
NI TestStandTM

Using LabVIEWTM with TestStand

Using LabVIEW with TestStand

May 2008
373200C-01

Support

Worldwide Technical Support and Product Information

ni.com

National Instruments Corporate Headquarters

11500 North Mopac Expressway Austin, Texas 78759-3504 USA Tel: 512 683 0100

Worldwide Offices

Australia 1800 300 800, Austria 43 662 457990-0, Belgium 32 (0) 2 757 0020, Brazil 55 11 3262 3599,
Canada 800 433 3488, China 86 21 5050 9800, Czech Republic 420 224 235 774, Denmark 45 45 76 26 00,
Finland 358 (0) 9 725 72511, France 01 57 66 24 24, Germany 49 89 7413130, India 91 80 41190000,
Israel 972 3 6393737, Italy 39 02 41309277, Japan 0120-527196, Korea 82 02 3451 3400,
Lebanon 961 (0) 1 33 28 28, Malaysia 1800 887710, Mexico 01 800 010 0793, Netherlands 31 (0) 348 433 466,
New Zealand 0800 553 322, Norway 47 (0) 66 90 76 60, Poland 48 22 3390150, Portugal 351 210 311 210,
Russia 7 495 783 6851, Singapore 1800 226 5886, Slovenia 386 3 425 42 00, South Africa 27 0 11 805 8197,
Spain 34 91 640 0085, Sweden 46 (0) 8 587 895 00, Switzerland 41 56 2005151, Taiwan 886 02 2377 2222,
Thailand 662 278 6777, Turkey 90 212 279 3031, United Kingdom 44 (0) 1635 523545

For further support information, refer to the Technical Support and Professional Services appendix. To comment
on National Instruments documentation, refer to the National Instruments Web site at ni.com/info and enter
the info code feedback.

© 2003–2008 National Instruments Corporation. All rights reserved.

 Important Information

Warranty
The media on which you receive National Instruments software are warranted not to fail to execute programming instructions, due to defects
in materials and workmanship, for a period of 90 days from date of shipment, as evidenced by receipts or other documentation. National
Instruments will, at its option, repair or replace software media that do not execute programming instructions if National Instruments receives
notice of such defects during the warranty period. National Instruments does not warrant that the operation of the software shall be
uninterrupted or error free.

A Return Material Authorization (RMA) number must be obtained from the factory and clearly marked on the outside of the package before any
equipment will be accepted for warranty work. National Instruments will pay the shipping costs of returning to the owner parts which are covered by
warranty.

National Instruments believes that the information in this document is accurate. The document has been carefully reviewed for technical accuracy. In
the event that technical or typographical errors exist, National Instruments reserves the right to make changes to subsequent editions of this document
without prior notice to holders of this edition. The reader should consult National Instruments if errors are suspected. In no event shall National
Instruments be liable for any damages arising out of or related to this document or the information contained in it.

EXCEPT AS SPECIFIED HEREIN, NATIONAL INSTRUMENTS MAKES NO WARRANTIES, EXPRESS OR IMPLIED, AND SPECIFICALLY DISCLAIMS ANY WARRANTY OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. CUSTOMER’S RIGHT TO RECOVER DAMAGES CAUSED BY FAULT OR NEGLIGENCE ON THE PART OF NATIONAL
INSTRUMENTS SHALL BE LIMITED TO THE AMOUNT THERETOFORE PAID BY THE CUSTOMER. NATIONAL INSTRUMENTS WILL NOT BE LIABLE FOR DAMAGES RESULTING
FROM LOSS OF DATA, PROFITS, USE OF PRODUCTS, OR INCIDENTAL OR CONSEQUENTIAL DAMAGES, EVEN IF ADVISED OF THE POSSIBILITY THEREOF. This limitation of
the liability of National Instruments will apply regardless of the form of action, whether in contract or tort, including negligence. Any action against
National Instruments must be brought within one year after the cause of action accrues. National Instruments shall not be liable for any delay in
performance due to causes beyond its reasonable control. The warranty provided herein does not cover damages, defects, malfunctions, or service
failures caused by owner’s failure to follow the National Instruments installation, operation, or maintenance instructions; owner’s modification of the
product; owner’s abuse, misuse, or negligent acts; and power failure or surges, fire, flood, accident, actions of third parties, or other events outside
reasonable control.

Copyright
Under the copyright laws, this publication may not be reproduced or transmitted in any form, electronic or mechanical, including photocopying,
recording, storing in an information retrieval system, or translating, in whole or in part, without the prior written consent of National
Instruments Corporation.

National Instruments respects the intellectual property of others, and we ask our users to do the same. NI software is protected by copyright and other
intellectual property laws. Where NI software may be used to reproduce software or other materials belonging to others, you may use NI software only
to reproduce materials that you may reproduce in accordance with the terms of any applicable license or other legal restriction.

Trademarks
National Instruments, NI, ni.com, NI TestStand, and LabVIEW are trademarks of National Instruments Corporation. Refer to the Terms of Use
section on ni.com/legal for more information about National Instruments trademarks.

Other product and company names mentioned herein are trademarks or trade names of their respective companies.

Members of the National Instruments Alliance Partner Program are business entities independent from National Instruments and have no agency,
partnership, or joint-venture relationship with National Instruments.

Patents
For patents covering National Instruments products, refer to the appropriate location: Help»Patents in your software, the patents.txt file
on your media, or ni.com/patents.

WARNING REGARDING USE OF NATIONAL INSTRUMENTS PRODUCTS
(1) NATIONAL INSTRUMENTS PRODUCTS ARE NOT DESIGNED WITH COMPONENTS AND TESTING FOR A LEVEL OF
RELIABILITY SUITABLE FOR USE IN OR IN CONNECTION WITH SURGICAL IMPLANTS OR AS CRITICAL COMPONENTS IN
ANY LIFE SUPPORT SYSTEMS WHOSE FAILURE TO PERFORM CAN REASONABLY BE EXPECTED TO CAUSE SIGNIFICANT
INJURY TO A HUMAN.

(2) IN ANY APPLICATION, INCLUDING THE ABOVE, RELIABILITY OF OPERATION OF THE SOFTWARE PRODUCTS CAN BE
IMPAIRED BY ADVERSE FACTORS, INCLUDING BUT NOT LIMITED TO FLUCTUATIONS IN ELECTRICAL POWER SUPPLY,
COMPUTER HARDWARE MALFUNCTIONS, COMPUTER OPERATING SYSTEM SOFTWARE FITNESS, FITNESS OF COMPILERS
AND DEVELOPMENT SOFTWARE USED TO DEVELOP AN APPLICATION, INSTALLATION ERRORS, SOFTWARE AND HARDWARE
COMPATIBILITY PROBLEMS, MALFUNCTIONS OR FAILURES OF ELECTRONIC MONITORING OR CONTROL DEVICES,
TRANSIENT FAILURES OF ELECTRONIC SYSTEMS (HARDWARE AND/OR SOFTWARE), UNANTICIPATED USES OR MISUSES, OR
ERRORS ON THE PART OF THE USER OR APPLICATIONS DESIGNER (ADVERSE FACTORS SUCH AS THESE ARE HEREAFTER
COLLECTIVELY TERMED “SYSTEM FAILURES”). ANY APPLICATION WHERE A SYSTEM FAILURE WOULD CREATE A RISK OF
HARM TO PROPERTY OR PERSONS (INCLUDING THE RISK OF BODILY INJURY AND DEATH) SHOULD NOT BE RELIANT SOLELY
UPON ONE FORM OF ELECTRONIC SYSTEM DUE TO THE RISK OF SYSTEM FAILURE. TO AVOID DAMAGE, INJURY, OR DEATH,
THE USER OR APPLICATION DESIGNER MUST TAKE REASONABLY PRUDENT STEPS TO PROTECT AGAINST SYSTEM FAILURES,
INCLUDING BUT NOT LIMITED TO BACK-UP OR SHUT DOWN MECHANISMS. BECAUSE EACH END-USER SYSTEM IS
CUSTOMIZED AND DIFFERS FROM NATIONAL INSTRUMENTS' TESTING PLATFORMS AND BECAUSE A USER OR APPLICATION
DESIGNER MAY USE NATIONAL INSTRUMENTS PRODUCTS IN COMBINATION WITH OTHER PRODUCTS IN A MANNER NOT
EVALUATED OR CONTEMPLATED BY NATIONAL INSTRUMENTS, THE USER OR APPLICATION DESIGNER IS ULTIMATELY
RESPONSIBLE FOR VERIFYING AND VALIDATING THE SUITABILITY OF NATIONAL INSTRUMENTS PRODUCTS WHENEVER
NATIONAL INSTRUMENTS PRODUCTS ARE INCORPORATED IN A SYSTEM OR APPLICATION, INCLUDING, WITHOUT
LIMITATION, THE APPROPRIATE DESIGN, PROCESS AND SAFETY LEVEL OF SUCH SYSTEM OR APPLICATION.

Conventions

The following conventions are used in this manual:

» The » symbol leads you through nested menu items and dialog box options
to a final action. The sequence File»Page Setup»Options directs you to
pull down the File menu, select the Page Setup item, and select Options
from the last dialog box.

This icon denotes a note, which alerts you to important information.

bold Bold text denotes items that you must select or click in the software, such
as menu items and dialog box options. Bold text also denotes parameter
names.

italic Italic text denotes variables, emphasis, a cross-reference, or an introduction
to a key concept. Italic text also denotes text that is a placeholder for a word
or value that you must supply.

monospace Text in this font denotes text or characters that you should enter from the
keyboard, sections of code, programming examples, and syntax examples.
This font is also used for the proper names of disk drives, paths, directories,
programs, subprograms, subroutines, device names, functions, operations,
variables, filenames, and extensions.

monospace italic Italic text in this font denotes text that is a placeholder for a word or value
that you must supply.

Platform Text in this font denotes a specific platform and indicates that the text
following it applies only to that platform.

© National Instruments Corporation v Using LabVIEW with TestStand

Contents

Chapter 1
Role of LabVIEW in a TestStand-Based System

Code Modules ..1-1
Custom User Interfaces..1-2
Custom Step Types ..1-2
LabVIEW Adapter ...1-2

Chapter 2
Calling LabVIEW VIs from TestStand

Required LabVIEW Settings ...2-1
LabVIEW Module Tab ..2-2
Creating and Configuring a New Step Using the LabVIEW Adapter2-3

Chapter 3
Creating, Editing, and Debugging LabVIEW VIs from TestStand

Creating a New VI from TestStand ...3-1
Editing an Existing VI from TestStand..3-2
Debugging a VI..3-3

Chapter 4
Using LabVIEW Data Types with TestStand

Calling VIs with String Parameters ...4-4
Calling VIs with Cluster Parameters ...4-5

Specifying Each Cluster Element Individually ...4-5
Passing Existing TestStand Container Variables to LabVIEW.......................4-6
Creating a New Custom Data Type...4-7

Creating TestStand Data Types from LabVIEW Clusters...4-8

Chapter 5
Configuring the LabVIEW Adapter

Selecting a LabVIEW Server...5-1
Using a LabVIEW Run-Time Engine or Other Executable Server.................5-2
Using a LabVIEW Development System Later than 8.55-3
Per-Step Configuration of the LabVIEW Adapter ..5-4

Contents

Using LabVIEW with TestStand vi ni.com

Reserving Loaded VIs for Execution .. 5-4
Code Template Policy ... 5-5
Legacy VI Settings .. 5-6

Chapter 6
Creating Custom User Interfaces in LabVIEW

TestStand User Interface Controls... 6-1
TestStand VIs and Functions... 6-1
Creating Custom User Interfaces... 6-2

Configuring the TestStand UI Controls .. 6-3
Enabling Sequence Editing ... 6-4
Handling Events .. 6-4
Starting TestStand ... 6-6
Main Event Loop and Shutting Down TestStand ... 6-6
Menu Bars and Menu Event Handling.. 6-7
Localization... 6-8

Other User Interface Utilities .. 6-9
Making Dialog Boxes Modal to TestStand... 6-9
Checking for Stopped Executions... 6-9

Running User Interfaces .. 6-10

Appendix A
Using LabVIEW 8.x with TestStand

Using LabVIEW 8.0.. A-1
LabVIEW 8.0 Real-Time Module Incompatibility... A-1
Projects.. A-1
Project Libraries .. A-2
Network-Published Shared Variables ... A-2

Deploying Variables ... A-2
Using an Aliases File .. A-3

NI-DAQmx Tasks, Channels, and Scales in LabVIEW Projects A-3
Conditional Disable Structures and Symbols.. A-4
64-Bit Integer Data Type .. A-4
XControls .. A-4
Remote Execution ... A-4
Building a TestStand Deployment with LabVIEW 8.0 A-4

Appendix B
Calling LabVIEW VIs on Remote Systems

Contents

© National Instruments Corporation vii Using LabVIEW with TestStand

Appendix C
Using the TestStand ActiveX APIs in LabVIEW

Appendix D
Calling Legacy LabVIEW VIs

Appendix E
Technical Support and Professional Services

Index

© National Instruments Corporation 1-1 Using LabVIEW with TestStand

1
Role of LabVIEW in a
TestStand-Based System

NI TestStand is a test management environment you use to organize and
execute code modules written in a variety of languages and application
development environments (ADEs), including LabVIEW. TestStand
handles core test management functionality, including the definition and
execution of the overall testing process, user management, report
generation, database logging, and more. TestStand can work in a variety of
different testing scenarios and environments because it allows extensive
customization of components, such as process models, step types, and user
interfaces. You can use LabVIEW in the following ways to accomplish
much of this customization:

• Create code modules, such as tests and actions, TestStand can call
using the LabVIEW Adapter

• Create custom user interfaces for test systems

• Create custom step types

Code Modules
TestStand can call LabVIEW virtual instruments (VIs) with a variety of
connector pane configurations. TestStand can call VIs that reside on the
same computer as TestStand or on other network computers, including
computers running the LabVIEW Real-Time (RT) module.

TestStand can also pass data to the VIs it calls and store the data the VI
returns. Additionally, the VIs TestStand calls can access the complete
TestStand application programming interface (API) for advanced
applications.

Chapter 1 Role of LabVIEW in a TestStand-Based System

Using LabVIEW with TestStand 1-2 ni.com

Custom User Interfaces
You can use the LabVIEW development environment to build custom user
interfaces for test systems and for creating custom sequence editors.
Typically, custom user interfaces are designed for use in production test
systems. With the LabVIEW Full or Professional Development System,
you can also create user interfaces using the TestStand User Interface (UI)
Controls and the TestStand API. Refer to Chapter 9, Creating Custom User
Interfaces, of the NI TestStand Reference Manual for more information
about creating custom user interfaces.

Custom Step Types
You can use LabVIEW to create VIs you call from custom step types.
These VIs can implement editable dialog boxes and other features of
custom step types. Refer to Chapter 13, Custom Step Types, of the
NI TestStand Reference Manual for more information about custom step
types.

LabVIEW Adapter
The LabVIEW Adapter offers advanced functionality for calling VIs from
TestStand. You can use the LabVIEW Adapter to perform the following
tasks:

• Call VIs with arbitrary connector panes

• Call VIs on remote computers

• Run VIs in the LabVIEW Run-Time Engine

• Call TestStand VIs from versions of TestStand earlier than 3.0 and
LabVIEW Test Executive VIs

• Create and edit VIs from TestStand

• Debug VIs (step in/step out) from TestStand

• Run VIs using the LabVIEW Development System or a LabVIEW
executable

© National Instruments Corporation 2-1 Using LabVIEW with TestStand

2
Calling LabVIEW VIs from
TestStand

You can call LabVIEW VIs from TestStand using the LabVIEW Adapter.

Required LabVIEW Settings
All the tutorials in this manual require that you have the LabVIEW
Development System and TestStand installed on the same computer. In
addition, you must configure the LabVIEW Adapter to run VIs using the
LabVIEW Development System. Refer to Chapter 5, Configuring the
LabVIEW Adapter, for more information about configuring these settings
for the adapter.

Confirm the following settings in LabVIEW:

• To edit or run a VI from TestStand, you must include the VI in the
VI Server: Exported VIs list. By default LabVIEW allows access to
all VIs. To view the VI Server: Exported VIs list, select Tools»Options
and select the VI Server: Exported VIs category in the Options dialog
box.

• If you use LabVIEW 8.0.1 or earlier, select Tools»Options»
Performance and Disk to confirm the Run with multiple threads
checkbox includes a checkmark to avoid errors when running VIs.

Chapter 2 Calling LabVIEW VIs from TestStand

Using LabVIEW with TestStand 2-2 ni.com

LabVIEW Module Tab
Use the LabVIEW Module tab in the TestStand Sequence Editor to
configure calls to LabVIEW VIs. Select a step that uses the LabVIEW
Adapter to view the LabVIEW Module tab in the Step Settings pane,
as shown in Figure 2-1.

Figure 2-1. LabVIEW Module Tab

Use the LabVIEW Module tab in the TestStand Sequence Editor to specify
the VI the step executes and to specify if LabVIEW shows the front panel
of the VI when TestStand calls the VI. The Module tab includes Source
Code buttons for selecting an Express VI and converting an Express VI to
a standard VI.

The LabVIEW Module tab also contains the following specific information
about the VI to call.

• VI Parameter Table—Contains the following information about each
control and indicator, also called the parameters of the VI, wired to the
connector pane of the VI:

– Parameter Name—Contains the caption text for the control or
indicator. If no caption exists, this field contains the label text.

– Type—Contains the LabVIEW data type for the control or
indicator. Refer to Chapter 4, Using LabVIEW Data Types
with TestStand, for more information about how LabVIEW data
types map to TestStand data types.

1 VI Parameter Table
2 Parameters Table Control
3 Express VI Buttons

4 Source Code and Help Buttons
5 VI Context Help Image and Description

51

2 3 4

Chapter 2 Calling LabVIEW VIs from TestStand

© National Instruments Corporation 2-3 Using LabVIEW with TestStand

– In/Out—Specifies if the parameter is an input (control) or an
output (indicator).

– Default—Specifies if TestStand uses the default value for the
parameter, cluster element, or array element. If the terminal on the
VI is marked as Required, this option is not available.

– Value—Contains a TestStand expression. For input parameters,
TestStand passes the result of this expression to the VI unless
you enable the checkbox in the Default column. For output
parameters, TestStand stores the data the VI returns in the location
this expression specifies.

Note Parameters are listed in the VI Parameter Table according to their order in the VI
context help image.

• Source Code and Help Buttons—Use these buttons to create or edit
a VI in LabVIEW, refresh the parameter information for the VI, open
the LabVIEW Advanced Settings window, display the help associated
with the VI if available, and undock the LabVIEW Help.

• VI Context Help Image and Description—Displays the context help
image of the VI as shown in the LabVIEW Context Help window and
displays the description of the VI from the Documentation page in the
LabVIEW VI Properties dialog box. When you click a label or
terminal of the VI icon, TestStand highlights the parameter in the
VI Parameter Table.

Click the Help or Help Topic button located on the Help toolbar to access
the NI TestStand Help, which provides additional information about the
LabVIEW Module tab.

Creating and Configuring a New Step Using the
LabVIEW Adapter

Complete the following steps to insert a new step that uses the LabVIEW
Adapter and configure the step to call a test VI.

1. Launch the TestStand Sequence Editor and select the LabVIEW
Adapter on the Insertion Palette.

2. Open a new Sequence File window if one is not already open.

3. Select File»Save As and save the sequence file as <TestStand
Public>\Tutorial\Call LabVIEW VI.seq. The <TestStand
Public> directory is located at C:\Documents and Settings\

Chapter 2 Calling LabVIEW VIs from TestStand

Using LabVIEW with TestStand 2-4 ni.com

All Users\Documents\National Instruments\

TestStand x.x on Windows 2000/XP and at C:\Users\Public\
Documents\National Instruments\TestStand x.x
on Windows Vista.

4. Insert a Pass/Fail step in the Main step group of the Sequence File
window and rename the new step LabVIEW Pass/Fail Test.

5. On the LabVIEW Module tab of the Step Settings pane, click the
Browse for VI button, select <TestStand Public>\Tutorial\
LabVIEW Pass-Fail Test.vi, and click Open. TestStand reads the
description and connector pane information from the VI and updates
the LabVIEW Module tab so you can configure the data to pass to and
from the VI.

6. In the VI Parameter Table, enter Step.Result.PassFail in the
Value column of the PASS/FAIL Flag output parameter and enter
Step.Result.ReportText in the Value column of the Report Text
output parameter.

Note All expression fields support type-ahead and auto-completion with drop-down lists
and context-sensitive highlighting. At any point while editing an expression, press
<Ctrl-Space> to show a drop-down list of valid expression elements.

When TestStand calls the VI, it places the value the VI returns
in the PASS/FAIL Flag and Report Text indicators into the
Result.PassFail and Result.ReportText properties of the step.

7. Notice that TestStand automatically fills in the Value column of the
error out output parameter with the Step.Result.Error property.

Note By default, if a VI uses the standard LabVIEW error out cluster as an output
parameter, TestStand automatically passes that value into the Step.Result.Error
property for the step. You can also update the value manually.

8. Select File»Save to save the sequence file.

9. Select Execute»Single Pass to run the sequence file using the Single
Pass Execution entry point.

When the execution completes, the resulting report indicates the step
passed. The VI always returns True as the Pass/Fail output parameter.

10. Close the Execution window.

© National Instruments Corporation 3-1 Using LabVIEW with TestStand

3
Creating, Editing, and Debugging
LabVIEW VIs from TestStand

You can use the LabVIEW Adapter to create new VIs to call from
TestStand and to edit and debug existing VIs.

Creating a New VI from TestStand
Complete the following steps to create a new VI from TestStand.

1. Launch the TestStand Sequence Editor and select the LabVIEW
Adapter on the Insertion Palette.

2. Open <TestStand Public>\Tutorial\Call LabVIEW VI.seq,
if it is not already open. You created this sequence file in the Creating
and Configuring a New Step Using the LabVIEW Adapter section of
Chapter 2, Calling LabVIEW VIs from TestStand.

3. Insert a Numeric Limit Test step after the LabVIEW Pass/Fail Test
step and rename it LabVIEW Numeric Limit Test.

4. Select the LabVIEW Numeric Limit Test step and use the
LabVIEW Module tab to complete the following steps.

a. Click the Create VI button to create a new VI.

b. In the File dialog box, browse to the <TestStand Public>\
Tutorial directory, enter LabVIEW Numeric Limit Test.vi
in the File Name control, and click OK. TestStand creates a new
VI based on the available code templates for the TestStand
Numeric Limit Test and opens the VI in LabVIEW.

Note The TestStand Numeric Limit Test step type requires code modules to store a
measurement value in the Step.Result.Numeric property, and the step type performs a
comparison operation to determine if the step passes or fails. Code modules can update step
properties by passing step properties as parameters to and from the module or by using the
TestStand API in the module. If you use a default code template from National Instruments
to create a module, TestStand creates the parameters needed to access the step properties
for you.

Chapter 3 Creating, Editing, and Debugging LabVIEW VIs from TestStand

Using LabVIEW with TestStand 3-2 ni.com

c. In LabVIEW, select Window»Show Block Diagram to open the
block diagram.

d. Right-click the Numeric Measurement indicator terminal, select
Create»Constant from the context menu, and enter 10.0.

e. Save and close the VI.

5. Return to the TestStand Sequence Editor and select the LabVIEW
Module tab. Notice that TestStand automatically updates the output
parameters for the VI based on the information stored in the code
template for the Numeric Limit Test step type.

6. Save the sequence file as <TestStand Public>\Tutorial\
Call LabVIEW VI 2.seq.

7. Select Execute»Single Pass to run the sequence file using the Single
Pass Execution entry point. When the execution completes, the
resulting report indicates the step passed with a numeric measurement
of 10.0.

8. Leave the sequence file open so you can use it in the next tutorial.

Refer to Chapter 13, Custom Step Types, of the NI TestStand Reference
Manual for more information about step types and code templates.

Editing an Existing VI from TestStand
Complete the following steps to edit an existing VI from TestStand.

1. Open <TestStand Public>\Tutorial\
Call LabVIEW VI 2.seq, if it is not already open.

2. Right-click the LabVIEW Pass/Fail Test step and select
Edit Code from the context menu. LabVIEW becomes the active
application.

3. Open the block diagram for the VI.

4. Change the PASS/FAIL Flag Boolean constant to False.

5. Save and close the VI.

6. In the TestStand Sequence Editor, select Execute»Single Pass to run
the sequence file using the Single Pass Execution entry point. When
the execution completes, the resulting report indicates the step failed,
and the VI returns False in the PASS/FAIL Flag indicator.

7. Close the Execution window.

Chapter 3 Creating, Editing, and Debugging LabVIEW VIs from TestStand

© National Instruments Corporation 3-3 Using LabVIEW with TestStand

Debugging a VI
Complete the following steps to debug a VI you call from TestStand using
the LabVIEW Adapter.

1. Open <TestStand Public>\Tutorial\Call LabVIEW VI.seq.

2. Place a breakpoint on the LabVIEW Pass/Fail Test step.

3. Save the sequence file and select Execute»Run MainSequence to
start an execution of MainSequence.

4. When the execution pauses, click the Step Into button on the sequence
editor toolbar. LabVIEW becomes the active application, in which the
LabVIEW Pass-Fail Test VI is open and in a suspended state.

5. Open the block diagram of the suspended VI.

6. Click the Step Into button or the Step Over button on the LabVIEW
toolbar to begin single-stepping through the VI. You can click the
Continue button at any time to finish single-stepping through the VI.

7. When you finish single-stepping through the VI, click the Return to
Caller button on the LabVIEW toolbar to return to TestStand. The
execution pauses at the next step in the sequence.

8. Select Debug»Resume in TestStand to complete the execution.

9. Close the Execution window.

You can run the VI multiple times before returning to TestStand. However,
LabVIEW passes the results only from the last run to TestStand when you
finish debugging.

© National Instruments Corporation 4-1 Using LabVIEW with TestStand

4
Using LabVIEW Data Types
with TestStand

TestStand provides number, string, Boolean, and object reference built-in
data types. TestStand also provides several standard named data types,
including Path, Error, LabVIEWAnalogWaveform, and others. You can
create container data types that hold any number of other data types.
TestStand container data types are analogous to LabVIEW clusters.
You can use references to external objects, such as ActiveX (Microsoft
ActiveX) objects or VISA sessions, between different types of code
modules.

LabVIEW has a greater variety of built-in data types than TestStand, so
TestStand converts LabVIEW data types in certain ways when calling VIs.
Table 4-1 describes how TestStand handles the various LabVIEW data
types.

Table 4-1. TestStand Equivalents for LabVIEW Data Types

LabVIEW Data Type TestStand Data Type

Real number (U8, U16, U32, I8, I16, I32,
SGL, DBL, or EXT)

Number

TestStand does not support extended-precision,
(EXT) floating-point numbers. TestStand
converts any EXT numbers from LabVIEW into
double-precision (DBL) numbers.

64-bit Integer Numeric TestStand does not support calling VIs with
64-bit integer numeric indicators or controls.

Fixed-Point Numeric TestStand does not support calling VIs with
Fixed-Point Numeric indicators or controls.

Complex number (CSG, CDB, or CXT) Number

TestStand maps each part of the complex
number to separate TestStand Number
properties. Refer to the previous information
about how TestStand converts EXT numbers.

Chapter 4 Using LabVIEW Data Types with TestStand

Using LabVIEW with TestStand 4-2 ni.com

Enum (U32, U16, or U8) Number

For input parameters, the Value column on the
LabVIEW Module tab shows a ring control that
contains the items in the LabVIEW
enumeration.

At edit time, TestStand stores the numeric value
and string label value of the enum you select.
When you pass an enum value to TestStand at
run time, TestStand stores the numeric value
only.

String String

Refer to the Calling VIs with String Parameters
section of this chapter for more information
about using the String data type.

Path Path or String

ActiveX Control or Automation Refnum Object reference

.NET Refnum Object reference

You cannot pass references to .NET objects you
create outside of LabVIEW, such as with the
TestStand .NET Adapter, to LabVIEW VIs. You
can store references to .NET objects you create
in LabVIEW within TestStand properties and
then pass them to other LabVIEW VIs. If you
use LabVIEW 7.1.1, the objects must be
marshalable by reference.

Waveform LabVIEWAnalogWaveform

Digital Waveform LabVIEWDigitalWaveform

Digital Data LabVIEWDigitalData

Table 4-1. TestStand Equivalents for LabVIEW Data Types (Continued)

LabVIEW Data Type TestStand Data Type

Chapter 4 Using LabVIEW Data Types with TestStand

© National Instruments Corporation 4-3 Using LabVIEW with TestStand

Picture String

You must select Binary String on the
LabVIEW Module tab. Refer to the Calling VIs
with String Parameters section of this chapter
for more information about using the String
data type.

Refnum (File I/O, VI, Menu, Queue,
TCP connection, and so on)

Number

You cannot use references to internal LabVIEW
objects inside TestStand or in other types of
code modules. You can store only references to
LabVIEW objects in TestStand properties and
then pass the properties to other VIs.

Timestamp String

Refer to the Calling VIs with String Parameters
section of this chapter for more information
about using the String data type.

Error I/O Error

If a VI contains the standard error out cluster as
an output parameter, TestStand automatically
detects it and maps the output to
Step.Result.Error.

Array of x Array of TestStand (x)

Variant Any TestStand data type

LabVIEW Object TestStand does not support calling VIs with
LabVIEW Object indicators or controls.

Cluster Container

Refer to the Calling VIs with Cluster
Parameters section of this chapter for more
information about using the Container data type.

Table 4-1. TestStand Equivalents for LabVIEW Data Types (Continued)

LabVIEW Data Type TestStand Data Type

Chapter 4 Using LabVIEW Data Types with TestStand

Using LabVIEW with TestStand 4-4 ni.com

Calling VIs with String Parameters
When you configure calls to VIs that use strings as parameters, you can
specify if TestStand escapes the string data when reading the data from the
VI or unescapes the string data when passing the data to the VI. This option
is necessary because LabVIEW strings can contain binary data, including
NUL characters, but TestStand strings cannot contain NUL characters.

For String parameters, use the ring control in the Type column of the
VI Parameter Table on the LabVIEW Module tab to select ASCII String
or Binary String. The default value is ASCII String. TestStand does not
modify the values of ASCII strings it passes to or from VIs.

Select Binary String in the Type column to store a LabVIEW string that
contains binary data in a TestStand property. TestStand escapes the string
before storing it and substitutes hexadecimal codes for the unprintable
characters, such as the NUL character, in the string.

To pass a string escaped to a LabVIEW VI, select Binary String in the Type
column. TestStand unescapes the string before passing it to the VI and
substitutes the correct character values for the hexadecimal values in the
escaped string.

I/O Data Types (DAQmx Task Name,
DAQmx Channel Name, VISA Resource Name,
IVI Logical Name, FieldPoint IO Point, or
Motion Resource)

LabVIEWIOControl

Refer to the NI TestStand Help for more
information about using the DeviceName and
SessionNumber properties of the
LabVIEWIOControl data type.

IMAQ Session Number

Other I/O data types (DAQmx Physical Channel
Name, Terminal Name, Analog Trigger Source,
Scale Name, Device Name, or Switch Name)

String

Refer to the Calling VIs with String Parameters
section of this chapter for more information
about using the String data type.

Table 4-1. TestStand Equivalents for LabVIEW Data Types (Continued)

LabVIEW Data Type TestStand Data Type

Chapter 4 Using LabVIEW Data Types with TestStand

© National Instruments Corporation 4-5 Using LabVIEW with TestStand

Calling VIs with Cluster Parameters
When you configure calls to VIs that use clusters as parameters, you can
specify that each cluster element maps to a different TestStand expression
or that the entire LabVIEW cluster maps to a TestStand data type.

You can create a custom data type that matches a LabVIEW cluster. For
input parameters, you can pass the default value for the entire cluster or the
default values for specific elements of the cluster control on the front panel
of the VI.

For output parameters, you can optionally specify where TestStand stores
the cluster value or specific elements of the cluster value.

If you are using several VIs with a complex array of clusters that is not
used in TestStand, you can use the LabVIEWClusterArray data type,
which adapts to the array of clusters as needed. First, use the
LabVIEWClusterArray data type as an output expression that TestStand
uses to adapt the data type to fit the array of clusters. Then, you can pass
the data type to the remaining VIs as an input.

Specifying Each Cluster Element Individually
To configure each cluster element individually, specify a different
TestStand expression for each element of the cluster. Figure 4-1 illustrates
a VI Parameter Table in which the data source for the Number element of
Input Cluster is a local variable. TestStand passes the default value for the
String element of Input Cluster.

Figure 4-1. Input Cluster Data Sources

Chapter 4 Using LabVIEW Data Types with TestStand

Using LabVIEW with TestStand 4-6 ni.com

Passing Existing TestStand Container Variables to LabVIEW
Instead of passing each cluster element individually, you can create a
TestStand custom data type that maps to the entire LabVIEW cluster.

Use the LabVIEW Cluster Passing tab of the Type Properties dialog box for
the new custom data type to specify how TestStand maps subproperties to
elements in a LabVIEW cluster. Then, when you specify the data to pass
for a cluster parameter, use a variable that is an instance of the new custom
data type. Refer to the NI TestStand Help for more information about the
Type Properties dialog box.

Figure 4-2 shows how the data passed to the Input Cluster parameter is a
local variable called ContainerData with a type of InputData. Figure 4-3
shows the custom InputData data type.

Figure 4-2. ContainerData Local Variable

Figure 4-3. TestStand Custom InputData Data Type

Chapter 4 Using LabVIEW Data Types with TestStand

© National Instruments Corporation 4-7 Using LabVIEW with TestStand

Creating a New Custom Data Type
Use the Create Custom Data Type From Cluster dialog box to create a
TestStand custom data type, such as a container, that matches an existing
LabVIEW cluster. Click the Create Custom Data Type button, shown at
left, located in the Type column of the VI Parameter Table on the
LabVIEW Module tab to launch the Create Custom Data Type From
Cluster dialog box, as shown in Figure 4-4.

Figure 4-4. Create Custom Data Type From Cluster Dialog Box

Use the Type Name textbox to specify the name of the TestStand custom
data type you want to create. Use the Property Type column to specify the
TestStand data type to use for cluster elements that are variants. Use the
Property Name column to specify the names of the subproperties that map
to the elements of the cluster. Use the Create Custom Data Type In File ring
control to specify where TestStand creates the type.

Refer to Chapter 11, Type Concepts, of the NI TestStand Reference Manual
for more information about where TestStand stores custom data types.
Refer to Chapter 12, Standard and Custom Data Types, of the NI TestStand
Reference Manual and to the NI TestStand Help for more information
about custom data types. Refer to the NI TestStand Help for more
information about the Create Custom Data Type From Cluster dialog box.

Chapter 4 Using LabVIEW Data Types with TestStand

Using LabVIEW with TestStand 4-8 ni.com

Creating TestStand Data Types from LabVIEW Clusters
Complete the following steps to create a TestStand data type that matches
a LabVIEW cluster.

1. Open <TestStand Public>\Tutorial\
Call LabVIEW VI 2.seq and select the LabVIEW Adapter
on the Insertion Palette.

2. Insert a new Pass/Fail Test step in the Main step group of
MainSequence after the LabVIEW Numeric Limit Test step
and rename the step Pass Container to VI.

3. On the LabVIEW Module tab, click the Browse for VI button
and select <TestStand Public>\Tutorial\
VI with Cluster Input.vi. The Report Text output parameter
of this VI returns a string that contains the number and string elements
of the Input Cluster parameter.

4. Click the Create Custom Data Type button in the Type column of
the Input Cluster parameter to launch the Create Custom Data Type
From Cluster dialog box. TestStand maps the cluster elements to
subproperties in a container called Input_Cluster, which is a new
TestStand custom data type. You can rename the data type and
subproperties as necessary and specify where TestStand stores the
new data type.

5. In the Create Custom Data Type From Cluster dialog box, change the
type name to InputData and click the Create button to accept the
automatically assigned values and to create the data type in the current
sequence file.

6. On the LabVIEW Module tab, remove the checkmark from the Default
column for the Input Cluster input parameter, click the Expression
Browse button in the Value column to open the Expression Browser
dialog box, and complete the following steps.

a. Right-click Locals in the Variables/Properties tab and select
Insert Types»InputData to create a local variable of type
InputData. Rename the local variable ContainerData.

b. Right-click the Number subproperty of ContainerData and
select Properties from the context menu. Enter 23 in the Value
field and click OK.

c. Right-click the String subproperty of ContainerData and
select Properties from the context menu. Enter My String Data
in the Value field and click OK.

Chapter 4 Using LabVIEW Data Types with TestStand

© National Instruments Corporation 4-9 Using LabVIEW with TestStand

d. Enter Locals.ContainerData in the Expression field and
click OK. The Value column for the Input Cluster parameter now
contains Locals.ContainerData.

7. Enter Step.Result.ReportText in the Value column for the
ReportText output parameter. When TestStand calls the VI, it passes
the values in the ContainerData local variable to the Input Cluster
control on the VI and returns the Number and String elements of the
Input Cluster parameter to the ReportText property of the step.

8. Save your changes and select Execute»Single Pass to run the
sequence file using the Single Pass Execution entry point. When the
execution completes, the resulting report shows the text the VI with
Cluster Input VI returns.

Note By default, the Before Saving Modified Types option on the Preferences tab of the
Station Options dialog box is set to Prompt to Increment Version Types. This causes
TestStand to launch the Modified Types Warning dialog box when you select File»Save
and the sequence file or type palette contains types that are marked as modified. Select
Increment Type Versions and then click OK to close the dialog box. Refer to the
NI TestStand Help for more information about the Modified Types Warning dialog box.

9. Close the Execution window.

© National Instruments Corporation 5-1 Using LabVIEW with TestStand

5
Configuring the LabVIEW
Adapter

You can configure the TestStand LabVIEW Adapter to select a LabVIEW
server, reserve loaded VIs for execution, establish a code template policy,
and change legacy VI settings.

Selecting a LabVIEW Server
The LabVIEW Adapter can run VIs using the LabVIEW Development
System, the LabVIEW Run-Time Engine, or a LabVIEW executable built
with an ActiveX server enabled.

Select Configure»Adapters to launch the Adapter Configuration dialog
box, select LabVIEW in the Adapter column, and click the Configure
button to launch the LabVIEW Adapter Configuration dialog box, in which
you can select the server you want TestStand to use, as shown in Figure 5-1.

Figure 5-1. LabVIEW Adapter Configuration Dialog Box

Chapter 5 Configuring the LabVIEW Adapter

Using LabVIEW with TestStand 5-2 ni.com

• LabVIEW Run-Time Engine—Provides optimal performance
when calling LabVIEW VIs by running VIs in the same process as
TestStand. If you select this option, you cannot create or edit VIs from
TestStand or debug VIs TestStand calls. You must install and select the
LabVIEW Run-Time Engine version that matches the version of the
VIs that TestStand executes.

• Development System (Active Version: X.X)—Allows you to create
or edit VIs from TestStand and debug VIs TestStand calls in LabVIEW.
The VIs execute in the LabVIEW Development System process. You
must have the LabVIEW Development System installed on the same
computer as TestStand to use this option.

• Other Executable—Uses a LabVIEW executable you build with
the Build Executable functionality in LabVIEW 8.0 or later or the
Build Application or Shared Library (DLL) functionality in
LabVIEW 7.1.1. If you select this option, you cannot create or edit
VIs from TestStand or debug VIs TestStand calls. The version of
LabVIEW that built the executable must match the version of the VIs
that TestStand executes.

To use this option, enter the ActiveX server name associated with the
LabVIEW executable. The executable must be installed and registered
on the same computer as TestStand. Launch the executable once to
register it as an ActiveX server. Refer to the <TestStand Public>\
Components\RuntimeServers\LabVIEW directory for an example
server VI and application build script for LabVIEW 8.0 or later and for
LabVIEW 7.1.1.

Note (Windows Vista) Windows Vista requires you to log in as a user with administrator
privileges in order to register a server. LabVIEW cannot register ActiveX servers
on Windows Vista when building executables without elevation. If you are using
TestStandLVRTS.exe with Windows Vista to run LabVIEW VIs, you receive an
error because the server is not registered. You can register the server by running
TestStandLVRTS.exe as an administrator.

Using a LabVIEW Run-Time Engine or Other Executable Server
If you select LabVIEW Run-Time Engine or Other Executable as a server
in the LabVIEW Adapter Configuration dialog box, you must ensure that
the server can locate the complete hierarchy of VIs, including any subVIs,
that TestStand executes. The version of the VIs that TestStand executes
must match the version of the LabVIEW Run-Time Engine or the version
of LabVIEW that built the executable. Refer to Chapter 14, Deploying
TestStand Systems, of the NI TestStand Reference Manual for more

Chapter 5 Configuring the LabVIEW Adapter

© National Instruments Corporation 5-3 Using LabVIEW with TestStand

information about deploying VIs for use with TestStand and about
including a LabVIEW Run-Time Engine in a deployment installer. Refer
to Appendix A, Using LabVIEW 8.x with TestStand, for more information
about calling and deploying LabVIEW 8.x VIs.

If you select the LabVIEW Run-Time Engine as a server on a development
system, TestStand might report that it cannot load some VIs in the
LabVIEW Run-Time Engine, even though the VIs run using the LabVIEW
Development System as the server. This is because TestStand cannot load
a subVI that was saved in a different version of LabVIEW than the
LabVIEW Run-Time Engine. The most common reason for this
discrepancy is when a top-level VI uses a subVI or controls located in the
vi.lib\addons\TestStand directory, and that subVI was saved in a
different version of LabVIEW than the LabVIEW Run-Time Engine. Mass
compiling the vi.lib\addons\TestStand directory usually resolves
the discrepancy. You can also mass compile top-level VIs, which in turn
compiles any subVIs.

If you use the TestStand Version Selector to activate a different version
of TestStand, TestStand copies new versions of the VIs to the
vi.lib\addons\TestStand directory. Mass compile the VIs located
in this directory after you activate the new version of TestStand.

Using a LabVIEW Development System Later than 8.5
If you install a version of LabVIEW later than LabVIEW 8.5 and you want
to use that version of LabVIEW with TestStand, you must complete the
following steps to update TestStand - Default Values 85.llb
to allow the LabVIEW Adapter to retrieve the default parameter values
of the VIs.

1. Create a copy of TestStand - Default Values 85.llb.

2. Rename the copy TestStand - Default Values xx.llb, where
xx indicates the version of LabVIEW you want to use with TestStand.

3. Mass compile TestStand - Default Values xx.llb using the
version of LabVIEW you want to use with TestStand.

Chapter 5 Configuring the LabVIEW Adapter

Using LabVIEW with TestStand 5-4 ni.com

Per-Step Configuration of the LabVIEW Adapter
You can direct TestStand to always use the LabVIEW Run-Time Engine
to execute a step. Click the Advanced Settings button on the LabVIEW
Module tab and select the Always Run VI in LabVIEW Run-Time
Engine option in the Advanced Settings window.

When you enable the Always Run VI in LabVIEW Run-Time Engine
option, TestStand selects the appropriate version of the
LabVIEW Run-Time Engine according to the version of LabVIEW
in which you last compiled the VI. This setting overrides the global setting
in the LabVIEW Adapter Configuration dialog box. Use this option when
you do not want the global settings for the adapter to affect the tools and
step types you create for use with the LabVIEW Adapter.

Reserving Loaded VIs for Execution
Enable the Reserve Loaded VIs for Execution option in the LabVIEW
Adapter Configuration dialog box to reserve any VIs TestStand loads for
calling with the LabVIEW Adapter. Enabling this option reduces the
amount of time required for TestStand to call the VIs and makes references
you create in a VI you call from TestStand—such as I/O, ActiveX, and
synchronization references—persist across calls to other VIs. You can store
these references in a TestStand property and pass them to subsequent VIs
you call from TestStand.

Although reserving VIs with this option reduces the amount of time
required for TestStand to call the VIs, it also blocks other applications from
using any VIs TestStand loads, including subVIs of the VIs TestStand calls
directly.

If you open a reserved VI in LabVIEW, the Run arrow, shown at left,
indicates the VI is reserved, and you cannot edit the VI. To edit a VI
TestStand has reserved, click the Edit Code button, shown at left, on the
LabVIEW Module tab or right-click the step and select Edit Code from the
context menu to open the VI in TestStand. You can also select File»Unload
All Modules in the sequence editor before you open the VI in LabVIEW.

You must close any references you create to VIs. If TestStand reserves VIs
when it loads the VIs, LabVIEW does not automatically close the
references until TestStand unloads the VIs that created the references.
Failing to close the references could result in a memory leak in the test
system.

Chapter 5 Configuring the LabVIEW Adapter

© National Instruments Corporation 5-5 Using LabVIEW with TestStand

Code Template Policy
Use the Code Template Policy section in the LabVIEW Adapter
Configuration dialog box to specify if TestStand allows the use of old,
or legacy, VI templates when you create new test VIs. The legacy VI
templates are VIs you can call from previous versions of TestStand. Refer
to Appendix D, Calling Legacy LabVIEW VIs, for more information about
legacy TestStand VIs.

If you enable the Allow Only New Templates option and create a new VI
from the LabVIEW Module tab, TestStand creates a new VI based on the
code template for the specified step type. If the step type has multiple code
templates available, TestStand launches the Choose Code Template dialog
box, in which you can select the code template to use for the new VI.

If you enable the Allow Only Legacy Templates option, TestStand launches
the Optional Parameters dialog box, in which you select the optional
parameters, such as Input Buffer, Invocation Info, or Sequence Context
ActiveX Pointer, you want to include as input parameters for the VI.

If you enable the Allow Legacy and New Templates option, TestStand
launches the Choose Code Template dialog box, in which you can select a
new template from the list of available templates for the step type. Enable
the Show Legacy Templates in List option to show the legacy templates.
When you select a legacy template, you enable the Optional Parameters for
Legacy Templates section of the Choose Code Template dialog box, in
which you can select the optional parameters you want to include as input
parameters for the VI, as shown in Figure 5-2.

Chapter 5 Configuring the LabVIEW Adapter

Using LabVIEW with TestStand 5-6 ni.com

Figure 5-2. Choose Code Template Dialog Box

Refer to the NI TestStand Help for more information about the Choose
Code Template dialog box.

Legacy VI Settings
Click the Legacy VI Settings button in the LabVIEW Adapter
Configuration dialog box to launch the Legacy VI Settings dialog box, in
which you can configure settings relevant to calling legacy test VIs. The
Legacy VI Settings dialog box contains expressions the LabVIEW Adapter
evaluates to generate values to pass to the VI in the various Invocation Info
cluster fields. Legacy VIs can use the Invocation Info cluster as an
optional input. Refer to the Invocation Info Cluster section of Appendix D,
Calling Legacy LabVIEW VIs, for more information about the Invocation
Info cluster.

© National Instruments Corporation 6-1 Using LabVIEW with TestStand

6
Creating Custom User Interfaces
in LabVIEW

You can create custom user interfaces and create user interfaces for other
components, such as custom step types. Refer to Chapter 9, Creating
Custom User Interfaces, of the NI TestStand Reference Manual to for
information about the TestStand User Interface (UI) Controls.

TestStand User Interface Controls
Use the TestStand UI Controls, located on the Controls»TestStand
palette, to develop a custom user interface application, including custom
sequence editors.

When you place the TestStand UI Controls on the front panel of a VI, you
can use the LabVIEW ActiveX functionality to program the controls. You
can also configure the controls interactively using the LabVIEW Property
Browser or control property pages if available. Right-click the control and
select Property Browser from the context menu to open the LabVIEW
Property Browser. Right-click the control and select Properties from the
context menu to open the property page.

Refer to Appendix C, Using the TestStand ActiveX APIs in LabVIEW,
for information about programming the TestStand API from LabVIEW.

TestStand VIs and Functions
The TestStand VIs and functions, located on the Functions»TestStand
palette, are the LabVIEW versions of the functions in the TestStand Utility
(TSUtil) Functions Library.

Use the TestStand VIs and functions for the following tasks:

• Inserting menu items that automatically execute commands the
TestStand UI Controls provide

• Localizing the strings in a user interface

Chapter 6 Creating Custom User Interfaces in LabVIEW

Using LabVIEW with TestStand 6-2 ni.com

• Making dialog boxes LabVIEW VIs launch modal to TestStand
applications

• Checking if an execution that calls a VI has stopped

• Setting and getting the values of TestStand properties and variables

Right-click the VI on the Functions palette or on the block diagram and
select Help from the context menu to access the help for the VI.

Creating Custom User Interfaces
User interfaces that use the TestStand UI Controls typically perform the
following basic operations:

• Configure connections, commands, and other control settings

• Register to handle events the controls generate

• Start TestStand

• Wait in a main event loop until you close the application

• Shut down TestStand

User interfaces can also include a menu bar that contains non-TestStand
items and items that invoke TestStand commands.

Refer to the example user interfaces included with TestStand for more
information about creating a TestStand User Interface using the
TestStand UI Controls in LabVIEW. Begin with the simple user interface
example, <TestStand>\UserInterfaces\Simple\LabVIEW\
TestExec.llb\Simple OI - Top-Level VI.vi. The <TestStand>
directory is the location where you installed TestStand. Refer to
the full-featured example, <TestStand>\UserInterfaces\
Full-Featured\LabVIEW\TestExec.llb\

Full UI - Top-Level VI.vi, for a more advanced sequence
editor example that includes menus and localization options.

TestStand installs the source code files for the default user interfaces
in the <TestStand>\UserInterfaces and <TestStand
Public>\UserInterfaces directories. To modify the installed user
interfaces or to create new user interfaces, modify the files in the
<TestStand Public>\UserInterfaces directory. You can use
the read-only source files for the default user interfaces in the
<TestStand>\UserInterfaces directory as a reference. When you
modify installed files, rename the files after you modify them if you want
to create a separate custom component. You do not have to rename the files

Chapter 6 Creating Custom User Interfaces in LabVIEW

© National Instruments Corporation 6-3 Using LabVIEW with TestStand

after you modify them if you only want to modify the behavior of an
existing component. If you do not rename the files and you use the files in
a future version of TestStand, changes National Instruments makes to the
component might not be compatible with the modified version of the
component. Storing new and customized files in the <TestStand
Public> directory ensures that new installations of the same version of
TestStand do not overwrite the customizations and ensures that uninstalling
TestStand does not remove the files you customize.

TestStand no longer includes example user interfaces that use the TestStand
API. These examples contained a large amount of complex source code,
and they provided less functionality than the simpler examples that use the
TestStand UI Controls. National Instruments recommends using the
examples that use the TestStand UI Controls as a basis for new
development.

Note If you place a TestStand UI Control on the front panel of a VI, you must set the
Preferred Execution System to user interface for the VI. In addition, National Instruments
recommends that if a TestStand User Interface performs ActiveX operations that can
process messages or performs TestStand operations that can call back into LabVIEW, the
application must perform these operations in a LabVIEW execution system other than user
interface, such as standard or other 2. Performing these operations in the user interface
execution system can result in hang conditions.

Configuring the TestStand UI Controls
Refer to the following example user interface VIs for examples of
configuring connections, commands, and other settings for the TestStand
UI Controls:

• Simple OI - Configure Application Manager

• Simple OI - Configure SequenceFileView Manager

• Simple OI - Configure ExecutionView Manager

• Full UI - Configure StatusBar

• Full UI - Configure SequenceFileView Manager

• Full UI - Configure ListBar

• Full UI - Configure ExecutionView Manager

Chapter 6 Creating Custom User Interfaces in LabVIEW

Using LabVIEW with TestStand 6-4 ni.com

Enabling Sequence Editing
The TestStand UI Controls support Operator Mode and Editor Mode. Set
the ApplicationMgr.IsEditor property to True for the Application
Manager control to allow users to create and edit sequence files. You can
also use the /editor command-line flag to set the property.

Handling Events
TestStand UI Controls generate events to notify the application of user
input and application events, such as the completion of an execution.
To handle an event in LabVIEW, you register a callback VI, which
LabVIEW automatically calls when the control generates the event.

Complete the following steps to use the Register Event Callback function,
available in the LabVIEW Full or Professional Development System.

1. Wire the reference of the control that sends the event you want to
handle to the Event input of the Register Event Callback function.

2. Use the Event input terminal pull-down menu to select the specific
event you want to handle.

3. If you want to pass custom data to the callback VI, wire the custom
data to the User Parameter input of the Register Event Callback
function. The User Parameter input can be any data type.

4. Right-click the VI Ref input of the Register Event Callback function
and select Create Callback VI from the context menu. LabVIEW
creates an empty callback VI with the correct input parameters for the
particular event, including an input parameter for any custom data you
wired to the User Parameter input in step 3.

5. Save the new callback VI. The block diagram that contains the
Register Event Callback function now shows a Static VI Reference
node wired to the VI Ref input of the function. This node returns a
strictly typed reference to the new callback VI.

6. Complete the block diagram of the callback VI to perform the
operation you specify when the control generates the event.

7. When the application finishes handling events for the control, use the
Unregister for Events function to close the event callback refnum
output of the Register Event Callback function.

Chapter 6 Creating Custom User Interfaces in LabVIEW

© National Instruments Corporation 6-5 Using LabVIEW with TestStand

Figure 6-1 shows how to register a callback VI to handle the Break event
for the TestStand Application Manager control.

Figure 6-1. Registering a Callback VI for the Break Event

You can resize the Register Event Callback function node to show multiple
sets of terminals to handle multiple events. Refer to the following example
user interface VIs for examples of registering and handling events from the
TestStand UI Controls:

• Simple OI - Configure Event Callbacks

• Full UI - Configure Event Callbacks

You must limit the tasks you perform in a callback VI to ensure that
LabVIEW handles the event in a timely manner to allow the front panel to
quickly respond to user input and prevent possible hang conditions. If a
callback VI performs ActiveX operations that can process messages or
performs TestStand operations that can call back into LabVIEW, the
application must perform these operations outside of the callback VI. You
can define a user event the callback VI generates to defer these types of
operations.

The ReDraw user event in the full example user interface shows how
callback VIs can defer operations to perform outside of the callback VI.
The example user interface performs the following tasks:

• Calls the Full UI - Create LabVIEW Application Events VI to create
the ReDraw user event.

• Callback VIs, such as the Full UI - Resized Event Callback VI,
generate the ReDraw user event when the user interface must resize
and reposition controls on the front panel.

• The ReDraw User Event case in the main event loop of the Full UI -
Top-Level VI sets a global variable while processing the current event
to prevent callback VIs from generating new ReDraw events. The
ReDraw User Event case calls the Full UI - Disable Panel Updates VI

Chapter 6 Creating Custom User Interfaces in LabVIEW

Using LabVIEW with TestStand 6-6 ni.com

to prevent the front panel from updating, calls the Full UI -
ArrangeControls VI to update the position and size of controls on the
front panel, and calls the Full UI - Re-enable Panel Updates VI to
update the front panel.

Starting TestStand
Start TestStand by invoking the ApplicationMgr.Start method,
as shown in the following example user interfaces:

• Simple OI - Top-Level VI

• Full UI - Top-Level VI

Main Event Loop and Shutting Down TestStand
User interface applications wait in a main event loop after starting
TestStand. The main event loop must handle the events that stop the user
interface application. The main event loop can also handle other events,
such as menu selections and LabVIEW control changes.

Typically, you stop a user interface application by clicking the Close box or
by executing the Exit command through a TestStand menu or a Button
control.

When you click the Close box, the Event structure in the main event loop
handles the Panel Close? event. The block diagram that handles the
event invokes the ApplicationMgr.Shutdown method and discards
the event. When the ApplicationMgr.Shutdown method returns True
to indicate TestStand is ready to shut down, the main event loop stops.
When the ApplicationMgr.Shutdown method returns False, the main
event loop waits because TestStand cannot shut down until the executions
complete or you unload sequence files. When TestStand is ready, the
Application Manager control generates the
ApplicationMgr.ExitApplication event.

The callback VI for the ApplicationMgr.ExitApplication event
generates a LabVIEW Quit Application user event, which the example user
interface VIs handle, to inform the main event loop to stop.

Refer to the following example user interface VIs for examples of the main
event loop and how to shut down TestStand. These VIs also provide
examples of creating, generating, and handling the Quit Application event.

• Simple OI - Top-Level VI

• Simple OI - ExitApplication Event Callback

Chapter 6 Creating Custom User Interfaces in LabVIEW

© National Instruments Corporation 6-7 Using LabVIEW with TestStand

• Full UI - Top-Level VI

• Full UI - Create LabVIEW Application Events

• Full UI - ExitApplication Event Callback

Menu Bars and Menu Event Handling
The TestStand VIs and functions palette contains the following VIs for
creating and handling menu items that execute TestStand UI Control
commands:

• TestStand - Insert Commands in Menu

• TestStand - Cleanup Menus

• TestStand - Remove Commands From Menus

• TestStand - Execute Menu Command

Because maintaining the current state of the menu bar can be difficult,
National Instruments recommends that you handle the menu bar only when
required. The Event structure in a main event loop can include a case to
handle the Menu Activation? event to determine when you open a menu or
select a shortcut key that might be linked to a menu item. The block
diagram that handles this event can then rebuild the menu bar.

The Full UI - Top-Level VI in the example user interface shows how to
rebuild the menu bar. The Menu Activation? case in the main event loop of
the VI determines which control has focus, if the control is a TestStand UI
control, and calls the Full UI - Rebuild Menu Bar VI to rebuild the menu
bar. When you click the menu bar, LabVIEW does not automatically return
focus to the control after handling a user menu event. The Menu
Activation? case in Full UI - Top-Level VI passes a reference for the control
with focus to the Menu Selection (User) case so the application can later
restore focus to the control.

You can add a Menu Selection (User) case to the Event structure in a main
event loop to handle user menu selections but limit the tasks you perform
in the Menu Selection (User) case to ensure that LabVIEW handles the
menu selection in a timely manner. If the case performs ActiveX operations
that can process messages or performs TestStand operations that can call
back into LabVIEW, the application must perform these operations in a
LabVIEW execution system other than user interface, such as standard
or other 2.

Chapter 6 Creating Custom User Interfaces in LabVIEW

Using LabVIEW with TestStand 6-8 ni.com

The Full UI - Top-Level VI in the example user interface shows how to
process user menu events. The VI uses the standard LabVIEW execution
system. The Menu Selection (User) case in the main event loop calls the
Full UI - Add To Menu Queue VI to queue the operation for processing the
menu outside of the main event loop. The Full UI - Process Menu Queue
VI waits for and processes queued operations. For TestStand menu items,
the Full UI - Process Menu Queue VI executes the appropriate TestStand
command by calling the TestStand - Execute Menu Command VI. For
non-TestStand menu items, the VI calls the Full UI - Process User Menus
VI, which you can customize to handle user menu selections.

The LabVIEW application menu items for copy, cut, and paste operate on
LabVIEW controls only and do not operate on TestStand UI Controls. In
addition, the TestStand menu commands operate on TestStand UI Controls
only and not on LabVIEW controls. When you rebuild a LabVIEW menu
in the Menu Activation? event case and you call the TestStand - Insert
Commands in Menu VI to insert CommandKind_Edit_Copy,
CommandKind_Edit_Cut, or CommandKind_Edit_Paste, pass False
to the TestStand UI Control Has Focus control and "Edit" to the
Top-Level Menu to Insert Into control to insert the corresponding
LabVIEW application menu items instead of the TestStand menu
command.

Localization
The TestStand UI Controls and TestStand VIs and functions provide tools
that localize user interfaces based on the TestStand language setting. Use
the following VIs to localize the user interface:

• TestStand - Get Resource String

• TestStand - Localize Menu

• TestStand - Localize Front Panel

Refer to the following example user interface VIs for examples of
localizing user interfaces:

• Full UI - Localize Operator Interface

• Full UI - About Box

Chapter 6 Creating Custom User Interfaces in LabVIEW

© National Instruments Corporation 6-9 Using LabVIEW with TestStand

Other User Interface Utilities
You can also launch dialog boxes modal to TestStand application windows
and enable VIs to check for stopped executions.

Making Dialog Boxes Modal to TestStand
The VIs that TestStand calls can launch dialog boxes modal to TestStand
application windows, such as the TestStand Sequence Editor or custom
user interfaces.

Use the following VIs to make a dialog box modal to TestStand application
windows:

• TestStand - Start Modal Dialog

• TestStand - End Modal Dialog

Refer to the <TestStand Public>\Examples\ModalDialogs\
LabVIEW directory for examples of how to use these VIs.

Checking for Stopped Executions
The VIs that TestStand calls can launch display dialog boxes or perform
other time-consuming operations. In these cases, it can be useful for those
VIs to periodically check if TestStand terminated or aborted their parent
execution so the VIs can stop gracefully to allow the parent execution to
terminate or abort.

Use the following VIs to enable VIs called by TestStand to verify if the
execution that called the VI has stopped:

• TestStand - Initialize Termination Monitor

• TestStand - Get Termination Monitor Status

• TestStand - Close Termination Monitor

Refer to the dialog box VIs in the following files to see how to use these
VIs:

• <TestStand Public>\Examples\Demo\LabVIEW\Computer

Motherboard Test

• <TestStand Public>\Examples\Demo\LabVIEW\Auto

Chapter 6 Creating Custom User Interfaces in LabVIEW

Using LabVIEW with TestStand 6-10 ni.com

Running User Interfaces
Consider the following issues when running user interfaces:

• You must close all running LabVIEW User Interfaces before you exit
Windows. If you shut down, restart, or log off of Windows while a user
interface is running, the user interface cancels the operation and might
exit with an error.

• When you run a LabVIEW User Interface in the LabVIEW
Development System, you can call remote VIs only if the VI is the
same or earlier version as the LabVIEW Development System.

• By default, you can run only one copy of a LabVIEW built executable
at a time, which prevents the TestStand /useexisting command-line
option from working. Add the "allowmultipleinstances =
TRUE" option to the INI options file in the same directory as the
LabVIEW built executable to allow more than one copy to execute at
a time.

© National Instruments Corporation A-1 Using LabVIEW with TestStand

A
Using LabVIEW 8.x with
TestStand

Refer to the LabVIEW documentation for more information about the
LabVIEW features included in this appendix.

Using LabVIEW 8.0
LabVIEW 8.0 introduced support for many new features, such as projects,
project libraries, and DAQmx tasks. As a result of some of these changes,
TestStand 3.1 or earlier is not compatible with LabVIEW 8.0. Use
TestStand 3.5 or later to use LabVIEW 8.0 with TestStand.

The following sections include the LabVIEW 8.0 features TestStand
supports, limitations of the TestStand support, and additional requirements
to build a TestStand deployment system that includes LabVIEW 8.0 VIs.

LabVIEW 8.0 Real-Time Module Incompatibility
TestStand is not compatible with the LabVIEW 8.0 Real-Time (RT)
module and cannot download VIs to the LabVIEW 8.0 RT module. Refer
to Appendix B, Calling LabVIEW VIs on Remote Systems, for more
information about executing VIs in the LabVIEW 8.0 RT module.

Projects
When you run a VI in LabVIEW 8.0, the VI runs inside the application
instance for a target in a LabVIEW project or the VI runs without a project
in the main application instance. In TestStand, the LabVIEW Adapter
always runs a VI in the main application instance, and LabVIEW 8.0
project settings do not apply. TestStand does not support LabVIEW project
features or settings unless otherwise noted in the following sections.

Appendix A Using LabVIEW 8.x with TestStand

Using LabVIEW with TestStand A-2 ni.com

Project Libraries
LabVIEW project libraries are collections of VIs, type definitions, palette
menu files, and other files, including other project libraries. In TestStand,
you can call public VIs in a project library, but you cannot call private VIs.
To call a VI in a project library, you must specify the path to the VI file.
TestStand does not use qualified paths that include the project library path
and name.

Network-Published Shared Variables
LabVIEW 8.0 supports network-published shared variables so VIs on
distributed systems can share data across the network. LabVIEW identifies
shared variables through a network path that includes the computer name
(target name), the project library name(s), and the shared variable name.

Deploying Variables
In LabVIEW, you must deploy a project library that contains the shared
variables to which you want to connect from within a VI. LabVIEW
automatically deploys shared variables from a library when you execute a
VI that reads or writes shared variables and the project library that contains
the shared variables is open in the current LabVIEW project.

Because TestStand executes VIs without a project, LabVIEW cannot
automatically deploy shared variables. Therefore, you must deploy shared
variables to the local computer in one of the following ways:

• Manually deploy the shared variables in the LabVIEW development
environment using a project.

• Use the LabVIEW Utility Deploy Library step type in TestStand to
deploy a project library that contains shared variables. The project
library can contain only shared variables. The project library cannot
contain any VI files. Refer to the NI TestStand Help for more
information about the LabVIEW Utility Deploy Library step type.

Note TestStand does not support calling a VI or DLL that programmatically deploys
shared variables using the Deploy Library method on a LabVIEW Application reference
or using the Deploy Items method on a LabVIEW Project reference. If you
programmatically deploy shared variables, the TestStand or LabVIEW application might
return an error and terminate. You can use the Deploy Library method from within a
standalone executable without adverse effects on TestStand.

Appendix A Using LabVIEW 8.x with TestStand

© National Instruments Corporation A-3 Using LabVIEW with TestStand

Using an Aliases File
When you deploy a project library or execute a VI in TestStand that
accesses a shared variable, LabVIEW must determine how to resolve the
target name stored in the network path for the variable. When you configure
a target in a LabVIEW project, LabVIEW stores the IP address for the
target in an aliases file located in the same directory as the project. The
aliases file uses the same base name as the project and a .aliases file
extension.

The server you configured the LabVIEW Adapter to use in the LabVIEW
Adapter Configuration dialog box determines the aliases file LabVIEW
uses in the following ways:

• LabVIEW Run-Time Engine—LabVIEW looks for an aliases file
with the same name and location as the TestStand application. For
example, SeqEdit.aliases for the TestStand Sequence Editor and
TestExec.aliases for a user interface. You must quit and restart the
TestStand application after you copy the aliases file from the project
directory to the application directory.

• Development System—LabVIEW looks for an aliases file,
LabVIEW.aliases, located in the same directory as the LabVIEW
Development System executable. You must quit and restart LabVIEW
after you copy the aliases file from the project directory to the
LabVIEW directory.

• Other Executable—LabVIEW looks for an aliases file with the same
name and location as the LabVIEW executable server. For example,
TestStandLVRTS.aliases for TestStandLVRTS.exe and
TestExec.aliases for a user interface. You must quit and restart the
executable after you copy the aliases file from the project directory to
the executable directory.

NI-DAQmx Tasks, Channels, and Scales in LabVIEW Projects
TestStand does not support VIs that use NI-DAQmx tasks, channels, and
scales defined in a project. You must define NI-DAQmx tasks, channels,
and scales in Measurement & Automation Explorer (MAX).

Appendix A Using LabVIEW 8.x with TestStand

Using LabVIEW with TestStand A-4 ni.com

Conditional Disable Structures and Symbols
LabVIEW 8.0 includes the Conditional Disable Structure, which contains
one or more subdiagrams, or cases. Depending on the configuration,
LabVIEW uses one of the subdiagrams for the duration of the execution.
You can specify conditions for the structure based on custom symbols
defined in a project. Because TestStand executes VIs in the main
application instance, any conditions that use custom symbols always
evaluate to False.

64-Bit Integer Data Type
TestStand does not support calling VIs that contain terminals connected to
64-bit Integer Numeric indicators or controls.

XControls
TestStand supports calling VIs that use XControls on Windows systems.

Remote Execution
To execute VIs on a remote LabVIEW system, TestStand requires Remote
Execution Support for NI TestStand for the latest version of LabVIEW on
the system. The version of this component must match the version of
LabVIEW with which you saved the VIs. LabVIEW installs this
component only if TestStand is present. If you install TestStand after you
install LabVIEW, TestStand installs a version of the component that
might not match the version of LabVIEW on the system. In this case,
you might need to rerun the LabVIEW installer.

Building a TestStand Deployment with LabVIEW 8.0
TestStand 4.0 or later supports deploying LabVIEW 8.0 VIs and VIs from
project libraries. However, the following restrictions exist that do not apply
to earlier versions of LabVIEW:

• TestStand does not support deploying duplicate project libraries. You
receive an error if you attempt to include two project libraries with the
same name.

• TestStand no longer supports including two VIs with the same name in
a deployment, unless the VIs are in different project libraries.

• National Instruments does not recommend distributing two VIs with
the same name to different locations on a target computer. When a VI
with the same name from a different location is in memory, LabVIEW
uses the VI in memory when attempting to load a subVI. However,

Appendix A Using LabVIEW 8.x with TestStand

© National Instruments Corporation A-5 Using LabVIEW with TestStand

LabVIEW reports an error if you attempt to load a top-level VI with
the same name as a VI in memory even if the similarly named VI in
memory is an exact copy of the one you want to load.

• TestStand no longer supports distributing duplicate DLLs that VIs call.
TestStand 4.0 or later supports, but National Instruments does not
recommend, distributing duplicate DLLs that steps in a sequence file
call.

• National Instruments does not recommend editing packaged VIs on a
deployed system because unexpected errors can occur. TestStand
includes only required VIs from a project library in a deployment. If
you attempt to add new VIs from a project library to the deployment
image, LabVIEW might not be able to find all the VIs it needs when
you run the new VIs. National Instruments recommends rebuilding
and redeploying the deployment image in this situation. Analysis
and instrument drivers are examples of VIs that use project libraries.

• While processing sequence files, the TestStand Deployment Utility
automatically includes project library files in the deployment if a
LabVIEW Utility Deploy Library step references the project library.

• When you build a TestStand deployment that calls VIs that use shared
variables, you must add an aliases file to the deployment. You must
also configure the deployment to install the aliases file to the proper
location on the destination system so LabVIEW can properly resolve
network paths. In addition, you must include the NI Variable Engine
component in the installer to ensure that the destination system can
deploy the shared variables.

• National Instruments does not recommend deploying LabVIEW VIs
that were previously deployed using the TestStand Deployment Utility.
When the TestStand Deployment Utility packages LabVIEW VIs, the
utility includes all subVIs and creates partial project libraries that
contain only the required VIs from the project libraries.

If you attempt to redeploy VIs, the build in the TestStand Deployment
Utility can fail when you attempt to include a partial project library and
the original complete project library or when you attempt to include
two copies of the same VI on the system. If you deploy custom
LabVIEW-based step types to a development system and then attempt
to include the step types in a new deployment, the build might fail.

To work around this limitation, you must remove the duplicate VIs and
partial project libraries from the system and relink the VIs to the
original VIs and complete project libraries on the system before you
build a new deployment.

Appendix A Using LabVIEW 8.x with TestStand

Using LabVIEW with TestStand A-6 ni.com

Complete the following steps to resolve any duplicate VIs from
previously deployed files.

1. Build the deployment and review the VIs the utility reports as
duplicates in the status log.

2. Review the SupportVIs LLB or directory in the previously
deployed files to determine which VIs and project libraries
conflict with VIs located on the development system. Typically,
a SupportVIs LLB or directory contains duplicate VIs and project
libraries from vi.lib and user.lib.

3. Remove any duplicate VIs and partial project libraries the
Deployment Utility reports and those in a SupportVIs LLB or
directory.

4. Load all top-level VIs included in the previously deployed files
and resave the VIs. LabVIEW prompts you to browse for any
missing subVIs.

5. If the previously deployed files contain sequence files with steps
that call Express VIs or any duplicate VI, you must reconfigure the
Express VI steps and update the VI pathname for steps that call the
VIs.

Select Tools»Update VI Calls to run the Update VI Calls tool to
update the Express VIs a LabVIEW step instance calls and to
check or update a Standard VI call prototype. Use the Update VI
Calls tool when you upgrade the LabVIEW version and you want
to run the Express VIs a LabVIEW step instance calls in the new
version of the LabVIEW Run-Time Engine. Also, use the Update
VI Calls tool to update existing Express VI instances with any
changes made to the Express VI. Refer to the NI TestStand Help
for more information about the Update VI Calls tool.

6. Repeat step 1 to determine if duplicate VIs still exist.

Appendix A Using LabVIEW 8.x with TestStand

© National Instruments Corporation A-7 Using LabVIEW with TestStand

LabVIEW 8.2 Object-Oriented Programming
LabVIEW 8.2 includes support for Object-Oriented Programming.
TestStand cannot directly call a VI that wires a LabVIEW object to its
connector pane. However, you can wire the LabVIEW object to the Flatten
to String function, return the data string to TestStand as a binary string, and
store the flattened LabVIEW object in a string property or variable in
TestStand.

You cannot access the properties or invoke the methods on the flattened
LabVIEW string object in TestStand. To access the properties or invoke the
methods on the LabVIEW object, you must pass the flattened LabVIEW
object as a binary string to a VI and wire the string to the Unflatten From
String function along with the object constant of the correct type to create
the LabVIEW object.

© National Instruments Corporation B-1 Using LabVIEW with TestStand

B
Calling LabVIEW VIs on Remote
Systems

With TestStand, you can directly call LabVIEW VIs on remote computers,
including computers that run the LabVIEW Development System or a
LabVIEW executable and PXI controllers that run the
LabVIEW Real-Time (RT) module. TestStand supports downloading VIs
to systems that run the LabVIEW 7.1.1 RT module but does not support
downloading VIs to systems that run the LabVIEW 8.0 or later RT module.
To use the LabVIEW 8.0 or later RT module, you must call a VI on the local
system and the local VI must then call the VI on the LabVIEW RT module,
or you must manually download the VI to the LabVIEW RT module and
call the VI by remote path or by name if the VI is already in memory.

Because TestStand uses the LabVIEW VI Server to run VIs remotely, the
remote computers can use any operating system LabVIEW supports,
including Linux, Solaris (LabVIEW 7.1.1 only), and Mac OS.

To call a VI remotely, you must configure the TestStand step to specify that
the call occurs on a remote computer. In addition, you must configure the
remote computer to allow TestStand to call VIs located on the computer.
You must also configure the computer running TestStand to have network
access to the remote computer running the LabVIEW VI Server.

Configuring a Step to Run Remotely
Complete the following steps to configure a step to run remotely. The VI
must be present on the local computer so TestStand can configure and run
the VI.

1. Click the Advanced Settings button on the LabVIEW Module tab to
launch the LabVIEW Advanced Settings window, in which you can
specify the name, or an expression that evaluates to the name, of the
remote computer on which you want to run the VI.

2. If the remote computer is running the LabVIEW Development System
or a LabVIEW executable, use the Remote VI Path text box to specify
the path to the VI on the remote computer.

Appendix B Calling LabVIEW VIs on Remote Systems

Using LabVIEW with TestStand B-2 ni.com

If the remote computer is a PXI controller running LabVIEW 7.1.1 RT,
TestStand downloads the VI to the remote computer or loads the VI
using the Remote VI Path you specified in the LabVIEW Advanced
Settings window. TestStand skips this step if the VI is already present
in memory on the controller at the time TestStand loads the code
module for the step.

If the remote computer is a PXI controller running LabVIEW 8.0 RT
or later, TestStand does not download the VI to the remote computer.
You can use the LabVIEW 8.0 Development System to download VIs
to the PXI controller. You can also use the TestStand FTP Files step
type to download files from and upload files to a remote system. Refer
to the NI TestStand Help for more information about the FTP Files step
type.

Note Refer to the Getting Started with the LabVIEW Real-Time Module manual in the
<LabVIEW>\manuals directory for more information about downloading VIs to a PXI
controller.

You can also use FTP to download VIs to the PXI controller. Use the
LabVIEW Development System to create a Source Distribution with
all the VIs to ensure that you include all the dependencies of the VIs to
transfer to the hard drive of the LabVIEW RT target. Remove the
checkmarks from the options to exclude VIs from vi.lib,
instr.lib, and user.lib. Then, you can use FTP to transfer the
source distribution output to the hard drive of the LabVIEW RT target.

After you download the VIs to the PXI controller running the
LabVIEW 8.0 or greater RT module, you can use the Remote VI Path
option in the LabVIEW Advanced Settings window to call the VIs.

Configuring the LabVIEW VI Server to Run VIs Remotely
The LabVIEW Development System or built executable must be running
on the remote computer, and you must configure the development system
or built executable to allow VI calls through the TCP/IP protocol of the VI
Server.

In LabVIEW 7.1.1, select Tools»Options and navigate to the
VI Server: Configuration settings to enable the TCP/IP protocol and
the VI calls options. You can also specify the TCP/IP port the server uses.
The port you specify in LabVIEW must be the same port you specify in
TestStand in the LabVIEW Advanced Settings window, which you can
access from the LabVIEW Module tab.

Appendix B Calling LabVIEW VIs on Remote Systems

© National Instruments Corporation B-3 Using LabVIEW with TestStand

Use the VI Server: TCP/IP or Machine Access settings to allow specific
computers access to the LabVIEW VI Server. You can also specify certain
computers or entire domains that can call VIs on the server machine.

Use the VI Server: Exported VIs settings to configure the VIs you want to
call through the LabVIEW VI Server. You must export all VIs you want to
call remotely from TestStand. The default setting in LabVIEW is to export
all VIs, indicated by an asterisk (*).

In LabVIEW 8.0 or later, you can make changes to the LabVIEW VI Server
settings using LabVIEW Projects. You must enable TCP/IP Protocol and
specify the Machine Access, User Access, and Exported VIs settings.

Refer to the LabVIEW Help for more information about configuring
VI Server options.

Configuring the LabVIEW RT Server to Run VIs
You can configure an RT Server to run VIs remotely.

For a LabVIEW 7.1.1 RT Server, launch LabVIEW on the host computer,
select the appropriate RT target computer, and select Tools»RT Target
<IP Address/Host Name> Options. Configure the VI Server settings to
specify which computers and VIs can run remotely.

In addition, you must also configure the RT target computer to allow access
to the computer running TestStand if you want TestStand to download VIs
to the RT target computer.

For a LabVIEW 8.0 or later RT Server, launch LabVIEW on the host
computer, select the appropriate RT target in the project, and select
Properties from the context menu to launch the Real-Time PXI Properties
dialog box. Configure the VI Server settings to specify which computers
and VIs can run remotely.

When you finish configuring the target computer, untarget the PXI
controller before you attempt to use TestStand to call VIs on the target
computer.

Refer to the Configuring Target Properties section of the Getting
Started with the LabVIEW Real-Time Module manual in the
<LabVIEW>\manuals directory for more information about configuring
VI Server settings on a PXI controller.

Appendix B Calling LabVIEW VIs on Remote Systems

Using LabVIEW with TestStand B-4 ni.com

User Access to VI Server
TestStand does not support user-based VI security for executing VIs on
remote systems. You must use the VI Server Machine access list to protect
a VI server on a remote system.

© National Instruments Corporation C-1 Using LabVIEW with TestStand

C
Using the TestStand ActiveX
APIs in LabVIEW

In some cases, you might need to program the TestStand API or
TestStand UI Controls from LabVIEW test and user interface VIs. Refer to
the LabVIEW documentation for information about ActiveX concepts and
how to use LabVIEW as an ActiveX client.

Invoking Methods
TestStand objects have methods you invoke in order to perform an
operation or function on them. In LabVIEW, use the Invoke Node to invoke
methods. The block diagram in Figure C-1 shows how to invoke the
Sequence.UnloadModules method to unload all code modules in the
sequence.

Figure C-1. Invoking the UnloadModules Method

Accessing Built-In Properties
TestStand defines a number of built-in properties that are always present
for objects, such as Step and Sequence objects. Nearly every kind of
TestStand object has built-in properties that are static with respect to the
TestStand API, which you can use to access the properties in the
programming language you specify. Examples of built-in properties are
the Sequence.Name property and the SequenceContext.Sequence
property.

Appendix C Using the TestStand ActiveX APIs in LabVIEW

Using LabVIEW with TestStand C-2 ni.com

In LabVIEW, use the Property Node to access built-in properties. The block
diagram in Figure C-2 shows how to obtain the value of the
Sequence.Name property.

Figure C-2. Obtaining the Value of the Name Property from a Sequence Object

The block diagram in Figure C-3 shows how to obtain a reference to a step
of a sequence that a Sequence object references.

Figure C-3. Obtaining a Reference to a Step of a Sequence
that a Sequence Object References

Accessing Dynamic Properties
In TestStand, you can define custom step properties, sequence local
variables, sequence file global variables, and station global variables.
Because the TestStand API is independent of the variables and custom step
properties you define, these variables and properties are dynamic with
respect to the TestStand API. The TestStand API provides the
PropertyObject class so you can access dynamic properties and
variables from within code modules. Instead of using defined constants,
use lookup strings to identify specific properties by name.

To access dynamic properties of an object, you must first use the
AsPropertyObject method of the object to convert the specific
object reference to a PropertyObject reference. Then, use the
PropertyObject interface to access custom properties of the object
by using a lookup string to specify the specific custom property.

Appendix C Using the TestStand ActiveX APIs in LabVIEW

© National Instruments Corporation C-3 Using LabVIEW with TestStand

The block diagram in Figure C-4 shows how to use the GetValString
method on the PropertyObject interface of a Step object to obtain the
error message value for the current step.

Figure C-4. Using the GetValString Method to Obtain the Error Message Value
for the Current Step

You can use the TestStand - Get Property Value VI or the TestStand - Set
Property Value VI to access dynamic properties of a SequenceContext
object. The block diagram in Figure C-5 shows how to use the TestStand -
Get Property Value VI to obtain the error message value for the current step.

Figure C-5. Obtaining the Error Message for the Current Step

Releasing ActiveX References
When a method or property returns an ActiveX reference, you must use the
Automation Close function in LabVIEW to release the reference.

Note If you do not release the ActiveX reference, LabVIEW does not release it for you
until the VI hierarchy finishes executing. Repeatedly opening large numbers of references
without closing them can cause the system to run out of memory.

Appendix C Using the TestStand ActiveX APIs in LabVIEW

Using LabVIEW with TestStand C-4 ni.com

Using TestStand API Constants and Enumerations
Some TestStand API methods require string and numeric constant input
arguments. The acceptable values of these arguments are organized into
groups that correspond to different properties and methods. For example,
the PropertyObject.SetValNumber method has an options input
argument that accepts many different numeric constants.

It can be difficult to remember all the available string and numeric constants
for the TestStand API properties and methods. To facilitate programming
with the TestStand API within LabVIEW VIs, TestStand provides
two enumerated constant VIs—the TestStand API String Constants VI
and the TestStand API Numeric Constants VI.

Use the TestStand API String Constants VI to locate and select the string
constant arguments you can use with TestStand API properties and
methods. Use the TestStand API Numeric Constants VI to locate and select
the various numeric constant arguments you can use with TestStand API
properties and methods. Use both of these VIs in conjunction with the
constants that are associated with the TestStand API methods and
properties. Refer to the NI TestStand Help for more information about
using constants with the TestStand methods and properties.

Use the OR function in LabVIEW to combine more than one of the numeric
constants. If you need to combine more than two of the constants, use the
Compound Arithmetic function and set the mode to OR.

The block diagram in Figure C-4 shows how to use the TestStand API
Numeric Constants VI to obtain the value of the
PropOptions_NoOptions constant.

Some methods in the TestStand API require enumeration input arguments.
For these methods, right-click the input parameter on the Invoke Node in
LabVIEW, select Create»Constant from the context menu to create a
LabVIEW ring constant, and select the value you want in the resulting
constant.

Appendix C Using the TestStand ActiveX APIs in LabVIEW

© National Instruments Corporation C-5 Using LabVIEW with TestStand

Obtaining a Different Interface for a TestStand Object
In some cases, you might need to obtain a different interface for a TestStand
object than the interface you currently have. In ActiveX/COM terminology,
this action is known as a QueryInterface. For example, if you have a
Module reference to a LabVIEWModule object and need to access the
LabVIEWModule interface instead, perform a QueryInterface on the
Module object to obtain that interface. In LabVIEW, use the Variant To
Data function with the reference to accomplish this task.

The block diagram in Figure C-6 shows how to obtain the
LabVIEWModule interface of a Module object to get the VIDescription
property of the object. Notice that you must release the reference the
Variant To Data function returns when you are finished with it.

Figure C-6. Converting a Module Reference to the LabVIEWModule Type

Acquiring a Derived Class from
the PropertyObject Class

In some cases, you might need to use the PropertyObject class methods
to obtain a reference to a TestStand object. You might then want to access
one of the static properties of the TestStand object, such as the run mode for
the third step in the Main step group of the currently executing sequence.
For methods in the PropertyObject class that can return objects derived
from PropertyObject, you must acquire the derived interface for the
object to access the built-in properties and methods of the derived class.
Use the method described in the Obtaining a Different Interface for a
TestStand Object section to acquire the derived interface for an object.

Appendix C Using the TestStand ActiveX APIs in LabVIEW

Using LabVIEW with TestStand C-6 ni.com

The block diagram in Figure C-7 shows how to use a lookup string to obtain
a reference to a Step object from a SequenceContext object.

Figure C-7. Using a Lookup String to Obtain a Reference to a Step Object
from a SequenceContext Object

Setting the Preferred Execution System for LabVIEW VIs
If the VI calls synchronous methods of the TestStand API, you must
correctly set the LabVIEW Preferred Execution System for the VIs. If you
call synchronous methods that do not return until the LabVIEW server
executes a VI on behalf of TestStand, the VI that calls these methods and
the VI that TestStand attempts to run using the LabVIEW VI Server cannot
be set to run in the same LabVIEW execution system. If the VIs are set to
run in the same execution system, a deadlock occurs because the execution
of the synchronous TestStand method consumes the execution system in
which the VI needs to run.

Because LabVIEW handles ActiveX communication through its user
interface execution system, you cannot set either of the VIs in this scenario
to run in the user interface execution system. For example, you can have a
LabVIEW code module that calls the Engine.NewExecution method
followed by the Engine.WaitForEnd method, and a new execution that
calls LabVIEW code modules. Deadlock can occur if either VI in this
scenario uses Same As Caller or User Interface as its preferred execution
system. In addition, both VIs in this scenario must use different preferred
execution system settings. Use the VI Properties dialog box for each
individual VI to configure the LabVIEW execution system.

Appendix C Using the TestStand ActiveX APIs in LabVIEW

© National Instruments Corporation C-7 Using LabVIEW with TestStand

Handling Events
TestStand controls can generate events to notify the application of user
input and application events, such as the completion of an execution. To
handle events in LabVIEW, use the Register Event Callback function to
register a callback VI and then use the Unregister for Events function to
close the callback before you close the application.

Refer to Chapter 6, Creating Custom User Interfaces in LabVIEW,
for more information about handling events that TestStand UI Controls
generate.

© National Instruments Corporation D-1 Using LabVIEW with TestStand

D
Calling Legacy LabVIEW VIs

In versions of TestStand earlier than 3.0, you could call VIs only with a
specific set of controls and indicators. Using TestStand 3.0 or later, you can
call VIs with a wide variety of connector panes, including VIs with legacy
configurations.

Format of Legacy VIs
All legacy-style VIs must include the Test Data cluster and error out
cluster indicators. The Input Buffer, Invocation Info, and Sequence
Context controls are optional inputs to legacy VIs, which can contain any
combination of these controls.

You must assign each control and indicator of the test VI to a terminal on
the connector pane of the test VI. If these assignments do not exist,
TestStand returns an error when it attempts to call the test VI. TestStand
does not require that you use a particular connector pane pattern, and it does
not require that you assign the controls and indicators to specific terminals.

Although you usually create new VIs using the LabVIEW Module tab for
steps that use the LabVIEW Adapter, TestStand can also create legacy-style
VIs. Refer to Chapter 5, Configuring the LabVIEW Adapter, for
information about configuring the LabVIEW Adapter to create new
legacy-style VIs.

You can use the following methods to pass data between the code module
and TestStand.

• Use the Test Data cluster

• Use the sequence context ActiveX reference, which allows you to call
the TestStand ActiveX API functions to set the variables used to store
the results of the test, such as Step.Result.PassFail

Note The values the sequence context ActiveX reference sets take precedence over the
values the Test Data cluster sets. If you use both methods to set the value of the same
variable, TestStand recognizes the values the sequence context ActiveX reference sets and
ignores the values the Test Data cluster sets. You can use the sequence context ActiveX
reference and the Test Data cluster together in the code module if you do not try to set the

Appendix D Calling Legacy LabVIEW VIs

Using LabVIEW with TestStand D-2 ni.com

same variable twice. For example, if you use the sequence context ActiveX reference to set
the value of Step.Result.PassFail and then use the Test Data cluster to set the value
of Step.Result.ReportText, TestStand sets both values correctly.

Note The specific control and indicator labels described in this appendix are required.
Do not modify them in any way.

Test Data Cluster
The LabVIEW Adapter uses the Test Data cluster to return result data from
the VI to TestStand, which then uses the data to make a PASS/FAIL
determination.

Table D-1 lists the elements of the Test Data cluster, the data type of the
cluster element, and descriptions of how the LabVIEW Adapter uses each
cluster element.

The LabVIEW Adapter also supports an older version of the Test Data
cluster from the LabVIEW Test Executive product. The LabVIEW Test
Executive Test Data cluster does not contain a Report Text element but
instead contains two string elements, Comment and User Output.

Table D-1. Test Data Cluster Elements

Cluster Element Data Type Description

PASS/FAIL Flag The test VI sets this element to indicate if the
test passed. Valid values are True (PASS) or
False (FAIL). The adapter copies the value
into the Step.Result.PassFail property
if the property exists.

Numeric Measurement Numeric measurement the test VI returns.
The adapter copies this value into the
Step.Result.Numeric property if the
property exists.

String Measurement String value the test VI returns. The
adapter copies this string into the
Step.Result.String property if the
property exists.

Report Text Output message to display in the report. The
adapter copies this message value into the
Step.Result.ReportText property if the
property exists.

Appendix D Calling Legacy LabVIEW VIs

© National Instruments Corporation D-3 Using LabVIEW with TestStand

Table D-2 lists the elements of the older Test Data cluster, the data type of
the cluster element, and descriptions of how the LabVIEW Adapter uses
each cluster element.

Error Out Cluster
TestStand uses the contents of the error out cluster to determine if a
run-time error occurs and to take appropriate action if necessary. When
you create a VI, use the standard LabVIEW error out cluster.

Table D-3 lists the elements of the error out cluster, the data type of the
cluster element, and descriptions of how the LabVIEW Adapter uses each
cluster element.

Table D-2. Old Test Data Cluster Elements from LabVIEW Test Executive

Cluster Element Data Type Description

Comment Output message to display in the report. The
adapter copies this message value into the
Step.Result.ReportText property if the
property exists.

User Output String value the test VI returns. The adapter
dynamically creates the step property
Step.Result.UserOutput and copies
the string value to the step property.

Table D-3. Error Out Cluster Elements

Cluster Element Data Type Description

status The test VI must set this element to True if an
error occurs. The adapter copies the output value
into the Step.Result.Error.Occurred
property if the property exists.

code The test VI can set this element to a non-zero value
if an error occurs. The adapter copies the output
value into the Step.Result.Error.Code
property if the property exists.

source The test VI can set this element to a descriptive
string if an error occurs. The adapter copies the
output value into the Step.Result.Error.Msg
property if the property exists.

Appendix D Calling Legacy LabVIEW VIs

Using LabVIEW with TestStand D-4 ni.com

Input Buffer String Control
Use the Input Buffer string control to pass input data directly to the VI.
The LabVIEW Adapter automatically copies the Step.InBuf property
value into the Input Buffer string control if the property exists.

Invocation Info Cluster
Use the Invocation Info cluster to pass additional information to the VI.

Table D-4 lists the elements of the Invocation Info cluster, the data type of
the cluster element, and descriptions of how the LabVIEW Adapter uses
each cluster element.

Table D-4. Invocation Info Cluster Elements

Cluster Element Data Type Description

Test Name The adapter uses the name of the step that invokes
the test VI.

loop # The adapter uses the loop count if the step that
invokes the test VI loops on the step.

Sequence Path The adapter uses the name and absolute path of the
sequence file that runs the test VI.

UUT Info The adapter uses the value from the
RunState.Root.Locals.

UUT.SerialNumber property if the property
exists. Otherwise, the adapter copies an empty
string. Refer to Chapter 5, Configuring the
LabVIEW Adapter, for more information about
how to configure this setting.

UUT # The adapter uses the value from the
RunState.Root.Locals.

UUT.UUTLoopIndex property if the property
exists. Otherwise, the adapter copies an empty
string. Refer to Chapter 5, Configuring the
LabVIEW Adapter, for more information about
how to configure this setting.

Appendix D Calling Legacy LabVIEW VIs

© National Instruments Corporation D-5 Using LabVIEW with TestStand

Sequence Context Control
Use the Sequence Context control to obtain a reference to the TestStand
SequenceContext object. You can use the sequence context to access
all the objects, variables, and properties in the execution. Refer to the
NI TestStand Help for more information about using the sequence context
from a VI.

© National Instruments Corporation E-1 Using LabVIEW with TestStand

E
Technical Support and
Professional Services

Visit the following sections of the award-winning National Instruments
Web site at ni.com for technical support and professional services:

• Support—Technical support resources at ni.com/support include
the following:

– Self-Help Technical Resources—For answers and solutions,
visit ni.com/support for software drivers and updates, a
searchable KnowledgeBase, product manuals, step-by-step
troubleshooting wizards, thousands of example programs,
tutorials, application notes, instrument drivers, and so on.
Registered users also receive access to the NI Discussion Forums
at ni.com/forums. NI Applications Engineers make sure every
question submitted online receives an answer.

– Standard Service Program Membership—This program
entitles members to direct access to NI Applications Engineers
via phone and email for one-to-one technical support as well as
exclusive access to on demand training modules via the Services
Resource Center. NI offers complementary membership for a full
year after purchase, after which you may renew to continue your
benefits.

For information about other technical support options in your
area, visit ni.com/services, or contact your local office at
ni.com/contact.

• Training and Certification—Visit ni.com/training for
self-paced training, eLearning virtual classrooms, interactive CDs,
and Certification program information. You also can register for
instructor-led, hands-on courses at locations around the world.

• System Integration—If you have time constraints, limited in-house
technical resources, or other project challenges, National Instruments
Alliance Partner members can help. To learn more, call your local
NI office or visit ni.com/alliance.

Appendix E Technical Support and Professional Services

Using LabVIEW with TestStand E-2 ni.com

If you searched ni.com and could not find the answers you need, contact
your local office or NI corporate headquarters. Phone numbers for our
worldwide offices are listed at the front of this manual. You also can visit
the Worldwide Offices section of ni.com/niglobal to access the branch
office Web sites, which provide up-to-date contact information, support
phone numbers, email addresses, and current events.

© National Instruments Corporation I-1 Using LabVIEW with TestStand

Index

A
ActiveX

releasing ActiveX references, C-3
using the TestStand ActiveX APIs, C-1

adapter. See LabVIEW Adapter
aliases file, using, A-3

C
calling VIs

legacy VIs, D-1
on remote systems, B-1
with cluster parameters, 4-5
with string parameters, 4-4

clusters
Cluster Passing tab, 4-6
Error Out, D-3
Invocation Info, D-4
LabVIEW, 4-1, 4-6
specifying cluster elements

individually, 4-5
Test Data, D-2

code modules, 1-1
Code Template Policy

Allow Legacy and New Templates
option, 5-5

Allow Only Legacy Templates option, 5-5
Allow Only New Templates option, 5-5

Conditional Disable Structures, A-4
configuring

LabVIEW Adapter, 5-1
LabVIEW RT Server, B-3
LabVIEW VI Server (tutorial), B-2
new steps with LabVIEW Adapter

(tutorial), 2-3

per-step configuration of LabVIEW
Adapter, 5-4

remote steps (tutorial), B-1
TestStand UI Controls, 6-3

controls
Input Buffer String control, D-4
Sequence Context control, D-5
TestStand UI controls, 6-3

conventions used in the manual, iv
Create Custom Data Type From Cluster

dialog box, 4-7
custom

step types, 1-2
user interfaces, 1-2

creating, 6-1

D
data types

64-bit integer, A-4
creating a custom data type, 4-7
TestStand data types

built-in, 4-1
creating from LabVIEW clusters, 4-8

using LabVIEW data types with
TestStand, 4-1

debugging VIs (tutorial), 3-3
deploying TestStand

building a deployment with
LabVIEW 8.0, A-4

Update VI Calls tool, A-6
diagnostic tools (NI resources), E-1
dialog box

Create Custom Data Type from
Cluster, 4-7

LabVIEW Adapter Configuration, 5-1
Code Template Policy, 5-5

making modal to TestStand, 6-9

Index

Using LabVIEW with TestStand I-2 ni.com

directory structure
read-only files, copying to modify, 6-2
<TestStand> directory, 6-2
<TestStand Public> directory, 2-3, 6-2

documentation
conventions used in the manual, iv

drivers (NI resources), E-1

E
editing

sequences, 6-4
VIs (tutorial), 3-2

Error Out cluster, D-3
event handling, 6-4, C-7
examples (NI resources), E-1
execution

checking for stopped executions, 6-9
reserving loaded VIs, 5-4
setting preferred execution system for

LabVIEW VIs, C-6

H
handling

events, 6-4, C-7
menu events, 6-7

I
Input Buffer string control, D-4
instrument drivers (NI resources), E-1
interfaces for TestStand objects, C-5
Invocation Info cluster, D-4

K
KnowledgeBase, E-1

L
LabVIEW

Adapter. See LabVIEW Adapter
cluster, 4-6
configuring the LabVIEW Adapter, 5-1
creating custom user interfaces, 6-1
deploying variables, A-2
Module tab, 2-2, 4-7
object-oriented programming, A-7
preferred execution system, C-6
project libraries, A-2
remote execution, A-4
required settings, 2-1
RT Server, configuring, B-3
server, selecting, 5-1
TestStand ActiveX APIs, C-1
using LabVIEW 8.0, A-1
VI Server, configuring (tutorial), B-2
VIs. See VIs

LabVIEW 8.0, A-1
aliases file, A-3
building a TestStand deployment

with, A-4
conditional disable structures, A-4
network-published shared variables, A-2

aliases file, A-3
deploying, A-2

project libraries, A-2
projects, A-1
real-time module incompatibility, A-1
symbols, A-4
XControls, A-4

LabVIEW 8.x and TestStand, using, A-1
LabVIEW Adapter, 1-2

configuring, 5-1
creating and configuring new steps

(tutorial), 2-3
LabVIEW Adapter Configuration dialog

box
Code Template Policy, 5-5

Index

© National Instruments Corporation I-3 Using LabVIEW with TestStand

per-step configuration, 5-4
setting preferred execution system, C-6

LabVIEW Adapter Configuration dialog
box, 5-1

LabVIEW Module tab, 2-2, 4-7
source code and help buttons, 2-3
VI Context Help Image, 2-3
VI Parameter Table, 2-2, 4-4

LabVIEW Utility Deploy Library step
type, A-2

legacy VIs
calling, D-1
format, D-1
settings, 5-6

localization, 6-8

M
menu bars, 6-7
menu event handling, 6-7
methods, invoking, C-1
Modified Types Warning dialog box, 4-9

N
National Instruments support and

services, E-1
NI-DAQmx, A-3

O
object-oriented programming, A-7

P
programming examples (NI resources), E-1
project libraries, A-2
properties, accessing

built-in, C-1
dynamic, C-2

PropertyObject class
acquiring a derived class, C-5

R
Register Event Callback function, 6-4
remote execution, A-4
remote systems

calling LabVIEW VIs, B-1
configuring a LabVIEW

VI Server (tutorial), B-2
configuring a LabVIEW RT Server, B-3
configuring a step (tutorial), B-1

S
Sequence Context control, D-5
sequence editing, 6-4
software (NI resources), E-1
source code and help buttons, 2-3
step types, custom, 1-2
string parameters, calling VIs, 4-4
symbols, A-4

T
technical support (NI resources), E-1
Test Data cluster, D-2
TestStand

ActiveX APIs, C-1
constants and enumerations, C-4
customizing with LabVIEW, 1-1
passing container variables to

LabVIEW, 4-6
<TestStand> directory, 6-2
<TestStand Public> directory, 2-3, 6-2
using LabVIEW data types, 4-1
using with LabVIEW 8.x, A-1
VIs and functions, 6-1

Index

Using LabVIEW with TestStand I-4 ni.com

VIs, using with TestStand
creating new (tutorial), 3-1
debugging (tutorial), 3-3
editing (tutorial), 3-2

TestStand User Interface (UI) Controls
configuration, 6-3
creating custom user interfaces, 6-2
editing sequences, 6-4
handling events, 6-4
introduction, 6-1
localization, 6-8
main event loop, 6-6
menu bars, 6-7
menu event handling, 6-7
setting the preferred execution

system, 6-3
TestStand

shutting down, 6-6
starting, 6-6

TestStand Utility Functions Library, 6-1
training and certification (NI resources), E-1
troubleshooting (NI resources), E-1

U
Update VI Calls tool, A-6
user interfaces

custom, 1-2, 6-1
running, 6-10
user interface utilities, 6-9

V
variables

deploying, A-2
passing container variables to

LabVIEW, 4-6
VI Context Help Image, 2-3
VI Parameter Table, 2-2, 4-4
VI Server

configuring (tutorial), B-2
user access, B-4

VIs
calling from TestStand, 2-1
calling on remote systems, B-1
configuring LabVIEW Adapter to

run, 2-1
creating new from TestStand

(tutorial), 3-1
debugging in TestStand (tutorial), 3-3
editing in TestStand (tutorial), 3-2

W
Web resources (NI resources), E-1

X
XControls, A-4

	Using LabVIEW with TestStand
	Support
	Worldwide Technical Support and Product Information
	National Instruments Corporate Headquarters
	Worldwide Offices

	Important Information
	Warranty
	Copyright
	Trademarks
	Patents
	WARNING REGARDING USE OF NATIONAL INSTRUMENTS PRODUCTS

	Conventions
	Contents
	Chapter 1 Role of LabVIEW in a TestStand-Based System
	Code Modules
	Custom User Interfaces
	Custom Step Types
	LabVIEW Adapter

	Chapter 2 Calling LabVIEW VIs from TestStand
	Required LabVIEW Settings
	LabVIEW Module Tab
	Figure 2-1. LabVIEW Module Tab

	Creating and Configuring a New Step Using the LabVIEW Adapter

	Chapter 3 Creating, Editing, and Debugging LabVIEW VIs from TestStand
	Creating a New VI from TestStand
	Editing an Existing VI from TestStand
	Debugging a VI

	Chapter 4 Using LabVIEW Data Types with TestStand
	Table 4-1. TestStand Equivalents for LabVIEW Data Types
	Calling VIs with String Parameters
	Calling VIs with Cluster Parameters
	Specifying Each Cluster Element Individually
	Figure 4-1. Input Cluster Data Sources

	Passing Existing TestStand Container Variables to LabVIEW
	Figure 4-2. ContainerData Local Variable
	Figure 4-3. TestStand Custom InputData Data Type

	Creating a New Custom Data Type
	Figure 4-4. Create Custom Data Type From Cluster Dialog Box

	Creating TestStand Data Types from LabVIEW Clusters

	Chapter 5 Configuring the LabVIEW Adapter
	Selecting a LabVIEW Server
	Figure 5-1. LabVIEW Adapter Configuration Dialog Box
	Using a LabVIEW Run-Time Engine or Other Executable Server
	Using a LabVIEW Development System Later than 8.5
	Per-Step Configuration of the LabVIEW Adapter

	Reserving Loaded VIs for Execution
	Code Template Policy
	Figure 5-2. Choose Code Template Dialog Box

	Legacy VI Settings

	Chapter 6 Creating Custom User Interfaces in LabVIEW
	TestStand User Interface Controls
	TestStand VIs and Functions
	Creating Custom User Interfaces
	Configuring the TestStand UI Controls
	Enabling Sequence Editing
	Handling Events
	Figure 6-1. Registering a Callback VI for the Break Event

	Starting TestStand
	Main Event Loop and Shutting Down TestStand
	Menu Bars and Menu Event Handling
	Localization

	Other User Interface Utilities
	Making Dialog Boxes Modal to TestStand
	Checking for Stopped Executions

	Running User Interfaces

	Appendix A Using LabVIEW 8.x with TestStand
	LabVIEW 8.2 Object-Oriented Programming

	Appendix B Calling LabVIEW VIs on Remote Systems
	Configuring a Step to Run Remotely
	Configuring the LabVIEW VI Server to Run VIs Remotely
	Configuring the LabVIEW RT Server to Run VIs
	User Access to VI Server

	Appendix C Using the TestStand ActiveX APIs in LabVIEW
	Invoking Methods
	Figure C-1. Invoking the UnloadModules Method

	Accessing Built-In Properties
	Figure C-2. Obtaining the Value of the Name Property from a Sequence Object
	Figure C-3. Obtaining a Reference to a Step of a Sequence that a Sequence Object References

	Accessing Dynamic Properties
	Figure C-4. Using the GetValString Method to Obtain the Error Message Value for the Current Step
	Figure C-5. Obtaining the Error Message for the Current Step

	Releasing ActiveX References
	Using TestStand API Constants and Enumerations
	Obtaining a Different Interface for a TestStand Object
	Figure C-6. Converting a Module Reference to the LabVIEWModule Type

	Acquiring a Derived Class from the PropertyObject Class
	Figure C-7. Using a Lookup String to Obtain a Reference to a Step Object from a SequenceContext Object

	Setting the Preferred Execution System for LabVIEW VIs
	Handling Events

	Appendix D Calling Legacy LabVIEW VIs
	Format of Legacy VIs
	Test Data Cluster
	Table D-1. Test Data Cluster Elements
	Table D-2. Old Test Data Cluster Elements from LabVIEW Test Executive
	Error Out Cluster
	Table D-3. Error Out Cluster Elements
	Input Buffer String Control
	Invocation Info Cluster
	Table D-4. Invocation Info Cluster Elements
	Sequence Context Control

	Appendix E Technical Support and Professional Services
	Index
	A-D
	E-L
	M-T
	U-X

