includes the following changes:

• The Data type pull-down menu of the Parameters tab includes the Signed Pointer-sized Integer
and Unsigned Pointer-sized Integer numeric data types. If you use these two data types, the Call
Library Function Node adapts to the specific operating system it is being executed on and returns
data of the appropriate size to the library function. On 64-bit platforms LabVIEW translates these
numeric data types to 64-bit integer types. On 32-bit platforms LabVIEW translates the numeric
data types to 32-bit integer types.

• The Call Library Function Node supports the use of the * wildcard to make the Library name
or path reference platform independent between 32- and 64-bit Windows. A single instance of the
* to the left of the extension will translate to 32 on a 32-bit Windows platform and 64 on a 64-bit
Windows platform. For example, myLibrary*.dll translates to either myLibrary32.dll or
myLibrary64.dll. A double instance of * addresses situations where the library name did not
previously reference the platform but the new library name does. For example,
myLibrary**.dll translates to myLibrary.dll on a 32-bit platform and
myLibrary_64.dll on a 64-bit platform.

Shared Variable Node
The Shared Variable node includes the following changes:

• Includes the option to enable the ms timeout control and timed out? indicator for
network-published Shared Variable nodes configured to read data.

• Shared variables exhibit performance enhancements in LabVIEW 8.6 when working with a large
amount of shared variables on a block diagram.

• The time-triggered variable, available on supported targets when you install the LabVIEW
Real-Time Module, appears separately from standard shared variables. Right-click a supported
target and select New»Time-Triggered Variable from the shortcut menu to create a
time-triggered variable.

Miscellaneous VI, Function, and Node Changes
LabVIEW 8.6 includes the following miscellaneous VI change.

The method input of the Sort Complex Numbers VI contains a renamed value. Magnitude is renamed
Magnitude, Real, Imaginary. The method input also contains a new value Magnitude, Phase Angle.
Magnitude, Real, Imaginary sorts the elements with respect to their magnitude first. For the elements
with the same magnitude, the VI sorts them by their real parts and then by their imaginary parts.
Magnitude, Phase Angle sorts the elements with respect to their magnitude first. For the elements with
same magnitude, the VI sorts them by their phase angle. The phase angle is in the ranges of –pi to pi.

New Classes, Properties, Methods, and Events
LabVIEW 8.6 includes new VI Server classes, properties, methods, and events. Refer to the LabVIEW
8.6 Features and Changes»New VI Server Objects topic on the Contents tab of the LabVIEW Help
for a list of new classes, properties, methods, and events.

XML Parser Properties and Methods
Refer to the Property and Method Reference»XML Parser book on the Contents tab of the LabVIEW
Help for a list of new properties and methods you can use with the XML Parser VIs and functions.

3DPC_SurfacePlot Properties
Refer to the Property and Method Reference»3DPC_SurfacePlot book on the Contents tab of the
LabVIEW Help for a list of new properties you can use with the 3D graph.

LabVIEW Upgrade Notes 46 ni.com

Cleaning Up the Block Diagram Automatically
Select Edit»Clean Up Diagram to automatically reroute all existing wires and rearrange objects on the
block diagram to generate a cleaner layout. To configure the clean up options, select Tools»Options to
display the Options dialog box and select Block Diagram: Cleanup from the Category list. You can
configure LabVIEW to automatically move controls to the left side of the containing diagram and
indicators to the right side of the containing diagram, place a specified number of pixels between block
diagram objects and wires, and compact the block diagram layout.

Placing Objects Using Quick Drop
Use the Quick Drop dialog box to search for a block diagram or front panel object by name and place
it on the block diagram or front panel without navigating through the Controls or Functions palettes.
(Windows and Linux) Press the <Ctrl-Space> keys or select View»Quick Drop to display the Quick
Drop dialog box. On Chinese keyboards, press the <Ctrl-Shift-Space> keys. (Mac OS) Press the
<Command-Shift-Space> keys to display the dialog box.

Refer to the Fundamentals»LabVIEW Environment»How-To»Finding Objects book on the
Contents tab in the LabVIEW Help for more information about using the Quick Drop dialog box.

Editing the Properties of Multiple Objects
You can select multiple objects on the front panel or the block diagram and edit any properties the
objects share. To select multiple objects, use the Positioning tool to drag a selection rectangle around all
of the objects you want to edit or hold down the <Shift> key while clicking each object. Right-click an
object from the selection and select Properties from the shortcut menu to display the Properties dialog
box. The Properties dialog box only displays tabs and properties that the objects you select share. Select
similar objects to display more tabs and properties. If you select objects that do not share any common
properties, the Properties dialog box does not display any tabs or properties.

LabVIEW Web Services (Windows, Not in Base Package)
LabVIEW 8.6 allows you to publish a VI as a Web service. Web services provide a standardized method
for servers to deploy applications that any HTTP client can access. The LabVIEW Web services
functionality supports clients across most major platforms and programming languages and allows you
to easily implement and deploy Web applications over a network using LabVIEW.

You can activate Web services functionality through the Web Server: Configuration page in the
Options dialog box. To build and deploy a Web service, right-click Build Specifications in the Project
Explorer window and select New»Web Service (RESTful) from the shortcut menu to display the Web
Service Properties dialog box. LabVIEW Web services are available only in the LabVIEW Full
Development System and the LabVIEW Professional Development System.

Refer to the Fundamentals»LabVIEW Web Services book on the Contents tab in the LabVIEW Help
for more information about using Web services in LabVIEW.

NI Distributed System Manager
(Windows) LabVIEW 8.6 includes the NI Distributed System Manager, which replaces the Variable
Manager as the unified tool to manage shared variables. Use the System Manager to create and monitor
variables, processes, I/O servers, and Web services. Also, use the System Manager to interact with the
Shared Variable Engine and to manage security and aliases.

Refer to the Fundamentals»Networking in LabVIEW»Concepts»Sharing Live Data Using Shared
Variables topic on the Contents tab in the LabVIEW Help for more information about the Distributed
System Manager.

© National Instruments Corporation 47 LabVIEW Upgrade Notes

LabVIEW MathScript Enhancements (Not in Base Package)
LabVIEW 8.6 introduces the following enhancements and changes to MathScript.

Note Select Tools»MathScript Window to display the LabVIEW MathScript Window.

New MathScript Functions
LabVIEW 8.6 includes the following new MathScript functions. You can use these functions in the
LabVIEW MathScript Window or the MathScript Node.

MathScript Class Function

advanced sphbesselh, sphbesselj, sphbessely

approximation csaps, lsqcurvefit

audio auread

commands keyboard

filter design gaussfir, yulewalk

filter implementation cconv

integration quad

ode odeset, radau5

plots imagesc, xlim, ylim, zlim

spectral analysis buffer, cpsd, mscohere, pburg, pcov, peig, periodogram,
pmcov, pmusic, pwelch, pyulear, rooteig, rootmusic,
specgram, spectrogram, tfestimate

pde pdeelliptic

support warning, xlsread, xlswrite

waveform generation stepfun

windows taylorwin

LabVIEW Upgrade Notes 48 ni.com

LabVIEW MathScript on Mac OS and Linux
The LabVIEW MathScript Window and the MathScript Node are available on Mac OS and Linux.
However, some functions are not available on these operating systems. The following table displays the
MathScript functions that are not available on Mac OS or Linux. The X indicates that the function is not
available on that operating system.

Note The getfileproperty function, the load function, the save function, and the
setfileproperty function are available on Mac OS and Linux. However, you cannot use these
functions with binary measurement files (.tdm or .tdms).

Debugging Enhancements for MathScript Nodes
LabVIEW 8.6 includes the following enhancements for debugging MathScript Nodes:

• You can use execution highlighting, single-stepping, and breakpoints to debug a script in a
MathScript Node.

• The gray region on the left side of the MathScript Node displays the following:

– Red error glyphs next to lines of script that contain an error

– Warning glyphs

– Breakpoints

• When you select a MathScript Node error in the Error list window and click the Show Error
button, LabVIEW highlights the line of script that contains the error.

MathScript Function Mac OS Linux

aich X

aiwf X

aoch X

aowf X

calllib X X

dioread X

diowrite X

dos X X

ginput X X

gtext X X

libfunctionsview X X

libisloaded X X

loadlibrary X X

pause X X

system X X

unloadlibrary X X

waitforbuttonpress X X

© National Instruments Corporation 49 LabVIEW Upgrade Notes

Script Highlighting in MathScript Nodes
Script highlighting uses colors to distinguish between different parts of a script in a MathScript Node.
These colors improve the readability of the script and help you debug a script that contains errors or
returns unexpected data. For example, script highlighting allows you to see when a user-defined function
or a variable overrides a built-in MathScript function. Script highlighting is enabled by default, except
for MathScript Nodes that were last saved in a previous version of LabVIEW and that use custom colors.

To enable or disable script highlighting for a particular MathScript Node, right-click inside the
MathScript Node and select Enable Script Highlighting or Disable Script Highlighting from the
shortcut menu. To enable or disable script highlighting for all MathScript Nodes and to customize the
script highlighting colors for MathScript Nodes that have script highlighting enabled, use the
MathScript: Script Highlighting page of the Options dialog box.

Miscellaneous MathScript Enhancements and Changes
LabVIEW 8.6 include the following miscellaneous MathScript enhancements and changes:

• The VI Hierarchy window displays .m files you reference from MathScript Nodes.

• The delete function includes an obj input that allows you to delete a plot object and remove the
object from the Variable List in the LabVIEW MathScript Window.

• The filter function includes a 'direct' input that directs LabVIEW to use a direct convolution
instead of a Fourier transform.

• LabVIEW MathScripts compile faster in both the LabVIEW MathScript Window and the
MathScript Node due to performance improvements.

• If a VI contains a MathScript Node, LabVIEW deletes all undo information when you save or run
the VI.

Refer to the Fundamentals»Formulas and Equations book on the Contents tab in the LabVIEW Help
for more information about LabVIEW MathScript.

Managing Overflow for Fixed-Point Numbers
Overflow conditions can occur when you perform an arithmetic operation on fixed-point numbers or
when you use the To Fixed-Point function to convert numeric data to fixed-point data. To determine
whether overflow occurs, you can configure a fixed-point number to include an overflow status. When
you include an overflow status with a fixed-point number, LabVIEW allocates additional storage space
to track whether the fixed-point number is the result of an operation that overflowed.

After you configure a fixed-point number to include an overflow status, you can display an overflow
status LED on fixed-point controls, constants, and indicators. This LED lights up when the overflow
status of the fixed-point number is TRUE. You also can use the Fixed-Point Overflow? function to
determine the overflow status of a fixed-point number. Use the Fixed-Point functions to manipulate the
overflow status of a fixed-point number.

Refer to the Fundamentals»Building the Block Diagram»Concepts»Numeric Data topic on the
Contents tab in the LabVIEW Help for more information about fixed-point numbers.

LabVIEW Upgrade Notes 50 ni.com

Merging LLBs (Not in Base Package)
In the LabVIEW Professional Development System, use the Select LLBs to Merge dialog box to merge
and resolve the differences between an LLB and two revisions of that original LLB.

Select Tools»Merge»Merge LLBs to display the Select LLBs to Merge dialog box. Specify the
original LLB in the Base LLB field. Specify the two revised LLBs in the Their LLB and Your LLB
fields. Click the Merge button to merge the selected LLBs and open the Merge LLBs dialog box.
Resolve any differences between the revisions of the LLB and click Close and Save to save the merged
LLB.

Refer to the Fundamentals»Development Guidelines»How-To»Merging VIs and LLBs»Merging
LLBs topic on the Contents tab in the LabVIEW Help for more information about merging LLBs.

National Instruments, NI, ni.com, and LabVIEW are trademarks of National Instruments Corporation.
Refer to the Terms of Use section on ni.com/legal for more information about National
Instruments trademarks. MATLAB® is a registered trademark of The MathWorks, Inc. Other product
and company names mentioned herein are trademarks or trade names of their respective companies.
For patents covering National Instruments products, refer to the appropriate location: Help»Patents in
your software, the patents.txt file on your media, or ni.com/patents.

© 1998–2008 National Instruments Corporation. All rights reserved. 371780D-01 Jun08

	LabVIEW Upgrade Notes
	Contents
	Upgrading to LabVIEW 8.6
	Converting VIs
	Upgrading Modules, Toolkits, and Instrument Drivers
	NI Modules and Toolkits
	Instrument Drivers
	Third Party Add-Ons
	Mass Compiling LabVIEW

	Upgrading Additional National Instruments Software
	Upgrading from Previous Versions of LabVIEW
	Replacing an Existing Version of LabVIEW
	Copying Environment Settings from a Previous Version of LabVIEW
	Copying user.lib Files from a Previous Version of LabVIEW

	Upgrade and Compatibility Issues
	Upgrading from LabVIEW 8.5
	Platforms Supported
	System Requirements
	Printed Documentation
	VI and Function Behavior Changes
	Property, Method, and Event Behavior Changes
	Deprecated Properties, Methods, and Events
	Renamed Properties, Methods, and Events

	Upgrading Remote Front Panel Licenses (Windows)
	Shared Components of the Application Builder
	Upgrading from LabVIEW 8.2
	Platforms Supported
	System Requirements
	Windows Vista Compatibility Issues
	VI and Function Behavior Changes
	Property, Method, and Event Behavior Changes
	Deprecated Properties, Methods, and Events
	Renamed Properties, Methods, and Events
	LabVIEW MathScript Behavior Changes (Windows, Not in Base Package)
	LabVIEW Class Icons
	Opening LLBs in LabVIEW
	Timed Loop Priority Level Restriction
	Waveform Data Type

	Upgrading from LabVIEW 8.0
	Platforms Supported
	System Requirements
	Printed Documentation
	VI and Function Behavior Changes
	Property, Method, and Event Behavior Changes
	Deprecated Properties, Methods, and Events
	Renamed Properties, Methods, and Events
	Application Builder Changes

	Upgrading from LabVIEW 7.x
	Platforms Supported
	System Requirements
	Custom Palette Views
	VI and Function Behavior Changes
	Deprecated VIs and Functions
	Property, Method, and Event Behavior Changes
	Deprecated Properties, Methods, and Events
	Changes from Previous Versions of the Application Builder
	Application Item Tags
	HiQ Support
	Error List Window
	VI String File Syntax
	Converting Type Descriptor Data to and from LabVIEW 7.x
	Migrating from the LabVIEW Built-In Source Control Provider
	Converting NaN Strings to Integer Types (Windows)
	Constants Wired to Case Structures
	Delaying Operating System Messages
	Resource Manager (Mac OS)
	One- and Two-Button Dialog Boxes
	Property and Invoke Nodes
	Updating Shared Libraries
	Margin Values for Printing

	Upgrading from LabVIEW 6.x
	Changes to the Waveform Data Type
	Serial Compatibility VIs
	Default Data in Loops
	Remote Front Panel License
	Multiple Thread Allocation
	Instrument Drivers
	Units and Conversion Factors
	Defer Panel Updates Property
	Data Ranges for Numeric Controls
	Coercion Dots and Type Definitions
	File Dialog Box Button Label
	Control Online Help Function
	Displaying the Front Panel When Loaded
	Open VI Reference Function
	Exponential Representation
	IVI Configuration Store File

	Upgrading from LabVIEW 5.x or Earlier Versions

	LabVIEW 8.6 Features and Changes
	Installing LabVIEW
	LabVIEW Documentation
	New Example VIs
	Block Diagram Enhancements
	Creating and Editing Express VIs
	Managing Breakpoints Using the Breakpoint Manager Window
	Allowing Preallocation of Shared-Clone Reentrant VIs in Timed Structures
	Wiring Tunnels Automatically in Structures with Multiple Cases
	Miscellaneous Block Diagram Enhancements

	Front Panel Enhancements
	3D Graph Enhancements
	Miscellaneous Front Panel Enhancements

	Environment Enhancements
	Error List Window Enhancements
	Performance Enhancements
	VI Hierarchy Window Enhancements
	Dialog Box Enhancements
	Palette Enhancements
	Miscellaneous Environment Enhancements

	New and Changed VI, Function, and Node Enhancements
	New VIs and Functions
	Changed VIs, Functions, and Nodes
	Miscellaneous VI, Function, and Node Changes

	New Classes, Properties, Methods, and Events
	XML Parser Properties and Methods
	3DPC_SurfacePlot Properties

	Cleaning Up the Block Diagram Automatically
	Placing Objects Using Quick Drop
	Editing the Properties of Multiple Objects
	LabVIEW Web Services (Windows, Not in Base Package)
	NI Distributed System Manager
	LabVIEW MathScript Enhancements (Not in Base Package)
	New MathScript Functions
	LabVIEW MathScript on Mac OS and Linux
	Debugging Enhancements for MathScript Nodes
	Script Highlighting in MathScript Nodes
	Miscellaneous MathScript Enhancements and Changes

	Managing Overflow for Fixed-Point Numbers
	Merging LLBs (Not in Base Package)

