
LabVIEW Upgrade Notes
Version 8.0

These upgrade notes describe the process of upgrading LabVIEW for
Windows, Mac OS, and Linux to version 8.0, issues you might encounter
when you upgrade, and new features.

Refer to the LabVIEW Help for more information about LabVIEW 8.0
features, as well as for information about LabVIEW programming
concepts, step-by-step instructions for using LabVIEW, and reference
information about LabVIEW VIs, functions, palettes, menus, and tools.
The LabVIEW Help also lists the LabVIEW documentation resources
available from National Instruments. Access the LabVIEW Help by
selecting Help»Search the LabVIEW Help.

Contents
Upgrading to LabVIEW 8.0.. 2

Converting VIs... 3
Upgrading Toolkits, Instrument Drivers, and Add-Ons 3
Upgrading Additional National Instruments Software 4
Upgrading from Previous Versions of LabVIEW 4

Upgrade and Compatibility Issues .. 5
Upgrading from LabVIEW 7.x .. 5
Upgrading from LabVIEW 6.x .. 23
Upgrading from LabVIEW 5.x .. 28
Upgrading from LabVIEW 4.x .. 29
Upgrading from LabVIEW 3.x or Earlier Versions......................... 31

LabVIEW 8.0 Features and Changes .. 31
Activating the LabVIEW License.. 31
Launching LabVIEW... 32
Logging In and Out of LabVIEW.. 32
Domain Account Manager... 32
Enhancements to the New Dialog Box .. 32
RT, FPGA, and PDA Targets .. 33
LabVIEW Projects ... 33
LabVIEW Project Libraries ... 40
Sharing Live Data Using Shared Variables 41

™

LabVIEW Upgrade Notes 2 ni.com

Creating Source Distributions ..44
Changes from Previous Versions of the Application Builder44
New Palette Organization...46
Menu Reorganization ...50
Using Source Control ...51
VI and Function Enhancements..53
VI Hierarchy Window Enhancements..68
Front Panel Enhancements ...68
LabVIEW MathScript (Windows) ...79
Matrix Data Type ...80
Options Dialog Box Enhancements..82
Save As and Save for Previous Version Dialog Boxes83
File Size Improvements..83
Using Shared Libraries in Multiple Versions of LabVIEW.............83
Setting the Window Run-Time Position...83
Setting Run-Time Language Preferences...84
VI Server Enhancements ..84
Class Browser Window ..86
Using .NET Assemblies ...86
Instrument Driver Finder..87
Instrument Driver VI Wizard ...87
Instrument Driver Project Wizard ..87
Using and Debugging Reentrant VIs..88
Creating Probes after a VI Runs...89
Profiling VIs in Multiple Targets ...90
64-Bit Integer Data Types ..90
NI Spy...90
Find and Replace Functionality..91
Customizable Keyboard Shortcuts ...91
Print Dialog Box Enhancements ..91
Editing VI Icons ...92
Documentation Enhancements and Changes....................................92
NI Example Finder Enhancements...95
Other LabVIEW 8.0 Features and Changes97

Upgrading to LabVIEW 8.0
If you are upgrading from a previous version of LabVIEW, refer to the
Converting VIs, the Upgrading Toolkits, Instrument Drivers, and Add-Ons,
and the Upgrade and Compatibility Issues sections of this document first.

© National Instruments Corporation 3 LabVIEW Upgrade Notes

Converting VIs
When you open a VI last saved in LabVIEW 4.0 or later, LabVIEW 8.0
automatically converts and compiles the VI. You must save the VI in
LabVIEW 8.0, or the conversion process, which uses extra memory
resources, occurs every time you access the VI.

Also, you might experience a large run-time degradation of performance
for any VI that has unsaved changes, including a recompile. Refer to the
LabVIEW Help for more information about this performance and memory
issue.

Note VIs you save in LabVIEW 8.0 do not load in earlier versions of LabVIEW. Select
File»Save for Previous Version to save VIs so they can run in LabVIEW 7.1. Before
saving VIs in LabVIEW 8.0, keep a backup copy of VIs you plan to use in LabVIEW 7.1
or earlier.

If your computer does not have enough memory to convert all the VIs at
once, convert the VIs in stages. Examine the hierarchy of VIs you want to
convert and begin by loading and saving subVIs in the lower levels of the
hierarchy. Then progress gradually to the higher levels of the hierarchy.
Open and convert the top-level VI last. You also can select Tools»
Advanced»Mass Compile to convert a directory of VIs. However, mass
compiling converts VIs in a directory or LLB in alphabetical order. If the
conversion process encounters a high-level VI first, mass compiling
requires approximately the same amount of memory as if you opened the
high-level VI first.

You can monitor memory usage by selecting Help»About LabVIEW to
display a summary of the amount of memory you currently are using.

Upgrading Toolkits, Instrument Drivers, and Add-Ons
After you install LabVIEW 8.0, make sure you have a compatible version
of any toolkits and add-ons, and reinstall the toolkits and add-ons in the
LabVIEW 8.0 directory. You first might need to uninstall the toolkit from
previous versions of LabVIEW. Refer to the documentation for the
LabVIEW toolkit or add-on for more information about installation.

You also must mass compile existing toolkit, instrument driver, and add-on
VIs for use in LabVIEW 8.0. Refer to the Converting VIs section of this
document for more information about mass compiling VIs.

The following toolkits, instrument drivers, and add-ons require upgrades or
downloads for use in LabVIEW 8.0.

• If you have the LabVIEW Application Builder, you must upgrade to
LabVIEW Application Builder 8.0. The LabVIEW 8.0 Professional

LabVIEW Upgrade Notes 4 ni.com

Development System includes Application Builder 8.0. Refer to the
LabVIEW Application Builder Readme located in the labview\
readme directory for more information about installing the LabVIEW
Application Builder.

• You must use VI Analyzer 1.1 in LabVIEW 8.0. Refer to the National
Instruments Web site at ni.com/info and enter the info code exd8yy
to access the Upgrade Advisor and download VI Analyzer 1.1.

• You must download additional VIs to use the Internet Toolkit 6.0 with
LabVIEW 8.0. Refer to the National Instruments Web site at ni.com/
info and enter the info code exkrkb to download the necessary VIs.

• The instrument driver for the HP/Agilent 34401A Digital Multimeter
(DMM) now more closely resembles the National Instruments DMM
template driver. This driver is not compatible with the HP34401A
driver that LabVIEW 7.x and earlier use. If you need compatibility
with the LabVIEW 7.x HP34401A driver, download that driver from
the National Instruments Instrument Driver Network at ni.com/
idnet.

Upgrading Additional National Instruments Software
You must use NI TestStand 3.5 or later in LabVIEW 8.0. Refer to the
National Instruments Web site at ni.com/info and enter the info code
exd8yy to access the Upgrade Advisor and download NI TestStand 3.5 or
later.

You must use Logos 4.6 or later in LabVIEW 8.0. Refer to the National
Instruments Web site at ni.com/info and enter the info code exymjt to
download the latest version of Logos.

Upgrading from Previous Versions of LabVIEW
Upgrading to new versions of LabVIEW does not affect previous versions
of LabVIEW on the computer because the new versions install in a
different directory. LabVIEW 5.x and earlier install in the labview
directory. LabVIEW 6.0 and later install in the labview x.x directory,
where x.x is the version number. You can install LabVIEW 8.0 without
uninstalling previous versions of LabVIEW.

To replace your existing version of LabVIEW, uninstall the existing version
of LabVIEW, run the LabVIEW 8.0 installer, and set the default installation
directory to the same labview directory where you installed the previous
version of LabVIEW.

(Windows) You also can replace the existing version of LabVIEW with
LabVIEW 8.0 by using the Add/Remove Programs applet in the Control

http://www.ni.com/cgi-bin/redirect.cgi?dest=infcoprod&src=lvhelp&openagent&code=exymjt
http://www.ni.com/cgi-bin/redirect.cgi?dest=infcoprod&src=lvhelp&openagent&code=exd8yy
http://www.ni.com/cgi-bin/redirect.cgi?dest=infcoprod&src=lvhelp&openagent&code=ex3mbp
http://www.ni.com/cgi-bin/redirect.cgi?dest=infcoprod&src=lvhelp&openagent&code=ex3mbp
http://www.ni.com/cgi-bin/redirect.cgi?dest=infcoprod&src=lvhelp&openagent&code=exkrkb
http://www.ni.com/cgi-bin/redirect.cgi?dest=infcoprod&src=lvhelp&openagent&code=exkrkb
http://www.ni.com/cgi-bin/redirect.cgi?dest=infcoprod&src=lvhelp&openagent&code=exd8yy

© National Instruments Corporation 5 LabVIEW Upgrade Notes

Panel to uninstall the existing version of LabVIEW. The uninstaller does
not remove any files you created in the labview directory.

Note When you uninstall or reinstall LabVIEW, LabVIEW uninstalls the .llb files in the
vi.lib directory, including any VIs and controls you saved in the .llb files. Save your
VIs and controls in the user.lib directory to add them to the Controls and Functions
palettes.

To use LabVIEW environment settings from a previous version of
LabVIEW, copy the LabVIEW preferences file from the labview
directory in which the previous version is installed.

Caution If you replace the LabVIEW 8.0 preferences file with a preferences file from a
previous version, you might override preference settings added to LabVIEW since the
previous version.

After you install LabVIEW 8.0, copy the LabVIEW preferences file to the
LabVIEW 8.0 directory.

(Windows) LabVIEW stores preferences in the labview.ini file.

(Mac OS) LabVIEW stores preferences in the LabVIEW Preferences file
in the Library:Preferences folder in your home directory.

(Linux) LabVIEW stores preferences in the .labviewrc file in your home
directory.

To use files from the user.lib directory of a previous version of
LabVIEW, copy the files from the labview directory in which the previous
version is installed. After you install LabVIEW 8.0, copy the files to the
user.lib directory in the LabVIEW 8.0 directory.

Upgrade and Compatibility Issues
Refer to the following sections for upgrade and compatibility issues
specific to different versions of LabVIEW.

Upgrading from LabVIEW 7.x
You might encounter the following compatibility issues when you upgrade
to LabVIEW 8.0 from LabVIEW 7.x.

LabVIEW Upgrade Notes 6 ni.com

Platforms Supported
LabVIEW 8.0 includes the following changes in platforms supported:

• LabVIEW 7.1 and later do not support Windows Me/98/95.
LabVIEW 8.0 does not support Windows NT.

• LabVIEW 8.0 supports Windows XP x64, but current NI driver
support for XP x64 is limited.

• LabVIEW 8.0 does not support Mac OS X 10.2 or earlier.

• LabVIEW 8.0 does not support Sun Solaris.

System Requirements
LabVIEW 7.x requires a minimum of 128 MB of RAM, but National
Instruments recommends 256 MB of RAM. LabVIEW 8.0 requires a
minimum of 256 MB of RAM, but National Instruments recommends
512 MB of RAM.

LabVIEW 7.x requires a screen resolution of 800 × 600 pixels, but National
Instruments recommends a screen resolution of 1,024 × 768 pixels.
LabVIEW 8.0 requires a screen resolution of 1,024 × 768 pixels.

(Windows) LabVIEW 7.x requires a minimum of a Pentium III or greater or
Celeron 600 MHz or equivalent processor, but National Instruments
recommends a Pentium 4 or equivalent processor. LabVIEW 8.0 requires a
minimum of a Pentium III or Celeron 866 MHz or equivalent processor, but
National Instruments recommends a Pentium 4/M or equivalent processor.

(Linux) LabVIEW 7.x requires a minimum of a Pentium III or greater or
Celeron 600 MHz or equivalent processor, but National Instruments
recommends a Pentium 4 or equivalent processor. LabVIEW 8.0 requires a
minimum of a Pentium III or Celeron 866 MHz or equivalent processor, but
National Instruments recommends a Pentium 4/M or equivalent processor.

(Windows) LabVIEW 7.x requires at least 130 MB of disk space for the
minimum LabVIEW installation or 550 MB disk space for the complete
LabVIEW installation. LabVIEW 8.0 requires at least 900 MB of disk
space for the minimum LabVIEW installation or 1.2 GB disk space for the
complete LabVIEW installation.

(Mac OS) LabVIEW 7.x requires at least 280 MB of disk space for the
minimum LabVIEW installation or 350 MB disk space for the complete
LabVIEW installation. LabVIEW 8.0 requires at least 500 MB of disk
space for the minimum LabVIEW installation or 600 MB disk space for the
complete LabVIEW installation.

(Linux) LabVIEW 7.x requires at least 200 MB of disk space for the
minimum LabVIEW installation or 300 MB disk space for the complete

© National Instruments Corporation 7 LabVIEW Upgrade Notes

LabVIEW installation. LabVIEW 8.0 requires at least 400 MB of disk
space for the minimum LabVIEW installation or 550 MB disk space for the
complete LabVIEW installation.

(Linux) LabVIEW 7.x requires GNU C Library (glibc) version 2.1.3 or
later, but National Instruments recommends GNU C Library version 2.2.4
or later. LabVIEW 8.0 requires GNU C Library version 2.2.4 or later.

(Linux) LabVIEW 7.x runs on Red Hat Linux 7.0 or later, Mandrake Linux
8.0 or later, SuSE Linux 7.1 or later, or Debian Linux 3.0 or later.
LabVIEW 8.0 runs on Red Hat Enterprise Linux WS 3 or later,
MandrakeLinux/Mandriva 10.0 or later, or SuSE Linux 9.1 or later.

Custom Palette Views
LabVIEW 8.0 does not support custom palette views. You can edit a palette
set without using a custom palette view. Refer to the Palette Editing
Enhancements section of this document for more information about palette
changes in LabVIEW 8.0.

VI and Function Behavior Changes
The behavior of the following VIs and functions changed in LabVIEW 8.0.

.NET VIs and Applications
You must have the .NET Framework 1.1 Service Pack 1 or later to use
.NET functions and applications in LabVIEW 8.0. You must remove
Microsoft .NET Framework 1.1 Hotfix KB886904 before installing the
.NET Framework 1.1 Service Pack 1.

If you load a .NET VI last saved in LabVIEW 7.x, LabVIEW 8.0 might
prompt you to find the assemblies to which that VI refers even if the
assembly files are in the same directory as the VI or if you registered them
by selecting Tools»Advanced».NET Assembly References in
LabVIEW 7.x.

Analyze VI Algorithms
In LabVIEW 7.1 and later, the Analyze VIs use the BLAS/LAPACK
algorithms. These VIs now produce more accurate results. In
LabVIEW 8.0, these VIs are on the Mathematics and Signal Processing
palettes.

LabVIEW Upgrade Notes 8 ni.com

Append Signals Express VI
In LabVIEW 7.x, if Input Signal A of the Append Signals Express VI is
empty or not wired and you wire a single signal or a combined signal to
Input Signal B, the Appended Signals output is empty. In LabVIEW 8.0,
if Input Signal A is empty or not wired and you wire a single signal to
Input Signal B, the Express VI returns Input Signal B. If you wire only a
combined signal to Input Signal B, each signal in the combined signal
appends the following signal to create one signal as a result.

Comparison Functions
In LabVIEW 7.x and earlier, when you use the Comparison functions
to compare variant data, LabVIEW first compares the length of the
two variants and then compares the variants bit by bit. LabVIEW 8.0
begins the comparison of variant data with the type codes, which encode
the actual type information of the variants, and then compares other
type-specific attributes.

Dot Product VI
In LabVIEW 7.0, the Dot Product VI calculates the dot product of input
vectors X and Y using the following equation:

In LabVIEW 7.1 and later, the Dot Product VI calculates the dot product of
complex inputs using the following equation:

where yi
* is the complex conjugate of yi.

Easy Text Report VI (Mac OS and Linux)
The connector pane of the Easy Text Report VI changed. In LabVIEW 8.0,
when you open a VI last saved in LabVIEW 7.x or earlier that uses the Easy
Text Report VI, you must right-click the subVI and select Relink To
SubVI from the shortcut menu.

X *Y xiyi
i 0=

n 1–

∑=

X *Y xiyi∗

i 0=

n 1–

∑=

© National Instruments Corporation 9 LabVIEW Upgrade Notes

Format Into String Function
In LabVIEW 7.x, using the %o or %x format specifier syntax elements with
the Format Into String function rounds a floating-point input to a 32-bit
integer before converting that input to a string.

In LabVIEW 8.0, these format specifier syntax elements cause this function
to round floating-point inputs to 64-bit integers before converting the inputs
to strings.

Join Numbers Function
In LabVIEW 7.x and earlier, the Join Numbers function coerces 32-bit
integer inputs to 16-bit integers to create one 32-bit integer. In
LabVIEW 8.0, the Join Numbers function joins 32-bit integer inputs
to create one 64-bit integer.

Note If you open a LabVIEW 7.x VI in LabVIEW 8.0, LabVIEW coerces 32-bit integer
inputs to 16-bit integers.

Number to String Conversion Functions
In LabVIEW 7.x, the Number to Hexadecimal String, Number to Octal
String, and Number to Decimal String functions round a floating-point
input to a 32-bit integer before converting that input to a string.

In LabVIEW 8.0, these functions round floating-point inputs to 64-bit
integers before converting the inputs to strings. However, if you open a
LabVIEW 7.x VI in LabVIEW 8.0, LabVIEW maintains compatibility and
functionality by rounding floating-point inputs to 32-bit integers.

Open VI Reference Function
In LabVIEW 7.x, if the vi path input of the Open VI Reference function is
a path and a VI in memory exists with the same name, LabVIEW returns a
reference to the VI in memory, even if the path to the VI in memory does
not match the path you specified.

In LabVIEW 8.0, if the vi path input of the Open VI Reference function is
a string, LabVIEW opens the VI only if vi path matches the qualified
filename of a VI in memory on that target. If vi path is a path, LabVIEW
searches for a VI in memory with the same path on the same target. If
LabVIEW does not find a VI with a matching path, LabVIEW tries to load
the VI from disk at the specified path. An error occurs if LabVIEW cannot
find the file or if the file conflicts with another VI in memory. Refer to the
LabVIEW Project Libraries section of this document for more information
about qualified filenames. Refer to the LabVIEW Projects section of this
document for more information about targets.

LabVIEW Upgrade Notes 10 ni.com

Quick Scale VI
In LabVIEW 7.1 and earlier, if the X input of the Quick Scale 1D VI or the
Quick Scale 2D VI is an array of zeros, this VI returns max|X| as 0 and
Y[i]=X[i]/Max|X| or Yij=Xij/Max|X| as an array of NaN. In LabVIEW 8.0,
if the X input of the Quick Scale VI is an array of zeros, this VI returns
max|X| as 0 and Y[i]=X[i]/Max|X| or Yij=Xij/Max|X| as an array of zeros.

Read Key VI
In LabVIEW 7.x and earlier, you can use the Read Key VI to read a
Japanese multibyte-character string encoded in Shift-JIS. You must wire 1
or <Shift-JIS> to the multibyte encoding input. In LabVIEW 8.0, the
Read Key VI reads multibyte-character, encoded strings by default if you
set the operating system locale to the appropriate encoding.

Scale VI
In LabVIEW 7.1 and earlier, if the X input of the Scale 1D VI or the Scale
2D VI is an array of zeros, this VI returns scale as 0, offset as 0, and
Y=(X–offset)/scale as an array of NaN. In LabVIEW 8.0, if the X input of
the Scale VI is an array of zeros, this VI returns scale as 1, offset as 0, and
Y=(X–offset)/scale as an array of zeros.

Semaphore VIs
In LabVIEW 7.x, the Release Semaphore VI and the Acquire Semaphore
VI do not attempt to execute when the error in parameter contains an error.
In LabVIEW 8.0, these VIs attempt to execute even if the error in
parameter contains an error. However, if you open a LabVIEW 7.x VI in
LabVIEW 8.0, LabVIEW maintains the LabVIEW 7.x functionality.

SMTP Email VIs
In LabVIEW 7.x and earlier, you can specify a character set by wiring a
value to the character set input of the SMTP Email VIs. In LabVIEW 8.0,
the SMTP Email VIs assume the message is in the system character set.
These VIs encode the message into UTF-8 format before sending the email.
The SMTP Email VIs no longer have the character set or translit
parameters.

Sort Complex Numbers VI
In LabVIEW 7.x and earlier, if you set the method input of the Sort
Complex Numbers VI to Magnitude, LabVIEW does not change the
sequence of elements with the same magnitude. In LabVIEW 8.0, if you set
method to Magnitude, LabVIEW sorts elements of the same magnitude
first with respect to their real parts and then with respect to their imaginary
parts.

© National Instruments Corporation 11 LabVIEW Upgrade Notes

Unit Vector VI
In LabVIEW 7.x and earlier, the Unit Vector VI calculates the norm of an
input vector using the following equation:

In LabVIEW 8.0, the Unit Vector VI calculates the norm of an input vector
using the following equation:

where X is the input vector, ||X|| is the norm, and y is the norm type.

User VIs
VIs that you place in the labview\help, labview\project, or
labview\wizard directories appear in the Help, Tools, and File menus,
respectively. VIs that you place in these directories in LabVIEW 7.x and
earlier might not work as expected in LabVIEW 8.0 because LabVIEW 8.0
opens these VIs in a private application instance.

Use the VIMemory Get VIs in Memory VI in the labview\vi.lib\
Utility\allVIsInMemory.llb to generate a list of all user VIs in
memory in all application instances. Use the Get User Application
Reference VI in the labview\vi.lib\Utility\
allVIsInMemory.llb to create a reference to the current application
instance. Refer to the Working with Application Instances section of this
document for more information about application instances.

Deprecated VIs and Functions
LabVIEW 8.0 does not support the following VIs and functions:

• LabVIEW 7.1 and later do not install the Polynomial Real Zero
Counter VI. Use the Polynomial Real Zeros Counter VI instead.

• LabVIEW 7.1 and later do not install the PPC VIs. Use the TCP VIs
instead.

• LabVIEW 8.0 does not support the QR Factorization VI. Use the
QR Decomposition VI instead.

• LabVIEW 8.0 does not support the Levenberg Marquardt or the
Nonlinear Lev-Mar Fit VIs. Use the Nonlinear Curve Fit VI instead.

• In LabVIEW 8.0, the VISA Status Description function is not on the
Functions palette. Use the Simple Error Handler or General Error
Handler VIs instead.

X x0
2 x1

2 … xn 1–
2+ + +=

X x0
y x1

y … xn 1–
y+ + +

1
y

=

LabVIEW Upgrade Notes 12 ni.com

• LabVIEW 8.0 does not support the Chi Square Distribution,
F Distribution, Normal Distribution, and T Distribution VIs. Use the
Chi-Squared, F, Normal, and Student t instances, respectively, of the
Continuous CDF VI instead.

• LabVIEW 8.0 does not support the Inv Chi Square Distribution, Inv F
Distribution, Inv Normal Distribution, and Inv T Distribution VIs. Use
the Chi-Squared, F, Normal, and Student t instances, respectively, of
the Continuous Inverse CDF VI instead.

• In LabVIEW 8.0, the 1D Linear Evaluation VI and the 2D Linear
Evaluation VI are not on the Functions palette. Use the Linear
Evaluation VI instead.

• In LabVIEW 8.0, the 1D Polynomial Evaluation VI and the 2D
Polynomial Evaluation VI are not on the Functions palette. Use the
Polynomial Evaluation VI instead.

• In LabVIEW 8.0, the 1D Rectangular to Polar VI and the 1D Polar to
Rectangular VI are not on the Functions palette. Use the Re/Im To
Polar function and the Polar To Re/Im function instead.

• In LabVIEW 8.0, the Harmonic Analyzer VI is not on the Functions
palette. Use the Harmonic Distortion Analyzer VI instead to measure
the THD or component levels outputs, or use the SINAD Analyzer VI
to measure the SINAD or THD Plus Noise outputs.

• In LabVIEW 8.0, the Network Functions (avg) VI is not on the
Functions palette. Use the Frequency Response Function
(Mag-Phase), Frequency Response Function (Real-Im), Cross
Spectrum (Mag-Phase), or Cross Spectrum (Real-Im) VIs instead.

• In LabVIEW 8.0, the Pulse Parameters VI is not on the Functions
palette. Use the Transition Measurements VI instead to measure the
slew rate, duration, overshoot, or preshoot outputs, the Pulse
Measurements VI to measure the period, pulse duration, or duty
cycle outputs, or the Amplitude and Levels VI to measure the
amplitude, high state level, or low state level outputs.

• In LabVIEW 8.0, the Transfer Function VI is not on the Functions
palette. Use the Frequency Response Function (Mag-Phase) or
Frequency Response Function (Real-Im) VIs instead.

• In LabVIEW 8.0, the NI DIAdem Report Wizard Express VI is not on
the Functions palette. Use the NI DIAdem Report Express VI instead.
Refer to the NI DIAdem Report Express VI section of this document for
more information about the NI DIAdem Report Express VI.

Note You must have DIAdem 9.1 Service Pack 2 or later installed to use the NI DIAdem
Report Express VI. Refer to the National Instruments Web site at ni.com and enter the info
code exf5ty to download an evaluation version of DIAdem or purchase DIAdem.

http://www.ni.com/cgi-bin/redirect.cgi?dest=infcoprod&src=lvhelp&openagent&code=exf5ty

© National Instruments Corporation 13 LabVIEW Upgrade Notes

• In LabVIEW 8.0, the VISA Resource Name constant and the IVI
Logical Name constant are not on the Functions palette. To specify a
VISA resource name, use the VISA resource name input of the VISA
VIs. To specify an IVI logical name, use the appropriate input of the
appropriate driver VI that initializes the instrument.

• In LabVIEW 8.0, the error ring constant is not on the Functions
palette. Use a 32-bit signed integer constant instead to enter the error
code that you want.

• (Windows) In LabVIEW 8.0, the Sound VIs available on the Sound
palette in LabVIEW 7.x are not on the Functions palette. Use the
Sound VIs in LabVIEW 8.0 instead. The examples shipped with
LabVIEW 7.x do not ship with LabVIEW 8.0.

• (Mac OS and Linux) The Sound VIs in LabVIEW 8.0 continue to ship
with the Sound VIs shipped with LabVIEW 7.1. The examples shipped
with LabVIEW 7.x do not ship with LabVIEW 8.0.

File I/O VIs and Functions
In LabVIEW 8.0, the Read Characters From File VI is not on the Functions
palette. Use the Read from Text File function instead.

In LabVIEW 8.0, the Open/Create/Replace File VI is not on the Functions
palette. Use the Open/Create/Replace File function instead. The following
functions include some of the functionality of the Open/Create/Replace
File VI in LabVIEW 7.x and earlier.

• Use the Get File Size function to determine the size of a file.

• Use the File Dialog Express VI to specify the start path, file pattern,
and default name of a file or directory for a dialog box that lets the user
browse to a file.

• Use the Refnum to Path function to convert a reference to a path.

• Use the Write to Binary File function to create platform-independent
text files or other types of binary files, and use the Read from Binary
File function to read the resulting binary files.

In LabVIEW 8.0, the Read File and Write File functions are not on the
Functions palette. Use the Read from Binary File and Write to Binary File
functions instead.

In LabVIEW 8.0, the Write Characters To File VI is not on the Functions
palette. Use the Write to Text File function instead.

In LabVIEW 8.0, the Access Rights function is not on the Functions
palette. Use the Get Permissions and Set Permissions functions instead.

LabVIEW Upgrade Notes 14 ni.com

In LabVIEW 8.0, the EOF function is not on the Functions palette. Use the
Get File Size and Set File Size functions instead.

In LabVIEW 8.0, the List Directory function is not on the Functions
palette. Use the List Folder function instead.

In LabVIEW 8.0, the Lock Range function is not on the Functions palette.
Use the Deny Access function instead.

If you open a VI built in LabVIEW 7.x that includes the New Directory
function on the block diagram, LabVIEW 8.0 replaces that function with
the Create Folder function. If the folder you specified in the path input does
not exist, the Create Folder function creates the directory rather than
returning an error, as the New Directory function did.

In LabVIEW 8.0, the Seek function is not on the Functions palette. Use the
Get File Position and Set File Position functions instead.

In LabVIEW 8.0, the Type and Creator function is not on the Functions
palette. Use the Get Type and Creator and Set Type and Creator functions
instead.

In LabVIEW 8.0, the Volume Info function is not on the Functions palette.
Use the Get Volume Info function instead.

In LabVIEW 8.0, the Open File and New File functions are not on the
Functions palette. The Read Lines From File VI is not on the Functions
palette but ships with LabVIEW for compatibility.

In LabVIEW 8.0, the Read From I16 File, Read From SGL File, Write To
I16 File, and Write To SGL File VIs are not on the Functions palette. Use
the Read from Binary File and Write to Binary File VIs instead.

Finding Deprecated VIs
Complete the following steps to find deprecated VIs in the VIs you created
in earlier versions of LabVIEW.

1. Load the VIs you want to search into memory.

2. Select Edit»Find and Replace to display the Find dialog box.

3. Click the Text button.

4. From the Application instance pull-down menu, select the application
instance that contains the VIs you want to search. Refer to the Working
with Application Instances section of this document for more
information about application instances.

5. From the Search Scope pull-down menu, select All VIs in
Application Instance.

© National Instruments Corporation 15 LabVIEW Upgrade Notes

6. Place a checkmark in the Hierarchy window checkbox.

7. Click the Find button.

Property, Method, and Event Behavior Changes
The behavior of the following properties, methods, and events changed in
LabVIEW 8.0.

Application Properties and Methods
In LabVIEW 8.0, the behavior of some Application properties and methods
depends on the application instance to which they belong. For example, the
behavior of the Application:All VIs in Memory property depends on the
application instance in which you use it. This property returns a list of all
VIs in memory in the same application instance as the property. However,
the behavior of the Application:Directory Path property does not depend on
the application instance in which you use it. This property returns the
absolute path to the directory in which the application is located. This
information does not change with each application instance.

Refer to the Working with Application Instances section of this document
for more information about application instances.

Front Panel:Open Method
The LabVIEW 7.0 Open FP method was renamed to Old Open FP in
LabVIEW 7.1. LabVIEW 7.1 includes a different Open FP method that
does not return an error if the front panel is already open. The LabVIEW
7.1 Open FP method was renamed to Front Panel:Open in LabVIEW 8.0.
If you have VIs that use the Old Open FP method from LabVIEW 7.0,
replace the method with the Front Panel:Open method.

Key Down and Key Repeat Events
The VKey data field of the Key Down, Key Down?, Key Repeat, and Key
Repeat? events for VIs and controls now has separate values for the
<Return> key on the alphanumeric section of the keyboard and the <Enter>
key on the numeric keypad. In LabVIEW 7.x and earlier, when the <Enter>
key or the <Return> key generates one of these events, LabVIEW returns
<Enter> in the VKey data field. In LabVIEW 8.0, when the <Enter> key
or the <Return> key generates one of these events, LabVIEW returns
<Enter> or <Return>, respectively, in the VKey data field.

(Mac OS) LabVIEW 8.0 accepts only <Control>-click for shortcut menus
and does not receive the <Command>-click key combination. If you are
emulating this behavior with an Event structure, modify your VIs to
emulate the new behavior.

LabVIEW Upgrade Notes 16 ni.com

ListBox Properties
In LabVIEW 7.x and earlier, if you set the Top Row property of a listbox
to a row that is below the bottom item of the listbox, LabVIEW pins the row
to the last visible item. In LabVIEW 8.0, the number of visible items in the
listbox does not limit the row number you can wire to this property.

LabVIEW 8.0 does not support the Double-Click property for
single-column listboxes. Use the Get Double-Clicked Row method instead.

Owning VI Property
In LabVIEW 7.x and earlier, the Owning VI property returns a reference to
the VI to which the object belongs. This reference keeps the VI in memory.
In LabVIEW 8.0, the reference the Owning VI property returns does not
keep the VI in memory. If the owning VI is removed from memory, this
reference becomes invalid. Use the Open VI Reference function to obtain
a reference to a VI that stays in memory until you explicitly close the
reference.

Text Property
In LabVIEW 7.x and earlier, the Text property returns a string in normal
display. In LabVIEW 8.0, the Text property returns a string in the same text
display as the front panel object. For example, if you display a string
control in password display, the Text property returns the string in
password display.

TreeControl Properties
In LabVIEW 7.x and earlier, the Active Cell Properties:Cell Size:Height
and Active Cell Properties:Cell Size:Width properties return 17 pixels for
each line in the tree control. In LabVIEW 8.0, the Active Cell:Cell Size:
Height and Active Cell:Cell Size:Width properties return 16 pixels for each
line in the tree control.

VI Strings Methods
Strings that you export from previous versions of LabVIEW using the
Export VI Strings method might not import properly in LabVIEW 8.0 when
you use the VI Strings:Import method.

Deprecated Properties, Methods, and Events
LabVIEW 8.0 does not support the following properties, methods, and
events.

© National Instruments Corporation 17 LabVIEW Upgrade Notes

Cursor Properties
LabVIEW 8.0 does not support the Cursor Lock Style property. Use the
Cursor Mode property instead.

ListBox, Table, DigitalTable, and TreeControl Properties and
Events
LabVIEW 8.0 does not support the Cell Foreground Color property for
multicolumn listboxes. Use the Active Cell:Cell Font:Color property
instead.

LabVIEW 8.0 does not support the Cell FG Color property for tables or
digital tables. Use the Active Cell:Cell Font:Color property for tables and
digital tables instead.

LabVIEW 8.0 does not support the Active Cell Properties:Foreground
Color property for tree controls. Use the Active Cell:Cell Font:Color
property instead.

LabVIEW 8.0 does not support the Drag, Drag?, Drop, and Drop? events
in the TreeControl class. Use the Drag Ended, Drag Enter, Drag Leave,
Drag Over, Drag Source Update, Drag Starting, Drag Starting?, and Drop
events in the Control class instead.

NamedNumeric Properties
LabVIEW 8.0 does not support the Named Numeric Colors, Named
Numeric Colors:BG Color, or Named Numeric Colors:Text Color
properties for named numeric objects. Use the Text Colors, Text
Colors:BG Color, and Text Colors:Text Color properties, respectively,
instead.

Panel Properties
LabVIEW 8.0 does not support the Color property in the Panel class. If you
use this property in LabVIEW 8.0, the property applies only to the
upper-leftmost pane. Use the Pane Color property in the Pane class instead.

Subpanel Properties
In LabVIEW 8.0, use the pane of a subVI in a subpanel to configure the
visibility of scroll bars for subpanel controls and to scale the front panel in
subpanel controls.

LabVIEW 8.0 does not support the X Scrollbar Visible property for
subpanel controls. Use the Horizontal Scrollbar Visibility property for
panes instead.

LabVIEW Upgrade Notes 18 ni.com

LabVIEW 8.0 does not support the Y Scrollbar Visible property for
subpanel controls. Use the Vertical Scrollbar Visibility property for panes
instead.

LabVIEW 8.0 does not support the Scale Panel property for subpanel
controls. Use the Set Scaling Mode method for panes instead.

VI Properties, Methods, and Events
LabVIEW 8.0 does not support the Front Panel Window:Auto Center
property. Use the Front Panel:Center method instead.

LabVIEW 8.0 does not support the Front Panel Window:Size to Screen
property. Use the Front Panel Window:State property instead.

LabVIEW 8.0 does not support the Front Panel Window:Origin property in
the VI class. If you use this property in LabVIEW 8.0, the property applies
only to the upper-leftmost pane. Use the Origin property in the Pane class
instead.

LabVIEW 8.0 does not support the Front Panel Window:Show Scroll Bars
property in the VI class. If you use this property in LabVIEW 8.0, the
property applies only to the upper-leftmost pane. Use the Horizontal
Scrollbar Visibility and Vertical Scrollbar Visibility properties in the Pane
class instead.

LabVIEW 8.0 does not support the Get Front Panel Scaling Mode or Set
Front Panel Scaling Mode methods in the VI class. If you use these
methods in LabVIEW 8.0, the methods apply only to the upper-leftmost
pane. Use the Get Scaling Mode and Set Scaling Mode methods in the Pane
class instead.

LabVIEW 8.0 does not support the Mouse Down, Mouse Down?, Mouse
Enter, Mouse Leave, Mouse Move, or Mouse Up events in the VI class. Use
the Mouse Down, Mouse Down?, Mouse Enter, Mouse Leave, Mouse
Move, and Mouse Up events in the Pane class, respectively, instead.

Application Item Menu Tags
The following application item menu tags were removed from LabVIEW:

• APP_BUILD_STANDALONE_APP

• APP_DN_ASSEMBLY_REFS

• APP_EDIT_VI_LIBRARY

• APP_SAVE_WITH_OPTIONS

• APP_SHOW_CLIPBOARD

• APP_SRC_CODE_CTRL

© National Instruments Corporation 19 LabVIEW Upgrade Notes

• APP_SWITCH_EXEC_TARGET

• APP_UPDATE_VXI

• APP_VIEW_PRINTED_MANUALS

When you use a run-time menu (.rtm) file that was saved in a previous
version of LabVIEW and the file contains a deleted tag, LabVIEW 8.0
automatically removes the tag from the .rtm file when you save the file in
the Menu Editor dialog box. The deleted application item tags are reserved
by LabVIEW and you cannot use them as user tags.

HiQ Support
National Instruments does not support HiQ functionality in LabVIEW 8.0.
If an application uses HiQ VIs, consider replacing them with the
Mathematics and Signal Processing VIs. Refer to the LabVIEW Help for
information about using the Mathematics and Signal Processing VIs.

Error List Window
In LabVIEW 7.x and earlier, the VI List section of the Error list window
shows errors for all VIs in memory. In LabVIEW 8.0, the Items with
errors section of the Error list window shows errors for all items in
memory, such as VIs and libraries. If two or more items have the same
name, this section shows the specific application instance for each
ambiguous item. Refer to the Working with Application Instances section
of this document for more information about application instances.

VI String File Syntax
LabVIEW 8.0 searches for a new set of tags, <GROUPER></GROUPER>,
when you import VI string files by selecting Tools»Advanced»Import
Strings or by using the VI Strings:Import method. This set of tags denotes
front panel objects that are grouped together. Therefore, in LabVIEW 8.0,
you cannot import VI string files saved in previous versions of LabVIEW.

LabVIEW 7.1 and earlier list listbox strings in the <ITEMS> section of its
private data. LabVIEW 8.0 lists listbox strings in the <STRINGS> section
of its private data. Also, in LabVIEW 7.1 and earlier, a listbox can have
only one font, which LabVIEW lists in the <LBLABEL> section of its
private data. In LabVIEW 8.0, the listbox can have multiple fonts, which
LabVIEW lists in the <CELL_FONTS> section of its private data.

LabVIEW 7.1 and earlier list multicolumn listbox strings in its default data.
However, the default data for a multicolumn listbox is an integer or array of
integers. LabVIEW 8.0 lists multicolumn listbox strings in its private data.

LabVIEW Upgrade Notes 20 ni.com

LabVIEW 7.1 and earlier exports neither strings nor fonts for tree controls.
LabVIEW 8.0 can export both tree control strings and fonts, and it exports
them in the same format as the listbox and multicolumn listbox.

In LabVIEW 8.0, each line of an export file contains no more than two tags
for private or default data. LabVIEW 8.0 also indents items once for each
nesting level.

Complete the following steps to convert VI string files to the LabVIEW 8.0
format:

1. Import the VI string file in the previous version of LabVIEW.

2. Save the VI.

3. Load the VI in LabVIEW 8.0.

4. Select Tools»Advanced»Export Strings to save the VI string file in
the LabVIEW 8.0 format.

Converting Type Descriptor Data to and from
LabVIEW 7.x
The format in which LabVIEW stores type descriptors changed in
LabVIEW 8.0. LabVIEW 7.x stores type descriptors in 16-bit flat
representation. LabVIEW 8.0 stores type descriptors in 32-bit flat
representation. This change eliminates the 64 KB size limitation of type
descriptors.

LabVIEW 8.0 provides a mechanism for reading type descriptors written in
LabVIEW 7.x and writing type descriptors that LabVIEW 7.x can read. The
Flatten To String function has a Convert 7.x Data shortcut menu item. If
you right-click the function and select this menu item, the function treats
input data as if it were written for LabVIEW 7.x. When you select the
Convert 7.x Data shortcut menu item and the data string output is wired,
LabVIEW 8.0 places a red 7.x glyph on the function to indicate that it is
converting data to or from LabVIEW 7.x format. To avoid the conversion
of data, select the Convert 7.x Data shortcut menu item again to remove
the checkmark.

In LabVIEW 8.0, when you load a VI last saved in LabVIEW 7.x or earlier,
LabVIEW 8.0 automatically sets the Convert 7.x Data attribute on the
Flatten To String function. The function continues to operate as in
LabVIEW 7.x and earlier. If you want a VI to use the LabVIEW 8.0 type
descriptor format, right-click the Flatten To String function and select
Convert 7.x Data from the shortcut menu to remove the checkmark. Use
the LabVIEW 8.0 type descriptor format if VIs do not need to manipulate
files that contain data written in LabVIEW 7.x or earlier and do not send or
receive data to or from VIs running in LabVIEW 7.x or earlier. Support for

© National Instruments Corporation 21 LabVIEW Upgrade Notes

the previous type descriptor format might be discontinued in future
versions of LabVIEW.

Converting NaN Strings to Integer Types (Windows)
In LabVIEW 7.x, when you explicitly or implicitly convert NaN to an
integer, the value becomes the smallest value for that integer data type. For
example, converting NaN to a 16-bit signed integer produces the value
–32,768, the smallest possible value for a 16-bit signed integer.

In LabVIEW 8.0, when you explicitly or implicitly convert NaN to an
integer, the value becomes the largest value for that integer data type. For
example, converting NaN to a 16-bit signed integer produces the value
32,767, the largest possible value for a 16-bit signed integer.

Constants Wired to Case Structures
In LabVIEW 7.x and earlier, you can keep subVIs in memory by wiring a
constant to a Case structure and placing the subVI in a case that does not
execute. For example, if you wire a TRUE constant to a Case structure and
place a subVI in the FALSE case of the Case structure, LabVIEW loads the
subVI along with the calling VI. LabVIEW 8.0 removes any code that does
not execute. Therefore, if you load a VI in LabVIEW 8.0 that was saved in
an earlier version of LabVIEW with a constant wired to a Case structure,
LabVIEW changes the constant to a hidden control to maintain the
behavior from the earlier version of LabVIEW.

Delaying Operating System Messages
In LabVIEW 7.x, LabVIEW processes operating system messages while
running callback VIs for handling .NET and ActiveX events. In
LabVIEW 8.0, LabVIEW delays the processing of operating system
messages until the callback VI stops execution or until you load a modal
dialog box. This delay allows callback VIs to execute without interruption
and prevents LabVIEW from firing an event within another event, which
can result in a deadlock state.

You cannot make synchronous calls to non-modal dialog boxes from a
callback VI. You must asynchronously call a non-modal dialog box from a
callback VI by invoking a Run VI method on the dialog and wiring a
FALSE Boolean constant to the Wait Until Done input of the method.

In LabVIEW 7.x, LabVIEW processes operating system messages while
running DLL or shared library functions. In LabVIEW 8.0, LabVIEW
delays the processing of operating system messages until the end of calls to
DLL functions or until you load a modal dialog box from the DLL. This
delay allows DLL functions to execute without interruption and prevents

LabVIEW Upgrade Notes 22 ni.com

LabVIEW from calling the same DLL while a DLL function is running,
which can result in a deadlock state.

If you use this default behavior, you cannot make synchronous calls to
non-modal dialog boxes while a DLL runs. You must call a non-modal
dialog box asynchronously from a DLL by invoking a Run VI method on
the dialog and wiring a FALSE Boolean constant to the Wait Until Done
input of the method.

You can choose whether to delay operating system messages in DLLs that
you build. Navigate to the Advanced page of the My DLL Settings dialog
box and remove the checkmark from the Delay operating system
messages in shared library checkbox to process operating system
messages while DLL functions run.

Resource Manager (Mac OS)
LabVIEW 7.x and earlier provide undocumented capabilities with which
you can read and write Macintosh resource files. In LabVIEW 8.0, these
methods do not exist. Utilities that make use of these undocumented
capabilities do not work, and you therefore cannot read or write Macintosh
resource files from VIs.

One- and Two-Button Dialog Boxes
In LabVIEW 7.x and earlier, you cannot abort programmatically a VI
displaying a one-button dialog box or two-button dialog box. In
LabVIEW 8.0, you can abort programmatically a VI displaying these
dialog boxes by using the Abort VI method.

Property and Invoke Nodes
If you create an implicitly linked Property Node or Invoke Node from a
cursor legend in LabVIEW 7.x, LabVIEW deletes the node when you open
the VI in LabVIEW 8.0.

Updating Shared Libraries
If you build a shared library (DLL) in LabVIEW 7.x or earlier that links to
labview.lib, link the shared library to labviewv.lib instead in
LabVIEW 8.0. Refer to the Using Shared Libraries in Multiple Versions of
LabVIEW section of this document for more information about using
shared libraries in LabVIEW 8.0.

© National Instruments Corporation 23 LabVIEW Upgrade Notes

Margin Values for Printing
In LabVIEW 7.x and earlier, the Margins option on the Printing page of
the Options dialog box uses centimeters for margin values. In
LabVIEW 8.0, the Margins option uses millimeters for margin values.

Upgrading from LabVIEW 6.x
You might encounter the following compatibility issues when you upgrade
to LabVIEW 8.0 from LabVIEW 6.x. Refer to the Upgrading from
LabVIEW 7.x section of this document for information about other upgrade
issues you might encounter.

Refer to the LabVIEW Upgrade Notes for each version of LabVIEW
between versions 6.x and 8.0 at ni.com/manuals for more information
about the new features and changes in each version.

Changes to the Waveform Data Type
In LabVIEW 7.0, the waveform data type uses the time stamp data type for
the t0 component rather than a double-precision, floating-point number.
If you save data in the waveform data type to a file without including
information about the data type in LabVIEW 6.x, you might encounter an
error if you try to retrieve that data in LabVIEW 7.x and later.

In the LabVIEW 7.x and later, the Read Waveform from File VI converts
the old waveform data type format in a file to the new waveform data type
format. This VI displays a dialog box that prompts you to accept the
conversion. In the LabVIEW Run-Time Engine, the Read Waveform from
File VI cannot perform this conversion and returns an error instead. Refer
to the National Instruments Web site at ni.com/info and enter the info
code exd9zq for more information about migrating waveform data from
LabVIEW 6.x to LabVIEW 7.x and later.

Serial Compatibility VIs
In LabVIEW 7.x and later, the Serial Compatibility VIs do not appear on
the Functions palette. Use the VISA VIs and functions to build VIs that
communicate with VXI devices.

In LabVIEW 7.x and later, LabVIEW does not use the serpdrv driver to
communicate with the serial driver of the operating system. LabVIEW
includes compatible VIs based on VISA. For new applications, use the
VISA and Serial VIs and functions to control serial devices. Any VIs built
in previous versions of LabVIEW that include Serial VIs continue to work
in LabVIEW 7.1 and later.

http://www.ni.com/cgi-bin/redirect.cgi?dest=infcoprod&src=lvhelp&openagent&code=rdbp02
http://www.ni.com/cgi-bin/redirect.cgi?dest=infcoprod&src=lvhelp&openagent&code=exd9zq

LabVIEW Upgrade Notes 24 ni.com

If you reconfigured the mapping of port numbers to ports, you must specify
a mapping to those ports. Use the set serial alias ports VI in the labview\
vi.lib\Instr_sersup.llb to specify the serial port mappings. Wire
a string array to the VISA Aliases input of the VI and enter the port names
you use in the input array. Each element in the array should correspond to
a port. For example, if you configured port 0 to map to the VISA alias
MySerialPort, enter MySerialPort as the first element of the VISA
Aliases input array. You must call the set serial alias ports VI before you
call the VISA Configure Serial Port VI.

Refer to the labview\examples\instr\smplserl.llb for examples
of using the VISA VIs and functions to control serial instruments.

Default Data in Loops
In LabVIEW 6.0 and earlier, For Loops produce undefined data if the loop
does not execute. In LabVIEW 6.1 and later, For Loops produce default
data if you wire 0 to the count terminal of the For Loop or if you wire an
empty array to the For Loop as an input with auto-indexing enabled. The
loop does not execute, and any output tunnel with auto-indexing disabled
contains the default value for the tunnel data type.

Remote Front Panel License
The LabVIEW Full Development System and the Application Builder
include a remote front panel license that allows one client to view and
control a front panel remotely. The LabVIEW Professional Development
System includes a remote front panel license that allows five clients to view
and control a front panel remotely.

You can upgrade the remote front panel license to support more clients.

Multiple Thread Allocation
LabVIEW 7.1 and later allocate more threads for executing VIs than in
versions earlier than LabVIEW 7.1. Because of this change, you might
encounter errors with multiple threads if you incorrectly mark Call Library
Function Nodes as reentrant when the DLL you call is not actually
reentrant. Refer to the LabVIEW Help for more information about the Call
Library Function Node and reentrancy.

To change how LabVIEW allocates threads, use the threadconfig VI in the
labview\vi.lib\Utility\sysinfo.llb. You also can disable
reentrancy for VIs by selecting File»VI Properties, selecting Execution
from the Category pull-down list, and removing the checkmark from the
Reentrant execution checkbox.

Refer to the LabVIEW Help for more information about thread allocation.

© National Instruments Corporation 25 LabVIEW Upgrade Notes

Instrument Drivers
The LabVIEW package in LabVIEW 7.x and later does not include the
LabVIEW Instrument Driver Library CD, which contains instrument
drivers. Download instrument drivers from the National Instruments
Instrument Driver Network at ni.com/idnet. The National Instruments
Device Drivers CD includes NI-DAQ, NI-VISA, and other National
Instruments drivers.

Units and Conversion Factors
In LabVIEW 7.x and later, you do not need to use the Convert Unit function
to remove the extra unit after using the Compound Arithmetic function.

The unit conversion factors in LabVIEW 7.1 and later more closely match
the guidelines published by the National Institute for Standards and
Technology (NIST) in the Guide for the Use of the International System of
Units (SI). Also, the calorie unit now is calorie (thermal), and
horse power now is horsepower (electric). The abbreviations for
these units did not change. The following table details the changes in unit
conversion factors between LabVIEW 6.1 and 8.0.

Table 1. Unit Conversion Factors

Unit 6.1 Definition 8.0 Definition

astronomical unit (AU) 149,498,845,000 m 149,597,900,000 m

British Thermal Unit (mean) 1055.79 J 1055.87 J

electron volt (eV) 1.602e–19 J 1.60217642e–19 J

foot-candle 10.764 lx 10.7639 lx

horse power versus
horse power (electric)

745.7 W 746 W
The new conversion is exact.

imperial gallon 4.54596 l 4.54609 l

light year 9.4605 Pm 9.46073 Pm

pound force 4.448 N 4.448222 N

rod 16.5 ft 5.029210 m

slug 32.174 lb 14.59390 kg

unified atomic mass (u) 1.66057e–27 kg 1.66053873e–27 kg

http://www.ni.com/cgi-bin/redirect.cgi?dest=infcoprod&src=lvhelp&openagent&code=ex3mbp

LabVIEW Upgrade Notes 26 ni.com

Defer Panel Updates Property
In LabVIEW 6.1 and earlier, LabVIEW waits until the Defer Panel Updates
property is FALSE to redraw any front panel objects with pending changes.
In LabVIEW 8.0, when you set this property to TRUE, LabVIEW redraws
any front panel objects with pending changes and then defers all new
requests for front panel updates. In some cases, this change can cause
LabVIEW to redraw the changed elements of the front panel an extra time.

Data Ranges for Numeric Controls
In LabVIEW 6.1 and earlier, some numeric controls have a default
minimum value of 0.00, maximum value of 0.00, increment value of
0.00, and out of range action of Ignore. In LabVIEW 8.0, these numeric
controls use the default data range values for the data type.

Coercion Dots and Type Definitions
In LabVIEW 6.1 and later, wires include information about type
definitions, so you might notice more coercion dots on block diagrams.
If you wire a type definition to a VI or function terminal that is not a type
definition terminal, a coercion dot appears. A coercion dot also appears if
you wire an output terminal that is a type definition to an indicator that is
not a type definition. These coercion dots indicate where you are not using
type definitions consistently in the VIs. In this case, coercion dots do not
affect run-time performance.

Refer to the LabVIEW Help for information about using the Flatten To
String function to flatten type definitions.

File Dialog Box Button Label
In LabVIEW 6.1 and earlier, the file dialog box that the File Dialog
function displays has a button label of Save if the user can enter a new
filename. Otherwise, the button label is Open. In LabVIEW 8.0, the button
label on the file dialog box that the File Dialog Express VI displays is OK
in all cases unless you change it. Use the button label input of the File
Dialog Express VI to change the label of the button. If you use the File
Dialog Express VI in an existing VI, consider reviewing the behavior of the
VI to make sure the default label of OK is appropriate to the functionality
of the VI.

© National Instruments Corporation 27 LabVIEW Upgrade Notes

Control Online Help Function
The Path to the help file input of the Control Online Help function now is
required. You can wire a compiled help filename (.chm or .hlp) or the full
path to a compiled help file to the input. If you wire only a compiled help
filename, LabVIEW searches the labview\help directory for that file.

Run VI Method
In LabVIEW 7.1, if you set the Auto Dispose Ref input of the Run VI
method to TRUE, LabVIEW automatically disposes the reference after the
VI stops running. In LabVIEW 8.0, LabVIEW also immediately disposes
the reference if the method returns an error. This behavior might break a VI
at run time if part of the block diagram depends on the reference.

Displaying the Front Panel When Loaded
In LabVIEW 8.0, if you configure a VI to display the front panel when
LabVIEW loads the VI and you load the VI using the VI Server, LabVIEW
does not display the front panel. You must use the Front Panel:Open
method to display the front panel programmatically.

Open VI Reference Function
In LabVIEW 6.1 and earlier, if you do not wire a value to the options
parameter of the Open VI Reference function, LabVIEW creates a VI from
a template if the template is not already in memory. If the template is in
memory, LabVIEW opens a reference to the template. In LabVIEW 7.0 and
later, if you use the Open VI Reference function to create a reference to a
template that is already in memory, the function returns an error unless you
specify 0x02 in the options parameter.

Exponential Representation
In LabVIEW 6.0 and earlier, the ̂ operator represents exponentiation in the
Formula Node. In LabVIEW 6.1 and later, the operator for exponentiation
is **—for example, x**y. The ^ operator represents the bitwise exclusive
or (XOR) operation.

IVI Configuration Store File
The IVI Configuration Store file format now requires that all names be
case-sensitive. If you use logical names, driver session names, or virtual
names in your application, make sure that the name you use matches the
name defined in the IVI Configuration Store file exactly, without any
variations in the case of the characters in the name.

LabVIEW Upgrade Notes 28 ni.com

Technical Support Form
In LabVIEW 7.x and later, the LabVIEW installation program does not
install techsup.llb. Refer to the National Instruments Web site at
ni.com/support to solve installation, configuration, and application
problems and questions.

Upgrading from LabVIEW 5.x
You might encounter the following compatibility issues when you upgrade
to LabVIEW 8.0 from LabVIEW 5.x. Refer to the Upgrading from
LabVIEW 6.x and Upgrading from LabVIEW 7.x sections of this document
for information about other upgrade issues you might encounter.

Refer to the LabVIEW Upgrade Notes for each version of LabVIEW
between versions 5.x and 8.0 and to the LabVIEW 5.1 Addendum at
ni.com/manuals for more information about the new features and
changes in each version.

Converting Datalog Files
LabVIEW 8.0 checks the type definition of datalog files to determine if a
conversion is necessary. If the datalog file is older than LabVIEW 6.0,
or if the datalog file contains waveform data types and is older than
LabVIEW 7.1, LabVIEW 8.0 converts the file for reading and appending.
In all other cases, reading from the datalog file and appending to the datalog
file does not convert the datalog file.

When you open a datalog file created in an earlier version of LabVIEW,
LabVIEW 8.0 prompts you to convert the file to the LabVIEW 8.0 format.
If you choose to convert it, LabVIEW replaces the datalog file with data
converted to the new format. If you choose not to convert the file,
LabVIEW 8.0 returns an error and does not open the file.

Note Make a backup copy of datalog files before converting if you plan to continue to use
old data in LabVIEW 6.1 or earlier. You cannot revert to or read converted datalog files in
LabVIEW 6.1 or earlier.

To automatically convert datalog files when you open them, add the
following line to the LabVIEW preferences file:

silentDatalogConvert=True

(Mac OS) Add the following line:

silentDatalogConvert:True

(Linux) Add the following line:

labview.silentDatalogConvert:True

http://www.ni.com/cgi-bin/redirect.cgi?dest=infcoprod&src=lvhelp&openagent&code=rdbp04
http://www.ni.com/cgi-bin/redirect.cgi?dest=infcoprod&src=lvhelp&openagent&code=rdbp02

© National Instruments Corporation 29 LabVIEW Upgrade Notes

Set the preference to False if you do not want to convert datalog files
automatically when you open them.

Connecting to the VI Server
You cannot make a connection to the VI Server of a LabVIEW 5.x
application from a LabVIEW 8.0 client because the LabVIEW 5.x
application does not recognize some aspects of the LabVIEW 8.0 VI Server
protocol. However, you can connect to the VI Server of a LabVIEW 8.0
application from a LabVIEW 5.x client.

UDP Functions
In LabVIEW 6.x and later, the UDP VIs are not on the Functions palette
but exist as compatibility VIs in the labview\vi.lib_oldvers\
_oldvers.llb. Use the built-in UDP functions for network
communication instead.

Upgrading from LabVIEW 4.x
You might encounter the following compatibility issues when you upgrade
to LabVIEW 8.0 from LabVIEW 4.x. Refer to the Upgrading from
LabVIEW 5.x, Upgrading from LabVIEW 6.x, and Upgrading from
LabVIEW 7.x sections of this document for information about other
upgrade issues you might encounter.

Refer to the LabVIEW Upgrade Notes for each version of LabVIEW
between versions 4.x and 8.0 and to the LabVIEW 5.1 Addendum at
ni.com/manuals for more information about the new features and
changes in each version.

Converting Boolean Data to and from LabVIEW 4.x
The format in which LabVIEW stores Boolean data changed between
LabVIEW 4.x and LabVIEW 5.x. LabVIEW 4.x stores Boolean data in
two bytes unless the data is in an array, in which case LabVIEW 4.x stores
each Boolean element in a single bit. LabVIEW 8.0 stores a Boolean value
in a single byte, regardless of whether it is in an array. This change enables
more block diagram functions to support arrays of Boolean values and
makes the behavior of these arrays more consistent with the behavior of
arrays of numbers. The LabVIEW 8.0 Boolean data format affects data
manipulation in Code Interface Nodes (CINs), but LabVIEW 8.0 provides
compatibility for existing CINs.

If you write binary data that includes one or more Boolean values to a file
in LabVIEW 4.x, its format is different than if you write the same data in
LabVIEW 8.0. LabVIEW 8.0 provides a mechanism for reading binary
data written in LabVIEW 4.x and writing binary data that LabVIEW 4.x can

http://www.ni.com/cgi-bin/redirect.cgi?dest=infcoprod&src=lvhelp&openagent&code=rdbp02

LabVIEW Upgrade Notes 30 ni.com

read. The Type Cast, Flatten To String, and Unflatten From String functions
have a Convert 4.x Data shortcut menu item. If you right-click the function
and select this menu item, the function treats binary data as if it were
written for LabVIEW 4.x. To produce data formatted for LabVIEW 4.x, use
the Write to Binary File, Flatten To String, or Type Cast function. To read
data formatted for LabVIEW 4.x, use the Read from Binary File, Unflatten
From String, or Type Cast function. When you select the Convert 4.x Data
shortcut menu item, LabVIEW 8.0 places a red 4.x glyph on the function
to indicate that it is converting data to or from LabVIEW 4.x format. To
avoid the conversion of data, select the Convert 4.x Data shortcut menu
item again to remove the checkmark.

If you have several data files with Boolean values, you can create a VI that
opens these files and writes the data to a new data file that LabVIEW 8.0
recognizes.

In LabVIEW 8.0, when you load a VI last saved in LabVIEW 4.x or earlier,
LabVIEW 8.0 automatically sets the Convert 4.x Data attribute on the
Write to Binary File, Read from Binary File, Type Cast, Flatten To String,
and Unflatten From String functions. These functions continue to operate
as before. If you want the VI to use the LabVIEW 8.0 Boolean data format,
right-click the function and select Convert 4.x Data from the shortcut
menu to remove the checkmark. Use the LabVIEW 8.0 Boolean data
format if VIs do not need to manipulate files that contain Boolean data
written in LabVIEW 4.x or earlier and do not send or receive data that
contain Boolean data to or from VIs running in LabVIEW 4.x or earlier.
Support for the previous Boolean data format might be discontinued in
future versions of LabVIEW.

VI Control VIs
In LabVIEW 5.x and later, the VI Control VIs are not on the Functions
palette but exist as compatibility VIs in the labview\vi.lib\utility\
victl.llb. Use the VI Server functions Open VI Reference, Call By
Reference Node, Property Node, and Invoke Node instead of the
VI Control VIs.

Some of the error codes the VI Control VIs return are different in
LabVIEW 8.0. In previous versions of LabVIEW, the VI Control VIs
returned the error codes 7 and 1000. The VI Control VIs in LabVIEW 8.0
return the codes 1004 and 1003. If a VI built in LabVIEW 4.x checks for
error codes 7 and 1000, you must modify the VI to work in LabVIEW 8.0.

© National Instruments Corporation 31 LabVIEW Upgrade Notes

DDE VIs (Windows)
In LabVIEW 5.x and later, the DDE VIs are not on the Functions palette
but exist as compatibility VIs in the labview\vi.lib\platform\
dde.llb.

Upgrading from LabVIEW 3.x or Earlier Versions
Refer to the National Instruments Web site at ni.com for information
about using a VI conversion kit to upgrade from LabVIEW 3.x or earlier.
Refer to the Upgrading from LabVIEW 4.x, Upgrading from LabVIEW 5.x,
Upgrading from LabVIEW 6.x, and Upgrading from LabVIEW 7.x sections
of this document for information about other upgrade issues you might
encounter.

Refer to the LabVIEW Upgrade Notes for each version of LabVIEW
between versions 3.x and 8.0 and to the LabVIEW 5.1 Addendum at
ni.com/manuals for more information about the new features and
changes in each version.

LabVIEW 8.0 Features and Changes
Refer to the LabVIEW Help for programming concepts, step-by-step
instructions, and reference information about the LabVIEW 8.0 features.
Access the LabVIEW Help by selecting Help»Search the LabVIEW
Help.

Refer to the readme.html file in the labview directory for more
information about the LabVIEW 8.0 features and changes.

Activating the LabVIEW License
(Windows) LabVIEW relies on licensing activation. You must activate a
valid LabVIEW license before you can run LabVIEW. To activate
LabVIEW, use the serial number you received as part of your installation
package. You can activate the LabVIEW license in any of the following
ways:

• During installation, enter the serial number and select to run the
Activation Wizard at the end of installation.

• After you launch LabVIEW in evaluation mode, select Activate in the
Activation Startup dialog box.

• While running LabVIEW in evaluation mode, select Help»Activate
LabVIEW. The license activation does not take effect until you restart
LabVIEW.

Refer to the LabVIEW 8.0 Release Notes for more information about
licensing in LabVIEW.

http://www.ni.com/cgi-bin/redirect.cgi?dest=infcoprod&src=lvhelp&openagent&code=rdbp02

LabVIEW Upgrade Notes 32 ni.com

Launching LabVIEW
When you launch LabVIEW, the Getting Started window appears, which
you can use to create new VIs and projects, select among the most recently
opened LabVIEW files, find examples, and access the LabVIEW Help. You
also can access information and resources to help you learn about
LabVIEW, such as specific manuals, help topics, and resources on the
National Instruments Web site.

The Getting Started window disappears when you open an existing file or
create a new file. You can display the window by selecting View»Getting
Started Window. The Getting Started window also appears when you
close all open front panels and block diagrams.

Logging In and Out of LabVIEW
You can login to the LabVIEW environment if there is a security domain
configured in the network. The login information identifies LabVIEW
when communicating with a remote VI Server that has an enforced access
control list. You can programmatically login to and logout of LabVIEW
and monitor user account changes from the block diagram using the
NI Security:Login and NI Security:Logout methods and the NI Security
User Change event, respectively.

Domain Account Manager
Select Tools»Security»Domain Account Manager to create and destroy
domains, enforce domain policies, and manage user and group accounts
within domains locally or remotely. The Domain Account Manager is
especially useful when managing remote domains without being physically
present at the remote machine that hosts the domain. The authentication
protocol is secured with built-in data encryption and data integration.

Enhancements to the New Dialog Box
Click the New link in the Getting Started window to display the New
dialog box. You can use the New dialog box to create new VIs, projects,
project libraries, custom controls, shared variables, and so on. Place a
checkmark in the Add to project checkbox to add the new item to an open
project.

In LabVIEW 7.x and earlier, you can select the Small dialog or Large
dialog buttons to reduce or enlarge the size of the New dialog box.
LabVIEW 8.0 does not have the Small dialog or Large dialog buttons.
However, if you resize the New dialog box, LabVIEW remembers the size
of the dialog box the next time you access it.

© National Instruments Corporation 33 LabVIEW Upgrade Notes

In LabVIEW 7.x and earlier, the New dialog box shows a preview of the
front panel and block diagram of a VI you select. In LabVIEW 8.0, a
preview of the block diagram appears in the Description section of the
New dialog box.

The Create New list does not contain the VI Template, Global Variable
Template, and Control Template items from LabVIEW 7.x and earlier. On
the front panel or block diagram of a VI or global variable, select File»Save
As to display a file dialog box and select Templates VIs from the Save as
type pull-down menu to save the item as a template. On the front panel of
a custom control, select File»Save As to display a file dialog box, and
select Template Controls from the Save as type pull-down menu to save
the control as a template.

RT, FPGA, and PDA Targets
You must create a LabVIEW project to work with an RT, FPGA, or PDA
target. Refer to the specific module documentation for more information
about using projects with the LabVIEW Real-Time, FPGA, and PDA
Modules.

Switching Execution Targets
 In LabVIEW 7.x and earlier, you must select a target from the Execution
Target pull-down menu on the LabVIEW dialog box to select a target in
which you want to develop VIs. If you are currently working on a VI and
you want to change the execution target, you can select Operate»Switch
Execution Target and select the target to which you want to switch. In
LabVIEW 8.0, you can work across execution targets using the project
environment. In the Project Explorer window, right-click the project root
and select New»Targets and Devices from the shortcut menu to display
the Add Targets and Devices dialog box. If a target in the project supports
other targets, you also can right-click the target and select New»Targets
and Devices from the shortcut menu to add a target under the existing
target. You can add and develop a VI under that target. You then can switch
execution targets by switching between VIs under those targets. Refer to
the module documentation for more information about switching execution
targets for the LabVIEW Real-Time, FPGA, and PDA Modules.

LabVIEW Projects
Use projects to group together LabVIEW files and non-LabVIEW files,
create build specifications, and deploy or download files to targets. A target
is a device or machine on which a VI runs. When you save a project,
LabVIEW creates a project file (.lvproj), which includes configuration
information, build information, deployment information, references to files
in the project, and so on.

LabVIEW Upgrade Notes 34 ni.com

You must use a project to build stand-alone applications and shared
libraries. You also must use a project to work with an RT, FPGA, or PDA
target. Refer to the specific module documentation for more information
about using projects with the LabVIEW Real-Time, FPGA, and PDA
Modules.

Project-style LabVIEW Plug and Play instrument drivers use the project
and project library features in LabVIEW 8.0. You can use project-style
drivers in the same way as previous LabVIEW Plug and Play drivers.

Project Explorer Window
Use the Project Explorer window to create and edit projects. Select File»
New Project to display the Project Explorer window. You also can select
Project»New Project or select File»New and then select Empty Project
in the New dialog box to display the Project Explorer window.

The Project Explorer window includes the following items by default:

• Project root—Contains all other items in the Project Explorer
window. The label of the project root includes the filename for the
project.

– My Computer—Represents the local computer as a target in the
project.

– Dependencies—Includes items that VIs under a target require.

– Build Specifications—Includes build configurations for source
distributions and other types of builds available in LabVIEW
toolkits and modules. If you have the LabVIEW Professional
Development System or Application Builder installed, you can
use Build Specifications to configure stand-alone applications
(EXEs), shared libraries (DLLs), and zip files. (Windows) You also
can use Build Specifications to configure installers.

When you add another target to the project, LabVIEW creates an additional
item in the Project Explorer window to represent the target. Each target
also includes Dependencies and Build Specifications. You can add files
under each target.

You can drag a VI from the Project Explorer window to the block diagram
of another open VI to use the VI as a subVI.

© National Instruments Corporation 35 LabVIEW Upgrade Notes

Using a Project with Existing Files
You can add a group of existing files to a project. Select one of the
following options for adding existing files to a project:

• If the existing files are part of a stand-alone application, select Tools»
Convert Build Script to convert the application to a project. Refer to
the Changes from Previous Versions of the Application Builder section
of this document for more information about importing a build script.

• If the existing files are not part of a stand-alone application, create a
new project and add the files to the Project Explorer window. Refer
to the Adding Items to a Project section of this document for more
information about adding files to a project.

Project Explorer Window Toolbars
Use the buttons on the Standard, Project, Build Specifications, and Source
Control toolbars to perform operations in a project. The toolbars are
available at the top of the Project Explorer window. You might need to
resize the Project Explorer window to view all the toolbars.

You can show or hide toolbars by selecting View»Toolbars and selecting
the toolbars you want to show or hide. You also can right-click an open area
on the toolbar and select the toolbars you want to show or hide.

Adding Items to a Project
Use the Project Explorer window to add LabVIEW files, such as VIs and
LLBs, as well as non-LabVIEW files, such as text files and spreadsheets,
to a target in a project. You can create an organizational structure for items
in a project.

You can add items under a target in a project in the following ways:

• Right-click a target or a folder under a target, select Add File from the
shortcut menu, and select the file(s) you want to add from the file
dialog box. You also can select the target, select Project»Add To
Project»Add File, and select the file(s) you want to add from the file
dialog box.

• Right-click a target and select New»VI from the shortcut menu to add
a new, blank VI. You also can select File»New VI or Project»Add To
Project»New VI to add a new, blank VI.

• Select the VI icon in the upper right corner of a front panel or block
diagram window and drag the icon to the target.

• (Windows and Mac OS) Select an item or directory on disk and drag it to
the target.

LabVIEW Upgrade Notes 36 ni.com

You also can add new LabVIEW files to a project from the New dialog box.
Select File»New or Project»Add To Project»New to display the New
dialog box. In the New dialog box, select the item you want to add and
place a checkmark in the Add to project checkbox. If you have multiple
projects open, select the project to which you want to add the item from the
Projects list.

Adding Folders to a Project
Use the Project Explorer window to add a directory on disk as a folder in
a project. Right-click a target or a folder under the target and select Add
Folder from the shortcut menu to add the files from a directory on disk.
Selecting a directory on disk creates project items that represent the
contents of the entire directory, including files and contents of
subdirectories. LabVIEW creates a new virtual folder in the project with
the same name as the directory on disk.

You also can select a target and then select Project»Add To Project»Add
Folder to add the files from a directory.

Note After you add a directory on disk to a project, LabVIEW does not automatically
update the folder in the project if you make changes to the directory. If you make changes
to the structure of subdirectories on disk, LabVIEW does not automatically update the
subfolders in the project. If you want the folders in a project to match the directories on
disk, you must manually update the folders.

You also can create new folders to organize items in a project. Right-click
a target and select New»Folder from the shortcut menu to add a new folder
under a target. You also can create a new subfolder by right-clicking an
existing folder and selecting New»Folder from the shortcut menu.

Right-click the project root and select New»Folder from the shortcut menu
to add a new folder to organize targets in a project.

Adding LLBs to a Project
You can add an LLB to a project as a folder or as a file. If you add an LLB
as a folder, LabVIEW uses the filename of the LLB to name the folder and
adds the VIs in the LLB as items within the new folder. Right-click a target
or a folder under the target, select Add Folder from the shortcut menu, and
use the file dialog box to navigate to the LLB you want to add. Adding or
removing items from the folder in the Project Explorer window does not
affect the .llb file on disk. Select Tools»LLB Manager to edit an LLB
on disk.

You also can add an LLB to a project as a file. If you add an LLB as a file,
the VIs in the LLB do not appear in the Project Explorer window.

© National Instruments Corporation 37 LabVIEW Upgrade Notes

Right-click a target or a folder under the target, select Add File from the
shortcut menu, and use the file dialog box to navigate to the LLB you want
to add. Select the open folder icon labeled VI with a single period to the
right and click the Select button.

Removing Items from a Project
Use the Project Explorer window to remove items from a project. You can
remove items in the following ways:

• Right-click the item you want to remove and select Remove from the
shortcut menu.

• Select the item you want to remove and press the <Delete> key.

• Select the item you want to remove and click the Delete button on the
Standard toolbar.

Note Removing an item from a project does not delete the corresponding item on disk.

Viewing Dependencies in a Project
Use Dependencies to view items that VIs under a target require. Each
target includes Dependencies.

You cannot add items directly to Dependencies. LabVIEW adds
dependencies for VIs under a target when you right-click Dependencies
and select Refresh from the shortcut menu. For example, if you add a VI
that includes a subVI to a target, LabVIEW adds the subVI to
Dependencies when you select Refresh. However, if you add a dependent
item under a target, the item does not appear under Dependencies. For
example, if you add the VI and the subVI under the target, LabVIEW does
not add the subVI to Dependencies when you select Refresh.

Dependencies include VIs, DLLs, and project libraries that a VI calls
statically.

Note Items that a VI calls dynamically do not appear under Dependencies. You must add
these items under a target to manage them in a project.

LabVIEW tracks subVIs recursively. LabVIEW does not track DLLs
recursively. For example, if a.vi calls b.dll statically and b.dll calls
c.dll statically, LabVIEW considers only b.dll a dependent item. To
manage c.dll in the project, you must add c.dll under the target.

If a dependent item is part of a project library, LabVIEW adds the entire
project library under Dependencies.

LabVIEW Upgrade Notes 38 ni.com

You cannot create new items under Dependencies. You cannot drag items
from other places in the Project Explorer window to Dependencies.

To remove an item from Dependencies, right-click the item and select
Remove from the shortcut menu. If you use this option to remove an item,
the item reappears if you right-click Dependencies and select Refresh
from the shortcut menu.

When you save a project, LabVIEW does not save the dependencies as part
of the project. When you open a project, you must right-click
Dependencies and select Refresh from the shortcut menu to view the
dependencies.

Adding Targets to a Project (Windows)
Use the Add Targets and Devices dialog box to add a target or device to
a project.

Note You must have a module or driver installed that supports targets to display this
dialog box.

Right-click the project root and select New»Targets and Devices from the
shortcut menu to display the Add Targets and Devices dialog box. If a
target in the project supports other targets, you also can right-click the
target and select New»Targets and Devices from the shortcut menu to add
a target under the existing target. For example, if you have an NI PCI device
installed on a computer, you can add the device under the My Computer
target.

Deploying Files to a Target
In the Project Explorer window, open and run a VI under a target to
deploy files to the target. When you run the VI, LabVIEW deploys the
source files, build outputs, and hardware configuration to the target.

Using Palettes with Multiple Targets
LabVIEW loads a separate palette set for each target. If you have VIs open
on multiple targets in a project, multiple palette sets exist in memory. When
you switch between targets, LabVIEW maps each pinned palette to the
corresponding palette in the active target. If a pinned palette does not have
a corresponding palette, LabVIEW displays the top-level palette for the
active target.

© National Instruments Corporation 39 LabVIEW Upgrade Notes

Working with Application Instances
LabVIEW creates an application instance, or an instance of LabVIEW, for
each target in a project. When you open a VI from the Project Explorer
window, the VI opens in the application instance for the target. LabVIEW
also has a main application instance for open VIs that are not part of a
project and VIs that you did not open from a project.

Use the application instance name that appears in the bottom left corner of
the front panel and block diagram windows to identify which application
instance a VI belongs to. If you have multiple projects open, the application
instance name includes the project name followed by the target name, such
as Project 1.lvproj/My Computer. Otherwise, the application instance
name includes only the target name.

If you remove a VI from the Project Explorer window when the VI is
open, the open VI remains in the same application instance. If you close and
reopen the VI, LabVIEW opens the VI in the current application instance.

Editing VIs in Multiple Application Instances
You can open the same VI on disk in multiple application instances at the
same time. For example, you can open the same VI from two different
projects or from two different targets within a project.

If you edit a VI that is open in only one application instance and then open
the VI in another application instance, the instance of the VI you just
opened contains the latest changes from the edited instance of the VI.
However, if you edit a VI that is already open in more than one application
instance, LabVIEW does not automatically apply the changes to the VI in
the other application instances. You cannot edit, run, or save the VI in the
other application instances until the VI is the same in all application
instances.

Use one of the following methods to make the VI the same in all application
instances:

• Click the Synchronize with Other Application Instances button on
the VI toolbar to apply changes to the VI in all application instances.

• Save the VI in the application instance that contains the changes. When
you save the VI, LabVIEW automatically applies the changes to the VI
in all other application instances.

• Undo edits to the VI in the application instance that contains the
changes.

Note You cannot undo edits to the VI after you save or synchronize the VI.

LabVIEW Upgrade Notes 40 ni.com

You cannot edit a VI while it is running or reserved for execution in another
application instance. If a VI is part of a project library, LabVIEW also
temporarily locks the project library in all application instances when the
VI runs. You cannot edit the project library while the VI is running. After
the VI stops, LabVIEW unlocks the project library.

Using the Web Server for VIs in Projects
You can use the Web Server to view a VI or front panel that is part of a
project. When you select Operate»Connect to Remote Panel, include the
project name, project library, and target if applicable, in the VI name.

For example, if MyVI.vi resides in a project called MyProject.lvproj
under target My Computer, enter the VI name as MyProject.lvproj/
My Computer/MyVI.vi. If a project library called MyLibrary owns
the VI, also include the project library in the VI name, as in MyProject
.lvproj/My Computer/MyLibrary:MyVI.vi. If the VI is not in a
project and a project library does not own the VI, enter the VI name
without any additional information.

LabVIEW Project Libraries
LabVIEW project libraries are collections of VIs, type definitions, shared
variables, palette menu files, and other files, including other project
libraries. When you create and save a new project library, LabVIEW
creates a project library file (.lvlib), which includes the properties of the
project library and references to the files that the project library owns.

Project libraries are useful if you want to organize files into a single
hierarchy of items, avoid potential VI name duplication, limit public access
to certain files, limit editing permission for a collection of files, and set a
default palette menu for a group of VIs.

You can view the structure of a project library from the Project Explorer
window or in a stand-alone project library window. If the Project Explorer
window is not open, navigate to a project library file to open it in the project
library window.

You can create a project library in a LabVIEW project. Right-click My
Computer and select New»Library from the shortcut menu. LabVIEW
creates a project library file that appears under My Computer.

You also can create project libraries from folders in a project. From the
Project Explorer window, right-click a folder and select Convert to
Library from the shortcut menu.

© National Instruments Corporation 41 LabVIEW Upgrade Notes

Use project libraries to organize a virtual, logical hierarchy of items. A
project library file does not contain the actual files it owns, unlike an LLB,
which is a physical file that contains VIs. Files that a project library owns
still appear individually on disk in the directories where you saved them. A
project library might have a different organizational structure than its files
on disk.

Use project libraries to qualify the names of VIs and other LabVIEW files.
LabVIEW identifies VIs by filename. If you load a VI with the same name
as a VI already in memory, LabVIEW uses the VI already in memory, an
issue known as cross-linking. When a VI is part of a project library,
LabVIEW qualifies the VI name with the project library name to avoid
cross-linking. A qualified filename includes the filename and the owning
project library filename.

For example, if you build a VI named caller.vi that includes a subVI
named init.vi that library1.lvlib owns, you also can include a
different subVI named init.vi that library2.lvlib owns and avoid
cross-linking problems. The qualified filenames that LabVIEW records
when you save caller.vi are library1.lvlib:init.vi and
library2.lvlib:init.vi respectively.

Caution You must right-click a project library and select Rename from the shortcut menu
to rename the project library. If you rename a project library outside LabVIEW, you might
break the project library.

Right-click a project library and select Properties from the shortcut menu
to limit public access to certain types of files, limit editing permission for
project libraries, and set a palette menu file (.mnu) owned by the project
library as the default palette menu for all VIs the project library owns.

After you select a default palette menu, you can right-click a subVI call to
any VI that the project library owns and view the default palette for that
project library from the shortcut menu.

Sharing Live Data Using Shared Variables
In LabVIEW 7.x and earlier, you use local and global variables to pass
information in applications that you cannot connect with a wire. You select
which type of variable to use depending on the scope of the application.
LabVIEW 8.0 introduces a shared variable you can use to read and write
live data among VIs in a project or across a network.

Shared variables combine the functionality of existing LabVIEW data
transfer technologies, such as DataSocket, and you can manage the shared
variables in the Project Explorer window. You can read and write shared
variable data from the front panel or block diagram.

LabVIEW Upgrade Notes 42 ni.com

Shared variables are configured software items that can send data between
VIs. Use shared variables to share data between VIs or between locations
in an application that you cannot connect with wires. A shared variable can
represent a value or an I/O point. You can change the scope, or Variable
Type, or any of the shared variable properties without having to edit the
block diagram of the VIs that use the shared variable.

Note You must configure firewalls and Network Address Translating (NAT) routers if you
want to transmit shared variables through the firewalls or routers.

Creating Shared Variables
You must have a project open to create a shared variable. To add a shared
variable to a project, right-click a target, a project library, or a folder within
a project library in the Project Explorer window and select New»
Variable from the shortcut menu.

Shared variables must be part of project libraries. If you create a shared
variable from a target or folder that is not part of a project library,
LabVIEW creates a new project library to own the shared variable.

Use the Shared Variable Refnum and the Variable properties to
programmatically configure shared variables in a project. Create an
indicator from the Variable Reference property to create a Shared Variable
Refnum. You cannot make changes to single-process shared variables with
this refnum.

Reading and Writing Shared Variable Values on the
Front Panel
Use front panel data binding to read or write live data in a front panel
object.

Note You can bind front panel objects only to network-published shared variables.

Drag a shared variable from the Project Explorer window to the front
panel of a VI to create a control bound to the shared variable. You also can
right-click a control, select Properties from the shortcut menu, and use the
options on the Data Binding page to bind the control to a shared variable
or to an NI Publish-Subscribe Protocol (NI-PSP) data item on the network.

Note You cannot right-click a control in LabVIEW 8.0 and select Data Operations»
DataSocket Connection from the shortcut menu. Select DataSocket from the Data
Binding Selection pull-down menu in the control Properties dialog box instead to connect
front panel objects using the dstp, opc, ftp, http, and file protocols.

© National Instruments Corporation 43 LabVIEW Upgrade Notes

When you enable data binding for a control, changing the value of the
control changes the value of the shared variable to which you bound the
control.

Reading and Writing Shared Variable Values on the
Block Diagram
A Shared Variable node is a block diagram object that points to the
corresponding shared variable in the Project Explorer window. Use a
Shared Variable node to read and write the value of the shared variable and
to read the time stamp for the shared variable data. Drag a shared variable
from the Project Explorer window onto the block diagram of a VI in the
same project to create a Shared Variable node.

You also can select a Shared Variable node from the Functions palette and
place it on the block diagram. To bind a Shared Variable node on the block
diagram to a shared variable in the active project, double-click the Shared
Variable node to display the Select Variable dialog box. You also can
right-click the Shared Variable node and select Select variable from the
shortcut menu.

Restricting Shared Variables to Single Writers
By default, multiple applications can write to a shared variable. However,
you can set a network-published shared variable to accept changes in value
from only one target at a time. Place a checkmark in the Single Writer
checkbox on the Variable page of the Shared Variable Properties dialog
box. This ensures that the shared variable write operation is not affected by
another writer. The Shared Variable Engine restricts writing to a single VI
on a single computer. The first writer that connects to the shared variable
can write values, and any subsequent writers cannot. When the first writer
disconnects, the next writer in the queue can write values to the shared
variable. LabVIEW notifies writers that are not allowed to write to the
shared variable.

Enabling Buffering for Shared Variables
If you use shared variables or a psp or dstp URL to share data
programmatically, LabVIEW by default writes only the most recent value
to all readers. When one client writes values to the server faster than
another client reads them, newer values overwrite older, unprocessed
values before the clients read them. If the reader does not receive a value
before receiving the following value, the data is lost. This loss of
unprocessed data can occur at the server or at the client. This loss of data
might not be a problem if you are reading data and you want to receive only
the most recent value written to the server. However, if you want to receive

LabVIEW Upgrade Notes 44 ni.com

every shared variable value written to the server or if lossy transfers are
unacceptable, you must buffer the data on the client. Place a checkmark in
the Use Buffering checkbox on the Variable page of the Shared Variable
Properties dialog box to enable buffering for the shared variable.

Managing Shared Variables
Select Tools»Shared Variable»Variable Manager to display the
Variable Manager dialog box. Use this dialog box to edit, create, and
monitor shared variables outside of the project environment. You also can
manage the lifetime of the Shared Variable Engine with this dialog box.

Creating Source Distributions
VI distribution options, such as removing block diagrams and setting
passwords, that were previously available in the Save With Options dialog
box now are available when you build a source distribution.

Use Build Specifications in the Project Explorer window to build and
create build specifications for source distributions. Right-click Build
Specifications and select New»Source Distribution from the shortcut
menu to display the Source Distribution Properties dialog box.

Changes from Previous Versions of the Application Builder
The Application Builder is integrated into the Project Explorer window.
If you use the LabVIEW Base Package or Full Development System, you
can purchase the Application Builder separately by visiting the National
Instruments Web site at ni.com and entering the info code rdlv21.

Use Build Specifications in the Project Explorer window to build and
create build specifications for stand-alone applications (EXEs), shared
libraries (DLLs), and zip files. (Windows) You also can use Build
Specifications to build and create build specifications for installers.

Build specifications are equivalent to .bld files in previous versions of the
Application Builder, but they now are part of a LabVIEW project instead of
separate files.

Note You must create a project to use the Application Builder tools. You can use the Build
Executable Wizard from an open VI to create a project for an application. Select Tools»
Build Executable to launch the Build Executable Wizard, which guides you through the
process.

You can convert a .bld file into a build specification in a new project.
Select Tools»Convert Build Script to navigate to and select the .bld file

© National Instruments Corporation 45 LabVIEW Upgrade Notes

to convert. LabVIEW uses the file to create a project that contains the
source files and build specifications.

LabVIEW 8.0 includes the following enhancements and changes to the
Application Builder:

• Each type of build specification has a multipage dialog box that you
can use to configure and edit build specification settings. Right-click
the build specification and select Properties from the shortcut menu to
access the dialog box.

• (Windows) Installer build specifications are separate from other types of
build specifications. You can include more than one application or
shared library build in an installer build. Right-click the installer build
specification, select Properties from the shortcut menu, and navigate
to the Source Files page to select the application, shared library, and
source distribution builds to include in an installer.

• You can debug applications and shared libraries if you enable
debugging in the build specification before you build the application or
shared library. Right-click the build specification, select Properties
from the shortcut menu, navigate to the Advanced page, and place a
checkmark in the Enable debugging checkbox.

Note When you debug applications and shared libraries, you cannot debug reentrant front
panels that an Open VI Reference function creates. You also cannot debug reentrant front
panels that are entry points to LabVIEW-built shared libraries.

• (Windows) You can specify a version number in application and shared
library build specifications. Right-click an application build
specification, select Properties from the shortcut menu, and navigate
to the Application Information page to set a version number for the
application. Right-click a shared library build specification, select
Properties from the shortcut menu, and navigate to the Shared
Library Information page to set a version number for the shared
library.

• (Windows) You can include installers or drivers for National
Instruments products in installer builds. Right-click the installer build
specification, select Properties from the shortcut menu, and navigate
to the Additional Installers page to add drivers, LabVIEW Run-Time
Engine support, and other National Instruments product installers to
the installer build.

• You can configure run-time languages for an application or shared
library in the build specification. Right-click the application or shared
library build specification, select Properties from the shortcut menu,
and navigate to the Run-Time Languages page to set language
preferences for the application or shared library.

LabVIEW Upgrade Notes 46 ni.com

• The LabVIEW Run-Time Engine is multilingual, so you do not have
to include multiple versions of it with an application, shared library, or
installer.

• (Windows) You can configure an installer build specification to include
registry entries and to create multiple shortcuts for files in the installer.
Right-click the installer build specification, select Properties from the
shortcut menu, and navigate to the Registry page to create and
configure custom registry keys. Use the Shortcuts page to create and
configure shortcuts.

• If you build an installer for an application or shared library that uses
the Storage VIs, you must include the NI USI installer. Right-click the
installer build specification, select Properties from the shortcut menu,
navigate to the Additional Installers page, and select NI USI from the
National Instruments Installers to Include list to include the NI USI
installer.

New Palette Organization
LabVIEW 8.0 includes the following enhancements to the Controls and
Functions palettes:

• Palette items are organized according to categories. The Category
(Standard) and Category (Icons and Text) formats replace the
Standard and Standard (Icons or Text) formats, respectively. The
following tables list top-level palettes on the Controls palette from
LabVIEW 7.1 and their category location in LabVIEW 8.0.

Controls Palette

Table 2. Controls Palette Organization

7.1 Palette 8.0 Category

Express Express

Numeric Modern

Boolean Modern

String & Path Modern

Array & Cluster Modern

List & Table Modern

Graph Modern

Ring & Enum Modern

Containers Modern

© National Instruments Corporation 47 LabVIEW Upgrade Notes

Functions Palette

I/O Modern

Refnum Modern

Decorations Modern

Dialog Controls System

Classic Controls Classic

Table 3. Functions Palette Organization

7.1 Palette 8.0 Category

Express Express

Structures Programming

Numeric Programming

Boolean Programming

String Programming

Array Programming

Cluster Programming

Comparison Programming

Time & Dialog Programming

File I/O Programming

NI Measurements Measurement I/O

Waveform Programming

Analyze Mathematics and Signal Processing

Instrument I/O Instrument I/O

Application Control Programming

Graphics & Sound Programming

Communication Connectivity and Data Communication

Report Generation Programming

Table 2. Controls Palette Organization (Continued)

7.1 Palette 8.0 Category

LabVIEW Upgrade Notes 48 ni.com

• In the Category (Standard) and Category (Icons and Text) formats,
you can right-click a category and select Move this Category Up or
Move this Category Down from the shortcut menu to change the
order in which categories appear on the palettes. You also can click the
double lines to the left of a category and drag the arrow to where you
want the category to appear.

• By default, LabVIEW installs with an abridged palette view, unless
you are upgrading and were using the Advanced palette view in a
previous version of LabVIEW. The abridged palette view hides some
advanced categories at the top level of the palettes. Click the View
button on the palette toolbar and select Always Visible Categories»
Show All Categories from the shortcut menu to display all categories
on the Controls or Functions palette.

• You can change the format of the current palette or of all palettes. Click
the View button on the Controls or Functions palette toolbar and
select a format from the View This Palette As shortcut menu to
change the format for the current palette. Select Tools»Options and
select the Controls/Functions Palettes page to select a format for all
palettes.

• The Tree format—displays palette items as text in a tree control.
Click the View button on the Controls or Functions palette toolbar
and select View This Palette As»Tree from the shortcut menu to set
the current palette to the tree format.

• In the Text and Tree formats, click the View button on the Controls
or Functions palette toolbar and select Sort Alphabetically from the
shortcut menu to sort items on the same level alphabetically.

• Use the Favorites category to group together items on the Functions
palette that you access frequently. You can add items to the Favorites
category using the Category (Standard), Category (Icons and Text),
Icons, and Icons and Text formats. On a pinned Functions palette,
right-click an object and select Add Item to Favorites from the
shortcut menu to add the object to the Favorites category. In the
Category (Standard) and Category (Icons and Text) formats, you
also can expand a palette to display a subpalette, right-click the title of
the subpalette, and select Add Subpalette to Favorites from the
shortcut menu.

Advanced Connectivity and Data Communication

Decorations Programming

Table 3. Functions Palette Organization (Continued)

7.1 Palette 8.0 Category

© National Instruments Corporation 49 LabVIEW Upgrade Notes

Moved and Renamed Palettes
The following palettes moved or were renamed in LabVIEW 8.0.

• On the VISA Advanced palette, the Interface Specific and High
Level Register Access palettes have been renamed to Bus/Interface
Specific and Register Access, respectively.

• The VIs from the Advanced Formula Parsing palette now are on the
Formula Parsing and 1D & 2D Evaluation palettes.

• The VIs from the Cluster and Variant palettes now are on the Cluster
& Variant palette.

• The Array Operations, Curve Fitting, Formulas, Logarithmic, and
Special and Numeric Functions palettes have been renamed to the
Signal Operation, Fitting, Scripts & Formulas, Exponential
Functions, and Elementary & Special Functions palettes,
respectively. Some of the Curve Fitting VIs now are on the Interp &
Extrap palette.

• The Express Numeric Constants palette has been renamed to the
Express Math & Scientific Constants palette.

• The Additional Numeric Constants palette has been renamed to the
Math & Scientific Constants palette.

• The Express Logarithmic palette has been renamed to the Express
Exponential Functions palette.

• The VIs from the Array Operations PtByPt palette now are on the
Geometry PtByPt, Polynomial PtByPt, Probability & Statistics
PtByPt, and Signal Operation PtByPt palettes.

• The VIs from the Curve Fitting PtByPt palette now are on the Fitting
PtByPt and Interpolation PtByPt palettes.

• The Advanced palette has been renamed to the Libraries &
Executables palette.

• The VIs from the Time & Dialog palette now are on the Timing and
Dialog & User Interface palettes.

• The VIs from the Frequency Domain palette now are on the Spectral
Analysis and Transforms palettes.

• The VIs from the Frequency Domain PtByPt palette now are on the
Spectral Analysis PtByPt and Transforms PtByPt palettes.

• The VIs from the Time Domain palette now are on the Signal
Operation and Integ & Diff palettes.

• The VIs from the Time Domain PtByPt palette now are on the Signal
Operation PtByPt and Integral & Differential PtByPt palettes.

LabVIEW Upgrade Notes 50 ni.com

• The Timed Loop palette has been renamed to the Timed Structures
palette.

• The All VIs and Functions palette is not on the Functions palette.

Palette Editing Enhancements
LabVIEW 8.0 includes the following enhancements to editing palettes:

• In LabVIEW 7.x and earlier, you can create or edit a custom view of
the Controls or Functions palettes. LabVIEW 8.0 does not support
custom palette views. You can edit a palette set without using a custom
palette view. If you are working on multiple targets, LabVIEW loads a
palette set for each target. To edit the palette set for a specific target,
display the Edit Controls and Functions Palette Set dialog box from
a VI on the target whose palette set you want to modify. Select Tools»
Advanced»Edit Palette Set to display the Edit Controls and
Functions Palette Set dialog box.

• LabVIEW saves changes that you make to a palette set to the
8.0\Palettes folder in the default data directory.

• To hide an item that is synchronized with a directory, right-click the
item and select Hide Synchronized Item from the shortcut menu.

• If an item is synchronized to a directory, you can display the path to the
source directory by right-clicking the item and selecting Display
Synchronization Path from the shortcut menu.

• If a row or column appears at the end of a palette and contains only
synchronized items that are hidden and/or items that LabVIEW cannot
find, the row or column is visible only when editing palettes.

• Empty subpalettes or subpalettes that contain only items that
LabVIEW is unable to find are visible only when editing palettes.

Menu Reorganization
LabVIEW has new menus and many items have moved or been renamed.
The following items have changed in the LabVIEW menus:

• File—Added menu items for basic project operations, such as creating,
opening, saving, and closing projects.

• Edit—Moved several Operate menu items to the Edit menu and
added a new Select All item.

• View—Added a new menu that includes items for displaying windows
and palettes, browsing classes, and displaying the Project Explorer
window. Several Window menu items now are part of the View menu.
Because the Browse menu has been removed, the View menu includes
items from the Browse menu. Select View»Browse Relationships to
find the Browse menu items.

© National Instruments Corporation 51 LabVIEW Upgrade Notes

• Project—Added a new menu that includes items for adding VIs and
files to projects, building build specifications, and viewing project
information.

• Operate—Added or moved items for debugging VIs to the Operate
menu. Because the Browse menu has been removed, the Operate
menu includes items from the Browse menu.

• Tools—Added several items to the Tools menu. Many of the existing
Tools menu items have been rearranged into different submenus.

• Window—Removed items for viewing palettes, the Navigation
window, and the Error list window. These items are part of the
View menu.

• Help—Added item for finding instrument drivers and activating
LabVIEW.

Note Some menu items are available only on specific operating systems, with specific
LabVIEW development systems, when an item in the Project Explorer window is
selected, or when a VI is selected.

Refer to the LabVIEW Help for more information about new menu
locations, names, and instructions.

Using Source Control
If you have a third-party source control provider installed, such as Perforce
or Microsoft Visual SourceSafe, you can use source control within a
LabVIEW project or with individual VIs that are not part of a project. You
can perform source control operations on VIs, files within a project, and
project files, such as project libraries. LabVIEW provides an infrastructure
to connect to external third-party source control providers. You must install
a third-party source control provider to use source control in LabVIEW.
(Windows) LabVIEW integrates with any source control provider that
supports the Microsoft Source Code Control Interface. (Mac OS and Linux)
You can use the Perforce command-line interface.

LabVIEW 8.0 includes the following changes to source control
functionality.

Note Source control is available only in the LabVIEW Professional Development System.

• The built-in source control provider from LabVIEW 7.x and earlier is
not available in LabVIEW 8.0. Refer to the Migrating from the
LabVIEW Built-in Source Control Provider section for more
information about migrating source control files from earlier versions
of LabVIEW.

LabVIEW Upgrade Notes 52 ni.com

• After you select and install a third-party source control provider, you
must configure LabVIEW to work with that provider. Select Tools»
Source Control»Configure Source Control to display the Source
Control page of the Options dialog box.

• You can use source control within LabVIEW to check out files for
editing, check in edited files, get the latest version of a file from source
control, and compare a file to the latest version in source control.
Select Tools»Source Control and the source control operation you
want to perform.

• You can view the source control history of a file. Select Tools»Source
Control»Show History to display a provider-specific dialog box that
contains the file revision history in source control.

• Use the Source Control VIs to perform source control operations
programmatically.

• You cannot create Perforce configuration files in LabVIEW.

Migrating from the LabVIEW Built-in Source Control
Provider
The built-in source control provider from LabVIEW 7.x and earlier is not
available in LabVIEW 8.0. If you want to use source control in LabVIEW,
you must select a third-party source control provider. If you used the
built-in provider in previous versions, you must migrate the files to another
provider to use source control in LabVIEW. Refer to the National
Instruments Web site at ni.com and enter the info code rdbp01 for the
most current list of third-party source control providers supported in
LabVIEW.

When you migrate files to a new source control provider, you lose the
revision history stored in the built-in provider. You cannot transfer the
previous versions of the files to the new provider.

Complete the following steps to migrate files from the built-in source
control provider to a third-party source control provider.

1. In the previous version of LabVIEW, make sure that the files included
in the LabVIEW built-in source control provider are checked in by all
users.

2. On the computer where you want to add the files to the new source
control provider, use the built-in provider to get the latest versions of
all the files.

3. Use the built-in provider to check out the files from source control.

4. In the third-party source control provider, configure the settings you
want for the new source control project.

http://www.ni.com/cgi-bin/redirect.cgi?dest=infcoprod&src=lvhelp&openagent&code=rdbp01

© National Instruments Corporation 53 LabVIEW Upgrade Notes

5. Configure LabVIEW to work with the third-party source control
provider.

6. Create a LabVIEW project. Add the files included in the built-in
provider to the project. When LabVIEW prompts you, add the files to
source control. You also can add the files directly in the third-party
provider.

VI and Function Enhancements
LabVIEW 8.0 introduces the following enhancements and changes to VIs
and functions.

Analyze VIs Enhancements
The VIs from the Analyze palette in LabVIEW 7.x and earlier now are
in three separate palettes, Mathematics, Signal Processing, and
Programming. The icons for many of these VIs changed. A yellow banner
on the top of each icon indicates the subpalette in which the VI is located.

Improved and Changed VIs
The following Mathematics, Signal Processing, and Programming VIs are
improved or changed in LabVIEW 8.0.

Mathematics Palette
The Fitting VIs have the following improvements and changes:

• The method input of the Exponential Fit, Exponential Fit Coefficients,
Linear Fit, and Linear Fit Coefficients VIs specifies the fitting method
to use. You can use the Least Square, Least Absolute Residual, or
Bisquare fitting method. These VIs also have a tolerance input that
determines when to stop the iterative adjustment of output parameters
if the method you choose requires iterations. The Weight input of
these VIs specifies the weights of the observed data values.

• The residue output of the Exponential Fit and Linear Fit VIs returns
the weighted mean error of the fitted model.

• The refine? input of the Exponential Fit and Exponential Fit
Coefficients VIs specifies whether to further refine the amplitude and
damping of the fitted model.

• The Exponential Fit VI does not have the Standard Deviation input
or the mse output from LabVIEW 7.x and earlier.

• The Linear Fit VI does not have the mse output from LabVIEW 7.x
and earlier.

• The Weight input of the General LS Linear Fit VI specifies the
weights of the observed data values. This VI also has a new algorithm,
SVD for Rank Deficient H, to compute the best fit. Use this algorithm

LabVIEW Upgrade Notes 54 ni.com

only if the input matrix is rank deficient and all other algorithms are
unsuccessful. This VI does not have the Standard Deviation input
from LabVIEW 7.x and earlier.

• The Coefficient Constraint input of the General Polynomial Fit VI
specifies the constraints on polynomial coefficients of certain orders.
The Polynomial Fit Coefficients output of this VI now is called
Polynomial Coefficients.

The Integ & Diff VIs have the following improvements and changes:

• The Numeric Integration VI can perform 2D and 3D numeric
integration.

The Linear Algebra VIs have the following improvements and changes:

• In LabVIEW 7.x, the eigenvector output on the Eigenvalues and
Vectors VI was normalized so that its largest component is always
unified. In LabVIEW 8.0, the eigenvector output is normalized so that
its Euclidean norm equals 1.

• The QR Decomposition VI replaces the QR Factorization VI. The QR
Decomposition VI has two new inputs. pivot? specifies whether this
VI decomposes the input matrix A with column pivoting. Q option
specifies how this VI generates the orthogonal matrix Q. This VI can
generate a full-size, economy-size, or no orthogonal matrix. The P
output of this VI returns the permutation matrix.

• The QZ Decomposition VI has two new inputs. decomposition type
specifies whether to perform a Generalized Hessenberg or a
Generalized Schur decomposition. order specifies how to order the
generalized eigenvalues, Alpha and Beta.

• The order input of the Schur Decomposition VI specifies how to order
the Eigenvalues and the corresponding Schur Form and Schur
Vectors.

The Polynomial VIs have the following improvements and changes:

• The Polynomial Roots VI can find the roots of a complex polynomial.
This VI also provides the Advanced Refinement root-finding option.

• The number of zero coefficients output of the Remove Zero
Coefficients VI returns the number of trailing near-zero coefficients
that LabVIEW removed.

The Probability and Statistics VIs have the following improvements and
changes:

• The Mode VI is polymorphic to perform both unimodal and
multimodal analysis. The intervals input of this VI can accept
non-positive values. If intervals is non-positive, the Mode VI
calculates only the exact mode(s) of the input sequence.

© National Instruments Corporation 55 LabVIEW Upgrade Notes

• The X input of the Standard Deviation and Variance VI now is
recommended instead of required.

The Rational Polynomial VIs have the following improvements and
changes:

• The c[0..n+m] input of the Pade Approximation VI now is called
Derivatives. Also, the A[0..m] output now is called Numerator, and
the B[0..n] output now is called Denominator.

Signal Processing Palette
The Advanced FIR Filtering VIs have the following improvements and
changes:

• The window parameter input of the FIR Windowed Coefficients VI
specifies particular parameter values for Kaiser, Gaussian, and
Dolph-Chebyshev windows. The data type of the window input for
this VI changed from enumerated type to 32-bit unsigned integer
numeric.

The Advanced IIR Filtering VIs have the following improvements and
changes:

• The Cascade –> Direct Coefficients VI now is called the Cascade To
Direct Coefficients VI.

• The IIR Cascade Filter, IIR Cascade Filter with I.C., IIR Filter, and IIR
Filter with I.C. VIs are polymorphic and support complex inputs.

The Filters VIs have the following improvements and changes:

• The window parameter input of the FIR Windowed Filter VI
specifies particular parameter values for Kaiser, Gaussian, and
Dolph-Chebyshev windows. The data type of the window input for
this VI changed from enumerated type to 32-bit unsigned integer
numeric.

• All VIs on the Filters palette, except for the Median Filter VI, are
polymorphic and support complex inputs.

The Signal Generation VIs have the following improvements and
changes:

• The Binary MLS VI has an error code output.

• The exclude end? input of the Ramp Pattern VI specifies whether to
include the ending value in the generated array.

• The signal type input of the Signal Generator by Duration VI now is
recommended instead of required.

LabVIEW Upgrade Notes 56 ni.com

The Signal Generation PtByPt VIs have the following improvements and
changes:

• The Sawtooth Wave PtByPt VI was optimized to include an updated
formula, as follows:

sawtooth wave = amplitude × sawtooth(q)

where

and

q =(360 · f · time) + phase) mod (360), phase in degrees.

The Signal Operation VIs have the following improvements and changes:

• The Autocorrelation, Convolution, and CrossCorrelation VIs are
polymorphic and support 2D-array real and complex inputs.

• The normalization input of the 1D instances of the Autocorrelation
and CrossCorrelation VIs specifies the normalization method to use to
compute the autocorrelation and cross correlation, respectively.

• The output size input of the 2D instances of the Convolution VI
specifies the size of the convolution.

• The Normalize Vector VI and the Normalize Matrix VI comprise the
Normalize polymorphic VI.

• The Quick Scale 1D VI and the Quick Scale 2D VI comprise the Quick
Scale polymorphic VI. The Yij=Xij/Max{X} parameter of the Quick
Scale 2D instance of the Quick Scale VI now is called
Yij=Xij/Max|X|.

• The Resample (constant to constant) and Resample (constant to
variable) VIs support complex inputs.

• The Scale 1D VI and the Scale 2D VI comprise the Scale polymorphic
VI.

• The Unit Vector VI is polymorphic and has two new inputs. norm type
indicates what type of norm is used to compute the norm. user defined
norm specifies the norm type if norm type is User Defined.

• The Zero Padder VI is polymorphic and supports complex inputs. The
only non-power of 2? input of this VI specifies whether to double the
size of the input array if the array size already is a valid power of 2.

sawtooth q()

q
180
--------- if q 180<

q
180
--------- 2– else

=

© National Instruments Corporation 57 LabVIEW Upgrade Notes

The Spectral Analysis VIs have the following improvements and changes:

• The Power Spectrum VI is polymorphic and supports complex inputs.

• The STFT Spectrogram VI now is called the STFT Spectrograms VI
and has two new inputs. time-freq sampling info specifies the density
to use to sample the signal in the joint time-frequency domain and
defines the size of the resulting 2D time-frequency array. window info
specifies information about the window you want to use to compute the
Short-Time Fourier Transform. You now can use the Blackman-Harris,
Exact Blackman, Flat Top, 4 Term B-Harris, 7 Term B-Harris, Low
Sidelobe, Blackman Nuttall, and Triangle windows. This VI does not
have the time increment, window length, or window selector inputs
from LabVIEW 7.x and earlier.

The Transforms VIs have the following improvements and changes:

• The FFT and Inverse FFT VIs support 2D-array real and complex
inputs.

• The shift? input of the FFT and Inverse FFT VIs specifies whether to
shift the DC component to the center of the Fast Fourier Transform.

• The FFT size input of the 1D instances of the FFT VI specifies the
length of the FFT you want to perform.

The Transforms PtByPt VIs have the following improvements and
changes:

• The Real FFT PtByPt VI and the Complex FFT PtByPt VI comprise
the FFT PtByPt polymorphic VI.

• The Inverse Real FFT PtByPt VI and the Inverse Complex FFT PtByPt
VI comprise the Inverse FFT PtByPt polymorphic VI.

The Waveform Conditioning VIs have the following improvements and
changes:

• The Scaled Window VI supports complex inputs. The window
parameter input of this VI specifies particular parameter values for
Kaiser, Gaussian, and Dolph-Chebyshev windows. The data type of
the window input for this VI changed from enumerated type to 32-bit
unsigned integer numeric.

The Waveform Measurements VIs have the following improvements and
changes:

• The data type of the window input changed from enumerated type to
32-bit unsigned integer numeric for the Cross Spectrum (Mag-Phase),
Cross Spectrum (Real-Im), FFT Power Spectral Density, FFT Power
Spectrum, FFT Spectrum (Mag-Phase), FFT Spectrum (Real-Im),
Frequency Response Function (Mag-Phase), and Frequency Response
Function (Real-Im) VIs.

LabVIEW Upgrade Notes 58 ni.com

The Windows VIs have the following improvements and changes:

• The ratio input of the Cosine Tapered Window VI specifies the ratio
of the length of the tapered section to the length of the entire signal.
The Cosine Tapered{X} output of this VI now is called Windowed X.

• The window parameter of the Scaled Time Domain Window VI
specifies parameters for the window you want to apply. This VI also
has a new error output. The Waveform input, Windowed Waveform
output, and window constants output of this VI now are called X,
Windowed X, and window properties, respectively. The Scaled Time
Domain Window VI now also can apply a Blackman-Nuttall, Triangle,
Kaiser, Dolph-Chebyshev, or Gaussian window. The data type of the
window input of this VI changed from enumerated type to 32-bit
unsigned integer numeric.

• All VIs on the Windows palette except for the Window Properties VI
are polymorphic and support complex inputs.

Programming Palette
The Comparison functions have the following improvements and
changes:

• The Equal? and Not Equal? comparison functions can determine
whether two VI Server references refer to the same object.

New VIs and Functions
LabVIEW 8.0 introduces the following new Mathematics, Signal
Processing, and Programming VIs.

Mathematics Palette
The Advanced Curve Fitting subpalette contains the following new VIs:

• Exponential Fit Intervals VI

• Gaussian Peak Fit Coefficients VI

• Gaussian Peak Fit Intervals VI

• Goodness of Fit VI

• Linear Fit Intervals VI

• Logarithm Fit Coefficients VI

• Logarithm Fit Intervals VI

• Power Fit Coefficients VI

• Power Fit Intervals VI

• Remove Outliers VI

The Differential Equations subpalette contains the new ODE Solver VI.

© National Instruments Corporation 59 LabVIEW Upgrade Notes

The Discrete Math subpalette contains the following new VIs:

• Gcd VI

• Lcm VI

• Permute VI

The Exponential Functions subpalette contains the new y-th root of
x function.

The Fitting subpalette contains the following new VIs:

• Cubic Spline Fit VI

• Gaussian Peak Fit VI

• Logarithm Fit VI

• Nonlinear Curve Fit VI

• Power Fit VI

The Geometry subpalette contains the following new VIs:

• 2D Cartesian Coordinate Shift VI

• 2D Cartesian Coordinate Rotation VI

• 3D Cartesian Coordinate Shift VI

• 3D Cartesian Coordinate Rotation (Euler) VI

• 3D Cartesian Coordinate Rotation (Direction) VI

• 3D Coordinate Conversion VI

• Direction Cosines to Euler Angles VI

• Euler Angles to Direction Cosines VI

The Hyperbolic Functions subpalette contains the following new
functions:

• Hyperbolic Cosecant function

• Hyperbolic Cotangent function

• Hyperbolic Secant function

• Inverse Hyperbolic Cosecant function

• Inverse Hyperbolic Cotangent function

• Inverse Hyperbolic Secant function

The Hypothesis Testing subpalette contains the following new VIs:

• Correlation Test VI

• Sign Test VI

• T Test VI

LabVIEW Upgrade Notes 60 ni.com

• Wilcoxon Signed Rank Test VI

• Z Test VI

The Integ & Diff subpalette contains the new Lobatto Quadrature VI.

The Interp & Extrap subpalette contains the following new VIs:

• Create Interpolating Polynomial VI

• Create Mesh Grid (2D) VI

• Evaluate Interpolating Polynomial VI

• Hermite Interpolation 1D VI

• Interpolate 1D VI

• Interpolate 1D Fourier VI

• Interpolate 2D VI

• Search Ordered Table VI

• Spline Interpolation 1D VI

The Numeric subpalette contains the following new functions:

• Machine Epsilon constant

• Square function

The Optimization subpalette contains the following new VIs:

• Constrained Nonlinear Optimization VI

• Quadratic Programming VI

• Unconstrained Optimization VI

The Polynomial subpalette contains the new Polynomial Plot VI.

The Probability subpalette contains the following new VIs:

• Continuous CDF VI

• Continuous Inverse CDF VI

• Continuous Moments VI

• Continuous PDF VI

• Continuous Random VI

• Discrete CDF VI

• Discrete Inverse CDF VI

• Discrete Moments VI

• Discrete PF VI

• Discrete Random VI

© National Instruments Corporation 61 LabVIEW Upgrade Notes

The Probability and Statistics subpalette contains the following new VIs:

• Correlation Coefficient VI

• Correlation Coefficient (Kendall's Tau) VI

• Correlation Coefficient (Spearman) VI

• Covariance Matrix VI

• Measures of Mean VI

• Measures of Spread VI

• Percentiles VI

The Trigonometric Functions subpalette contains the following new
functions:

• Inverse Cosecant function

• Inverse Cotangent function

• Inverse Secant function

Signal Processing Palette
The Filters subpalette contains the new Zero Phase Filter VI.

The Signal Operation subpalette contains the new Riffle VI.

The Transforms subpalette contains the following new VIs:

• Chirp Z Transform VI

• DCT VI

• DST VI

• Inverse DCT VI

• Inverse DST VI

The Waveform Conditioning subpalette contains the new Continuous
Convolution (FIR) VI.

The Waveform Measurements subpalette contains the new Extract
Multiple Tone Information VI.

The Windows subpalette contains the following new VIs:

• Blackman-Nuttall Window VI

• Chebyshev Window VI

• Gaussian Window VI

• Symmetric Window VI

• Window Properties VI

LabVIEW Upgrade Notes 62 ni.com

Programming Palette
The Comparison subpalette contains the following new functions:

• Empty Array? function

• Polar to Re/Im function

• Re/Im to Polar function

Digital Waveform VIs Enhancements
Use the Digital Waveform VIs to replace a subset of a digital waveform
(DWDT) or digital table (DTbl), to convert from digital waveform data or
digital data to an analog waveform or binary data format, or to convert from
an analog waveform, binary format, or spreadsheet string to digital
waveform data or digital data. Use the Digital Pattern Generator to generate
a digital pattern using various fill patterns. Use the Empty Digital Data and
Empty Digital Waveform constants to return empty digital waveform data
or digital data, which is important for initializing shift registers or for
building waveforms.

Improved and Changed VIs
The following Digital Waveform VIs are improved or changed in
LabVIEW 8.0.

• The Invert Digital VI has two new inputs. signal index specifies the
signal at which to begin inverting data. number of signals specifies the
number of signals to invert.

• The compare mode input of the Search for Digital Pattern VI specifies
how to handle values of X for the search.

• The Analog to Digital VI is polymorphic and can convert an analog
waveform to digital data.

• The Digital to Analog VI is polymorphic and can convert digital data
to an analog waveform.

New VIs and Functions
LabVIEW 8.0 introduces the following new Digital Waveform VIs and
functions.

• Binary to Digital VI

• Digital Pattern Generator VI

• Digital Ring constant

• Digital to Binary VI

• Empty Digital Data constant

• Empty Digital Waveform constant

© National Instruments Corporation 63 LabVIEW Upgrade Notes

• Replace Subset VI

• Spreadsheet String to Digital VI

Disable Structures
Use the Conditional Disable structure to disable sections of code by
assigning each subdiagram of the structure an expression composed of
symbols and values, both user-defined and LabVIEW-defined, which
LabVIEW then evaluates to determine which subdiagram to use.

Note LabVIEW does not compile code on the block diagram that does not execute. For
example, LabVIEW does not compile any code that exists within the inactive subdiagrams
of the Conditional Disable structure. In addition, LabVIEW does not compile code within
a Case structure that has a constant wired to it that would not execute the case with
the code.

Use the Diagram Disable structure to define parts of the block diagram that
you do not want to compile.

Express VIs Enhancements
Use the Express VIs and functions to build common measurement tasks.

Improved and Changed VIs
The following Express VIs are improved or changed in LabVIEW 8.0:

• The Comparison Express VI has two new inputs. Items to Compare
allows you to compare data points, time stamps, time between points,
number of data points, and signal names of the input signals. Constant
Value to Compare Against specifies the constant value with which to
compare the Operand 1 input. This VI also has been optimized to
return more appropriate results in the case of the first input signal being
empty.

• The Read LabVIEW Measurement File and Write LabVIEW
Measurement File Express VIs were renamed Read From
Measurement File and Write To Measurement File, respectively. These
Express VIs include support for binary measurement files (.tdm) as
well as text-based measurement files (.lvm). Select the Binary
(TDM) option in the configuration dialog box to set the file format to
a file.

• The Read From Measurement File, Write To Measurement File,
Prompt User for Input, and Report Express VIs change behavior
depending on their target. If the current target does not or might not
have a host computer connected, the configuration dialog boxes
display warnings next to options that are invalid without a host. These

LabVIEW Upgrade Notes 64 ni.com

VIs return errors if you configure the VIs to prompt for input and
execute the VIs on a target with no user interface, such as the
LabVIEW Real-Time Module with no host computer connected.

When you target the Report VI to a non-Windows platform, the
configuration dialog box supports only HTML for Web Page as a
destination.

• The Relay Express VI uses the configuration dialog box value of the
Enable input if you do not wire a value to the Enable block diagram
input.

• The Selector Input input of the Select Signals Express VI allows you
to select a subset of signals from the Signals input.

• The Write Data and Write To Measurement File Express VIs were
optimized to enforce unique channel names. When a file or channel
name is repeated, LabVIEW appends an integer to the end of the name
to enforce unique names. For example, if you provide the names sine,
sine, square, square, and sine, LabVIEW updates these names to
sine, sine 1, square, square 1, and sine 2, respectively.

New VIs and Functions
LabVIEW 8.0 introduces the following new Express VIs:

• Acquire Sound Express VI

• Dual Channel Spectral Measurement Express VI

• Play Waveform Express VI

• NI DIAdem Report Express VI

NI DIAdem Report Express VI
Use the NI DIAdem Report Express VI to generate reports directly from
LabVIEW data. You can export the report as a PDF or HTML file, print the
report, or automatically display the report. The report is completely
configured in LabVIEW.

Note You must have DIAdem 9.1 Service Pack 2 or later installed to use the NI DIAdem
Report Express VI. Refer to the National Instruments Web site at ni.com to download an
evaluation version of DIAdem or purchase DIAdem.

File I/O VIs and Functions Enhancements
The File I/O palette includes updated VIs and new and updated functions
to make reading data from and writing data to files easier, including
enhancements to the path input and new datalog functions. The File I/O
palette also includes new VIs that you can use to work with zip files.

http://www.ni.com/cgi-bin/redirect.cgi?dest=infcoprod&src=lvhelp&openagent&code=exf5ty

© National Instruments Corporation 65 LabVIEW Upgrade Notes

Path Input
File I/O functions that accept path or refnum data as inputs include an input
with the phrase (use dialog), such as the path (use dialog) input. If you
do not wire this input, a dialog box appears prompting users to select a file
or directory when the function executes. Each of these functions include a
cancelled output. If users click the Cancel button in the dialog box,
cancelled returns TRUE and the function returns an error. If you wire a
path to a File I/O function, the function opens the file with the minimum
permissions needed to perform the operation and eliminates the need for
explicitly opening or closing the file.

Datalog Functions
Use the Datalog functions to write to and read from datalog files. The
Datalog palette includes the following new functions:

• Open/Create/Replace Datalog function

• Get Datalog Position function

• Get Number of Records function

• Read Datalog function

• Set Datalog Position function

• Set Number of Records function

• Write Datalog function

File I/O VIs and Functions
Use the File I/O VIs and functions to open and close files, read from and
write to files, create directories and files, retrieve directory information,
and write strings, numbers, arrays, and clusters to files. The File I/O palette
contains the following new functions:

• Open/Create/Replace File function

• Read from Binary File function

• Read from Text File function

• Write to Binary File function

• Write to Text File function

Zip VIs
Use the Zip VIs to create new zip files, add files to zip files, and close zip
files.

LabVIEW Upgrade Notes 66 ni.com

Miscellaneous Enhancements and Changes
LabVIEW 8.0 introduces the following miscellaneous File I/O VI and
function enhancements and changes:

• The Copy function includes overwrite and prompt inputs and a
cancelled output.

• The Delete function includes the entire hierarchy input, which, if
TRUE, deletes the entire hierarchy at or below the path specified.

• The File Dialog function is now the File Dialog Express VI.
Double-click this VI to display the Selection Mode dialog box to
configure the types of files or directories users can select in the file
dialog box.

• The Close File, Copy, Create Folder, Delete, File/Directory Info, Flush
File, and Move functions have new connector pane configurations. The
new configurations could affect the positions of wires on block
diagrams created in previous versions of LabVIEW.

• You can overwrite existing files and directories when you use the Move
and Copy functions.

• The File/Directory Info function has two new outputs. shortcut
indicates whether the file or directory is a shortcut. resolved path
returns the path to the shortcut target.

• The String instance of the Read Key VI does not contain the multibyte
encoding (0: None) parameter from LabVIEW 7.x and earlier.

Instrument I/O Assistant Enhancements
The Instrument I/O Assistant includes the following enhancements:

• You can select the character that signifies the last character of the
command for the instrument from the Termination character
pull-down menu in the Select Instrument step. You also can select
<custom> to enter a termination character in the Termination
character text box.

• You can add an input parameter to an instrument command by
selecting the command in the Enter a command text box of the Write
step and clicking the Add parameter button. You also can select and
right-click the command and select Add parameter from the shortcut
menu.

• You can split a Query and Parse step into the Write and Read and
Parse steps to use parameterized inputs. To split a Query and Parse
step, right-click the step in the Step Sequence window and select Split
step into Write and Read steps from the shortcut menu.

• You can configure the Instrument I/O Assistant to parse all data in a
token until you have no data left to parse. To configure the Instrument
I/O Assistant to parse until the end of the data, select the To end of

© National Instruments Corporation 67 LabVIEW Upgrade Notes

data item from the Count pull-down menu in the Query and Parse
step, or click the To end of data button below the Count pull-down
menu. The Instrument I/O Assistant also parses to the end of the data
if you click the Auto parse button. The To end of data item and
behavior are available only if the token you configure is the last token.

Sound VIs Enhancements
The Sound palette includes the VIs you use to incorporate sound into your
VIs and record sound with VIs.

Note (Windows) You must have DirectX 8.0 or later to use the Sound VIs.

These VIs include the following enhancements:

• The VIs support up to 24-bit sound.

• The VIs support multi-channel sound files, as well as monophonic and
stereophonic sound.

• A waveform represents sound data. You can use elements of unsigned
8-bit, signed 16-bit, or signed 32-bit integers, or single and
double-precision data types to represent the Y array data. Each
waveform defines one channel.

• The format of the sound data is Pulse Code Modulated (PCM).

• The VIs can produce continuous sound output.

• The VIs allow for a streaming view of wave files.

• The VIs have improvements to error checking.

String Functions Enhancements
Use the Match Regular Expression and the Search and Replace String
functions for more complex regular pattern matching using standard Perl
Compatible Regular Expression (PCRE) syntax. Right-click the Search and
Replace String function and select Regular Expression from the shortcut
menu to configure the function for advanced regular expression searches
and submatch substitution in the replacement string. Resize the Match
Regular Expression function to view any submatches found in the string.
You can use the Match Pattern function or the Match Regular Expression
function to search strings for regular expressions. The Match Regular
Expression function gives you more options for matching strings but
performs more slowly than the Match Pattern function.

LabVIEW Upgrade Notes 68 ni.com

VI Hierarchy Window Enhancements
Select View»VI Hierarchy to display the VI Hierarchy window, which
displays open LabVIEW projects and targets, as well as the calling
hierarchy for all VIs in memory. The VI Hierarchy window displays a
top-level icon to represent the main LabVIEW application instance, under
which appear all open VIs that are not in a project. The VI Hierarchy
window displays a top-level icon to represent each project in memory. Each
target you add appears under the project.

Front Panel Enhancements
LabVIEW 8.0 introduces the following front panel enhancements and
changes.

Changes to Graph Cursors
LabVIEW 8.0 includes the following changes to graph cursors:

• To create a cursor, right-click anywhere in the cursor legend, select
Create Cursor, and select a cursor mode from the shortcut menu. The
cursor includes the following modes.

Table 4. LabVIEW 8.0 Cursor Mode Changes

LabVIEW 7.1
Cursor Mode

LabVIEW 8.0
Cursor Mode

Description of LabVIEW 8.0
Cursor Mode

Free Free Moves the cursor freely within the plot area,
regardless of plot positions.

Snap to Point and
Lock to Plot

Single-Plot Positions the cursor only on the plot that is
associated with the cursor. You can move the
cursor along the associated plot. Right-click the
cursor legend row and select Snap To from the
shortcut menu to associate one or all plots with
the cursor.

— Multi-Plot Positions the cursor only on a specific data point
in the plot area. The multi-plot cursor reports
values at the specified x value for all the plots
that the cursor is associated with. You can
position the cursor on any plot in the plot area.
Right-click the cursor legend row and select
Snap To from the shortcut menu to associate
one or all plots with the cursor. This mode is
valid only for mixed signal graphs.

© National Instruments Corporation 69 LabVIEW Upgrade Notes

• You cannot change the mode of a cursor after you create it. You must
delete the cursor and create another cursor. Right-click the cursor
legend row and select Delete Cursor from the shortcut menu to delete
a cursor.

• The Cursor Movement Selector, Formatting Ring, and Lock Ring
buttons do not appear on the right side of the cursor legend. Right-click
a cursor legend row and select options from the shortcut menu to
customize the cursor. All the options you accessed using the cursor
legend buttons in previous versions of LabVIEW now are in the
shortcut menu.

• Use the X Scale property to set the x-scale of the cursor
programmatically. This property is valid only if the cursor mode is
Free. This property is similar to the X Scale item in the shortcut menu
of the cursor legend of a graph.

• Use the Y Scale property to set the y-scale of the cursor
programmatically. This property is valid only if the cursor mode is
Free. This property is similar to the Y Scale item in the shortcut menu
of the cursor legend of a graph.

• Use the Watch Plots and Watch All Plots properties to watch plots in
the plot area programmatically. These properties are valid only for
cursors associated with multiple plots.

Using Graph Annotations
Use annotations on a graph to highlight data points in the plot area. The
annotation includes a label and an arrow that identifies the annotation and
data point. You also can configure the appearance of an annotation and how
the annotation snaps to plots in the plot area. To create an annotation,
right-click the graph and select Data Operations»Create Annotation
from the shortcut menu to display the Create Annotation dialog box.
Right-click the annotation and select options from the shortcut menu to
configure the annotation. Use the Annotation List property to get an array
of information about all annotations in the plot area programmatically.

Drawing Images in the Graph Plot Area
You can draw images to the background, foreground, or middle plot area
of a graph. Use the Plot Images:Back, Plot Images:Front, and Plot
Images:Middle properties for a waveform graph, intensity graph, or mixed
signal graph to set the plot area background, foreground, and middle plot
image, respectively. You can use the Plot Image:Front property only for an
intensity graph. The plot data lies between the foreground and the middle
plot image. The grid lines lie between the middle plot image and the
background. If you want to remove an existing image from the background,
foreground, or middle plot area, you must wire an empty image to the
appropriate property or make the image transparent.

LabVIEW Upgrade Notes 70 ni.com

Note If you resize a graph, the plot area images do not adjust accordingly. You must rerun
the VI to redraw the images.

You must map the graph coordinates to the coordinates of the front panel to
draw an image appropriately in the graph plot area. Use the Map XY to
Coordinates method to map the graph or chart coordinates to the front panel
coordinates. This method adjusts only the left and top plot bounds to orient
the plot around the origin of the front panel.

Refer to the examples\general\graph\Graph Pictures.llb for
examples of using the Plot Image properties and the Map XY to
Coordinates method.

Exporting Images of Graphs, Charts, and Tables
You can export images of graphs, charts, tables, digital data, and digital
waveform controls and indicators into the following formats:

(Windows) .emf, .bmp, and .eps files

(Mac OS) .pict, .bmp, and .eps files

(Linux) .bmp and .eps files

To export an image, right-click the control and select Data Operations»
Export Simplified Image from the shortcut menu. In the Export
Simplified Image dialog box, select the image format and whether you
want to save the image to the clipboard or to disk. You also can use the
Export Image method to export an image programmatically.

Displaying Planes on XY Graphs
You can display Nyquist planes, Nichols planes, S planes, and Z planes on
the XY graph. To display these planes, right-click the XY graph and select
Optional Plane from the shortcut menu. The Optional Plane menu item
contains the various types of planes—Nyquist, Nichols, S, and Z
planes—you can display on the XY graph. When you select an optional
plane to display, the Optional Plane menu contains menu items to show
and hide the plane lines, plane labels, and Cartesian lines.

You also can use the Optional Plane:Plane Type property to display these
planes on the XY graph programmatically. Use the Optional Plane:Lines
Visible and Optional Plane:Labels Visible properties to show and hide
plane lines and plane labels on the XY graph programmatically. Use the
Cartesian Lines:Visible property to show and hide the Cartesian lines on the
XY graph programmatically.

© National Instruments Corporation 71 LabVIEW Upgrade Notes

The XY graph also accepts an array of complex data, in which the real part
is plotted on the x-axis and the imaginary part is plotted on the y-axis.

Mixed Signal Graph
Use the mixed signal graph to plot data of different types that share a
common x-scale. The mixed signal graph accepts all of the data types
accepted by the waveform graph, XY graph, and digital waveform graph.
In addition, it accepts any cluster that contains any combination of these
data types.

When you add multiple plot areas to a mixed signal graph, each plot area
has its own y-scale. The mixed signal graph automatically creates plot areas
when necessary to accommodate combinations of analog and digital data.

The plot legend on the mixed signal graph is comprised of tree controls and
is displayed to the left of the graph plot areas. Each tree control represents
one plot area. You can use the plot legend to move plots between plot areas.

You can use the multi-plot cursor on a mixed signal graph to report the
values of multiple plots at a particular x-value.

Key Navigation
You can display the Key Navigation page of the Properties dialog box by
right-clicking a control on the front panel and selecting Advanced»Key
Navigation from the shortcut menu. You also can display this page by
right-clicking a control, selecting Properties from the shortcut menu, and
clicking the Key Navigation tab. The Key Navigation page includes the
following changes:

• The Key Assignment section was renamed Focus. The Focus list now
includes these shortcut keys: <Delete>, <Insert>, <Mute>, <Play>,
<Volume Up>, <Volume Down>, F13, F14, F15, F16, F17, F18, F19,
F20, F21, F22, F23, and F24.

• The Current Assignments section was renamed Existing Bindings.

• The Key Navigation page has a Toggle section, which assigns
shortcut keys to toggle Boolean controls. You also can use the Toggle
Key Binding property to assign a shortcut key to toggle a boolean
control.

• The Key Navigation page has Increment and Decrement sections,
which assign shortcut keys to increase and decrease the values of
Numeric, Slide, Knob, Ring, and Enum controls. You also can use the
Increment Key Binding and Decrement Key Binding properties to
assign a shortcut key to increase or decrease the value of a numeric
control, respectively.

LabVIEW Upgrade Notes 72 ni.com

The Key Navigation property was renamed Focus Key Binding. For
Boolean controls, this property sets only the focus keyboard shortcut, and
the Toggle Key Binding property sets the toggle keyboard shortcut.

Minimum Front Panel Size
In LabVIEW 7.x and earlier, the minimum size of the front panel refers to
the content area of that pane, not including the scroll bars. In LabVIEW 8.0,
for single-pane front panels, the minimum size still refers to the content
area of that pane, not including the scroll bars. However, for multi-pane
front panels, the minimum size refers to the entire front panel, including
any visible scroll bars.

Splitter Bars and Panes
Use splitter bars from the Containers palette to split the front panel into
two or more panes that you can scroll separately. You can use these panes
to design a user interface with several customizable regions. You also can
use a splitter bar to designate a pane as a toolbar or a status bar.

Use the Pane properties, methods, and events to control panes
programmatically.

Use the Splitter properties and events to control splitter bars
programmatically.

In LabVIEW 8.0, the Show scroll bars option in the Customize Window
Appearance dialog box from LabVIEW 7.x and earlier now consists of
two options, Show horizontal scroll bar and Show vertical scroll bar. If
you add a splitter bar to the front panel, you cannot change these options in
the dialog box. The options reflect the settings of the upper-leftmost pane
when there are splitter bars on the front panel.

Customizing Run-Time Shortcut Menus
You can customize the run-time shortcut menu for each control you include
in a VI. To customize a shortcut menu, right-click a control and select
Advanced»Run-Time Shortcut Menu»Edit from the shortcut menu to
display the Shortcut Menu Editor dialog box. Use the dialog box to
associate the default shortcut menu or a customized shortcut menu file
(.rtm) with the control. Use the Shortcut Menu Activation? event and the
Insert Menu Items and Delete Menu Items functions to customize shortcut
menus programmatically. Refer to the LabVIEW Help for more information
about customizing run-time shortcut menus for controls programmatically.

You also can add shortcut menus to front panels. To add a shortcut menu to
the front panel, use the Shortcut Menu Activation? and Shortcut Menu
Selection pane events.

© National Instruments Corporation 73 LabVIEW Upgrade Notes

You also can right-click a control and select Advanced»Run-Time
Shortcut Menu»Disable from the shortcut menu to disable the run-time
shortcut menu on a control.

You can disable default shortcut menus for all controls by selecting File»
VI Properties, selecting Window Appearance from the Category
pull-down menu, clicking the Customize button, and removing the
checkmark from the Allow default run-time shortcut menus checkbox.
If you disable default run-time shortcut menus, you still can include custom
shortcut menus.

Using XControls
Use XControls to design and create complex controls and indicators in
LabVIEW. XControls include the following features:

• You can combine built-in LabVIEW controls and indicators to create
an XControl to take advantage of the combined functionality of the
LabVIEW controls and indicators.

• When you use an XControl in a VI, the block diagram for that VI is
simplified because the XControl includes the behavior of the control.

• Use an XControl library to define the behavior, appearance, abilities,
properties, and methods of an XControl.

• You can customize the shortcut menu for an XControl to include new
menu items and the existing menu items of the built-in LabVIEW
controls or indicators that you used to create the XControl.

In the Project Explorer window, right-click My Computer and select
New»XControl from the shortcut menu to create an XControl.

Note You can create and edit XControls only in the LabVIEW Professional Development
System. If a VI contains an XControl, you can run the VI in all LabVIEW packages.

Refer to the Simple Dual Mode Thermometer XControl.lvproj in the
labview\examples\general\xcontrols\Dual Mode

Thermometer directory for an example of using XControls.

Using .NET Controls
You can use .NET controls on the front panel as you do ActiveX controls.
Create a new control in a .NET container or add .NET controls to the
Controls palette for later use. On the block diagram, wire the .NET control
to a Property Node, Invoke Node, or Register Event Callback node to set
properties, invoke methods, or handle events for the control.

To create a new .NET control, place a .NET container on the front panel.
Right-click the .NET container and select Insert .NET Control from the

LabVIEW Upgrade Notes 74 ni.com

shortcut menu to display the Select .NET Control dialog box. Select the
control you want to create and click the OK button.

To add a .NET control to the Controls palette, select Tools».NET &
ActiveX»Add .NET Controls to Palette to display the Add .NET
Controls to Palette dialog box. Select the .NET control you want to add
and click the OK button. LabVIEW saves the controls in the labview\
menus\Controls\DotNet & ActiveX directory by default because all
files in this directory automatically appear in the .NET & ActiveX palette.

Listboxes, Tree Controls, and Tables
LabVIEW 8.0 introduces extended functionality, including several new
properties and methods, for listboxes, tables, digital data controls, and tree
controls. These four types of controls share many behaviors and features.

• Right-click a multicolumn listbox or tree control and select Visible
Items»Row Headers from the shortcut menu to display the row
headers. You also can use the Visible Items:Row Headers Visible
property of a multicolumn listbox or tree control to show or hide the
row headers programmatically.

• Right-click a multicolumn listbox, table, or tree control and select
Visible Items»Vertical Lines or Visible Items»Horizontal Lines
from the shortcut menu to show the vertical and horizontal lines. You
also can use the Visible Items:Vertical Lines Visible property for a
multicolumn listbox, table, or tree control to show the vertical lines
programmatically. You can use the Visible Items:Horizontal Lines
Visible property for a single-column listbox, multicolumn listbox,
table or tree control to show the horizontal lines programmatically.

• Use the Coloring tool to color separately all cells, all row headers, all
column headers, or the top left header cell of tables, listboxes, and tree
controls.

• If text does not fit in a cell, a tip strip with the full text appears when
you run the VI and place the cursor of the Operating tool over the cell.

• Listbox and tree controls have four new item symbols. The appearance
of these checkbox symbols depends on the operating system you use.
Right-click an item in the control and select Item Symbol from the
shortcut menu to view all symbols. Listboxes have the same
custom-symbol capabilities as the tree control.

• Press the <Shift-Enter> keys to insert an item below the current item
in listbox and tree controls. In tree controls, this key combination
places the new item at the same level in the hierarchy as the current
item, and all items below the new item move down one row.

• Right-click a listbox or tree control and select Editable Cells from the
shortcut menu to allow users to edit cells at run time. You also can use

© National Instruments Corporation 75 LabVIEW Upgrade Notes

the Allow Editing Cells property to programmatically allow users to
edit cells in a single-column listbox, multicolumn listbox or tree
control. Use the Edit Cell event to handle the event that a user changes
text in the cell of a single-column listbox, multicolumn listbox, or tree
control.

• Right-click a listbox or tree control and select Highlight Entire Row
from the shortcut menu to highlight the entire row when you select
an item.

• Keyboard selection behavior in listboxes and tree controls matches that
of your operating system.

Note If you assign <PageUp>, <PageDown>, <Home>, or <End> as a shortcut key in the
Key Navigation page of the . dialog box for a control, you cannot use that key to select
items in listboxes or tree controls.

Listboxes
LabVIEW 8.0 introduces the following enhancements and changes to
listboxes:

• Right-click a single-column listbox and select Visible Items»
Horizontal Scrollbar from the shortcut menu to show the horizontal
scroll bar. You also can use the Visible Items:Horizontal Scrollbar
Visible property to show or hide the horizontal scroll bar
programmatically. The Visible Items»Scrollbar item on the shortcut
menu of a single-column listbox now is called Vertical Scrollbar. The
Scrollbar Visible property now is called Visible Items:Vertical
Scrollbar Visible.

• Right-click a single-column listbox and select Visible Items»Column
Header from the shortcut menu to show the column header. You also
can use the Visible Items:Column Header Visible property to show or
hide the column header programmatically.

• Right-click a row in a single-column listbox and select Insert Row
Before from the shortcut menu to add a row before the one you
selected.

• Right-click a single-column listbox and select Autosize Row Height
from the shortcut menu to configure the rows to change height to
account for font changes and multiple-line text entries. You also can
use the Autosizing Row Height property to configure the rows
programmatically to change height.

• Right-click a single-column listbox and select Multi-line Input from
the shortcut menu to allow cell entries to contain multiple lines. You
also can use the Multiple Line Input property to programmatically
allow cell entries to contain multiple lines.

LabVIEW Upgrade Notes 76 ni.com

• Right-click a multicolumn listbox and select Smooth Scrolling from
the shortcut menu to allow users to scroll the listbox horizontally one
pixel at a time. You also can use the Smooth Horizontal Scrolling
property to programmatically allow users to scroll the listbox one pixel
at a time.

Tree Controls
LabVIEW 8.0 introduces the following enhancements and changes to tree
controls:

• You can use the + and – keys on the numeric keypad to open and close
items in the tree control. You also can right-click the tree control and
select Open All Items or Close All Items from the shortcut menu to
open or close all items in the tree control.

• By default, LabVIEW limits the interactive selection of multiple items
in a tree control to items that share the same parent. To allow the
selection of items with different parents, right-click the tree control
and remove the checkmark from the Selection Mode»Limit
Multiselect to Siblings item in the shortcut menu. You also can use the
Sibling Multiselect property to programmatically limit the selection of
multiple items to siblings or to allow the selection of items with
different parents.

Note If you enable the Limit Multiselect to Siblings shortcut menu item on a tree control
when multiple non-sibling items already are selected, subsequent selection behavior might
not be intuitive. If you reset the selection to a valid selection, the selection behavior returns
to normal.

• Right-click a tree control and remove the checkmark from the
Expand/Contract Symbol Type»Show at Indent Level 0 item in the
shortcut menu to hide the expand/contract symbols for items at the
highest level in the hierarchy. The indent level 0 items become flush
with the left side of the tree control. If you remove the checkmark next
to this option, you can still expand or collapse an item at indent level 0
by double-clicking the item. To disable the double-clicking
functionality, wire a TRUE constant to the Discard? parameter of the
Item Close? event. You also can use the Expand/Contract
Symbol:Show at Indent Level 0 property to show or hide the
expand/contract symbols at indent level 0 programmatically.

© National Instruments Corporation 77 LabVIEW Upgrade Notes

Tables
If the horizontal scroll bar of a table is not visible, you cannot scroll to the
right using the <Shift-right arrow> keys at run time. If the vertical scroll bar
is not visible, you cannot scroll down using the <Shift-down arrow> keys
at run time. You can scroll up or left using key navigation even if the scroll
bars are not visible.

Dragging and Dropping in String and Tree Controls
String controls and tree controls support built-in dragging and dropping in
LabVIEW 8.0. To drag from a string control, use the Operating tool to
select text and drag the selection to a control that accepts text, such as
another string control or a tree control. To drag from a tree control, use the
Operating tool to select an item and drag the item from the tree control to a
control that accepts tree data, such as another tree control or a string
control.

You can set item dragging and dropping in controls using shortcut menu
items or events, properties, and methods. You can use the Get Drag Drop
Data function to return drag data from LabVIEW when you perform a drag
and drop operation.

Disabling Word Wrapping in String Controls and
Indicators
To disable word wrapping in a string control or indicator, right-click the
string and remove the checkmark next to the Enable Wrapping shortcut
menu item. Disabling word wrapping causes the string to wrap at line
breaks instead. If you want to disable word wrapping, the string must be in
Normal Display mode. After you disable word wrapping, you can display
a horizontal scroll bar by right-clicking the string control or indicator and
selecting Visible Items»Horizontal Scrollbar from the shortcut menu.

You also can use the Enable Wrapping property to disable word wrapping
programmatically. You can use the Horizontal Scrollbar Visible property to
display the horizontal scroll bar programmatically.

Path Controls
The Browse Options page of the Path Properties dialog box replaces the
Browse Options dialog box. Right-click a path control and select Browse
Options from the shortcut menu to display the Browse Options page. This
page includes the following enhancements:

• Use the Button Text text box to change the button label. You also can
use the Browse Options:Button Text property to change the button
label programmatically.

LabVIEW Upgrade Notes 78 ni.com

• Place a checkmark in the Treat LLBs as folders checkbox to allow the
user to select a file in an LLB.

• The following options replace the Selection Mode pull-down menu:
Files only, Folders only, Files or folders, Existing only, New only,
and New or existing.

Scroll Bar Controls
Use the horizontal and vertical scroll bar controls to add custom scroll bars
to a control with scrollable data. Change the value of a scroll bar by using
the Operating tool to click or drag the scroll box to a new position, by
clicking the increment and decrement arrows, or by clicking the spaces in
between the scroll box and the arrows.

You can use the Doc Min, Doc Max, Increment, Page Size, Coerce
Minimum Value, and Coerce Maximum Value properties to specify the
page size and minimum and maximum data range limits programmatically.

Array Scroll Bars
You can display vertical and horizontal scroll bars for an array by
right-clicking the control or indicator on the front panel and selecting
Visible Items»Vertical Scrollbar or Visible Items»Horizontal Scrollbar
from the shortcut menu. Only arrays with more than one dimension can
have both a vertical and horizontal scroll bar. Resize a 1D array vertically
to add a vertical scroll bar, and horizontally to add a horizontal scroll bar.

You also can use the Vertical Scrollbar Visible property and the Horizontal
Scrollbar Visible property to display vertical and horizontal scroll bars
programmatically.

Miscellaneous Enhancements and Changes
LabVIEW 8.0 introduces the following miscellaneous front panel
enhancements and changes:

• Right-click a graph or chart and select Advanced»Disable Plot
Legend from the shortcut menu to disable or enable the plot legend at
run time. You also can use the Legend:Disable property to disable or
enable the plot legend programmatically on a waveform chart,
waveform graph, or mixed signal graph. When you disable a plot
legend, you cannot customize how the plot appears in the graph or
chart at run time.

© National Instruments Corporation 79 LabVIEW Upgrade Notes

• In LabVIEW 7.x and earlier, the y-scale on the digital waveform graph
displays an axis label by default. In LabVIEW 8.0, the y-scale does not
display an axis label by default. The default text for the axis label,
when you choose to show it, now is Digital Plots instead of
Amplitude.

• The listbox, multicolumn listbox, table, digital data, and tree controls
support the mouse wheel for vertical scrolling.

• Right-click a component of a control or indicator you want to
customize and select Advanced»Customize from the shortcut menu
to display a Control Editor window that contains only the component
of the control or indicator.

• As you move the slider or needle of slide or rotary controls, LabVIEW
displays the value of the control in a tip strip. The tip strip uses the
same format and precision as the digital display of the control. If the
control has more than one digital display, the tip strip uses the format
and precision of the digital display that corresponds to the currently
active needle or slider. To disable the tip strip, right-click the control,
select Properties from the shortcut menu, click the Appearance tab,
and remove the checkmark from the Show value tip strip checkbox.
Use the Show Value Tip Strip property to disable value tip strips
programmatically.

• Numeric controls and indicators accept the following SI prefixes: c, d,
da, and h.

LabVIEW MathScript (Windows)
Use the LabVIEW MathScript Window to edit and execute mathematical
commands, create mathematical scripts, and view numerical and graphical
representations of variables. Select Tools»MathScript Window to display
this window. The LabVIEW MathScript Window generates output from
and maintains a history of commands that you call, lists variables that you
define, and displays variables that you select.

Note You can use MathScript only in the LabVIEW Professional Development System.

You can write functions and scripts for use in the LabVIEW MathScript
Window or in the MathScript Node.

Use the MathScript Node to evaluate mathematical formulae and
expressions on the block diagram. You can save scripts that you create in
the LabVIEW MathScript Window and load them in the MathScript
Node. You also can save scripts that you create in the MathScript Node and
load them in the LabVIEW MathScript Window.

LabVIEW Upgrade Notes 80 ni.com

Matrix Data Type
Use the matrix data type to make modeling of math problems easier and
more productive. Existing polymorphic VIs and functions for matrix
operations recognize the matrix data type and execute matrix-specific
algorithms accordingly. Mathematics VIs and functions used for complex
matrix operations accept matrices as inputs and produce matrices for
results.

Note In LabVIEW 7.x and earlier, the Matrix Exp, Matrix Logarithm, Matrix Power,
and Matrix Square Root VIs are available only in the LabVIEW Full and Professional
Development Systems. In LabVIEW 8.0, these VIs are available in the Base Package
as well.

Use the matrix data type instead of a 2D array to represent matrix data
because the matrix data type stores rows or columns of real or complex
scalar data for matrix operations, particularly some linear algebra
operations. The Mathematics VIs and functions that perform matrix
operations accept the matrix data type and return matrix results, which
enables subsequent polymorphic VIs and functions in the data flow to
perform matrix-specific operations. If a Mathematics VI or function does
not perform matrix operations but accepts a matrix data type, the VI or
function automatically converts the matrix data type to a 2D array. If you
wire a 2D array to a VI or function that performs matrix operations by
default, the VI or function automatically converts the 2D array to a real or
complex matrix, depending on the data type of the 2D array.

Most Numeric functions support the matrix data type and matrix
operations. For example, you can use the Multiply function to multiply a
matrix by another matrix or by a number. You can combine basic numeric
data types and complex linear algebra functions to create numeric
algorithms that perform accurate matrix operations.

In LabVIEW 7.x and earlier, you must use the Linear Algebra VIs to
perform mathematical operations on matrices. Although a 2D array can
store matrix data, LabVIEW treats the array differently from the way it
treats matrix data in a matrix control for some key numeric functions, such
as some linear algebra functions. LabVIEW 7.x and earlier cannot
distinguish a 2D array from a matrix, so you must check the dimension size
of the array and the array elements before executing the mathematical
functions to ensure that the matrix data is valid for a matrix operation. If
you use the matrix data type, you do not need to check the dimension size
of the array or analyze array elements before executing numeric functions.
If the dimensions of the two matrices you wire are different, for example,
one is a 2×3 matrix and the other is a 4×4 matrix, the VI or function returns
an empty matrix.

© National Instruments Corporation 81 LabVIEW Upgrade Notes

Note Coercion dots appear on VIs and functions when the VI or function converts data to
or from a matrix or 2D array. This kind of data conversion does not affect performance
because LabVIEW stores matrices the same way it stores 2D arrays.

On the block diagram, the matrix data type looks like a real 2D array or
complex 2D array data type with a different wire pattern. The VIs and
functions that accept the matrix data type automatically support
matrix-specific operations when you wire a matrix data type as an input.

When you wire a matrix data type as an input to one of the following
functions, a VI that includes subVIs that work with the matrix data type
replaces the function:

• Equal? function

• Not Equal? function

• Absolute Value function

• Add function

• Multiply function

• Square Root function

• Subtract function

• Exponential function

• Natural Logarithm function

• Power Of X function

• Re/Im To Complex function

• Complex To Re/Im function

• Polar To Complex function

• Complex To Polar function

The resulting VI has the same icon but contains a matrix-specific algorithm.
The node remains a VI if you disconnect the matrix from the input(s). Wire
other data types as inputs to restore the original function. If you wire a data
type to a function and that data type causes a basic math operation to fail,
the function returns an empty matrix or NaN. For example, if you wire a
matrix with a dimension of 2×3 to one input of the Multiply function, then
wire a 4×4 matrix to the other input, the function returns an empty matrix.

Note When you load a VI from LabVIEW 7.x in LabVIEW 8.0 and the VI contains
Mathematics VIs wired to functions that can use the matrix data type, LabVIEW disables
the type definitions and keeps the behavior from LabVIEW 7.x. LabVIEW places a red 7.x
glyph on the function to indicate that the function uses behavior from LabVIEW 7.x.

LabVIEW Upgrade Notes 82 ni.com

In LabVIEW 7.0 and earlier, only 1D arrays are aligned in memory, which
aids performance for array operations. In LabVIEW 7.1 and later, 1D and
2D arrays are aligned in memory. This aids in performance for linear
algebra operations and operations involving the matrix data type.

Options Dialog Box Enhancements
Select Tools»Options to display the Options dialog box. You can browse
the pages in the Options dialog box by selecting from the Category list on
the left side of the dialog box. The Options dialog box includes the
following enhancements:

• The Miscellaneous page was renamed the Environment page. The
Maximum undo steps per VI option moved from the Block Diagram
page to the Environment page.

• The VI Server: TCP/IP Access page was renamed the VI Server:
Machine Access page and has renamed options.

• Use the VI Server: User Access page to control user access to VIs
through the VI Server.

• Use the Menu Shortcuts page to set keyboard shortcuts for LabVIEW
menu items.

• Use the Source Control page, available only in the LabVIEW
Professional Development System, to configure source control for a
third-party source control provider and set source control options in
LabVIEW.

• Use the Security page to set security options for LabVIEW.

• Use the Shared Variable Engine page to set time synchronization for
shared variables.

• Use the Labels snap to preset positions on controls/terminals,
Labels locked by default, and Default label position options on the
Front Panel and Block Diagram pages to snap, lock, and position
labels and captions for new objects.

• Select the Tree option from the Format pull-down menu on the
Controls/Functions Palettes page to display palette items in a tree
control. Place a checkmark in the Sort palette items checkbox to sort
items on the palette in alphabetical order if you selected the Text or the
Tree option from the Format pull-down menu.

• Use the Service name option on the VI Server: Configuration page
to set the TCP/IP service name at which the VI Server listens for
requests.

© National Instruments Corporation 83 LabVIEW Upgrade Notes

Save As and Save for Previous Version Dialog Boxes
Select File»Save As on a previously saved VI to display the Save As dialog
box. Select File»Save for Previous Version to display the Save for
Previous Version dialog box.

The Save with Options dialog box was removed. Use the Save As dialog
box or the Save for Previous Version dialog box instead. You also can
access the Source Distribution Properties dialog box from the Save As
dialog box to create a source distribution and configure settings for
specified VIs to add passwords, remove block diagrams, or apply other
settings.

File Size Improvements
Saving VIs from earlier versions of LabVIEW in LabVIEW 8.0
significantly decreases their file size. The file size of VIs you save in
LabVIEW 8.0 is about 55% less than the file size of the same VIs in
LabVIEW 7.1. The file size of LLBs in LabVIEW 8.0 is about 20% less
than the file size of the same LLBs in LabVIEW 7.1.

Using Shared Libraries in Multiple Versions of LabVIEW
In LabVIEW 7.x and earlier, if you build a shared library (DLL) in one
version of LabVIEW and use that shared library in another version of
LabVIEW, LabVIEW might return an error because a different version of
the LabVIEW Run-Time Engine calls the shared library. In LabVIEW 8.0,
you can use shared libraries in multiple versions of LabVIEW, or in
multiple versions of the Run-Time Engine, if you create shared libraries
using the labviewv.lib instead of the labview.lib.

Setting the Window Run-Time Position
Select File»VI Properties and select Window Run-Time Position from
the Category pull-down menu to customize the run-time front panel
window position and size. You also can use the Front Panel:Run-Time
Position methods to customize the run-time front panel window position
and size programmatically.

The Maximized selection in the Position pull-down menu replaces the
Size the front panel to the width and height of the entire screen
checkbox on the Window Size page of the VI Properties dialog box in
previous versions of LabVIEW.

Similarly, the Centered selection in the Position pull-down menu replaces
the Auto-Center checkbox in the Customize Window Appearance
dialog box in previous versions of LabVIEW.

LabVIEW Upgrade Notes 84 ni.com

In previous versions of LabVIEW, if you set Auto-Center or Size the front
panel to the width and height of the entire screen for a VI, the VI did not
return to the edit mode position when stopped. The VI remained either
centered or the size of the screen. LabVIEW 8.0 returns the VI to the edit
mode position when stopped.

Setting Run-Time Language Preferences
You can set the language preferences for a stand-alone application in the
following ways. The methods listed first take higher precedence than those
listed later.

• Run the application with the –lang language command line option,
where language is the English name of the language you want to use.

• Add the following line to the .ini file for the application:
AppLanguage=language, where language is the English name of
the language you want to use.

• (Windows) If you do not specify the language you want to use in the
command line or the .ini file of the application, the application uses
the same language as the operating system.

• If the application does not support the operating system language, the
application uses the default language for the application.

• If you do not specify any of the above language preferences, the
application uses the first available supported language in alphabetical
order. If the application cannot use any of the supported languages,
LabVIEW cannot load the application.

VI Server Enhancements
The VI Server provides more detailed error reports than in LabVIEW 7.x
and earlier. For example, if an error occurs when you use the Open VI
Reference function, the error report states which VI is the source of error.
If you load a VI without a front panel, you receive an error stating that
LabVIEW cannot load the front panel. Error reports also contain the names
of specific properties and methods that produce errors.

Using VI Server References
The control reference constant was renamed to the VI Server reference.
You can place this reference on the block diagram and link it to the current
VI or application or to a control or indicator in the VI. You can use this
reference to access the properties and methods for the associated VI,
application, control, or indicator.

Use the Operating tool to click the VI Server reference on the block
diagram and select This Application or This VI to link the reference to the
current application or VI. You also can right-click the VI Server reference

© National Instruments Corporation 85 LabVIEW Upgrade Notes

and select Link to»This Application or Link to»This VI from the shortcut
menu. To link the reference to a control or indicator within the VI, click or
right-click the reference in the same way and then select the control or
indicator to which you want to link from the shortcut menu.

LabVIEW-built executables cannot open VI Server references to
polymorphic VIs. When LabVIEW builds an executable, LabVIEW
removes the polymorphic VI and instead builds the polymorphic instances
into the executable. Perform VI Server operations on the polymorphic
instances directly.

NI Security for VI Server
The VI Server includes NI Security, which gives you more control over
which clients are allowed to make a VI Server connection. In LabVIEW 7.x
and earlier, the VI Server allows or denies connections based on the
machine address of the client. In LabVIEW 8.0, with NI Security
integration, a VI Server can allow or deny connections based on users
and groups.

NI Security for VI Server is disabled by default. When NI Security is
disabled, you can use only the machine address to allow or deny
connections. To enable NI Security, you must specify if a user or group is
allowed or denied access. Select Tools»Options to display the Options
dialog box and select VI Server: User Access from the Category list to
display the VI Server: User Access page, which you can use to allow or
deny access. An empty user control access list means NI Security is
disabled for VI Server.

In LabVIEW 8.0, clients open VI Server connections in the same way they
do in LabVIEW 7.x and earlier. If the server has VI Server user or group
restrictions, the client might need to login before making the connection.
Use the NI Security Login dialog box or login programmatically using the
NI Security:Login method. If a user is not allowed to make a connection,
the server closes the connection and returns the
kLVE_NISecurity_AuthenticationFailed (1379) error to the client.

If a client changes while a VI Server connection is open, the client
automatically sends a message to the server notifying the server that the
user changed. If the server does not allow this new client to connect, the
server closes the VI Server connection and returns the
kLVE_NISecurity_AuthenticationFailed (1379) error.

LabVIEW Upgrade Notes 86 ni.com

Class Browser Window
You can use the Class Browser window to select available object libraries
and view classes, properties, and methods within the selected object
library. You can create Property Nodes or Invoke Nodes with the selected
property or method. You also can search for classes, properties, and
methods or create dotted properties and methods using the Class Browser
window. Select View»Class Browser to display the Class Browser
window.

You can edit an existing Property or Invoke Node by right-clicking a
property on a Property Node and selecting Select Property from the
shortcut menu or right-clicking an Invoke Node and selecting Select
Method from the shortcut menu.

Using .NET Assemblies
LabVIEW automatically loads the latest installed version of the .NET
Common Language Runtime (CLR). If you develop a .NET application
using an earlier version of .NET, install a later version of .NET, and
redistribute that application, users with the previous .NET version cannot
execute the application. You can use a configuration file to load a specific
CLR version. This way, you can install a later version of .NET and continue
developing .NET applications, and other users can continue to execute the
application with the previous version of .NET.

In LabVIEW 7.x, you must select Tools»Advanced».NET Assembly
References to register private .NET assembly files manually so you can use
VIs that refer to those assemblies. In LabVIEW 8.0, you do not need to
register private .NET assembly files, and LabVIEW 8.0 does not have the
Tools»Advanced».NET Assembly References menu item. Instead, you
can place a Constructor Node to create a reference to a private .NET
assembly that you specify. LabVIEW stores the relative path from the
assembly to the VI that contains the .NET object. LabVIEW loads
assemblies more efficiently if you store them in the Global Assembly
Cache (GAC), in the same directory as the LabVIEW project file, or in a
subdirectory of the LabVIEW project.

The .NET CLR uses configuration settings to determine the assembly
version to load. These configuration settings might override your request
for a specific assembly version. For example, the system administrator can
configure your computer to load version 1.0.0.1 instead of 1.0.0.0. If you
then try to load version 1.0.0.0, the .NET CLR promotes the assembly
version to 1.0.0.1. LabVIEW also launches a dialog box that notifies you of
the promotion.

© National Instruments Corporation 87 LabVIEW Upgrade Notes

If you move a VI that uses a private assembly to a different folder or
computer, you must keep the assembly in the same location relative to the
VI. If LabVIEW cannot find an assembly file in the GAC, the directory that
contains the project, or the relative path stored in the VI, LabVIEW
prompts you to find the assembly file.

If you build a VI that uses a private assembly into a shared library or
stand-alone application, LabVIEW copies the associated private .NET
assembly files to the data subdirectory in the same directory as the library
or application.

In LabVIEW 8.0, .config files apply to a saved project, shared library, or
stand-alone application.

Instrument Driver Finder
The Instrument Driver Finder, available by selecting Tools»
Instrumentation»Find Instrument Drivers, gives users an easy way to
search for and install LabVIEW Plug and Play instrument drivers without
having to leave the LabVIEW development environment. The Instrument
Driver Finder also displays the instrument drivers in instr.lib and
searches for connected instruments using NI-VISA.

Note The Instrument Driver Finder is not available on Mac OS.

Instrument Driver VI Wizard
The Instrument Driver VI Wizard extends the existing instrument driver
project library. Create or open an instrument driver project, right-click the
project library in the Project Explorer window, and select New»
Instrument Driver VI from the shortcut menu to launch the Instrument
Driver VI Wizard. Use the wizard to create an instrument driver VI and
insert the VI into an instrument driver project library. You also can use the
wizard to configure parameters of an instrument command string that
correspond to front panel controls and to define how to parse an instrument
response.

Instrument Driver Project Wizard
The Instrument Driver Project Wizard, available by selecting Tools»
Instrumentation»Create Instrument Driver Project, automates the
creation of an instrument driver project, including VIs for controlling a
programmable instrument such as GPIB, RS-232, Ethernet, and USB
instruments. The wizard creates instrument driver VIs and palette menus
for viewing the driver VIs in the Functions palette. You can create an
instrument driver from a class template, a general purpose message-based
template, or an existing driver for a similar instrument.

LabVIEW Upgrade Notes 88 ni.com

The available class templates are DC Power Supply, Digital Multimeter,
Function Generator, and Oscilloscope. You can use the General Purpose
template for any message-based instrument. If the instrument is similar to
an existing instrument, you can start a new driver based on an existing
instrument driver.

If you create a new instrument driver based on an existing instrument
driver, the existing instrument driver project must be installed in the
labview/instr.lib directory before you launch the Instrument Driver
Project Wizard. The existing instrument driver must be a project-style
driver. You can download and install project-style drivers using the
NI Instrument Driver Finder.

The Instrument Driver Project Wizard creates a LabVIEW project that uses
a standard format for LabVIEW Plug and Play instrument drivers. The
project includes VIs and palette menu files that comply with the instrument
driver guidelines. Once the wizard creates the project, you need to
customize each VI to work with an instrument. You can use the Instrument
Driver VI Wizard to create an instrument driver VI and insert the VI into
the instrument driver project library.

Using and Debugging Reentrant VIs
Use LabVIEW to accomplish the following tasks with reentrant VIs:

• You can debug reentrant VIs. You can view an instance of the block
diagram of any reentrant VI for debugging purposes; however, you
cannot edit the block diagram instance. Within the block diagram, you
can set breakpoints, use probes, enable execution highlighting, and
single-step through execution. To allow debugging on a reentrant VI,
select File»VI Properties to display the VI Properties dialog box,
select Execution from the pull-down menu, and place a checkmark in
the Allow debugging checkbox.

• You can use the VI Properties dialog box to set a reentrant VI to open
the front panel during execution and optionally reclose it after the
reentrant VI runs.

• You can use the VI Server to programmatically control the front panel
controls and indicators on a reentrant VI at run time; however, you
cannot edit the controls and indicators at run time. You can use many
VI Server methods and properties, such as Control Value:Get
[Flattened], Control Value:Set [Flattened], and Run VI to
communicate with the reentrant instance of a VI, when the reference is
to that instance.

• You also can use the VI Server to create a copy of the front panel of a
reentrant VI at run time. To copy the front panel of a reentrant VI, use
the Open VI Reference function to open a VI Server reference. Wire a
strictly typed VI reference to the type specifier input or wire open for

© National Instruments Corporation 89 LabVIEW Upgrade Notes

reentrant run to the option input. When you open a reference,
LabVIEW creates a copy of the VI. You also can use the VI Server
or the VI Properties dialog box to open the front panel of the
reentrant VI.

• You can configure an Event structure case to handle events for front
panel objects of a reentrant VI.

• You can view and control the front panels of reentrant VIs remotely
either from within LabVIEW or from within a Web browser, by
connecting to the LabVIEW built-in Web Server. When you use the
Web Server, multiple users can access a controller interface to a VI.
Each connection gets its own instance.

• The Facade VI of an XControl must be a reentrant VI.

• The front panel of a reentrant VI also can be a subpanel.

• In previous versions of LabVIEW, only one front panel appears for
every instance of a reentrant VI, so the values of controls and
indicators are not always accurate. In LabVIEW 8.0, each instance of
a reentrant VI has its own front panel, ensuring accurate values of
controls and indicators every time.

When you open a reentrant subVI from the block diagram, LabVIEW
opens a clone of the VI instead of the source VI. The title bar of the VI
contains (clone) to indicate that it is a clone of the source VI. You cannot
edit the clone VI.

Creating Probes after a VI Runs
You can configure a VI to retain wire values so that when you create a
probe on the block diagram, the probe displays the data that flowed through
the wire at the last VI execution. Click the Retain Wire Values button to
save the wire values at each point in the flow of execution so that when you
place a probe on a wire, you can immediately obtain the most recent value
of the data that passed through the wire. You must successfully run the VI
at least once before you can collect data from any wires using probes. Using
probes after a VI runs is useful when the block diagram is complex and you
want to debug the VI.

Click the Retain Wire Values button on the block diagram toolbar to retain
wire values for use with probes.

Click the Do Not Retain Wire Values button at any time to refrain from
saving wire values at each execution.

Note Choose the Do Not Retain Wire Values option to reduce memory requirements and
improve performance slightly.

LabVIEW Upgrade Notes 90 ni.com

Profiling VIs in Multiple Targets
You can use the Profile Performance and Memory window to profile VIs
in different targets simultaneously. The Profile Performance and
Memory window includes a new Project Library column that displays the
LabVIEW project library (*.lvlib) and targets. You can use this column
to differentiate VIs that have the same name but are included in different
project libraries or loaded on different targets. The Profile Performance
and Memory window has a new Select Application Instances button,
which launches the Select Application Instances dialog box. Use this
dialog box to select the targets for which the Profile Performance and
Memory window displays data. Next to the Select Application Instances
button is a legend that shows each target accessed by the Profile
Performance and Memory window and the color LabVIEW uses to
represent it. Select Tools»Profile»Performance and Memory to launch
the Profile Performance and Memory window, which was previously
accessible by selecting Tools»Advanced»Profile VIs.

Note A LabVIEW project (*.lvproj) is a collection of VIs, build specifications, and so
on. All files related to a project appear in the Project Explorer window. You can profile
only one project at a time. If the Profile Performance and Memory window is already
open, the Tools»Profile»Performance and Memory option is disabled.

64-Bit Integer Data Types
Use the 64-bit signed and unsigned integer data types to use, view, and
store large integers.

All functions with polymorphic numeric inputs support the 64-bit integer
data types. LabVIEW coerces 64-bit inputs for the rotation amount, shift
amount, and power of the Rotate, Logical Shift, and Scale By Power Of 2
functions, respectively, to 32-bit integers. You must wire a 64-bit integer to
the string input of the Decimal String To Number, Hexadecimal String To
Number, Octal String To Number, and Fract/Exp String To Number
functions if you want the functions to return a 64-bit integer output.

Use the To Quad Integer and To Unsigned Quad Integer functions to
convert numbers to 64-bit signed or unsigned integers, respectively.

NI Spy
NI Spy is a tool for monitoring instrument I/O communications while your
application runs. You can use NI Spy to capture instrument I/O calls and
their results while LabVIEW VIs run. Capturing calls and their results can
help you debug problems with instrument communications. (Windows)
Select Start»National Instruments»NI Spy to launch NI Spy. (Mac OS)
Select Applications»National Instruments»NI Spy and double-click the

© National Instruments Corporation 91 LabVIEW Upgrade Notes

NI Spy icon to launch NI Spy. (Linux) Type nispy in the command line to
launch NI Spy.

Find and Replace Functionality
In LabVIEW 7.x and earlier, you can replace an object on the block
diagram by right-clicking the object and selecting Replace from the
shortcut menu. In LabVIEW 8.0, you can replace multiple objects or pieces
of text at once. Use the Find dialog box to search VIs for VIs, objects, and
text. Then use the Search Results window to replace all or only selected
items with other objects or text.

Customizable Keyboard Shortcuts
Use the Menu Shortcuts page of the Options dialog box to set keyboard
shortcuts for VI menu items. You can use the <F1> to <F24> function keys
without using the <Ctrl> key as a modifier key.

Print Dialog Box Enhancements
The Print dialog box includes the following enhancements:

• Use the Select VI(s) page to select whether you want to print the
current VI or multiple VIs.

• Use the Complete front panel, Visible portion of front panel, and
VI documentation options on the Print Contents page to select the
print content. The Using the panel, Using as a SubVI, Complete
documentation, and Custom documentation options moved from the
Print Contents page to the VI Documentation page, which you
access by selecting the VI documentation option.

• The Custom details page was renamed to the VI Documentation
page. Use the VI Documentation Style option to set the components
in the VI Documentation page. The Icon and connector pane and
Description options replaced the Icon and description option and its
components. Use the Label, Caption, and Caption [Label]
components under the Controls option to print labels and/or captions
for controls and indicators.

• This dialog box prints documentation for VIs in the current application
instance. To print documentation for VIs in multiple application
instances, you must repeat a print operation in each application
instance.

LabVIEW Upgrade Notes 92 ni.com

Editing VI Icons
Use the lv_icon VI template in the labview\resource\plugins
directory to create a VI with which you can edit VI icons outside of the Icon
Editor dialog box. Refer to the SAMPLE_lv_icon VI for an example of
creating an icon editor VI.

Documentation Enhancements and Changes
LabVIEW 8.0 includes the following documentation enhancements and
changes.

Documentation Reorganization
The LabVIEW Help now contains conceptual content from many of the
LabVIEW 7.x and earlier manuals and application notes. LabVIEW
therefore does not ship with a PDF library or with PDF versions of the
LabVIEW Measurements Manual, Using External Code in LabVIEW,
LabVIEW Development Guidelines, LabVIEW Analysis Concepts, or
application notes.

The following table compares the location for documentation in
LabVIEW 7.x with the location in LabVIEW 8.0.

Table 5. LabVIEW 8.0 Documentation Reorganization

Documentation LabVIEW 7.x LabVIEW 8.0

Getting Started with LabVIEW print and PDF print and PDF

LabVIEW Release Notes print and PDF print and PDF

LabVIEW Upgrade Notes print and PDF print and PDF

LabVIEW Quick Reference
Card

print and PDF print and PDF

LabVIEW User Manual print and PDF LabVIEW Help: Fundamentals
(subset in print)

LabVIEW Measurements
Manual

print and PDF LabVIEW Help: Taking
Measurements; Controlling
Instruments

LabVIEW Application
Builder Readme

print and PDF
(LabVIEW Application
Builder User Guide)

labview\readme directory

LabVIEW Development
Guidelines

print and PDF LabVIEW Help: Fundamentals»
Development Guidelines

© National Instruments Corporation 93 LabVIEW Upgrade Notes

LabVIEW Analysis Concepts PDF LabVIEW Help: Fundamentals»
Signal Processing and Analysis

Using External Code in
LabVIEW

PDF LabVIEW Help: Fundamentals»
Calling Code Written in
Text-Based Programming
Languages

Integrating the Internet
into Your Measurement
System—DataSocket
Technical Overview

PDF —

LabVIEW and
Hyper-Threading

PDF LabVIEW Help: Fundamentals»
LabVIEW and Hyperthreading

LabVIEW Custom Controls,
Indicators, and Type
Definitions

PDF LabVIEW Help: Fundamentals»
Building the Front Panel»
Concepts»Creating Custom
Controls, Indicators, and Type
Definitions

LabVIEW Data Storage PDF LabVIEW Help: How LabVIEW
Stores Data in Memory

LabVIEW Performance and
Memory Management

PDF LabVIEW Help: Fundamentals»
Managing Performance and
Memory»Concepts»Using the VI
Profile Window to Monitor VI
Performance

Polymorphic Units in
LabVIEW

PDF LabVIEW Help: Fundamentals»
Creating VIs and SubVIs»
Concepts»Using Polymorphic
Units

Porting and Localizing
LabVIEW VIs

PDF LabVIEW Help: Fundamentals»
Porting and Localizing VIs

Using Apple Events and the
PPC Toolbox to Communicate
with LabVIEW Applications on
the Macintosh

PDF —

Table 5. LabVIEW 8.0 Documentation Reorganization (Continued)

Documentation LabVIEW 7.x LabVIEW 8.0

LabVIEW Upgrade Notes 94 ni.com

(Windows) Complete the following steps to print an entire book from the
Contents tab in the LabVIEW Help:

1. Right-click the book.

2. Select Print from the shortcut menu to display the Print Topics dialog
box.

3. Select the Print the selected heading and all subtopics option.

Note Select Print the selected topic if you want to print the single topic you have selected
in the Contents tab.

4. Click the OK button.

This help file may contain links to PDF documents. To print PDF
documents, click the print button located on the Adobe Acrobat Viewer
toolbar.

Use the Adobe Reader with Search and Accessibility 6.x or
later to search the PDF versions of the LabVIEW User Manual, LabVIEW
Release Notes, LabVIEW Upgrade Notes, Getting Started with LabVIEW
Manual, and LabVIEW Application Builder Readme. Complete the
following steps to search all the LabVIEW PDF documents that ship with
LabVIEW.

1. Select Edit»Search to display the Search PDF window.

2. Enter a word or phrase in the What word or phrase would you like
to search for text box.

Using LabVIEW to Create
Multithreaded VIs for
Maximum Performance and
Reliability

PDF LabVIEW Help: Fundamentals»
Definitions: Multitasking,
Multithreading, and
Multiprocessing

Using LabVIEW with TCP/IP
and UDP

PDF LabVIEW Help: Using LabVIEW
with TCP/IP and UDP

Using LabVIEW with Wireless
Devices

PDF LabVIEW Help: Using LabVIEW
with Wireless Devices

Using the Timed Loop to Write
Multirate Applications in
LabVIEW

PDF LabVIEW Help: Fundamentals»
Loops and Structures»Timed
Structures

Table 5. LabVIEW 8.0 Documentation Reorganization (Continued)

Documentation LabVIEW 7.x LabVIEW 8.0

http://www.adobe.com/
http://www.adobe.com/

© National Instruments Corporation 95 LabVIEW Upgrade Notes

3. Click the All PDF Documents in button and select the labview\
manuals directory from the drop-down list.

4. Click the Search button.

Refer to the Adobe Reader Help for more information about searching all
the PDF documents in a folder for a word or phrase.

Readme Files
The readme directory in the LabVIEW file structure contains the
LabVIEW readme file and readme files for any modules or toolkits you
installed. Access the readme files by selecting Start»All Programs»
National Instruments»LabVIEW»Readme.

Locate Button
In the LabVIEW Help, if you navigate to a topic using the Index, Search,
or Favorites tabs, click the Locate button to find the topic in the table of
contents.

Note LabVIEW does not list dialog box reference topics in the table of contents.

Accessing Examples
You can right-click a VI or function on the block diagram or on a pinned
palette and select Examples from the shortcut menu to open a help topic
with links to examples for that VI or function. Click the thumbtack in the
upper left corner of a palette to pin the palette.

Context Help Window
In the Context Help window, the Click here for more help link and the
More Help button were both renamed to Detailed help.

NI Example Finder Enhancements
Use the Requirements list on the Browse and Search tabs of the
NI Example Finder to display additional hardware and software that are
required to use an example. Place a checkmark in the Show Requirements
list checkbox on the General tab of the Configure Example Finder dialog
box to display the Requirements list in the NI Example Finder.

You can use the NI Example Finder to display or submit comments or
ratings for Web examples on the NI Developer Zone. The NI Example
Finder also includes links to related documents for Web examples. Place a
checkmark in the Show Resources list checkbox on the Web tab of the
Configure Example Finder dialog box to display the Resources list.

http://www.ni.com/cgi-bin/redirect.cgi?dest=infcoprod&src=lvhelp&openagent&code=rdbp05

LabVIEW Upgrade Notes 96 ni.com

Use the Browse tab of the NI Example Finder to browse the NI Developer
Zone examples that apply to a specific task you want to complete with
hardware or software. (Windows and Linux) Select the Task option in the
Browse according to section and place a checkmark in the Include ni.com
examples checkbox to browse Web examples. You can use the Maximum
number of Web query results field on the Web tab of the Configure
Example Finder dialog box to specify the maximum number of Web
examples to display. You also can use the Web query time limit (seconds)
field on the Web tab of the Configure Example Finder dialog box to
specify how long the NI Example Finder searches for Web examples before
it times out.

If you are browsing examples by task, the Toolkits and Modules Not
Installed folder in the Double-click an example to open it list includes
examples for toolkits and modules that are not currently installed. If you
select an example in the Toolkits and Modules Not Installed folder, the
Requirements list includes a link to more information about the required
toolkit or module.

Use the Search tab of the NI Example Finder to search for examples
installed on your computer by keyword or description. Select the
Keywords option from the pull-down menu beside the Search button to
search by keyword. Select the Descriptions option from the pull-down
menu beside the Search button to search the example descriptions. You
must remove the checkmark in the Include ni.com examples checkbox to
search for examples by description. If you searched the examples by
description, the text you searched for is highlighted in the Information
text box.

Use the NI Example Finder to search or browse for VI-based or
project-based examples for LabVIEW. When you open a project-based
example, the LabVIEW project file (.lvproj) opens in the Project
Explorer window. Double-click the VI under My Computer in the
Project Explorer window to open the example. The behavior of VI-based
examples is unchanged.

In LabVIEW 7.x and earlier, the NI Example Finder can find only DAQ
boards you have installed. In LabVIEW 8.0, the NI Example Finder finds
most hardware you have installed. You still can add uninstalled hardware to
search by clicking the Setup button to display the Configure Example
Finder dialog box.

© National Instruments Corporation 97 LabVIEW Upgrade Notes

Other LabVIEW 8.0 Features and Changes
LabVIEW 8.0 includes the following miscellaneous features and changes.

Changes to Existing VIs and Functions
LabVIEW 8.0 includes the following changes to existing VIs and
functions:

• The duplicate VISA resource name output of the VISA Configure
Serial Port and VISA Serial Break VIs now is called VISA resource
name out. The dup VISA USB Intr Event output of the VISA Get
USB Interrupt Data VI now is called VISA USB Intr Event out. The
dup VISA resource name output of all other VISA VIs and functions
now is called VISA resource name out.

• The protocol input of the VISA Assert Trigger function has two new
values—6 (PXI: Reserve) and 7 (PXI: Unreserve).

• The VISA Lock Async VI has two new inputs, lock type and
requested key, and one new output, access key. Use these parameters
to request an exclusive or shared lock for the current session.

• The Duration input of the VISA Serial Break VI specifies the length
of the break in milliseconds.

• The event resource class input of the VISA Wait on Event function
now is called event class and is optional instead of required.

• The Get Waveform Components function retrieves the Y data array by
default.

• When you drop the Compound Arithmetic function from the Numeric
palette, the default mode is Add. When you drop the Compound
Arithmetic function from the Boolean palette, the default mode is OR.

• Performance of the To Variant, Variant To Data, Variant To Flattened
String, and Set Variant Attribute functions improved. Most VIs that
call these functions run faster, but performance is improved most
notably for VIs with large data sets.

• The string parameter of the Search and Replace String function now
is called input string. The Search and Replace String function also has
five new parameters. The ignore case? parameter specifies whether
the string search is case sensitive. The multiline? parameter specifies
whether to match the ^ and $ symbols to the beginning and end of a
line, respectively, or to the beginning and end of the whole string,
respectively. The number of replacements parameter returns the
number of times LabVIEW replaced the search string. This function
also now has error in and error out parameters.

• The Transparency Thresh input of the Read PNG File VI
incorporates alpha information for a 32-bit PNG image into the mask
of the resulting image data. LabVIEW treats as opaque any alpha

LabVIEW Upgrade Notes 98 ni.com

values equal to or greater than Transparency Thresh. LabVIEW
treats all other alpha values as fully transparent. The value of
Transparency Thresh must be between 0 and 255.

• The compare mode input of the Search for Digital Pattern VI specifies
how to handle values of X for the search. The mode and start
index/seconds inputs of the DWDT Search for Digital Pattern instance
of this VI now are called start value format and start, respectively.
The Index mode now is called Samples.

• The mode and index/seconds inputs of the waveform instances of the
Get Y Value VI now are called Y position format and Y position,
respectively. The actual index/time value output of these instances
now is called actual Y position.

• The waveform data value output of the DWDT Get Y Value instance
of the Get Y Value VI returns the values of the waveform data.

• The digital data value output of the DTbl Get Y Value instance of the
Get Y Value VI returns the values of the digital data. The Digital In
input of this instance now is called digital data in. The Digital Out
and Digital Value outputs of this instance now are called digital data
out and digital value, respectively.

• The Mode, Waveform in, Start, and Duration inputs of the WDT
Get Waveform Subset and DWDT Get Waveform Subset instances of
the Get Waveform Subset VI now are called start/duration format,
waveform in, start, and duration, respectively. The Index mode now
is called Samples. The WDT Get Waveform Subset instance also has
a new start/duration format, Absolute Time. The Waveform out,
Actual Start, and Actual Duration outputs of the WDT Get
Waveform Subset and DWDT Get Waveform Subset instances of the
Get Waveform Subset VI now are called waveform out, actual start,
and actual duration, respectively.

• The Digital, Start, and Number of Samples inputs of the DTbl
Digital Subset instance of the Get Waveform Subset VI now are called
digital data, start, and number of samples, respectively. The Digital
Subset output of this instance now is called digital data subset.

• The Get Y Value, Waveform to XY Pairs, Index Waveform Array,
Align Waveform Timestamps, Append Waveforms, Copy Waveform
dt, and Scale Delta t VIs have instances for 64-bit signed integers. The
Waveform to XY Pairs VI also has an instance for 64-bit unsigned
integers.

• The Boolean Array to Digital VI has two new inputs. compress data
specifies whether to compress the digital output. sample rate specifies
the frequency in samples per second of the output digital waveform.

© National Instruments Corporation 99 LabVIEW Upgrade Notes

• The response on error input of the Invert Digital VI now is called
response to invert error. The Invert Digital VI also has two new
inputs. signal index specifies the signal at which to begin inverting
data. number of signals specifies the number of signals to invert,
beginning with the signal at signal index.

• The use system alert? input of the Beep VI specifies whether
LabVIEW uses the default system alert and ignores frequency (Hz)
and duration (msec). This VI does not have the intensity input or the
error output from LabVIEW 7.x and earlier.

• If the Prompt to Replace? input of the Save Report to File VI is TRUE
and report file path is a path to an existing file, LabVIEW opens a
dialog box to confirm that you want to replace the existing file.
Otherwise, LabVIEW overwrites the existing file without warning.

• The default measurement system for column width for the Append
Table to Report VI is Default. If you use this VI to append a table to
an HTML report, LabVIEW ignores the measurement system for
column width input. Instead, this VI multiplies the column width
input by 100 to determine the maximum column width in pixels.

• The Include Express VI Configuration Information input of the
Append VI List of SubVIs to Report VI specifies whether the report
includes configuration information for any Express VIs on the block
diagram.

• The space constant has been added to the Strings palette. The space
constant supplies a one-character space string to the block diagram

• The Flatten To String function has two new inputs: prepend array or
string size?, which indicates whether LabVIEW includes data size
information at the beginning of data string when anything is an array
or string, and byte order, which sets the endian order of the resulting
flattened string. If you use the default values of these new inputs, this
function behaves as before. The function also has a new error in input
and a new error out output.

• The Flatten To String function has a new shortcut menu item, Convert
7.x Data, which shows the type string (7.x only) output and displays
the icon for this function with a red 7.x on it. The Expose Typedefs
shortcut menu item is only visible if you wire type string (7.x only).
The type string output was renamed type string (7.x only), and is only
visible if the terminal is already wired from a previous version of
LabVIEW or if you right-click the function and select Convert 7.x
Data from the shortcut menu.

• The Unflatten From String function has two new inputs: data includes
array or string size?, which indicates whether LabVIEW reads data
size information from the beginning of an incoming array or string, and
byte order, which indicates the endian order of the incoming flattened
string. If you use the default values of these new inputs, this function

LabVIEW Upgrade Notes 100 ni.com

behaves as before. The function also has a new output, rest of the
binary string, which contains any leftover bytes that this function did
not convert. The err output changed to a new error in input and a new
error out output.

• The Date/Time to Seconds function has a new input, is UTC, which
specifies whether date time rec is in Universal Time or in the
configured time zone for the computer. In LabVIEW 7.x, the
Date/Time to Seconds function ignored the is DST parameter because
the function computed based on Universal Time. If is UTC is FALSE
(default), LabVIEW 8.0 converts the time based on is DST. When you
open a VI saved in LabVIEW 7.x or previous, LabVIEW assigns the
value -1 to is DST to avoid the conversion.

• The Date/Time to Seconds and Seconds to Date/Time functions have a
new element in the date time rec cluster, fractional second, which is
the fractions of a second since the start of the second.

• The to UTC input of the Seconds to Date/Time function specifies
whether date time rec is in Universal Time or in the configured time
zone for the computer.

• The Format Date/Time String function has a new input, UTC format,
which specifies whether the output string is in Universal Time or in the
configured time zone for the computer.

• The Format Into String and Scan From String functions include
support for time stamp data. The Edit Format String dialog box has
Format relative time and Format time stamp conversion options,
and the Edit Scan String dialog box has Scan relative time and Scan
time stamp conversion options.

• Use the $ format specifier syntax element with the Format Into String
function to specify the order of variables in the format string.

• The Create if not found input of the String, DBL, SGL, I32, I16, U8,
and Time stamp instances of the Set Property VI specifies whether to
create a custom property if the property you specify in Property name
does not exist.

New Example VIs
Refer to the New Examples for LabVIEW 8.0 folder on the Browse tab
of the NI Example Finder to view descriptions for and launch example VIs
added to LabVIEW 8.0.

Changes to the External Code Functions
You can call the following new functions from a DLL or CIN.

• CToLStr converts a C string to a LabVIEW string.

• LToCStr converts a LabVIEW string to a C string.

© National Instruments Corporation 101 LabVIEW Upgrade Notes

• DSSetHandleFromPtrNULLMeansEmpty allocates a handle from a
pointer and copies the data from the pointer into the handle. This
function is similar to the DSSetHandleFromPtr function except that
when the pointer has no data, the
DSSetHandleFromPtrNULLMeansEmpty function nulls out the
handle rather than allocating a handle for zero bytes.

• NIGetOneErrorCode converts a numeric error code to the
appropriate text description.

The CIN does not support the AZHPurge, AZHNoPurge, AZHLock, or
AZHUnlock functions from LabVIEW 7.x and earlier.

Renamed Properties and Methods
LabVIEW 8.0 includes new VI Server classes, properties, methods, and
events. Refer to the LabVIEW Help for a list of these new VI Server items.
The following properties and methods also were renamed in LabVIEW 8.0.

Properties
The following properties were renamed.

Table 6. Renamed Properties in LabVIEW 8.0

Class LabVIEW 7.1 Name LabVIEW 8.0 Name

Application Application:Real-Time Host
Connected

Application:User Interface Available

DigitalTable Cell BG Color Active Cell:Cell Background Color

DigitalTable Cell FG Color Active Cell:Cell Foreground Color

DigitalTable Top Left Visible Cell Top Left Cell

Listbox Scrollbar Visible Visible Items:Vertical Scrollbar Visible

Listbox Symbols Visible Visible Items:Symbols Visible

MulticolumnListbox Cell Background Color Active Cell:Cell Background Color

MulticolumnListbox Cell Size Active Cell:Cell Size

MulticolumnListbox Column Headers Visible Visible Items:Column Headers Visible

MulticolumnListbox Horizontal Scrollbar Visible Visible Items:Horizontal Scrollbar
Visible

MulticolumnListbox Symbols Visible Visible Items:Symbols Visible

MulticolumnListbox Vertical Scrollbar Visible Visible Items:Vertical Scrollbar Visible

Scale Minor Tick Color Tick Colors:Minor Tick Color

LabVIEW Upgrade Notes 102 ni.com

Methods
The following methods were renamed.

String Scrollbar Visible Vertical Scrollbar Visible

Table Cell BG Color Active Cell:Cell Background Color

Table Cell Size Active Cell:Cell Size

Table Column Headers Visible Visible Items:Column Headers Visible

Table Horizontal Scrollbar Visible Visible Items:Horizontal Scrollbar
Visible

Table Index Visible Visible Items:Index Visible

Table Row Headers Visible Visible Items:Row Headers Visible

Table Vertical Scrollbar Visible Visible Items:Vertical Scrollbar Visible

TreeControl Allow Dragging Drag/Drop:Allow Item Dragging

TreeControl Allow Dragging Between
Items

Drag/Drop:Allow Dropping Between
Items

TreeControl Allow Dragging of Parent
Items

Drag/Drop:Allow Dragging of Parent
Items

WaveformChart Autosize Legend Legend:Autosize

WaveformGraph Autosize Legend Legend:Autosize

Table 7. Renamed Methods in LabVIEW 8.0

Class LabVIEW 7.1 Name LabVIEW 8.0 Name

Control Reinit To Dflt Reinitialize To Default

Listbox Get DblClk Row Get Double-Clicked Row

MulticolumnListbox Get DblClk Row Get Double-Clicked Row

Text MoveToDefLoc Move to Default Location

TreeControl Custom Item Symbols:Revert
Symbol

Custom Item Symbols:Revert To Built In
Symbol

TreeControl Custom Item Symbols:Revert
Symbols

Custom Item Symbols:Revert All To
Built In Symbol

Table 6. Renamed Properties in LabVIEW 8.0 (Continued)

Class LabVIEW 7.1 Name LabVIEW 8.0 Name

© National Instruments Corporation 103 LabVIEW Upgrade Notes

TreeControl Custom Item Symbols:Set
Symbol

Custom Item Symbols:Set To Custom
Symbol

TreeControl Custom Item Symbols:Set
Symbol Array

Custom Item Symbols:Set To Custom
Symbol Array

VI Close FP Front Panel:Close

VI Export VI Strings VI Strings:Export

VI Get All Control Values Control Value:Get All [Flattened]

VI Get All Control Values
[Variant]

Control Value:Get All [Variant]

VI Get Control Value Control Value:Get [Flattened]

VI Get Control Value [Variant] Control Value:Get [Variant]

VI Get Diagram Image Scaled Block Diagram:Get Image Scaled

VI Get Lock State Lock State:Get

VI Get Panel Image Front Panel:Get Panel Image

VI Get Panel Image Scaled Front Panel:Get Panel Image Scaled

VI Get VI Icon as Image Data VI Icon:Get As Image Data

VI Import VI Strings VI Strings:Import

VI Lock Remote Panel Control Remote Panel:Lock Control

VI Make Current Values Default Default Values:Make Current Default

VI Open FP Front Panel:Open

VI Reinitialize All To Default Default Values:Reinitialize All To
Default

VI Save VI Icon to File VI Icon:Save To File

VI Set Control Value Control Value:Set [Flattened]

VI Set Control Value [Variant] Control Value:Set [Variant]

VI Set Lock State Lock State:Set

VI Set VI Icon from File VI Icon:Set From File

Table 7. Renamed Methods in LabVIEW 8.0 (Continued)

Class LabVIEW 7.1 Name LabVIEW 8.0 Name

LabVIEW Upgrade Notes 104 ni.com

Error Code Enhancements
You can use error codes –8999 through –8000 to define custom error
messages.

LabVIEW 8.0 introduces the following changes to error codes:

Miscellaneous
LabVIEW 8.0 includes the following miscellaneous changes:

• The Registration Information dialog box, which previously appeared
any time you launched an unregistered version of LabVIEW, does not
appear in LabVIEW 8.0. LabVIEW 8.0 collects information such as
your name and the name of your company during installation.

• (Windows) In LabVIEW 7.x and earlier, pressing the <Ctrl-Tab> keys
cycles through open LabVIEW windows based on the order in which
you opened the windows. In LabVIEW 8.0, pressing the <Ctrl-Tab>
keys cycles through open LabVIEW windows based on the order in
which the windows appear onscreen. This order is the same as the
order you see when you press the <Alt-Tab> keys. (Linux) The order of
the windows depends on the window manager you use.

• If you drag an item in a tree control under a child-only item, LabVIEW
places the item below the child-only item at the same hierarchical
level.

• Use the VI Refnum (Panel Image) probe to display the VI name, the
VI path, the VI front panel image, and the hex value of a VI reference.

VI Set VI Icon from Image Data VI Icon:Set From Image Data

VI Unlock Remote Panel
Control

Remote Panel:Unlock Control

Table 8. LabVIEW 8.0 Error Code Changes

LabVIEW 7.1 Error Code LabVIEW 8.0 Error Code

20003 20012

20101 20111

20102 20112

20103 20113

20104 20114

Table 7. Renamed Methods in LabVIEW 8.0 (Continued)

Class LabVIEW 7.1 Name LabVIEW 8.0 Name

© National Instruments Corporation 105 LabVIEW Upgrade Notes

You can use this probe to set a breakpoint if the value is an invalid
refnum.

• The Disabled Items property for the listbox and multicolumn listbox
returns an error if you set this property for an item that is not in the
listbox.

• (Mac OS) LabVIEW supports the mouse scroll wheel. You can scroll
through the subdiagrams of a Case, Event, and Stacked Sequence
structure by moving the cursor over the selector label and pressing the
<Command> key while moving the mouse wheel.

• (Mac OS) LabVIEW only accepts <Control>-click for popups and will
not receive the <Command>-click key combination.

• When you are in customize mode in the Control Editor window, you
can import a picture from file for a part of a custom control using the
Import from File item on the shortcut menu. You also can replace a
decoration with an image from the clipboard by selecting the
decoration and selecting Edit»Paste. Right-click the decoration and
select Import from File from the shortcut menu to replace the
decoration with an image from a file.

• You cannot specify a custom Menus Directory on the Paths Options
page of the Options dialog box.

• When specifying a custom VI Search Path on the Paths Options
page, you can use the <osdatadir> symbolic path.

• When you convert a time stamp to a variant, the variant indicator
displays the current value of the time stamp that you wired to it.

• The CVI Function Panel Converter and the Update VXIPNP Drivers
dialog box are not available in LabVIEW 8.0. Download the LabVIEW
Interface Generator for LabWindows™/CVI™ Instrument Drivers tool
from ni.com/idnet to obtain this functionality.

• The End text entry with Enter Key option is on the Environment
page of the Options dialog box.

• The Explain Changes dialog box contains a Path text box that lists the
path on disk of the selected VI. You can use the Path text box to
distinguish between VIs that have the same name.

• The performance improvement for disabling debugging for a VI
increased slightly.

• The VI Library Manager window now is called the LLB Manager
window. Right-click an item in the Files list and select Top Level?
from the shortcut menu to indicate whether an item in an LLB is at the
top level. You cannot cancel changes you make in the LLB Manager
window.

http://www.ni.com/cgi-bin/redirect.cgi?dest=infcoprod&src=lvhelp&openagent&code=ex3mbp

LabVIEW Upgrade Notes 106 ni.com

• The Edit VI Library dialog box has been removed from the Tools
menu. Use the LLB Manager window to delete a VI from a library or
to mark a VI as a top-level VI in a library.

• In LabVIEW 7.x and earlier, when you wire an error cluster to a Case
structure, the True case becomes the Error case and the False case
becomes the No Error case. In LabVIEW 8.0, when you wire an error
cluster to a Case structure, the True case becomes the No Error case
and the False case becomes the Error case.

• You can create a specific property or method on the block diagram by
right-clicking the control or indicator on the front panel, selecting
Create»Property Node or Create»Invoke Node, and selecting a
property or method from the shortcut menu.

• (Windows) Use the CAN Channel control located on the CAN Controls
palette with NI-CAN to access the NI-CAN Channel API. For more
information on controls located on the CAN Controls palette, refer to
the CAN Initialize topic in the NI-CAN documentation.

• On the Format and Precision page of a Properties dialog box, when
Precision Type is Significant digits, National Instruments
recommends that you use values from 1 through 6 in the Digits field
for single-precision, floating-point numbers and values from 1 through
13 in the Digits field for double-precision and extended-precision,
floating-point numbers.

• On the Scales page of the Chart, Intensity Chart, and Intensity Graph
Properties dialog boxes, place a checkmark in the Ignore waveform
stamp on x-axes checkbox when you select X-Axis as the scale to set
the beginning of the x-scale to 0 instead of the value specified by t0.
Place a checkmark in the Expand digital buses checkbox when you
select Y-Axis as the scale to display digital waveform data as
individual data lines.

• You can open multiple files at once. (Windows) Select File»Open to
display a standard file dialog box and press the <Shift> key or the
<Control> key to select multiple files. (Mac OS) Press the <Shift> key
or the <Option> key. (Linux) Press the <Shift> key or the <Alt> key.

• All browsers support the Monitor option on the Web Publishing Tool
dialog box.

• In LabVIEW 7.x and earlier, when you select Tools»Compare»
Compare VIs and click the Select button, the Select VI By Name
dialog box appears. In LabVIEW 8.0, when you select Tools»
Compare»Compare VIs and click the Select button, the Select a VI
dialog box appears.

• In LabVIEW 8.0, when you select Tools»Compare»Compare VI
Hierarchies, you can select a VI from the file system or from a list of
VIs in memory.

© National Instruments Corporation 107 LabVIEW Upgrade Notes

• In LabVIEW 7.x, you can right-click any block diagram object and
select Source Palette from the shortcut menu to access similar objects
from a subpalette, where Source is the name of the subpalette that
contains the block diagram object. In LabVIEW 8.0, you also can
right-click a block diagram object and select Replace»Source Palette
from the shortcut menu to replace the block diagram object with a
similar object from the subpalette that contains the block diagram
object. You also can right-click a wire and select Insert»Source
Palette from the shortcut menu to insert an object from the most
commonly used source palette. This option inserts the selected object
between the objects that the wire connects.

• In LabVIEW 7.x and earlier, when you change the data type of a type
definition and the instances of the type definition update, the instances
preserve only the current data, default data, private data, label, and
caption. In LabVIEW 8.0, the instances of the type definitions might
preserve more attributes.

• In LabVIEW 8.0, when you replace a type definition with another
control, the control might preserve fewer attributes of the type
definition than it does in LabVIEW 7.x and earlier.

• LabVIEW propagates type definitions whenever possible.

• The Set Width and Height dialog box now is called the Resize
Objects dialog box. In the Current Size Values listbox of this dialog
box, an asterisk appears next to values for objects that cannot be
resized even if you change the Width or Height.

• In LabVIEW 7.x, if LabVIEW cannot find a VI, you must replace the
missing VI with a VI of the same name. In LabVIEW 8.0, you can
replace a missing VI with a VI of any name. LabVIEW replaces all
instances of the missing VI with the VI that you select.

• In LabVIEW 7.x and earlier, you can press the <Ctrl-A> keys to repeat
an alignment operation for objects on the front panel or block diagram.
In LabVIEW 8.0, press the <Ctrl-Shift-A> keys to repeat an alignment
operation. Press the <Ctrl-A> keys to select all objects on the front
panel or block diagram.

• You can configure when LabVIEW loads a subVI. Right-click a subVI
and select Call Setup from the shortcut menu to display the VI Call
Configuration dialog box. This shortcut menu item is available only
for VIs open in an application instance that supports VI Server
calls—not for functions, Express VIs, polymorphic VIs, or VIs open in
an application instance that does not support VI Server calls, such as
PDA and FPGA targets. If you have a large caller VI, you can save load
time and memory by selecting the Load and retain on first call option
in the dialog box. When you select this option, the subVI does not load
until the caller VI needs it, and you can release the subVI from memory
after the operation completes.

National Instruments, NI, ni.com, and LabVIEW are trademarks of National Instruments Corporation.
Refer to the Terms of Use section on ni.com/legal for more information about National
Instruments trademarks. Other product and company names mentioned herein are trademarks or trade
names of their respective companies. For patents covering National Instruments products, refer to the
appropriate location: Help»Patents in your software, the patents.txt file on your CD, or
ni.com/patents. For a listing of the copyrights, conditions, and disclaimers regarding
components used in USI (Xerces C++, ICU, and HDF5), refer to the USICopyrights.chm.

© 1998–2005 National Instruments Corporation. All rights reserved. 371780A-01 Aug05

• In LabVIEW 8.0, when you copy front panel controls from the block
diagram and paste them onto the block diagram of a new VI, the front
panel placement will differ from that of the original VI. The front panel
objects will be placed in the upper left corner to avoid overlapping or
appearing in a non-visible region.

• The LabVIEW display range of years extended from 1904 through
2038 to 1600 through 3000.

• If you want to display a carriage return in the Context Help window,
you must separate paragraphs with two carriage returns.

• If a key press matches a keyboard shortcut in the VI menu, such as
<Ctrl-C> or <Ctrl-V>, LabVIEW does not generate a Key Down event,
regardless of whether the menu item is enabled.

• The Application:Language property can return ko to indicate that the
language of the LabVIEW environment is Korean.

• Use the VIs Strings:Export and VIs Strings:Import methods to export
multiple VIs to a tagged text file and import multiple VIs from a tagged
text file, respectively.

	LabVIEW Upgrade Notes Version 8.0
	Contents
	Upgrading to LabVIEW 8.0
	Converting VIs
	Upgrading Toolkits, Instrument Drivers, and Add-Ons
	Upgrading Additional National Instruments Software
	Upgrading from Previous Versions of LabVIEW

	Upgrade and Compatibility Issues
	Upgrading from LabVIEW 7.x
	Platforms Supported
	System Requirements
	Custom Palette Views
	VI and Function Behavior Changes
	Deprecated VIs and Functions
	Property, Method, and Event Behavior Changes
	Deprecated Properties, Methods, and Events
	Application Item Menu Tags
	HiQ Support
	Error List Window
	VI String File Syntax
	Converting Type Descriptor Data to and from LabVIEW 7.x
	Converting NaN Strings to Integer Types (Windows)
	Constants Wired to Case Structures
	Delaying Operating System Messages
	Resource Manager (Mac OS)
	One- and Two-Button Dialog Boxes
	Property and Invoke Nodes
	Updating Shared Libraries
	Margin Values for Printing

	Upgrading from LabVIEW 6.x
	Changes to the Waveform Data Type
	Serial Compatibility VIs
	Default Data in Loops
	Remote Front Panel License
	Multiple Thread Allocation
	Instrument Drivers
	Units and Conversion Factors
	Table 1. Unit Conversion Factors
	Defer Panel Updates Property
	Data Ranges for Numeric Controls
	Coercion Dots and Type Definitions
	File Dialog Box Button Label
	Control Online Help Function
	Run VI Method
	Displaying the Front Panel When Loaded
	Open VI Reference Function
	Exponential Representation
	IVI Configuration Store File
	Technical Support Form

	Upgrading from LabVIEW 5.x
	Converting Datalog Files
	Connecting to the VI Server
	UDP Functions

	Upgrading from LabVIEW 4.x
	Converting Boolean Data to and from LabVIEW 4.x
	VI Control VIs
	DDE VIs (Windows)

	Upgrading from LabVIEW 3.x or Earlier Versions

	LabVIEW 8.0 Features and Changes
	Activating the LabVIEW License
	Launching LabVIEW
	Logging In and Out of LabVIEW
	Domain Account Manager
	Enhancements to the New Dialog Box
	RT, FPGA, and PDA Targets
	Switching Execution Targets

	LabVIEW Projects
	Project Explorer Window
	Using a Project with Existing Files
	Project Explorer Window Toolbars
	Adding Items to a Project
	Adding Folders to a Project
	Adding LLBs to a Project
	Removing Items from a Project
	Viewing Dependencies in a Project
	Adding Targets to a Project (Windows)
	Using the Web Server for VIs in Projects

	LabVIEW Project Libraries
	Sharing Live Data Using Shared Variables
	Creating Shared Variables
	Reading and Writing Shared Variable Values on the Front Panel
	Reading and Writing Shared Variable Values on the Block Diagram
	Restricting Shared Variables to Single Writers
	Enabling Buffering for Shared Variables
	Managing Shared Variables

	Creating Source Distributions
	Changes from Previous Versions of the Application Builder
	New Palette Organization
	Table 2. Controls Palette Organization
	Table 3. Functions Palette Organization
	Moved and Renamed Palettes
	Palette Editing Enhancements

	Menu Reorganization
	Using Source Control
	Migrating from the LabVIEW Built-in Source Control Provider

	VI and Function Enhancements
	Analyze VIs Enhancements
	Digital Waveform VIs Enhancements
	Disable Structures
	Express VIs Enhancements
	File I/O VIs and Functions Enhancements
	Instrument I/O Assistant Enhancements
	Sound VIs Enhancements
	String Functions Enhancements

	VI Hierarchy Window Enhancements
	Front Panel Enhancements
	Changes to Graph Cursors
	Table 4. LabVIEW 8.0 Cursor Mode Changes
	Using Graph Annotations
	Drawing Images in the Graph Plot Area
	Exporting Images of Graphs, Charts, and Tables
	Displaying Planes on XY Graphs
	Mixed Signal Graph
	Key Navigation
	Minimum Front Panel Size
	Splitter Bars and Panes
	Customizing Run-Time Shortcut Menus
	Using XControls
	Using .NET Controls
	Listboxes, Tree Controls, and Tables
	Dragging and Dropping in String and Tree Controls
	Disabling Word Wrapping in String Controls and Indicators
	Path Controls
	Scroll Bar Controls
	Array Scroll Bars
	Miscellaneous Enhancements and Changes

	LabVIEW MathScript (Windows)
	Matrix Data Type
	Options Dialog Box Enhancements
	Save As and Save for Previous Version Dialog Boxes
	File Size Improvements
	Using Shared Libraries in Multiple Versions of LabVIEW
	Setting the Window Run-Time Position
	Setting Run-Time Language Preferences
	VI Server Enhancements
	Using VI Server References
	NI Security for VI Server

	Class Browser Window
	Using .NET Assemblies
	Instrument Driver Finder
	Instrument Driver VI Wizard
	Instrument Driver Project Wizard
	Using and Debugging Reentrant VIs
	Creating Probes after a VI Runs
	Profiling VIs in Multiple Targets
	64-Bit Integer Data Types
	NI Spy
	Find and Replace Functionality
	Customizable Keyboard Shortcuts
	Print Dialog Box Enhancements
	Editing VI Icons
	Documentation Enhancements and Changes
	Documentation Reorganization
	Table 5. LabVIEW 8.0 Documentation Reorganization
	Readme Files
	Locate Button
	Accessing Examples
	Context Help Window

	NI Example Finder Enhancements
	Other LabVIEW 8.0 Features and Changes
	Changes to Existing VIs and Functions
	New Example VIs
	Changes to the External Code Functions
	Renamed Properties and Methods
	Table 6. Renamed Properties in LabVIEW 8.0
	Table 7. Renamed Methods in LabVIEW 8.0
	Error Code Enhancements
	Table 8. LabVIEW 8.0 Error Code Changes
	Miscellaneous

