NI PXI-8195/8196 User Manual
Important Information

Warranty
The PXI-8195/8196 embedded controllers are warranted against defects in materials and workmanship for a period of one year from the date of shipment, as evidenced by receipts or other documentation. National Instruments will, at its option, repair or replace equipment that proves to be defective during the warranty period. This warranty includes parts and labor.

The media on which you receive National Instruments software are warranted not to fail to execute programming instructions, due to defects in materials and workmanship, for a period of 90 days from date of shipment, as evidenced by receipts or other documentation. National Instruments will, at its option, repair or replace software media that do not execute programming instructions if National Instruments receives notice of such defects during the warranty period. National Instruments does not warrant that the operation of the software shall be uninterrupted or error free.

A Return Material Authorization (RMA) number must be obtained from the factory and clearly marked on the outside of the package before any equipment will be accepted for warranty work. National Instruments will pay the shipping costs of returning to the owner parts which are covered by warranty.

National Instruments believes that the information in this document is accurate. The document has been carefully reviewed for technical accuracy. In the event that technical or typographical errors exist, National Instruments reserves the right to make changes to subsequent editions of this document without prior notice to holders of this edition. The reader should consult National Instruments if errors are suspected.

In no event shall National Instruments be liable for any damages arising out of or related to this document or the information contained in it.

EXCEPT AS SPECIFIED HEREIN, NATIONAL INSTRUMENTS MAKES NO WARRANTIES, EXPRESS OR IMPLIED, AND SPECIFICALLY DISCLAIMS ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. CUSTOMER'S RIGHT TO RECOVER DAMAGES CAUSED BY NATIONAL INSTRUMENTS SHALL BE LIMITED TO THE AMOUNT THEREFORE PAID BY THE CUSTOMER. NATIONAL INSTRUMENTS WILL NOT BE LIABLE FOR DAMAGES RESULTING FROM LOSS OF DATA, PROFITS, USE OF PRODUCTS, OR INCIDENTAL OR CONSEQUENTIAL DAMAGES, EVEN IF ADVISED OF THE POSSIBILITY THEREOF. THIS LIMITATION OF THE LIABILITY OF NATIONAL INSTRUMENTS WILL APPLY REGARDLESS OF THE FORM OF ACTION, WHETHER IN CONTRACT OR TORT, INCLUDING NEGLIGENCE. ANY ACTION AGAINST NATIONAL INSTRUMENTS MUST BE BROUGHT WITHIN ONE YEAR AFTER THE CAUSE OF ACTION ACCRUES. NATIONAL INSTRUMENTS SHALL NOT BE LIABLE FOR ANY DELAY IN PERFORMANCE DUE TO CAUSES BEYOND ITS REASONABLE CONTROL. THE WARRANTY PROVIDED HEREIN DOES NOT COVER DAMAGES, DEFECTS, MALFUNCTIONS, OR SERVICE FAILURES CAUSED BY OWNER'S FAILURE TO FOLLOW THE NATIONAL INSTRUMENTS INSTALLATION, OPERATION, OR MAINTENANCE INSTRUCTIONS; OWNER'S MODIFICATION OF THE PRODUCT; OWNER'S ABUSE, MISUSE, OR NEGLECTIVE ACTS; AND POWER FAILURE OR SURGES, FIRE, FLOOD, ACCIDENT, ACTIONS OF THIRD PARTIES, OR OTHER EVENTS OUTSIDE REASONABLE CONTROL.

Copyright
Under the copyright laws, this publication may not be reproduced or transmitted in any form, electronic or mechanical, including photocopying, recording, storing in an information retrieval system, or translating, in whole or in part, without the prior written consent of National Instruments Corporation.

Trademarks
National Instruments, NI, ni.com, and LabVIEW are trademarks of National Instruments Corporation. Refer to the Terms of Use section on ni.com/legal for more information about National Instruments trademarks.

The ExpressCard™ word mark and logos are owned by the PCMCIA and any use of such marks by National Instruments is under license. Other product and company names mentioned herein are trademarks or trade names of their respective companies.

Members of the National Instruments Alliance Partner Program are business entities independent from National Instruments and have no agency, partnership, or joint-venture relationship with National Instruments.

Patents
For patents covering National Instruments products, refer to the appropriate location: Help>Patents in your software, the patents.txt file on your CD, or ni.com/patents.

WARNING REGARDING USE OF NATIONAL INSTRUMENTS PRODUCTS
(1) NATIONAL INSTRUMENTS PRODUCTS ARE NOT DESIGNED WITH COMPONENTS AND TESTING FOR A LEVEL OF RELIABILITY SUITABLE FOR USE IN OR IN CONNECTION WITH SURGICAL IMPLANTS OR AS CRITICAL COMPONENTS IN ANY LIFE SUPPORT SYSTEMS Whose FAILURE TO PERFORM CAN REASONABLY BE EXPECTED TO CAUSE SIGNIFICANT INJURY TO A HUMAN.
(2) IN ANY APPLICATION, INCLUDING THE ABOVE, RELIABILITY OF OPERATION OF THE SOFTWARE PRODUCTS CAN BE IMPAIRED BY ADVERSE FACTORS, INCLUDING BUT NOT LIMITED TO FLUCTUATIONS IN ELECTRICAL POWER SUPPLY, COMPUTER HARDWARE MALFUNCTIONS, COMPUTER OPERATING SYSTEM SOFTWARE, AND DEVELOPMENT SOFTWARE USED TO DEVELOP AN APPLICATION, INSTALLATION ERRORS, SOFTWARE AND HARDWARE COMPATIBILITY PROBLEMS, MALFUNCTIONS OR FAILURES OF ELECTRONIC MONITORING OR CONTROL DEVICES, TRANSIENT FAILURES OF ELECTRONIC SYSTEMS (HARDWARE AND/OR SOFTWARE), UNANTICIPATED USES OR MISUSES, OR ERRORS ON THE PART OF THE USER OR APPLICATION DESIGNER (ADVERSE FACTORS SUCH AS THESE ARE HEREAFTER COLLECTIVELY TERMED "SYSTEM FAILURES"). ANY APPLICATION WHERE A SYSTEM FAILURE WOULD CREATE A RISK OF HARM TO PROPERTY OR PERSONS (INCLUDING THE RISK OF BODILY INJURY AND DEATH) SHOULD NOT BE RELIANT SOLELY UPON ONE FORM OF ELECTRONIC SYSTEM DUE TO THE RISK OF SYSTEM FAILURE. TO AVOID DAMAGE, INJURY, OR DEATH, THE USER OR APPLICATION DESIGNER MUST TAKE REASONABLY PRUDENT STEPS TO PROTECT AGAINST SYSTEM FAILURES, INCLUDING BUT NOT LIMITED TO BACK-UP OR SHUT DOWN MECHANISMS. BECAUSE EACH END-USER SYSTEM IS CUSTOMIZED AND DIFFERS FROM NATIONAL INSTRUMENTS TESTING PLATFORMS AND BECAUSE A USER OR APPLICATION DESIGNER MAY USE NATIONAL INSTRUMENTS PRODUCTS IN COMBINATION WITH OTHER PRODUCTS IN A MANNER NOT EVALUATED OR CONTEMPLATED BY NATIONAL INSTRUMENTS, THE USER OR APPLICATION DESIGNER IS ULTIMATELY RESPONSIBLE FOR VERIFYING AND VALIDATING THE SUITABILITY OF NATIONAL INSTRUMENTS PRODUCTS WHENEVER NATIONAL INSTRUMENTS PRODUCTS ARE INCORPORATED IN A SYSTEM OR APPLICATION, INCLUDING, WITHOUT LIMITATION, THE APPROPRIATE DESIGN, PROCESS AND SAFETY LEVEL OF SUCH SYSTEM OR APPLICATION.
Compliance

Compliance with FCC/Canada Radio Frequency Interference Regulations

Determining FCC Class
The Federal Communications Commission (FCC) has rules to protect wireless communications from interference. The FCC places digital electronics into two classes. These classes are known as Class A (for use in industrial-commercial locations only) or Class B (for use in residential or commercial locations). All National Instruments (NI) products are FCC Class A products. Depending on where it is operated, this Class A product could be subject to restrictions in the FCC rules. (In Canada, the Department of Communications (DOC), of Industry Canada, regulates wireless interference in much the same way.) Digital electronics emit weak signals during normal operation that can affect radio, television, or other wireless products. All Class A products display a simple warning statement of one paragraph in length regarding interference and undesired operation. The FCC rules have restrictions regarding the locations where FCC Class A products can be operated. Consult the FCC Web site at www.fcc.gov for more information.

FCC/DOC Warnings
This equipment generates and uses radio frequency energy and, if not installed and used in strict accordance with the instructions in this manual and the CE marking Declaration of Conformity*, may cause interference to radio and television reception. Classification requirements are the same for the Federal Communications Commission (FCC) and the Canadian Department of Communications (DOC).
Changes or modifications not expressly approved by NI could void the user’s authority to operate the equipment under the FCC Rules.

Class A
Federal Communications Commission
This equipment has been tested and found to comply with the limits for a Class A digital device, pursuant to part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference when the equipment is operated in a commercial environment. This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the instruction manual, may cause harmful interference to radio communications. Operation of this equipment in a residential area is likely to cause harmful interference in which case the user is required to correct the interference at their own expense.

Canadian Department of Communications
This Class A digital apparatus meets all requirements of the Canadian Interference-Causing Equipment Regulations. Cet appareil numérique de la classe A respecte toutes les exigences du Règlement sur le matériel brouilleur du Canada.

Compliance with EU Directives
Users in the European Union (EU) should refer to the Declaration of Conformity (DoC) for information* pertaining to the CE marking. Refer to the Declaration of Conformity (DoC) for this product for any additional regulatory compliance information. To obtain the DoC for this product, visit ni.com/certification, search by model number or product line, and click the appropriate link in the Certification column.

* The CE marking Declaration of Conformity contains important supplementary information and instructions for the user or installer.
Contents

About This Manual
How to Use the Documentation Set .. vii
Conventions .. vii
Related Documentation .. viii

Chapter 1
Introduction
Benefits of PXI .. 1-1
NI PXI-8195/8196 .. 1-1
 Description ... 1-1
 Functional Overview .. 1-2
National Instruments Software .. 1-4

Chapter 2
Installation and Configuration
Installing the NI PXI-8195/8196 ... 2-1
 How to Remove the Controller from the PXI Chassis .. 2-4
BIOS Setup .. 2-4
 Entering BIOS Setup .. 2-4
 Main Setup Menu ... 2-5
 Advanced Setup Menu ... 2-6
 PXI Setup Menu .. 2-8
 LabVIEW RT Options Setup Menu ... 2-9
 Boot Setup Menu .. 2-9
 Exiting BIOS Setup .. 2-10
System CMOS .. 2-11
LabVIEW RT Configuration Switches ... 2-12
Drivers and Software .. 2-14
 Files and Directories Installed on Your Hard Drive .. 2-14
PXI Features .. 2-14
 PXI Trigger Connectivity .. 2-14
Upgrading RAM .. 2-15
Hard Drive Recovery .. 2-16
Installing an OS ... 2-17
 Installing from a CD-ROM .. 2-17
Chapter 3
I/O Information
Front Panel Connectors ... 3-1
Front Panel.. 3-2
VGA .. 3-3
COM1.. 3-5
Ethernet ... 3-6
Parallel Port .. 3-7
Universal Serial Bus .. 3-9
Trigger .. 3-10
GPIB (IEEE 488.2) .. 3-11
ExpressCard/34 Slot .. 3-12
Front Panel Features .. 3-14
Data Storage .. 3-14

Chapter 4
Common Configuration Questions
General Questions .. 4-1
Boot Options .. 4-1
Cables and Connections ... 4-2
Software Driver Installation ... 4-3
Chassis Configuration ... 4-4
Basic PXI System Configuration ... 4-5
Upgrade Information .. 4-6
PXI Configuration ... 4-8

Chapter 5
Troubleshooting

Appendix A
Specifications

Appendix B
Technical Support and Professional Services

Glossary

Index
About This Manual

This manual contains detailed instructions for installing and configuring your National Instruments NI PXI-8195/8196 embedded computer kit.

How to Use the Documentation Set

Begin by reading the *NI PXI-8195/8196 Installation Guide*, a brief quick-start guide that describes how to install and get started with your controller.

This manual, the *NI PXI-8195/8196 User Manual*, contains more details about changing the installation or configuration from the defaults and using the hardware.

Conventions

The following conventions appear in this manual:

- The » symbol leads you through nested menu items and dialog box options to a final action. The sequence `File»Page Setup»Options` directs you to pull down the `File` menu, select the `Page Setup` item, and select `Options` from the last dialog box.

- This icon denotes a note, which alerts you to important information.

- This icon denotes a caution, which advises you of precautions to take to avoid injury, data loss, or a system crash.

- **Bold** text denotes items that you must select or click in the software, such as menu items and dialog box options. Bold text also denotes parameter names.

- **Italic** text denotes variables, emphasis, a cross reference, or an introduction to a key concept. This font also denotes text that is a placeholder for a word or value that you must supply.

- **Monospace** text denotes text or characters that you should enter from the keyboard, sections of code, programming examples, and syntax examples. This font is also used for the proper names of disk drives, paths, directories, programs, subprograms, subroutines, device names, functions, operations, variables, filenames, and extensions.
Bold text in this font denotes the messages and responses that the computer automatically prints to the screen. This font also emphasizes lines of code that are different from the other examples.

Related Documentation

The following documents contain information you may find helpful as you read this manual:

- **PICMG 2.0 R3.0 CompactPCI Specification**, PCI Industrial Computers Manufacturers Group
- **PCI Local Bus Specification**, Revision 2.2, PCI Special Interest Group
- **PXI Hardware Specification**, Revision 2.1, PXI Systems Alliance
- **PXI Software Specification**, Revision 2.1, PXI Systems Alliance
- **Serialized IRQ Support for PCI Systems Specification**, Revision 6.0, Compaq Computer et al.
- **ExpressCard Standard**, Release 1.0, PCMCIA
Introduction

Benefits of PXI

The PXI bus specification defines a compact modular PC platform for industrial instrumentation. PXI leverages the PCI bus, which is the *de facto* standard for today’s desktop computer software and hardware designs. As a result, PXI users receive all the benefits of PCI within an architecture that supports mechanical, electrical, and software features tailored to industrial instrumentation, data acquisition, and automation applications.

Well-suited for industrial applications, PXI leverages from the CompactPCI specification, which defines a rugged form factor for PCI that offers superior mechanical integrity and easy installation and removal of hardware components. PXI products offer higher and more carefully defined levels of environmental performance required by the vibration, shock, temperature, and humidity extremes of industrial environments. PXI adds mandatory environmental testing and active cooling to the CompactPCI mechanical specification to ease system integration and ensure multivendor interoperability.

Additionally, PXI meets the more specific needs of instrumentation users by adding an integrated trigger bus and reference clock for multiple-board synchronization, a star trigger bus for very precise timing, and local buses for side-band communication between adjacent peripherals.

NI PXI-8195/8196

Description

The NI PXI-8195/8196 PXI/CompactPCI embedded computer is a high-performance PXI/CompactPCI-compatible system controller. The NI PXI-8195/8196 controller integrates standard I/O features in a single unit by using state-of-the-art packaging. Combining an NI PXI-8195/8196 embedded controller with a PXI-compatible chassis, such as the PXI-1042, results in a fully PC-compatible computer in a compact, rugged package.
The standard I/O on each module includes video, one RS-232 serial port, a parallel port, four high-speed USB 2.0 ports, Gigabit ENET, a reset button, and a PXI trigger.

The NI PXI-8195 has a 1.5 GHz processor, all the standard I/O, and a 30 GB (or larger) hard drive.

The NI PXI-8196 has a 2.0 GHz processor, all the standard I/O, and a 30 GB (or larger) hard drive. It also has a PCI-based GPIB controller and an ExpressCard/34 expansion slot.

Functional Overview

This section contains functional descriptions of each major logic block on the NI PXI-8195/8196 embedded computer.

NI PXI-8195/8196 Functional Description

The NI PXI-8195/8196 is a modular PC in a PXI 3U-size form factor. Figure 1-1 is a functional block diagram of the NI PXI-8195/8196. Following the diagram is a description of each logic block shown.
Figure 1-1. NI PXI-8195/8196 Block Diagram

The NI PXI-8195/8196 consists of the following logic blocks on the CPU module and the I/O (daughter card) module. The CPU module has the following logic blocks:

- **Socket 479 CPU** is the socket definition for the Intel Pentium M processor families.
- The **SO-DIMM** block consists of two 64-bit DDR2 SDRAM sockets that can hold up to 1 GB each.
The Chip Set GMCH connects to the CPU, DDR2 SDRAM, and video.

The SMB to PXI Trigger provides a routable connection of the PXI triggers to/from the SMB on the front panel.

The Watchdog Timer block consists of a watchdog timer that can reset the controller or generate a trigger.

The Chip Set ICH6M connects to the PCI, USB, IDE, and LPC buses.

The USB Connectors connect the chip set to the Hi-Speed USB 2.0 interface.

The PXI Connector connects the NI PXI-8195/8196 to the PXI/CompactPCI backplane.

The Super I/O block represents the other peripherals supplied by the NI PXI-8195/8196. The NI PXI-8195/8196 has one serial port, and an ECP/EPP parallel port.

The IDE block is dedicated PCI-IDE circuitry providing fast ATA-100 transfers to the internal 2.5 in. hard drive. The IDE feature is built into the chip set. The hard drive is 30 GB or larger.

The Gigabit Enet connects to either 10 Mbit, 100 Mbit, or 1,000 Mbit Ethernet interfaces.

The GPIB block contains the GPIB interface.

The ExpressCard/34 slot accommodates an ExpressCard/34 module.

National Instruments Software

National Instruments has developed several software kits you can use with the NI PXI-8195/8196.

NI-DAQ has an extensive library of functions that you can call from your application programming environment. These functions include routines for analog input (A/D conversion), buffered data acquisition (high-speed A/D conversion), analog output (D/A conversion), waveform generation, digital I/O, counter/timer operations, SCXI, RTSI, self-calibration, messaging, and acquiring data to extended memory.

NI-VISA is the National Instruments implementation of the VISA specification. VISA is a uniform API for communicating and controlling Serial, GPIB, PXI, VXI, and various other types of instruments. This API aids in the creation of more portable applications and instrument drivers. For information on writing your own PXI instrument driver with NI-VISA, refer to the NI-VISA Getting Started manual and the readme.txt file in the NI-VISA directory.
You also can use the National Instruments LabVIEW, Measurement Studio,
and LabWindows™/CVI™ application programs and instrument drivers to
ease your programming task. These standardized programs match the
modular virtual instrument capability of PXI and can reduce your PXI
software development time. These programs feature extensive libraries of
GPIB, Serial, and VXI instrument drivers written to take full advantage of
direct PXI control. LabVIEW and Measurement Studio include all the tools
needed for instrument control, data acquisition, analysis, and presentation.

LabVIEW is an easy-to-use, graphical programming environment you can
use to acquire data from thousands of different instruments, including
IEEE 488.2 devices, VXI devices, serial devices, PLCs, and plug-in data
acquisition boards. After you have acquired raw data, you can convert it
into meaningful results using the powerful data analysis routines in
LabVIEW. LabVIEW also comes with hundreds of instrument drivers,
which dramatically reduce software development time, because you do not
have to spend time programming the low-level control of each instrument.

Measurement Studio allows you to choose from standard environments
such as Microsoft Visual Basic, Visual C++, and Visual Studio .NET to
create your application, using tools specific for each language. With
Measurement Studio, you can write programs quickly and easily and
modify them as your needs change.

LabWindows/CVI is an interactive ANSI C programming
environment designed for building virtual instrument applications.
LabWindows/CVI delivers a drag-and-drop editor for building user
interfaces, a complete ANSI C environment for building your test program
logic, and a collection of automated code generation tools, as well as
utilities for building automated test systems, monitoring applications,
or laboratory experiments.
Installation and Configuration

This chapter contains information about installing and configuring your NI PXI-8195/8196 controller.

Installing the NI PXI-8195/8196

This section contains general installation instructions for the NI PXI-8195/8196. Consult your PXI chassis user manual for specific instructions and warnings.

1. Plug in your chassis before installing the NI PXI-8195/8196. The power cord grounds the chassis and protects it from electrical damage while you install the module. (Make sure the power switch is turned off.)

 Caution To protect both yourself and the chassis from electrical hazards, leave the chassis powered off until you finish installing the NI PXI-8195/8196 module.

2. Remove any filler panels blocking access to the system controller slot (Slot 1) in the chassis.

3. Touch the metal part of the case to discharge any static electricity that might be on your clothes or body.

4. Remove the protective plastic covers from the four bracket-retaining screws as shown in Figure 2-1.
5. Make sure the injector/ejector handle is in its downward position. Align the NI PXI-8195/8196 with the card guides on the top and bottom of the system controller slot.

Caution Do *not* raise the injector/ejector handle as you insert the NI PXI-8195/8196. The module will not insert properly unless the handle is in its downward position so that it does not interfere with the injector rail on the chassis.

6. Hold the handle as you slowly slide the module into the chassis until the handle catches on the injector/ejector rail.

7. Raise the injector/ejector handle until the module firmly seats into the backplane receptacle connectors. The front panel of the NI PXI-8195/8196 should be even with the front panel of the chassis.

8. Tighten the four bracket-retaining screws on the top and bottom of the front panel to secure the NI PXI-8195/8196 to the chassis.
9. Check the installation.

10. Connect the keyboard and mouse to the appropriate connectors. If you are using a PS/2 keyboard and a PS/2 mouse, a Y-splitter adapter is available to connect both to a single USB connector. Refer to Figure 4-1, Y-Splitter Cable.

11. Connect the VGA monitor video cable to the VGA connector.

12. Connect devices to ports as required by your system configuration.

13. Power on the chassis.

14. Verify that the controller boots. If the controller does not boot, refer to the What if the NI PXI-8195/8196 does not boot? section of Chapter 5, Troubleshooting.

Figure 2-2 shows an NI PXI-8196 installed in the system controller slot of a National Instruments PXI-1042 chassis. You can place PXI devices in any other slot.

![NI PXI-8196 Controller Installed in a PXI Chassis](image.jpg)

Figure 2-2. NI PXI-8196 Controller Installed in a PXI Chassis
How to Remove the Controller from the PXI Chassis

The NI PXI-8195/8196 controller is designed for easy handling. To remove the unit from the PXI chassis, complete the following steps:

1. Power off the chassis.
2. Remove the bracket-retaining screws in the front panel.
3. Press the injector/ejector handle down.
4. Slide the unit out of the chassis.

BIOS Setup

You can change the NI PXI-8195/8196 configuration settings in the BIOS setup. The BIOS is the low-level interface between the hardware and PC software that configures and tests your hardware when you boot the system. The BIOS setup program includes menus for configuring settings and enabling NI PXI-8195/8196 controller features.

Most users do not need to use the BIOS setup program, as the NI PXI-8195/8196 controller ships with default settings that work well for most configurations.

⚠️ Caution Changing BIOS settings may lead to incorrect controller behavior and possibly an unbootable controller. If this happens, follow the instructions for restoring default settings in the System CMOS section. In general, do not change a setting unless you are absolutely certain what it does.

Entering BIOS Setup

To start the BIOS setup utility, complete the following steps:

1. Power on or reboot your NI PXI-8195/8196 controller.
2. When the message Press to enter SETUP appears, press the Delete key on the keyboard. The message Entering Setup appears, and the setup program is loaded after a short delay.
3. When you first enter the BIOS setup program, it displays the Main menu.

Use the following keys to navigate through the BIOS setup:

- **Left Arrow, Right Arrow**—Use these keys to move between the different setup menus. If you are in a submenu, these keys have no effect, and you need to press <Esc> to leave the submenu first. (To use the arrows on the numeric keypad, you must turn off Num Lock.)
• **Up Arrow, Down Arrow**—Use these keys to move between the options within a setup menu. (To use the arrows on the numeric keypad, you must turn off Num Lock.)

• **<Enter>**—Use this key either to enter a submenu or display all available settings for a highlighted configuration option.

• **<Esc>**—Use this key to return the parent menu of a submenu. At the top-level menus, this key serves as a shortcut to the Exit menu.

• **<+> and <–>**—Use these keys to cycle between all available settings for a selected configuration option.

• **<Tab>**—Use this key to select time and date fields.

Main Setup Menu

The most commonly accessed and modified BIOS settings are in the **Main** setup menu. The **Main** setup menu includes the following settings:

• **System Time & Date**—This setting controls the time of day, which is stored in a battery-backed real-time clock. Most operating systems also include a way to change this setting. Use <+> and <--> in conjunction with <Enter> and <Tab> to change these values.

• **DMI Event Logging**—This setting brings up the DMI Event Logging submenu. (Refer to the **DMI Event Logging Submenu** section.)

• **Require Keyboard to Boot**—When Yes, a missing or malfunctioning keyboard causes the BIOS to halt with an error. When No, the BIOS allows booting without a keyboard. If you are using a USB keyboard, you may attach it at any time during the powered up state. To use this controller in a “headless” mode, you must set this option to No. The default value is Yes.

 Note Attaching a USB-to-PS/2 keyboard adapter may allow the system to boot even if no PS/2 keyboard is attached.

• **Num Lock**—This setting indicates whether you turn on Num Lock at boot time. The default value is On.

• **IDE Channel 0 Master/Slave**—These items display the IDE/ATA devices detected in the system. Normally, you do not need to modify these items. However, if an IDE/ATA device is not autodetected properly, you can specify it manually by pressing <Enter> on an item.

• **System Information**—This setting displays a screen containing important system information about the NI PXI-8195/8196 controller.
DMI Event Logging Submenu

Major errors that occur during the BIOS booting process are stored in battery-backed memory on the controller, and remain there until you view and clear them using this submenu. This logging capability allows a system administrator to detect the historical occurrence of faults on a controller. This submenu includes the following items:

- **View DMI Event Log**—This setting displays a window containing all logged system errors and the time at which they occurred.
- **Mark DMI Events as Read**—This setting prevents any current logged entries from being displayed again. However, all entries remain in battery-backed memory, and you can retrieve them using other DMI software that is beyond the scope of this document.
- **Clear All DMI Event Logs**—When set to **Yes**, this setting clears all entries from the DMI event log on reboot.
- **Event Logging**—This setting controls whether events are logged. Disabling logging has no impact on system performance. The default is **Enabled**.

Advanced Setup Menu

This menu contains BIOS settings that normally do not require modification. If you have specific problems such as unbootable disks or resource conflicts, you may need to examine these settings.

⚠️ **Caution** Changing settings in this menu may result in an unstable or unbootable controller. If this happens, follow the procedures outlined in the **System CMOS** section to restore BIOS settings to their factory defaults.

The **Advanced** setup menu includes the following settings:

- **Reset Configuration Data**—A portion of the EEPROM on the controller is designated as the Extended System Configuration Data region (ESCD). The BIOS and Plug-and-Play operating systems use this table to store the *Last Known Good* configuration of system peripherals. If you experience resource conflicts or peripheral malfunction, set this setting to **Yes** to force the BIOS to recreate the ESCD on the next reboot. This is rarely necessary.
- **Integrated Peripherals**—Use this setting to bring up the **Integrated Peripherals** submenu. (Refer to the **Integrated Peripherals Submenu** section.)
Chapter 2 Installation and Configuration

- **Quick Boot Mode**—When you enable this option, certain lengthy BIOS tests that rarely fail are skipped to shorten controller boot time. The default is **Enabled**.

- **Summary Screen**—This setting controls the display of the summary screen shown after BIOS completes its initialization, but before booting takes place. You can disable this screen in the interest of shortening controller boot time. The default is **Disabled**.

- **PXE Network Boot**—This setting enables the option for booting from a network PXE server on the subnet. The default is **Disabled**.

Note You must set the Boot Configuration option on the LabVIEW RT menu to either boot Windows/Other OS or Use Hardware Switch, with all the LabVIEW RT switches set to the OFF position, in order to enable PXE Network boot.

- **Write Protect Boot Sector**—When set to Yes, this setting prevents modification of a hard disk boot sector via INT 13h services, which may help prevent certain computer viruses from infecting the controller. This setting does not prevent boot sector modification by 32-bit operating system drivers that access the hard disk directly. The default is **No**.

Integrated Peripherals Submenu

Use this submenu to apply nondefault configurations to the front panel peripherals of an NI PXI-8195/8196 controller. Normally, you do not need to modify these settings, as the factory default settings provide the most compatible and optimal configuration possible.

- **Serial Port A**—This setting enables or disables COM1. You also can change this setting to **Enabled** and modify the base address and Interrupt Request Level (IRQ) of a port. The default is **Auto**, which places COM1 at 0x3F8 IRQ 4.

- **Parallel Port**—Use this setting to enable or disable LPT1. You also can change this setting to **Enabled** and modify the base address, IRQ level, and ISA Direct Memory Access (DMA) channel of the port. The default is **Auto**, which places LPT1 at 0x378, IRQ 7, using ISA DMA Channel 3 if necessary.

- **Parallel Port Mode**—The PC industry has created several different modes of operation for this port over the years. Usually, the default setting works for all applications. However, if a parallel port device specifically requires a nondefault setting, you can change it here. The default is **Bidirectional**, for full IEEE 1284 capabilities.
• **Legacy USB Support**—Use this setting to use a USB keyboard and mouse as if they were standard PS/2-style peripherals. You *must* enable this setting to use these devices in operating systems with no USB support and to boot from a USB floppy or CD-ROM. The BIOS setup screen always works with USB keyboards regardless of this setting. Certain real-time applications may require you to disable this setting to reduce loop time jitter. The default is **Enabled**.

PXI Setup Menu

Use this menu to control and route certain signals on the PXI backplane. Normally, you do not need to modify these settings. However, other sections of this manual may indicate that modifications are necessary and may lead to unpredictable behavior.

- **INTP Routing**—The INTP signal cannot be routed. This setting will always report **Not Supported**.
- **INTS Routing**—You can route INTS to the controller’s 21-frame serialized IRQ input, for use by certain PXI carrier cards. The default setting is **Not Routed**.
- **APIC Routing**—This item is valid only for Windows XP and 2000 and other modern operating systems. Also, a fresh install of the OS must occur for changes to the APIC Routing to take effect. Select **Enabled** to initialize the IOAPIC and local APIC in uniprocessor mode. Select **Disabled** to use the legacy PIC for interrupt routing. The default setting is **Enabled**.
- **PIRQx Routing**—This setting selects the routing option for PXI/PCI devices connected to PIRQx. This setting affects OSes that do not use APIC routing. The default setting for all PIRQx options is **IRQ10**.
- **Per-Slot Device Settings**—This setting brings up the **Per-Slot Device Settings** submenu. Refer to the **Per-Slot Device Settings Submenu** section.

Per-Slot Device Settings Submenu

Use this menu to configure options that can be modified for individual PCI devices in a PXI chassis.

Note Scanning for Option ROMs on devices behind a PCI bridge cannot be disabled.
PCI Device x Option ROM Scan—This setting selects whether PCI device x will be scanned for an option ROM. Setting this option to Enabled allows the BIOS to scan for a PCI option ROM on this PCI device. Setting to Disabled prevents the BIOS from detecting option ROMs on this device. Setting to Disabled does not completely disable the PCI device, just the option ROM scan. The default is Enabled.

LabVIEW RT Options Setup Menu

Use this menu to configure boot options for LabVIEW RT if it is installed on the controller. If you are not using LabVIEW RT, you should leave these settings as default.

Note These settings override the behavior of the switches on S1. Refer to the LabVIEW RT Configuration Switches section for more information. To use the settings from the switches, select Use Hardware Switch for each option.

- **Boot Configuration**—This setting selects whether the controller should boot LabVIEW RT, LabVIEW RT Safe Mode, or an installed OS such as Windows XP. The default is Use Hardware Switch.
- **Disable Startup VI**—If the controller becomes inaccessible because of a startup VI, this switch can prevent VIs from automatically running at startup. The default is Use Hardware Switch.
- **Reset IP Address**—If the controller is deployed to a different subnet from which it was originally configured, or if the current IP address is invalid, use this switch to reset the IP address to 0.0.0.0 during LabVIEW RT startup. The default is Use Hardware Switch.

Boot Setup Menu

This screen displays the boot order of devices associated with the controller. The BIOS proceeds down the Boot priority order list in search of a bootable device. Devices under the Excluded from boot order list will not be used for booting. If the BIOS fails to find any bootable device, the message Operating System Not Found is displayed, and the system halts.

- **IDE 0**—The internal IDE hard drive, connected to IDE Channel 0 master.
- **USB HDD**—A USB based flash drive or hard disk drive.
- **USB CDROM**—A USB based CD-ROM drive.
- **USB FDC**—A USB based floppy disk drive.
• **PCI SCSI**—A SCSI drive (hard disk drive or CD-ROM) connected through a SCSI controller in the PXI chassis.

• **PCI LAN**—A PXE Network boot device, if PXE Network Boot is enabled on the Advanced menu.

• **IDE 1**—An IDE device, connected to IDE Channel 0 Slave (currently none connected).

Exiting BIOS Setup

The **Exit** setup menu includes all available options for exiting, saving, and loading the BIOS default configuration. As an alternative to this screen, press <F9> to load BIOS default settings and <F10> to save changes and exit setup.

The **Exit** setup menu includes the following settings:

- **Exit Saving Changes**—Any changes made to BIOS settings are stored in the battery-backed System CMOS. The setup program then exits and reboots the controller.

- **Exit Discarding Changes**—Any changes made to BIOS settings during this session of the BIOS setup program are discarded. The setup program then exits and boots the controller without rebooting first.

- **Load Setup Defaults**—This setting restores all BIOS settings to the factory default. This is useful if the controller exhibits unpredictable behavior due to an incorrect or inappropriate BIOS setting. Notice that any nondefault settings such as boot order, passwords, and keyboardless operation are restored to their factory defaults. This may produce undesirable behavior, and in heavily customized cases, may cause the controller to malfunction or fail to boot.

- **Discard Changes**—Any changes made to BIOS settings during this session of the BIOS setup program are discarded. Unlike **Exit Discarding Changes**, however, the BIOS setup continues to be active.

- **Save Changes**—Changes made to BIOS settings during this session are committed to battery-backed System CMOS. The setup program remains active, allowing further changes.
System CMOS

The NI PXI-8195/8196 contains a backed-up memory used to store BIOS configuration information.

Complete the following steps to clear the CMOS contents:
1. Power off the chassis.
2. Remove the controller from the chassis.
3. Move the jumper on W1 from pins 1–2 to pins 2–3, as shown in Figure 2-3.
4. Wait one second. Move the jumper back to pins 1–2.
5. Reinstall the controller in the chassis.

⚠️ **Caution** Do *not* leave the jumper on pins 2–3. Doing so decreases battery life. Also, the controller will not boot.
LabVIEW RT Configuration Switches

Use the LabVIEW RT configuration switches to configure LabVIEW RT if it is installed on the controller. If you are not using LabVIEW RT, these switches should remain in the OFF position. The controller reads these switches only after a system reset. You must reboot the controller for any changes to take place.

The NI PXI-8195/8196 controller includes the following LabVIEW RT configuration switches:

- **Switch 1—Boot LabVIEW RT**: Set this switch to ON to boot LabVIEW RT.
- **Switch 2—Boot Safe Mode**: Set this switch to ON to boot LabVIEW RT into safe mode to reconfigure TCP/IP settings and
to download or update software from a host computer. This switch overrides the behavior of Switch 1. Booting the controller into safe mode does not start the embedded LabVIEW RT engine. After changing the settings or software, reboot the controller with this switch OFF to resume normal operation.

- **Switch 3—Disable Startup VI**: Set this switch to ON to prevent VIs from automatically running at startup if the controller becomes inaccessible because of a startup VI.

- **Switch 4—Reset IP Address**: Set this switch to ON to reset the IP address to 0.0.0.0 and other TCP/IP settings to their defaults. Use this switch if moving the controller to a different subnet or if the current TCP/IP settings are invalid.

Figure 2-4 shows the location of the LabVIEW RT configuration switches. The switches are shown in the OFF position.
Drivers and Software

Files and Directories Installed on Your Hard Drive

Your hard drive includes a directory called images in its root that contains software and soft copies of manuals for the peripherals. The directory structure under the images directory is logically organized into several levels.

In the images directory, you will find a manuals directory, an os directory, and directories for each computer peripheral.

The manuals directory contains quick reference guides, technical reference manuals, and National Instruments software manuals, all in Adobe Acrobat format. To access any manual, change your directory to c:\images\pxi-8190\manuals and list the contents of that directory. You will see several files, one corresponding to each peripheral.

The os directory contains a subdirectory corresponding to the operating system installed on your computer.

The rest of the directories correspond to each peripheral in your system. Within each of these directories are the drivers for the peripherals. These files and directories are copied exactly from the manufacturer distribution disks, so the naming conventions vary from peripheral to peripheral.

PXI Features

PXI Trigger Connectivity

The SMB connector on the NI PXI-8195/8196 front panel can connect to or from any PXI backplane trigger line through software. A trigger allocation process is needed to prevent two resources from connecting to the same trigger line, resulting in the trigger being double-driven and possibly damaging the hardware. At the time of this manual’s publication, this software is not yet available for Windows; however, an interim trigger routing software utility is available from National Instruments. Contact National Instruments for more information.
Upgrading RAM

You can change the amount of installed RAM on the NI PXI-8195/8196 by upgrading the SO-DIMM.

To upgrade the RAM, remove the NI PXI-8195/8196 from the PXI chassis. To optimize both memory capacity and system performance, use the same size and speed memory module in each of the two module slots. The use of different size modules in each slot is supported, but system performance will be slower than using two matched modules. However, two mismatched modules will result in better performance than using a single module.

National Instruments offers the following types of SO-DIMMs for use with the NI PXI-8195/8196 controller.

- 256 MB, 32 MB × 64, CL 4, 1.18 in. max
- 512 MB, 64 MB × 64, CL 4, 1.18 in. max
- 1 GB, 128 MB × 64, CL 4, 1.18 in. max

Note National Instruments has tested and verified that the DDR2 SO-DIMMs we sell work with the NI PXI-8195/8196. We recommend you purchase your DDR2 SO-DIMM modules from National Instruments. Other off-the-shelf DDR2 SO-DIMM modules are not guaranteed to work properly.
Hard Drive Recovery

NI PXI-8195/8196 controllers include Phoenix Technologies Ltd. Firstware tools, either Recover or Vault, or both. These tools allow you to recover the original factory condition of the hard disk from a small protected area of your hard drive. This protected area contains an image of the hard disk provided to you at the time of shipment. Should you need to restore your software to its original condition, you can access that image by pressing a hot key during the initial boot process. For more information regarding these tools, refer to the documentation on your hard drive in the c:\Images\Firstware directory.

Note Your system hot key is <F4>. To access the Phoenix Firstware Recover tool, press and hold <F4> when video first appears during the boot process.

Figure 2-5. Installing a DDR2 SO-DIMM in an NI PXI-8195/8196 Controller
If you need to recover your factory-installed operating system from a CD, you can use the included OS re-installation CD with an external CD-ROM drive such as a USB CD-ROM drive. Boot the PXI controller using the OS re-installation CD to recover the OS. You also may need to reinstall other software after using the CD to recover the OS.

Note Recovering the OS using Firstware or the re-installation CD erases the contents of your hard disk. Back up any files you want to keep.

Installing an OS

NI PXI-8195/8196 controllers include a preinstalled OS. In some cases, you may want to install a different OS. When doing so, consider the following guidelines.

Installing from a CD-ROM

The NI PXI-8195/8196 supports the installation of Windows XP from a USB CD-ROM. However, many other operating systems do not support installation from a USB CD-ROM. For example, Windows 2000 aborts during the install process because it does not have drivers for the CD-ROM device.

With DOS drivers, you can install Windows 9x operating systems. However, only a few USB CD-ROM drives have DOS drivers.

As an alternative to a USB CD-ROM drive, you can use an external SCSI CD-ROM with a PXI-SCSI adapter.

Note For additional assistance with installing or changing an operating system, refer to KnowledgeBase 2ZKC02OK at ni.com/support.
I/O Information

Front Panel Connectors

Table 3-1 lists various peripherals and their corresponding NI PXI-8195/8196 external connectors, bus interfaces, and functions.

Table 3-1. NI PXI-8195/8196 Peripherals Overview

<table>
<thead>
<tr>
<th>Peripheral</th>
<th>External Connector</th>
<th>Description</th>
<th>PXI-8195/8196 Models</th>
</tr>
</thead>
<tbody>
<tr>
<td>Video</td>
<td>VGA (15-pin DSUB)</td>
<td>Intel Extreme Graphics controller</td>
<td>All</td>
</tr>
<tr>
<td>Serial</td>
<td>COM1 (9-pin DSUB)</td>
<td>16550 RS-232 serial port</td>
<td>All</td>
</tr>
<tr>
<td>Ethernet</td>
<td>LAN (RJ45)</td>
<td>10/100/1000 Ethernet connection</td>
<td>All</td>
</tr>
<tr>
<td>Parallel</td>
<td>Parallel Port (36-pin champ)</td>
<td>IEEE 1284</td>
<td>All</td>
</tr>
<tr>
<td>USB</td>
<td>USB 4-pin Series A stacked receptacle</td>
<td>USB 2.0 capable</td>
<td>All</td>
</tr>
<tr>
<td>PXI trigger</td>
<td>Trigger (SMB)</td>
<td>Routing PXI triggers to or from the backplane trigger bus</td>
<td>All</td>
</tr>
<tr>
<td>GPIB device</td>
<td>GPIB (25-pin Micro D)</td>
<td>General-Purpose Interface Bus, IEEE 488.2</td>
<td>8196 only</td>
</tr>
<tr>
<td>ExpressCard/34 module</td>
<td>ExpressCard/34 slot</td>
<td>ExpressCard/34 Expansion</td>
<td>8196 only</td>
</tr>
</tbody>
</table>
Chapter 3 I/O Information

Front Panel

Figure 3-1 shows the front panel layout and dimensions of the NI PXI-8196, and Figure 3-2 shows the front panel layout and dimensions of the NI PXI-8195. Dimensions are in inches [millimeters].

Figure 3-1. NI PXI-8196 Front Panel Layout and Dimensions
VGA

Figure 3-3 shows the location and pinouts for the VGA connector on the NI PXI-8195/8196. Table 3-2 lists and describes the VGA connector signals.

AMP manufactures a mating connector with part numbers 748364-1 (housing) and 748333-2 (pin contact).
Table 3-2. VGA Connector Signals

<table>
<thead>
<tr>
<th>Pin</th>
<th>Signal Name</th>
<th>Signal Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>R</td>
<td>Red</td>
</tr>
<tr>
<td>2</td>
<td>G</td>
<td>Green</td>
</tr>
<tr>
<td>3</td>
<td>B</td>
<td>Blue</td>
</tr>
<tr>
<td>4</td>
<td>NC</td>
<td>Not Connected</td>
</tr>
<tr>
<td>5</td>
<td>GND</td>
<td>Ground</td>
</tr>
<tr>
<td>6</td>
<td>GND</td>
<td>Ground</td>
</tr>
<tr>
<td>7</td>
<td>GND</td>
<td>Ground</td>
</tr>
<tr>
<td>8</td>
<td>GND</td>
<td>Ground</td>
</tr>
<tr>
<td>9</td>
<td>+5V</td>
<td>5 V</td>
</tr>
<tr>
<td>10</td>
<td>GND</td>
<td>Ground</td>
</tr>
<tr>
<td>11</td>
<td>NC</td>
<td>Not Connected</td>
</tr>
<tr>
<td>12</td>
<td>SD</td>
<td>Serial Data</td>
</tr>
<tr>
<td>13</td>
<td>HSync</td>
<td>Horizontal Sync</td>
</tr>
<tr>
<td>14</td>
<td>VSync</td>
<td>Vertical Sync</td>
</tr>
<tr>
<td>15</td>
<td>SC</td>
<td>Serial Clock</td>
</tr>
</tbody>
</table>
Figure 3-4 shows the location and pinouts for the COM1 connector on the NI PXI-8195/8196. Table 3-3 lists and describes the COM1 connector signal.

AMP manufactures a serial port mating connector, part number 745491-5.

![COM1 Connector Location and Pinout](image)

Table 3-3. COM1 Connector Signals

<table>
<thead>
<tr>
<th>Pin</th>
<th>Signal Name</th>
<th>Signal Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>DCD*</td>
<td>Data Carrier Detect</td>
</tr>
<tr>
<td>2</td>
<td>RXD*</td>
<td>Receive Data</td>
</tr>
<tr>
<td>3</td>
<td>TXD*</td>
<td>Transmit Data</td>
</tr>
<tr>
<td>4</td>
<td>DTR*</td>
<td>Data Terminal Ready</td>
</tr>
<tr>
<td>5</td>
<td>GND</td>
<td>Ground</td>
</tr>
<tr>
<td>6</td>
<td>DSR*</td>
<td>Data Set Ready</td>
</tr>
<tr>
<td>7</td>
<td>RTS*</td>
<td>Ready to Send</td>
</tr>
<tr>
<td>8</td>
<td>CTS*</td>
<td>Clear to Send</td>
</tr>
<tr>
<td>9</td>
<td>RI*</td>
<td>Ring Indicator</td>
</tr>
</tbody>
</table>
Chapter 3 I/O Information

Ethernet

Figure 3-5 shows the location and pinouts for the Ethernet connector on the NI PXI-8195/8196. Table 3-4 lists and describes the Ethernet connector signals.

AMP manufactures a mating connector, part number 554739-1.

![Ethernet Connector Location and Pinout]

Figure 3-5. Ethernet Connector Location and Pinout

<table>
<thead>
<tr>
<th>Pin</th>
<th>Fast Ethernet</th>
<th>Gigabit Ethernet</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>TX+</td>
<td>TX_A+</td>
</tr>
<tr>
<td>2</td>
<td>TX–</td>
<td>TX_A–</td>
</tr>
<tr>
<td>3</td>
<td>RX+</td>
<td>RX_B+</td>
</tr>
<tr>
<td>4</td>
<td>NC</td>
<td>TX_C+</td>
</tr>
<tr>
<td>5</td>
<td>NC</td>
<td>TX_C–</td>
</tr>
<tr>
<td>6</td>
<td>RX–</td>
<td>RX_B–</td>
</tr>
<tr>
<td>7</td>
<td>NC</td>
<td>RX_D+</td>
</tr>
<tr>
<td>8</td>
<td>NC</td>
<td>RX_D–</td>
</tr>
</tbody>
</table>

Table 3-4. Ethernet Connector Signals

Note The Ethernet controller can perform an automatic crossover, thus eliminating the need for crossover cables.
Parallel Port

Table 3-5. 10/100/1000 LAN Connector LED States

<table>
<thead>
<tr>
<th>LED</th>
<th>Color</th>
<th>LED State</th>
<th>Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Top</td>
<td>Green</td>
<td>Off</td>
<td>LAN link is not established.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>On (steady state)</td>
<td>LAN link is established.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>On (brighter and pulsing)</td>
<td>The controller is communicating with another computer on the LAN.</td>
</tr>
<tr>
<td>Bottom</td>
<td>Orange</td>
<td>Off</td>
<td>10 Mbit/sec data rate is selected.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>On</td>
<td>100 Mbit/sec data rate is selected.</td>
</tr>
<tr>
<td></td>
<td>Green</td>
<td>On</td>
<td>1000 Mbit/sec data rate is selected.</td>
</tr>
</tbody>
</table>

Parallel Port

Figure 3-6 shows the location and pinouts for the IEEE 1284 (parallel) connector on the NI PXI-8195/8196. Table 3-6 lists and describes the IEEE 1284 connector signals.

Parallel port adapter cables are available from National Instruments, part number 777169-01.
Table 3-6. Parallel Port Connector Signals

<table>
<thead>
<tr>
<th>Pin</th>
<th>Signal Name</th>
<th>Signal Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>BUSY</td>
<td>Device Busy</td>
</tr>
<tr>
<td>2</td>
<td>SLCT</td>
<td>Select</td>
</tr>
<tr>
<td>3</td>
<td>ACK*</td>
<td>Acknowledge</td>
</tr>
<tr>
<td>4</td>
<td>FAULT*(ERROR*)</td>
<td>Fault</td>
</tr>
<tr>
<td>5</td>
<td>PAPEREND</td>
<td>Paper End</td>
</tr>
<tr>
<td>6</td>
<td>PD0</td>
<td>Data Bit 0</td>
</tr>
<tr>
<td>7</td>
<td>PD1</td>
<td>Data Bit 1</td>
</tr>
<tr>
<td>8</td>
<td>PD2</td>
<td>Data Bit 2</td>
</tr>
<tr>
<td>9</td>
<td>PD3</td>
<td>Data Bit 3</td>
</tr>
<tr>
<td>10</td>
<td>PD4</td>
<td>Data Bit 4</td>
</tr>
<tr>
<td>11</td>
<td>PD5</td>
<td>Data Bit 5</td>
</tr>
<tr>
<td>12</td>
<td>PD6</td>
<td>Data Bit 6</td>
</tr>
<tr>
<td>13</td>
<td>PD7</td>
<td>Data Bit 7</td>
</tr>
<tr>
<td>14</td>
<td>INIT*</td>
<td>Initialize Printer</td>
</tr>
<tr>
<td>15</td>
<td>STROBE*</td>
<td>Strobe</td>
</tr>
<tr>
<td>16</td>
<td>SLCTIN*</td>
<td>Select Input</td>
</tr>
<tr>
<td>17</td>
<td>AUTOFD*</td>
<td>Auto Line Feed</td>
</tr>
<tr>
<td>18</td>
<td>+5V</td>
<td>+5 V</td>
</tr>
<tr>
<td>19–35</td>
<td>GND</td>
<td>Ground</td>
</tr>
<tr>
<td>36</td>
<td>NC</td>
<td>Not Connected</td>
</tr>
</tbody>
</table>
Universal Serial Bus

Figure 3-7 shows the location and pinouts for the Universal Serial Bus (USB) connector on the NI PXI-8195/8196. Table 3-7 lists and describes the USB connector signals.

AMP manufactures a USB mating connector, part number 787633.

![Figure 3-7. USB Connector Location and Pinout](image)

<table>
<thead>
<tr>
<th>Pin</th>
<th>Signal Name</th>
<th>Signal Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>VCC</td>
<td>Cable Power (+5 V)</td>
</tr>
<tr>
<td>2</td>
<td>–Data</td>
<td>USB Data–</td>
</tr>
<tr>
<td>3</td>
<td>+Data</td>
<td>USB Data+</td>
</tr>
<tr>
<td>4</td>
<td>GND</td>
<td>Ground</td>
</tr>
</tbody>
</table>

Table 3-7. USB Connector Signals
The TRG connector is the software-controlled trigger connection for routing PXI triggers to or from the backplane trigger bus.

Figure 3-8 shows the TRG connector location on the NI PXI-8195/8196. Table 3-8 lists and describes the trigger connector signals.

<table>
<thead>
<tr>
<th>Pin</th>
<th>Signal Name</th>
<th>Signal Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>TRIG</td>
<td>Trigger</td>
</tr>
<tr>
<td>2 (Shield)</td>
<td>GND</td>
<td>Ground</td>
</tr>
</tbody>
</table>

Figure 3-8. TRG Connector Location and Pinout
GPIB (IEEE 488.2)

Figure 3-9 shows the location and pinouts for the GPIB connector on the NI PXI-8196. Table 3-9 lists and describes the GPIB connector signals.

ITT Canon manufactures a GPIB mating connector, part number MDSM-25SC-Z11-V51.

![GPIB Connector Location and Pinout](image)

**Figure 3-9. **GPIB Connector Location and Pinout

**Table 3-9. **GPIB Connector Signals

<table>
<thead>
<tr>
<th>Pin</th>
<th>Signal Name</th>
<th>Signal Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>DIO1*</td>
<td>Data Bit 1</td>
</tr>
<tr>
<td>2</td>
<td>DIO2*</td>
<td>Data Bit 2</td>
</tr>
<tr>
<td>3</td>
<td>DIO3*</td>
<td>Data Bit 3</td>
</tr>
<tr>
<td>4</td>
<td>DIO4*</td>
<td>Data Bit 4</td>
</tr>
<tr>
<td>5</td>
<td>EOI*</td>
<td>End or Identify</td>
</tr>
<tr>
<td>6</td>
<td>DAV*</td>
<td>Data Valid</td>
</tr>
<tr>
<td>7</td>
<td>NRFD*</td>
<td>Not Ready for Data</td>
</tr>
<tr>
<td>8</td>
<td>NDAC*</td>
<td>Not Data Accepted</td>
</tr>
<tr>
<td>9</td>
<td>IFC*</td>
<td>Interface Clear</td>
</tr>
<tr>
<td>10</td>
<td>SRQ*</td>
<td>Service Request</td>
</tr>
</tbody>
</table>
The NI PXI-8196 controller is equipped with an ExpressCard/34 slot on the front panel, which provides I/O expansion and options for removable storage.

Figure 3-10 shows the location and pinouts for the ExpressCard/34 slot on the NI PXI-8196. Table 3-10 lists and describes the ExpressCard connector signals.

![ExpressCard/34 Slot Location and Pinout](image)

ExpressCard/34 Slot

Table 3-9. GPIB Connector Signals (Continued)

<table>
<thead>
<tr>
<th>Pin</th>
<th>Signal Name</th>
<th>Signal Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>ATN*</td>
<td>Attention</td>
</tr>
<tr>
<td>12</td>
<td>SHIELD</td>
<td>Chassis ground</td>
</tr>
<tr>
<td>13</td>
<td>DIO5*</td>
<td>Data Bit 5</td>
</tr>
<tr>
<td>14</td>
<td>DIO6*</td>
<td>Data Bit 6</td>
</tr>
<tr>
<td>15</td>
<td>DIO7*</td>
<td>Data Bit 7</td>
</tr>
<tr>
<td>16</td>
<td>DIO8*</td>
<td>Data Bit 8</td>
</tr>
<tr>
<td>17</td>
<td>REN*</td>
<td>Remote Enable</td>
</tr>
<tr>
<td>18–25</td>
<td>GND</td>
<td>Logic Ground</td>
</tr>
<tr>
<td>Pin</td>
<td>Signal Name</td>
<td>Signal Description</td>
</tr>
<tr>
<td>-----</td>
<td>-------------</td>
<td>--------------------</td>
</tr>
<tr>
<td>1</td>
<td>GND</td>
<td>Ground</td>
</tr>
<tr>
<td>2</td>
<td>USBD−</td>
<td>USB Data –</td>
</tr>
<tr>
<td>3</td>
<td>USBD+</td>
<td>USB Data +</td>
</tr>
<tr>
<td>4</td>
<td>CPUSB#</td>
<td>USB Presence</td>
</tr>
<tr>
<td>5</td>
<td>RESERVED</td>
<td>Reserved by spec for future use</td>
</tr>
<tr>
<td>6</td>
<td>RESERVED</td>
<td>Reserved by spec for future use</td>
</tr>
<tr>
<td>7</td>
<td>SMBCLK</td>
<td>SMBus Clock</td>
</tr>
<tr>
<td>8</td>
<td>SMBDATA</td>
<td>SMBus Data</td>
</tr>
<tr>
<td>9</td>
<td>+1.5V</td>
<td>Power</td>
</tr>
<tr>
<td>10</td>
<td>+1.5V</td>
<td>Power</td>
</tr>
<tr>
<td>11</td>
<td>WAKE#</td>
<td>PE Wake</td>
</tr>
<tr>
<td>12</td>
<td>+3.3VAUX</td>
<td>Power</td>
</tr>
<tr>
<td>13</td>
<td>PERST#</td>
<td>PE Reset</td>
</tr>
<tr>
<td>14</td>
<td>+3.3V</td>
<td>Power</td>
</tr>
<tr>
<td>15</td>
<td>+3.3V</td>
<td>Power</td>
</tr>
<tr>
<td>16</td>
<td>CLKREQ#</td>
<td>Clock Request</td>
</tr>
<tr>
<td>17</td>
<td>CPPE#</td>
<td>PE Presence</td>
</tr>
<tr>
<td>18</td>
<td>REFCLK−</td>
<td>Reference Clock –</td>
</tr>
<tr>
<td>19</td>
<td>REFCLK+</td>
<td>Reference Clock +</td>
</tr>
<tr>
<td>20</td>
<td>GND</td>
<td>Ground</td>
</tr>
<tr>
<td>21</td>
<td>PERn0</td>
<td>PE Data Receive –</td>
</tr>
<tr>
<td>22</td>
<td>PERp0</td>
<td>PE Data Receive +</td>
</tr>
<tr>
<td>23</td>
<td>GND</td>
<td>Ground</td>
</tr>
<tr>
<td>24</td>
<td>PETn0</td>
<td>PE Data Transmit –</td>
</tr>
<tr>
<td>25</td>
<td>PETp0</td>
<td>PE Data Transmit +</td>
</tr>
<tr>
<td>26</td>
<td>GND</td>
<td>Ground</td>
</tr>
</tbody>
</table>
Front Panel Features

The NI PXI-8195/8196 has the following front-panel features:

- A system reset pushbutton (press the button to generate a reset to the controller)
- Two front panel LEDs that show PC status
 - The **POWER OK** LED indicates the power status of the controller. The LED will indicate one of the following states:
 - ON steady—PXI and onboard power is on and within regulation limits
 - Blinking—One of the PXI or onboard supplies is operating outside of the normal limits, or is not functioning.
 - OFF—The power to the controller is off.
 - The **DRIVE** LED indicates when an access to the internal hard disk is occurring.

Data Storage

The NI PXI-8195/8196 has the following data storage features:

- Internal IDE hard drive
 - 2.5 in. notebook hard drive
 - Supports up to ATA-5 (UDMA 100)
- USB storage support—USB CD-ROM, mass storage device, or floppy drive
4

Common Configuration Questions

This chapter answers common configuration questions you may have when using the NI PXI-8186/8187 embedded controller.

General Questions

What do the LEDs on the NI PXI-8195/8196 front panel mean?
Refer to the LED status descriptions in the Front Panel Features section of Chapter 3, I/O Information.

How do I check the configuration of the memory, hard drive, time/date, and so on?
You can view these parameters in the BIOS setup. To enter the BIOS setup, reboot the NI PXI-8195/8196 and press <Delete> during the memory tests. Refer to the Entering BIOS Setup section of Chapter 2, Installation and Configuration, for more information.

Can I use the internal IDE drive and an external SCSI hard drive at the same time?
Yes.

Boot Options

What devices can I boot from?
The NI PXI-8195/8196 can boot from the following devices:
• The internal IDE hard drive
• An external SCSI hard drive or CD-ROM if an SCSI adapter, such as the PXI-8214, is used
• A network PXE server on the same subnet
• An external USB mass storage device such as a USB hard drive or CD-ROM
• An external USB floppy drive

Note There are some limitations when booting from a USB device. Windows XP can be installed from a USB CD-ROM, but earlier versions of Windows cannot. The NI PXI-8195/8196 BIOS configures the USB devices so that they will work in a DOS environment.

How do I configure the controller to boot from these devices?
There are two methods.
• Enter Setup and select the Boot menu. You will see a list of all bootable devices, ordered by device type. You can set the boot order using <+> and <+>. Set the order by device type and set the order for the devices listed within the device type.
• To boot from a different device without permanently changing the boot order, press <Esc> during POST. After the BIOS completes the POST and just before the controller boots the OS, the Boot menu is displayed. You can select the device type you want to boot from.

Cables and Connections

How do I plug both a PS/2 mouse and PS/2 keyboard into the controller?
The NI PXI-8195/8196 has no PS/2 connector, and you need to use a USB Y-splitter cable as shown in Figure 4-1, or a similar device, to connect both a PS/2 mouse and PS/2 keyboard. National Instruments Part Number 763608-01 is such a cable and is available through the online catalog at ni.com/products.

Figure 4-1. Y-Splitter Cable
What if I don’t have a Y-splitter cable? Can I still use a mouse and keyboard?

If you do not have a Y-splitter cable, plug a USB keyboard into any USB connector. You can also plug a USB mouse into any USB connector.

How do I connect a standard 25-pin LPT cable to the NI PXI-8195/8196?

The NI PXI-8195/8186 uses a type C LPT connector. Most parallel port devices use a type A connector. To use a device with a standard type A LPT connector, you need to use a type C-to-type A LPT adapter. Parallel port adapter cables, part number 777169-01, are available through the online catalog at ni.com/products.

Software Driver Installation

How do I install or reinstall the video driver?

Refer to KnowledgeBase 3H3CO5D8 at ni.com support.

How do I install or reinstall the Ethernet driver?

Refer to KnowledgeBase 3H3CO5D8 at ni.com support.

How do I install or reinstall the GPIB driver?

The NI-488.2 driver for your GPIB port is installed by default when your controller is first shipped from the factory. To change the default installed driver, complete the following steps:

1. Download the latest GPIB driver from ni.com/downloads.
2. Install the driver and verify that the driver has properly detected the GPIB driver in the Device Manager. If you need more assistance, refer to ni.com/support/install.

Note Click the Scan for Hardware Changes in the Device Manager button to force re-detection of the GPIB hardware after installing the driver.
How do I install software from a CD?

The compact size of the NI PXI-8195/8196 does not allow for an integrated CD-ROM drive. If you are using Windows XP, you have the following options:

- **USB CD-ROM**—Windows XP supports installing from a USB CD-ROM using a bootable installation CD.
- **SCSI, LPT, or PC Card-based CD-ROM**—Other types of CD-ROM drives are available. Check with the vendor to make sure Windows XP supports the drive.
- **Mapped network drive**—You can use the Ethernet to connect to another computer. If you share the CD-ROM drive on the other computer, you can map the shared CD-ROM drive to a drive letter on the NI PXI-8195/8196.

Chassis Configuration

How do I set up the NI PXI-8195/8196 to work with my chassis?

Configuration of the PXI system is handled through Measurement & Automation Explorer (MAX), included with the software pre-installed on your controller. MAX creates the pxisys.ini file, which defines the layout and parameters of your PXI system.

The configuration steps for single or multiple-chassis systems are the same.
Basic PXI System Configuration

1. Launch MAX.
2. In the Configuration tree, click the Devices and Interfaces branch to expand it.
3. If the PXI system controller has not yet been configured, it is labeled PXI System (Unidentified). Right-click this entry to display the pop-up menu, then select the appropriate controller model from the Identify As submenu.
4. Click the PXI System controller. The chassis (or multiple chassis, in a multichassis configuration) is listed below it. Identify each chassis by right-clicking its entry, then selecting the appropriate chassis model through the Identify As submenu. Further expanding the PXI System branch shows all devices in the system that can be recognized by NI-VISA. When your controller and all your chassis are identified, the required pxisys.ini file is complete.
The PXI specification allows many combinations of PXI chassis and system modules. To assist system integrators, the manufacturers of PXI chassis and system modules must document the capabilities of their products. The minimum documentation requirements are contained in .ini files, which consist of ASCII text. System integrators, configuration utilities, and device drivers can use these .ini files.

The capability documentation for the chassis is contained in a chassis.ini file provided by the chassis manufacturer. The information in this file is combined with information about the system controller to create a single system initialization file called pxisys.ini (PXI System Initialization). The NI PXI-8195/8196 uses MAX to generate the pxisys.ini file from the chassis.ini file.

Device drivers and other utility software read the pxisys.ini file to obtain system information. For detailed information about initialization files, refer to the PXI specification at www.pxisa.org.

Upgrade Information

How do I upgrade system memory?

You can change the amount of installed RAM on the NI PXI-8195/8196 by upgrading the DDR2 SO-DIMM.

To upgrade the RAM, remove the NI PXI-8195/8196 from the PXI chassis. To optimize both memory capacity and system performance, use the same size and speed memory module in each of the two module slots. The use of different size modules in each slot is supported, but system performance will be slower than using two matched modules. However, two mismatched modules will result in better performance than using a single module.

National Instruments offers the following types of SO-DIMMs for use with the NI PXI-8195/8196 controller:

- 256 MB, 32 MB × 64, CL 4, 1.18 in. max
- 512 MB, 64 MB × 64, CL 4, 1.18 in. max
- 1 GB, 128 MB × 64, CL 4, 1.18 in. max

Note National Instruments has tested and verified that the DDR2 SO-DIMMs we sell work with the NI PXI-8195/8196. We recommend you purchase your DDR2 SO-DIMM modules from National Instruments. Other off-the-shelf DDR2 SO-DIMM modules are not guaranteed to work properly.
How do I flash a new BIOS?

You need to download the new BIOS from ni.com/support/pxisupp.htm. To download the new BIOS, follow the instructions on the Web site.

Where do I get the latest software drivers?

You can download the latest drivers from ni.com/support/pxisupp.htm.

My NI PXI-8195/8196 does not have an internal floppy drive. Is there a way to use an external drive?

Yes. The NI PXI-8195/8196 controller supports and can boot from USB floppy drives. A USB floppy drive will not work with Windows NT4, but will work with Windows 2000 or Windows XP. Refer to the Boot Options section for more information.

A USB floppy drive is available from National Instruments, part number 778492-02.
PXI Configuration

How do I use the SMB trigger on the front panel?
For details, refer to the PXI Features section of Chapter 2, Installation and Configuration.

Why doesn’t the NI PXI-8195/8196 work with the PXI-8220?
A serialized IRQ conflict with the PXI-8220 and the NI PXI-8195/8196 prevents PC cards using ISA interrupts from working with the NI PXI-8195/8196 controllers. The PXI-8221 is designed to work with the NI PXI-8195/8196 and should be used instead.
This chapter answers common troubleshooting questions you may have when using the NI PXI-8195/8196 embedded computer.

What if the NI PXI-8195/8196 does not boot?
Several problems can cause a controller not to boot. Here are some things to look for and possible solutions.

Things to Notice:
- Which LEDs come on? The Power OK LED should stay lit. The Drive LED should blink during boot as the disk is accessed.
- What appears on the display? Does it hang at some particular point (BIOS, Operating System, and so on.)? If nothing appears on the screen, try a different monitor. Does your monitor work with a different PC? If it hangs, note the last screen output that you saw for reference when consulting National Instruments technical support.
- What has changed about the system? Did you recently move the system? Was there electrical storm activity? Did you recently add a new module, memory chip, or piece of software?

Things to Try:
- Make sure the chassis is plugged in to a working power source.
- Check any fuses or circuit breakers in the chassis or other power supply (possibly a UPS).
- Make sure the controller module is firmly seated in the chassis.
- Remove all other modules from the chassis.
- Remove any nonessential cables or devices.
- Try the controller in a different chassis.
- Try a similar controller in this same chassis.
- Recover the hard drive on the controller. (Refer to the Hard Drive Recovery section of Chapter 2, Installation and Configuration.)
- Clear the CMOS. (Refer to the System CMOS section of Chapter 2, Installation and Configuration.)
My controller boots fine until I get to Windows, at which point I cannot read the screen. This may include garbled output, white screen, black screen, or an out of synch message from the monitor.

This problem usually results from having the video card output set past the limits of the monitor. You will need to boot Windows in Safe Mode. To do this, reboot the controller. As Windows begins to boot, hold down <F8>. You should now be able to reset the video driver to lower settings. Try setting the resolution to 640 × 480 and the refresh rate to 60 Hz. Once you reboot, you can raise these values again, using the test option in Windows. These settings are accessible through the Advanced tab of the Display item in the Control Panel. Alternately, you can try a different monitor, preferably a newer and larger one.

If the system has been booted to Windows without a monitor attached, the driver may have defaulted to the CRT connector being disabled. Press <CTRL-ALT-F1> to re-enable the CRT in Windows.

My system boots fine as long as a particular module is not in my chassis.

The most common cause of this is a damaged module. Try the module in a different chassis or with a different controller. Also, remove any external cables or terminal blocks connected to the system. If the module does not work in these cases, it is likely damaged. Contact the module manufacturer for further troubleshooting.

Refer to the KnowledgeBase or product manuals section at ni.com for more information specific to the chassis and controller with which you are having difficulties.

My CMOS is corrupted. How do I set it back to default?

1. Enter the BIOS setup program as described in the Entering BIOS Setup section of Chapter 2, Installation and Configuration.
2. Press <F9> to load BIOS defaults.
3. Answer Y (Yes) to the verification prompt.
4. Select Save and Exit Setup.

As an alternative method, complete the following steps:

1. Power off the chassis.
2. Remove the controller from the chassis.
3. Move the jumper on W4 from pins 1–2 to pins 2–3 as shown in Figure 5-1.
4. Wait one second. Move the jumper back to pins 1–2.
5. Reinstall the controller in the chassis.

Caution Do not leave the jumper on pins 2–3. Doing so decreases battery life. Also, the controller will not boot.

![Clearing the CMOS Contents](image)

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal Operation (Default)</td>
<td>Clear CMOS Contents</td>
<td>Pin 1</td>
</tr>
</tbody>
</table>

Figure 5-1. Clearing the CMOS Contents
Specifications

This appendix lists the electrical, mechanical, and environmental specifications of the NI PXI-8195/8196 embedded computer.

Electrical

<table>
<thead>
<tr>
<th>Voltage (V)</th>
<th>NI PXI-8195</th>
<th>NI PXI-8196</th>
<th>NI PXI-8195</th>
<th>NI PXI-8196</th>
</tr>
</thead>
<tbody>
<tr>
<td>+3.3</td>
<td>2.8 A</td>
<td>2.8 A</td>
<td>3.2 A</td>
<td>3.2 A</td>
</tr>
<tr>
<td>+5</td>
<td>4.8 A</td>
<td>5 A</td>
<td>6.5 A</td>
<td>7 A</td>
</tr>
<tr>
<td>+12</td>
<td>0 A</td>
<td>0 A</td>
<td>0 A</td>
<td>0 A</td>
</tr>
<tr>
<td>–12</td>
<td>0 A</td>
<td>0 A</td>
<td>0 A</td>
<td>0 A</td>
</tr>
</tbody>
</table>

Physical

Board dimensions: PXI 3U-size module
8.1 cm × 13 cm × 21.6 cm
(3.2 in. × 5.1 in. × 8.5 in.)

Slot requirements: One system slot plus three controller expansion slots

Compatibility: Fully compatible with PXI specification

Weight: 0.77 Kg (1.7 lb) typical
Environment

Maximum altitude.................................2,000 m (at 25 °C ambient temperature)

Pollution Degree.................................2

Indoor use only.

Operating Environment

Ambient temperature rangeRefer to the datasheet provided for the NI PXI-8195/8196 embedded controllers at ni.com

Relative humidity range.................10% to 90%, noncondensing

(Tested in accordance with IEC-60068-2-56.)

Caution Clean the NI PXI-8195/8196 with a soft nonmetallic brush. Make sure that the device is completely dry and free from contaminants before returning it to service.

Storage Environment

NI PXI-8195/8196

Ambient temperature range–20 to 65 °C (Tested in accordance with IEC-60068-2-1 and IEC-60068-2-2.)

NI PXI-8196 Extended Temp. Option

Ambient temperature range–40 to 85 °C (Tested in accordance with IEC-60068-2-1 and IEC-60068-2-2.)

Relative humidity range.....................5% to 95% noncondensing

(Tested in accordance with IEC-60068-2-56.)

Shock and Vibration

Operational shock30 g peak, half-sine, 11 ms pulse

(Tested in accordance with IEC-60068-2-27. Test profile developed in accordance with MIL-PRF-28800F.)
Appendix A Specifications

Random vibration

Operating .. 5 to 500 Hz, 0.3 g_{rms}
(with solid-state hard drive)

Nonoperating 5 to 500 Hz, 2.4 g_{rms}
(Tested in accordance with
IEC-60068-2-64. Nonoperating
test profile exceeds the
requirements of
MIL-PRF-28800F, Class 3.)

Safety

This product is designed to meet the requirements of the following
standards of safety for electrical equipment for measurement, control, and
laboratory use:

- IEC 61010-1, EN 61010-1
- UL 61010-1
- CAN/CSA-C22.2 No. 61010-1

Note For UL and other safety certifications, refer to the product label or to
ni.com/certification, search by model number or product line, and click the
appropriate link in the Certification column.

Electromagnetic Compatibility

Emissions EN 55011 Class A at 10 m
FCC Part 15A above 1 GHz

Immunity EN 61326:1997 + A2:2001,
Table 1

EMC .. CE, C-Tick, and FCC Part 15
(Class A) compliant

Note For full EMC compliance, operate this device with shielded cabling.
CE Compliance

This product meets the essential requirements of applicable European Directives, as amended for CE marking, as follows:

Low-Voltage Directive (safety)73/23/EEC

Electromagnetic Compatibility
Directive (EMC)89/336/EEC

Note Refer to the Declaration of Conformity (DoC) for this product for any additional regulatory compliance information. To obtain the DoC for this product, visit ni.com/certification, search by model number or product line, and click the appropriate link in the Certification column.
Technical Support and Professional Services

Visit the following sections of the National Instruments Web site at ni.com for technical support and professional services:

- **Support**—Online technical support resources at ni.com/support include the following:
 - **Self-Help Resources**—For answers and solutions, visit the award-winning National Instruments Web site for software drivers and updates, a searchable KnowledgeBase, product manuals, step-by-step troubleshooting wizards, thousands of example programs, tutorials, application notes, instrument drivers, and so on.
 - **Free Technical Support**—All registered users receive free Basic Service, which includes access to hundreds of Application Engineers worldwide in the NI Developer Exchange at ni.com/exchange. National Instruments Application Engineers make sure every question receives an answer.

 For information about other technical support options in your area, visit ni.com/services or contact your local office at ni.com/contact.

- **Training and Certification**—Visit ni.com/training for self-paced training, eLearning virtual classrooms, interactive CDs, and Certification program information. You also can register for instructor-led, hands-on courses at locations around the world.

- **System Integration**—If you have time constraints, limited in-house technical resources, or other project challenges, National Instruments Alliance Partner members can help. To learn more, call your local NI office or visit ni.com/alliance.

- **Declaration of Conformity (DoC)**—A DoC is our claim of compliance with the Council of the European Communities using the manufacturer’s declaration of conformity. This system affords the user protection for electronic compatibility (EMC) and product safety. You can obtain the DoC for your product by visiting ni.com/certification.
If you searched ni.com and could not find the answers you need, contact your local office or NI corporate headquarters. Phone numbers for our worldwide offices are listed at the front of this manual. You also can visit the Worldwide Offices section of ni.com/niglobal to access the branch office Web sites, which provide up-to-date contact information, support phone numbers, email addresses, and current events.
Glossary

Symbol Prefix Value

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Prefix</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>nano</td>
<td>10^{-9}</td>
</tr>
<tr>
<td>μ</td>
<td>micro</td>
<td>10^{-6}</td>
</tr>
<tr>
<td>m</td>
<td>milli</td>
<td>10^{-3}</td>
</tr>
<tr>
<td>k</td>
<td>kilo</td>
<td>10^{3}</td>
</tr>
<tr>
<td>M</td>
<td>mega</td>
<td>10^{6}</td>
</tr>
<tr>
<td>G</td>
<td>giga</td>
<td>10^{9}</td>
</tr>
<tr>
<td>T</td>
<td>tera</td>
<td>10^{12}</td>
</tr>
</tbody>
</table>

Symbols

° Degrees.

Ω Ohms.

% Percent.

A

A Amperes.

AC Alternating Current.

ASIC Application-specific integrated circuit.
Glossary

B

B
Bytes.

backplane
An assembly, typically a printed circuit board, with connectors and signal paths that bus the connector pins.

BIOS
Basic Input/Output System—BIOS functions are the fundamental level of any PC or compatible computer. BIOS functions embody the basic operations needed for successful use of the computer's hardware resources.

C

C
Celsius.

cache
Small portion of high-speed memory used for temporary storage of frequently used data.

CMOS
Complementary Metal Oxide Semiconductor—A process used in making chips.

CompactPCI
An adaptation of the PCI specification for industrial and/or embedded applications that require a more robust mechanical form factor than desktop PCI. CompactPCI provides a standard form factor for those applications requiring the high performance of PCI as well as the small size and ruggedness of a rack-mount system.

D

DC
Direct Current.

DDR
Double Data Rate.

DIMM
Dual In-line Memory Module.

DMA
Direct Memory Access—A method by which data is transferred between devices and internal memory without intervention of the central processing unit.

DRAM
Dynamic RAM (Random Access Memory)—Storage that the computer must refresh at frequent intervals.
Glossary

E
ECP
- Extended Capabilities Parallel.
EEPROM
- Electronically Erasable Programmable Read Only Memory.
EMC
- Electromagnetic Compatibility.
EMI
- Electromagnetic interference.
EPP
- Enhanced Parallel Port.
exansion ROM
- An onboard EEPROM that may contain device-specific initialization and system boot functionality.

F
FCC
- Federal Communications Commission.

G
g
- 1. Grams.
- 2. A measure of acceleration equal to 9.8 m/s².
GPIB
- General Purpose Interface Bus (IEEE 488).
g_{rms}
- A measure of random vibration—The root mean square of acceleration levels in a random vibration test profile.

H
Hz
- Hertz—Cycles per second.

I
I/O
- Input/output—The techniques, media, and devices used to achieve communication between machines and users.
IDE
- Integrated Drive Electronics—Hard disk and built-in controller.
IEEE
- Institute of Electrical and Electronics Engineers.
Glossary

in. Inches.
instrument driver A set of routines designed to control a specific instrument or family of instruments, and any necessary related files for LabWindows/CVI or LabVIEW.
interrupt A means for a device to request service from another device.
interrupt level The relative priority at which a device can interrupt.
IRQ* Interrupt signal.
ISA Industry Standard Architecture—The original PC bus architecture, specifically the 16-bit AT bus.

K
KB Kilobytes of memory.

L
LAN Local Area Network—Communications network that serves users within a confined geographical area. It is made up of servers, workstations, a network operating system, and a communications link.
LED Light-emitting diode.

M
m Meters.
master A functional part of a PXI device that initiates data transfers on the PXI backplane. A transfer can be either a read or a write.
MB Megabytes of memory.
MTBF Mean time between failure.
MTTR Mean time to repair.
<table>
<thead>
<tr>
<th>NI-488 or NI-488.2</th>
<th>The National Instruments software for GPIB systems.</th>
</tr>
</thead>
<tbody>
<tr>
<td>NI-DAQ</td>
<td>The National Instruments software for data acquisition instruments.</td>
</tr>
<tr>
<td>NI-VISA</td>
<td>The National Instruments implementation of the VISA standard—An interface-independent software that provides a unified programming interface for VXI, GPIB, and serial instruments.</td>
</tr>
<tr>
<td>NMI</td>
<td>Non-maskable interrupt—High-priority interrupt that cannot be disabled by another interrupt. It is used to report malfunctions such as parity, bus and math coprocessor errors.</td>
</tr>
<tr>
<td>PCI</td>
<td>Peripheral Component Interconnect—The PCI bus is a high-performance 32-bit or 64-bit bus with multiplexed address and data lines.</td>
</tr>
<tr>
<td>PCMCIA</td>
<td>Personal Computer Memory Card International Association.</td>
</tr>
<tr>
<td>Peripheral</td>
<td>Any hardware device connected to a computer, such as a monitor, keyboard, printer, plotter, disk or tape drive, graphics tablet, scanner, mouse, and so on.</td>
</tr>
<tr>
<td>POSC</td>
<td>Power On Self Configuration.</td>
</tr>
<tr>
<td>PXI</td>
<td>PCI eXtensions for Instrumentation—An open implementation of CompactPCI that adds electrical features that meet the high-performance requirements of instrumentation applications by providing triggering, local buses, and system clock capabilities. PXI also offers two-way interoperability with CompactPCI products.</td>
</tr>
<tr>
<td>RAM</td>
<td>Random Access Memory—the computer’s primary workspace.</td>
</tr>
<tr>
<td>RAMDAC</td>
<td>Random Access Memory Digital to Analog Converter—the VGA controller chip that maintains the color palette and converts data from memory into analog signals for the monitor.</td>
</tr>
</tbody>
</table>
Glossary

<table>
<thead>
<tr>
<th>Resource</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>resource</td>
<td>Hardware settings used by devices in a computer system, including ISA interrupt level, DMA channel, and I/O address.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Term</th>
</tr>
</thead>
<tbody>
<tr>
<td>RMS</td>
<td>Root mean squared. See also grms.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Term</th>
</tr>
</thead>
<tbody>
<tr>
<td>RTC</td>
<td>Real Time Clock—An electronic circuit that maintains the time of day and also can provide timing signals for timesharing operations.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Term</th>
</tr>
</thead>
<tbody>
<tr>
<td>s</td>
<td>Seconds.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Term</th>
</tr>
</thead>
<tbody>
<tr>
<td>slave</td>
<td>A functional part of a PXI device that detects data transfer cycles initiated by a PXI bus master and responds to the transfers when the address specifies one of the device’s registers.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Term</th>
</tr>
</thead>
<tbody>
<tr>
<td>SO-DIMM</td>
<td>Small Outline Dual In-line Memory Module.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Term</th>
</tr>
</thead>
<tbody>
<tr>
<td>SRAM</td>
<td>Static RAM—A memory chip that requires power to hold its content. It does not require refresh circuitry as a dynamic RAM chip, but it does take up more space and uses more power.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Term</th>
</tr>
</thead>
<tbody>
<tr>
<td>USB</td>
<td>Universal Serial Bus.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Term</th>
</tr>
</thead>
<tbody>
<tr>
<td>V</td>
<td>Volts.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Term</th>
</tr>
</thead>
<tbody>
<tr>
<td>VGA</td>
<td>Video Graphics Array—The minimum video display standard for all PCs.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Term</th>
</tr>
</thead>
<tbody>
<tr>
<td>W</td>
<td>Watts.</td>
</tr>
</tbody>
</table>
Index

A
Advanced Setup menu, 2-6

B
BIOS
 checking settings, 4-1
 flashing new BIOS, 4-7
 setup
 Advanced Setup menu, 2-6
 Boot Setup menu, 2-9
 DMI Event Logging menu, 2-6
 entering, 2-4
 Exiting BIOS Setup menu, 2-10
 Integrated Peripherals menu, 2-7
 Main Setup menu, 2-5
 PXI Setup menu, 2-8
 Per-Slot Device Settings, 2-8
boot options, configuring controller, 4-2
Boot Setup menu, 2-9

c
CD-ROM drive, installing software from, 4-4
chip set GMCH, 1-4
chip set ICH6M, 1-4
CMOS
 clearing contents (figure), 2-12, 5-3
 setting back to default, 5-2
COM1 connector
 connector locations and pinout (figure), 3-5
 connector signals (table), 3-5
common configuration questions
 boot options, 4-1
 cables and connections, 4-2
 chassis configuration, 4-4
 driver installation, 4-3
general questions, 4-1
PXI configuration, 4-8
upgrade information, 4-6
CompactPCI specification, 1-1
configuration, common questions
 boot options, 4-1
 cables and connections, 4-2
 chassis configuration, 4-4
 driver installation, 4-3
 general questions, 4-1
 PXI configuration, 4-8
 upgrade information, 4-6
connectors
 COM1 connector and signals, 3-5
 Ethernet connector and signals, 3-6
 ExpressCard/34 connector and signals, 3-12
 GPIB connector and signals, 3-11
 parallel port connector and signals, 3-7
 peripheral expansion overview (table), 3-1
 trigger connector and signals, 3-10
 Universal Serial Bus (USB) connector and signals, 3-9
 VGA connector and signals, 3-3
conventions used in the manual, vii

d
data storage, 3-14
DDR SO-DIMMs
 installing, 2-15, 4-6
 figure, 2-16, 4-7
DDR2 SO-DIMMs, from National Instruments (note), 2-15, 4-6
Declaration of Conformity (NI resources), B-1
diagnostic tools (NI resources), B-1
directories and files installed on hard drive, 2-14
DMI Event Logging menu, 2-6
Index

documentation
 conventions used in manual, vii
 how to use this documentation set, vii
 NI resources, B-1
 related documentation, viii
DRIVE LED, 3-14
drivers, 2-14
 installation
 GPIB (IEEE 488.2), 4-3
 video, 4-3
 obtaining latest drivers, 4-7
drivers (NI resources), B-1

E
electrical specifications, A-1
 electromagnetic compatibility, A-3
 Ethernet, connector
 location and pinout (figure), 3-6
 signals (table), 3-6
 examples (NI resources), B-1
 Exiting BIOS Setup menu, 2-10
 ExpressCard
 connector location and pinout
 (figure), 3-12
 ExpressCard/34, 3-12

F
 files and directories installed on hard drive, 2-14
 floppy drive, using external floppy drive, 4-7
 front panel
 connectors, 3-1
 dimensions, 3-2
 features, 3-14
 functional overview of NI PXI-8195/8196, 1-2

G
 GPIB (IEEE 488.2), 3-11
 connector location and pinout (figure), 3-11
 connector signals (table), 3-11, 3-13
 driver installation, 4-3

H
 hard drive, 3-14
 files and directories installed on, 2-14
 recovery, 2-16
 help, technical support, B-1

I
 IDE controller, using SCSI hard drive in addition, 4-1
 IDE logic block, 1-4
 IEEE 488.2, 3-11
 images directory, 2-14
 installation
 See also configuration
 configuration in MAX (figure), 4-5
 injector/ejector handle position (caution), 2-2
 NI PXI-8196 installed in a PXI chassis (figure), 2-3
 procedure, 2-1
 removing NI PXI-8195/8196 from PXI chassis, 2-4
 removing protective screw caps (figure), 2-2
 instrument drivers (NI resources), B-1
 Integrated Peripherals menu, 2-7

K
 keyboard, plugging PS/2 mouse and keyboard into controller, 4-2
 KnowledgeBase, B-1
L
LabVIEW, 1-5
LabVIEW RT configuration switches, 2-12, 2-13
LabWindows/CVI, 1-5
LEDs, front panel LEDs, 3-14, 4-1
LPT cable, connecting to NI PXI-8195/8196, 4-3

M
Main Setup menu, 2-5
manuals directory, 2-14
mating connector
 COM1, 3-5
 Ethernet, 3-6
 GPIB (IEEE 488.2), 3-11
 parallel port, 3-7
 USB, 3-9
 VGA, 3-3
Measurement Studio, 1-5
mouse, plugging PS/2 mouse and keyboard into controller, 4-2

N
National Instruments
 software, 1-4
 support and services, B-1
NI PXI-8195/8196
 benefits of PXI, 1-1
 BIOS setup, 2-4
 block diagram, 1-3
 connectors, 3-1
 COM1 connector and signals, 3-5
 ExpressCard/34 connector and signals, 3-12
 GPIB (IEEE 488.2) connector and signals, 3-11
 parallel port connector and signals, 3-7
 trigger connector and signals, 3-10
 Universal Serial Bus (USB) connector and signals, 3-9
 VGA connector and signals (table), 3-4
data storage, 3-14
 front panel
 features, 3-14
 LEDs, 4-1
 system reset pushbutton, 3-14
 front panel dimensions, 3-2
 functional overview, 1-2
 hard drive recovery, 2-16
 installing DDR SO-DIMMs (figure), 2-16, 4-7
 installing in a PXI chassis, 2-1 (figure), 2-3
 logic blocks, 1-3
 peripheral expansion overview (table), 3-1
 PXI trigger connectivity, 2-14
 removing from a PXI chassis, 2-4
 software, 1-4
 specifications, A-1
 troubleshooting, 5-1
 upgrading RAM, 2-15, 4-6
 using with chassis, 4-4
 NI support and services, B-1
 NI-DAQ function library, 1-4
 NI-VISA high-level programming API, 1-4

O
operating environment specifications, A-2
os directory, 2-14
OS installation from CD-ROM, 2-17
parallel port
 connector location and pinout (figure), 3-7
 connector signals (table), 3-8
 overview (table), 3-1
PCI bus, standard for desktop computer designs, 1-1
peripheral expansion overview (table), 3-1
Per-Slot Device Settings menu, 2-8
physical specifications, A-1
POWER OK LED, 3-14
programming examples (NI resources), B-1
protective screw caps, removing (figure), 2-2
PS/2
 plugging PS/2 mouse and keyboard into controller, 4-2
PXI connectors, function (logic block), 1-4
PXI features, 2-14
PXI Setup menu, 2-8
 Per-Slot Device Settings, 2-8
PXI trigger connectivity, 2-14
PXI-8220, using NI PXI-8195/8196 with, 4-8
pxisys.ini file, 4-4

RAM
 DDR2 SO-DIMMs from National Instruments (note), 2-15, 4-6
 upgrading, 2-15, 4-6
related documentation, viii

safety specifications (table), A-3
serial port, 3-1
 See also COM1 connector
shock and vibration specifications, A-2
socket 479 1 CPU, 1-3
SO-DIMM logic block, 1-3

software
 See also drivers
 installed on your hard drive, 2-14
 installing from CD-ROM, 4-4
 LabVIEW, 1-5
 National Instruments software, 1-4
 NI-DAQ, 1-4
 NI-VISA, 1-4
software (NI resources), B-1
specifications
 electrical, A-1
 electromagnetic compatibility, A-3
 operating environment, A-2
 physical, A-1
 safety, A-3
 shock and vibration, A-2
 storage environment, A-2
storage environment specifications, A-2
super I/O logic block, 1-4
support, technical, B-1
switches
 LabVIEW RT configuration, 2-12
 figure, 2-13
 system CMOS, 2-11
 system reset pushbutton, 3-14

technical support, B-1
training and certification (NI resources), B-1
trigger, 3-10, 4-8
 connector location and pinout (figure), 3-10
 connector signals (table), 3-10
troubleshooting
 CMOS reset, 5-2
 controller does not boot, 5-1
damaged module, 5-2
 video display, 5-2
troubleshooting (NI resources), B-1
Index

U
Universal Serial Bus (USB), 3-1, 3-9
 connector function, 1-4
 connector location and pinout (figure), 3-9
 connector signals (table), 3-9
 overview (table), 3-1

V
VGA
 connector signals (table), 3-4
 location and pinout (figure), 3-4
 overview (table), 3-1
video, 3-1
 See also VGA
 driver installation, 4-3

W
Web resources, B-1

Y
Y-splitter cable
 figure, 4-2
 using mouse and keyboard without, 4-3
 using with PS/2 mouse and keyboard, 2-3