
NI TestStandTM

Reference Manual

NI TestStand Reference Manual

May 2008
373435C-01

Support

Worldwide Technical Support and Product Information

ni.com

National Instruments Corporate Headquarters

11500 North Mopac Expressway Austin, Texas 78759-3504 USA Tel: 512 683 0100

Worldwide Offices

Australia 1800 300 800, Austria 43 662 457990-0, Belgium 32 (0) 2 757 0020, Brazil 55 11 3262 3599,
Canada 800 433 3488, China 86 21 5050 9800, Czech Republic 420 224 235 774, Denmark 45 45 76 26 00,
Finland 358 (0) 9 725 72511, France 01 57 66 24 24, Germany 49 89 7413130, India 91 80 41190000,
Israel 972 3 6393737, Italy 39 02 41309277, Japan 0120-527196, Korea 82 02 3451 3400,
Lebanon 961 (0) 1 33 28 28, Malaysia 1800 887710, Mexico 01 800 010 0793, Netherlands 31 (0) 348 433 466,
New Zealand 0800 553 322, Norway 47 (0) 66 90 76 60, Poland 48 22 3390150, Portugal 351 210 311 210,
Russia 7 495 783 6851, Singapore 1800 226 5886, Slovenia 386 3 425 42 00, South Africa 27 0 11 805 8197,
Spain 34 91 640 0085, Sweden 46 (0) 8 587 895 00, Switzerland 41 56 2005151, Taiwan 886 02 2377 2222,
Thailand 662 278 6777, Turkey 90 212 279 3031, United Kingdom 44 (0) 1635 523545

For further support information, refer to the Technical Support and Professional Services appendix. To comment
on National Instruments documentation, refer to the National Instruments Web site at ni.com/info and enter
the info code feedback.

© 2003–2008 National Instruments Corporation. All rights reserved.

 Important Information

Warranty
The media on which you receive National Instruments software are warranted not to fail to execute programming instructions, due to defects
in materials and workmanship, for a period of 90 days from date of shipment, as evidenced by receipts or other documentation. National
Instruments will, at its option, repair or replace software media that do not execute programming instructions if National Instruments receives
notice of such defects during the warranty period. National Instruments does not warrant that the operation of the software shall be
uninterrupted or error free.

A Return Material Authorization (RMA) number must be obtained from the factory and clearly marked on the outside of the package before any
equipment will be accepted for warranty work. National Instruments will pay the shipping costs of returning to the owner parts which are covered by
warranty.

National Instruments believes that the information in this document is accurate. The document has been carefully reviewed for technical accuracy. In
the event that technical or typographical errors exist, National Instruments reserves the right to make changes to subsequent editions of this document
without prior notice to holders of this edition. The reader should consult National Instruments if errors are suspected. In no event shall National
Instruments be liable for any damages arising out of or related to this document or the information contained in it.

EXCEPT AS SPECIFIED HEREIN, NATIONAL INSTRUMENTS MAKES NO WARRANTIES, EXPRESS OR IMPLIED, AND SPECIFICALLY DISCLAIMS ANY WARRANTY OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. CUSTOMER’S RIGHT TO RECOVER DAMAGES CAUSED BY FAULT OR NEGLIGENCE ON THE PART OF NATIONAL
INSTRUMENTS SHALL BE LIMITED TO THE AMOUNT THERETOFORE PAID BY THE CUSTOMER. NATIONAL INSTRUMENTS WILL NOT BE LIABLE FOR DAMAGES RESULTING
FROM LOSS OF DATA, PROFITS, USE OF PRODUCTS, OR INCIDENTAL OR CONSEQUENTIAL DAMAGES, EVEN IF ADVISED OF THE POSSIBILITY THEREOF. This limitation of
the liability of National Instruments will apply regardless of the form of action, whether in contract or tort, including negligence. Any action against
National Instruments must be brought within one year after the cause of action accrues. National Instruments shall not be liable for any delay in
performance due to causes beyond its reasonable control. The warranty provided herein does not cover damages, defects, malfunctions, or service
failures caused by owner’s failure to follow the National Instruments installation, operation, or maintenance instructions; owner’s modification of the
product; owner’s abuse, misuse, or negligent acts; and power failure or surges, fire, flood, accident, actions of third parties, or other events outside
reasonable control.

Copyright
Under the copyright laws, this publication may not be reproduced or transmitted in any form, electronic or mechanical, including photocopying,
recording, storing in an information retrieval system, or translating, in whole or in part, without the prior written consent of National
Instruments Corporation.

National Instruments respects the intellectual property of others, and we ask our users to do the same. NI software is protected by copyright and other
intellectual property laws. Where NI software may be used to reproduce software or other materials belonging to others, you may use NI software only
to reproduce materials that you may reproduce in accordance with the terms of any applicable license or other legal restriction.

Trademarks
National Instruments, NI, ni.com, NI TestStand, and LabVIEW are trademarks of National Instruments Corporation. Refer to the Terms of Use
section on ni.com/legal for more information about National Instruments trademarks.

Other product and company names mentioned herein are trademarks or trade names of their respective companies.

Members of the National Instruments Alliance Partner Program are business entities independent from National Instruments and have no agency,
partnership, or joint-venture relationship with National Instruments.

Patents
For patents covering National Instruments products, refer to the appropriate location: Help»Patents in your software, the patents.txt file
on your media, or ni.com/patents.

WARNING REGARDING USE OF NATIONAL INSTRUMENTS PRODUCTS
(1) NATIONAL INSTRUMENTS PRODUCTS ARE NOT DESIGNED WITH COMPONENTS AND TESTING FOR A LEVEL OF
RELIABILITY SUITABLE FOR USE IN OR IN CONNECTION WITH SURGICAL IMPLANTS OR AS CRITICAL COMPONENTS IN
ANY LIFE SUPPORT SYSTEMS WHOSE FAILURE TO PERFORM CAN REASONABLY BE EXPECTED TO CAUSE SIGNIFICANT
INJURY TO A HUMAN.

(2) IN ANY APPLICATION, INCLUDING THE ABOVE, RELIABILITY OF OPERATION OF THE SOFTWARE PRODUCTS CAN BE
IMPAIRED BY ADVERSE FACTORS, INCLUDING BUT NOT LIMITED TO FLUCTUATIONS IN ELECTRICAL POWER SUPPLY,
COMPUTER HARDWARE MALFUNCTIONS, COMPUTER OPERATING SYSTEM SOFTWARE FITNESS, FITNESS OF COMPILERS
AND DEVELOPMENT SOFTWARE USED TO DEVELOP AN APPLICATION, INSTALLATION ERRORS, SOFTWARE AND HARDWARE
COMPATIBILITY PROBLEMS, MALFUNCTIONS OR FAILURES OF ELECTRONIC MONITORING OR CONTROL DEVICES,
TRANSIENT FAILURES OF ELECTRONIC SYSTEMS (HARDWARE AND/OR SOFTWARE), UNANTICIPATED USES OR MISUSES, OR
ERRORS ON THE PART OF THE USER OR APPLICATIONS DESIGNER (ADVERSE FACTORS SUCH AS THESE ARE HEREAFTER
COLLECTIVELY TERMED “SYSTEM FAILURES”). ANY APPLICATION WHERE A SYSTEM FAILURE WOULD CREATE A RISK OF
HARM TO PROPERTY OR PERSONS (INCLUDING THE RISK OF BODILY INJURY AND DEATH) SHOULD NOT BE RELIANT SOLELY
UPON ONE FORM OF ELECTRONIC SYSTEM DUE TO THE RISK OF SYSTEM FAILURE. TO AVOID DAMAGE, INJURY, OR DEATH,
THE USER OR APPLICATION DESIGNER MUST TAKE REASONABLY PRUDENT STEPS TO PROTECT AGAINST SYSTEM FAILURES,
INCLUDING BUT NOT LIMITED TO BACK-UP OR SHUT DOWN MECHANISMS. BECAUSE EACH END-USER SYSTEM IS
CUSTOMIZED AND DIFFERS FROM NATIONAL INSTRUMENTS' TESTING PLATFORMS AND BECAUSE A USER OR APPLICATION
DESIGNER MAY USE NATIONAL INSTRUMENTS PRODUCTS IN COMBINATION WITH OTHER PRODUCTS IN A MANNER NOT
EVALUATED OR CONTEMPLATED BY NATIONAL INSTRUMENTS, THE USER OR APPLICATION DESIGNER IS ULTIMATELY
RESPONSIBLE FOR VERIFYING AND VALIDATING THE SUITABILITY OF NATIONAL INSTRUMENTS PRODUCTS WHENEVER
NATIONAL INSTRUMENTS PRODUCTS ARE INCORPORATED IN A SYSTEM OR APPLICATION, INCLUDING, WITHOUT
LIMITATION, THE APPROPRIATE DESIGN, PROCESS AND SAFETY LEVEL OF SUCH SYSTEM OR APPLICATION.

© National Instruments Corporation v NI TestStand Reference Manual

Contents

About This Manual
Conventions ...xv

Chapter 1
NI TestStand Architecture

General Test Executive Concepts ..1-1
Major Software Components of TestStand..1-2

TestStand Sequence Editor..1-2
TestStand User Interfaces..1-3

Features Comparison of Sequence Editor and User Interfaces.........1-4
TestStand User Interface Controls...1-6
TestStand Engine...1-6
Module Adapters ...1-7

TestStand Building Blocks ..1-7
Properties...1-8

Built-In and Custom Properties...1-8
Variables..1-8
Standard and Custom Data Types ...1-9
Expressions..1-10
Steps ..1-10

Step Types...1-11
Sequences ..1-11

Step Groups...1-12
Sequence Local Variables ...1-12
Sequence Parameters...1-13
Built-in Sequence Properties...1-13

Sequence Files ...1-13
Process Models..1-14

Specifying Process Model Files ..1-14
Main Sequence and Client Sequence File...1-15
Entry Points...1-15

Automatic Result Collection ...1-16
Callback Sequences ...1-16
Sequence Executions ...1-17

Contents

NI TestStand Reference Manual vi ni.com

Chapter 2
Sequence Files and Workspaces

Sequence Files ... 2-1
Types of Sequence Files ... 2-1
Sequence File Callbacks ... 2-2
Sequence File Globals... 2-2
Sequence File Type Definitions .. 2-2
Comparing and Merging Sequence Files .. 2-2

Sequences .. 2-3
Step Groups... 2-3
Parameters ... 2-3
Local Variables ... 2-4

Sequence File Window and Views.. 2-4
Sequence Hierarchy Window.. 2-5
Workspaces.. 2-5

Source Code Control ... 2-6
System Deployment .. 2-6

Chapter 3
Executions

Sequence Context .. 3-2
Using the Sequence Context ... 3-2

Lifetime of Local Variables, Parameters, and
Custom Step Properties .. 3-3

Sequence Editor Execution Window .. 3-3
Executing Sequences ... 3-4

Using Execution Entry Points ... 3-4
Executing a Sequence Directly ... 3-4
Interactively Executing Steps.. 3-5
Debugging Executions .. 3-5
Terminating and Aborting Executions .. 3-6

Result Collection ... 3-7
Custom Result Properties.. 3-8

Exceptions .. 3-10
Standard Result Properties .. 3-10
Subsequence Results ... 3-11
Loop Results ... 3-13
Report Generation ... 3-13

Engine Callbacks ... 3-13
Step Execution... 3-14

Contents

© National Instruments Corporation vii NI TestStand Reference Manual

Step Status..3-16
Failures ..3-17
Terminations..3-18

Run-Time Errors ..3-18

Chapter 4
Built-In Step Types

Using Step Types ...4-1
Built-In Step Properties ...4-3
Custom Step Properties ...4-5
Custom Properties All Step Types Share ..4-6

Step Types You Can Use with Any Module Adapter..4-7
Pass/Fail Test...4-8
Numeric Limit Test ...4-9
Multiple Numeric Limit Test...4-11
String Value Test...4-13
Action ..4-15

Step Types That Work with a Specific Module Adapter...4-15
Step Types That Do Not Use Module Adapters ..4-16

Flow Control..4-16
If ..4-16
Else..4-16
Else If ..4-17
For ...4-17
For Each ..4-18
While ...4-18
Do While ...4-18
Break ...4-19
Continue ..4-19
Select ...4-19
Case...4-19
Goto...4-20
End ..4-20

Statement ...4-20
Label ..4-20
Message Popup..4-21
Call Executable..4-23
Property Loader ...4-24
FTP Files ...4-24
Additional Results ...4-25
Synchronization Step Types ..4-25
Database Step Types..4-25

Contents

NI TestStand Reference Manual viii ni.com

IVI Step Types .. 4-25
LabVIEW Utility Step Types.. 4-25

Chapter 5
Module Adapters

Configuring Adapters .. 5-1
Source Code Templates... 5-2
Search Paths... 5-2

Configuring Search Paths for Deployment ... 5-3
LabVIEW Adapter... 5-4
LabWindows/CVI Adapter.. 5-4
C/C++ DLL Adapter ... 5-4
Using DLLs ... 5-5

Using ActiveX Controls in LabVIEW DLLs.. 5-5
Using MFC in DLLs ... 5-5
Loading Subordinate DLLs... 5-6
Reading Parameter Information .. 5-7

Debugging DLLs ... 5-7
Debugging LabVIEW 8.0 and Later Shared Libraries (DLLs) 5-8
Debugging LabVIEW 7.1.1 Shared Libraries (DLLs).................................... 5-8

.NET Adapter .. 5-9
Debugging .NET Assemblies.. 5-9
Using the .NET Framework .. 5-11
Accessing the TestStand API in Visual Studio .NET 2003 and

Visual Studio 2005... 5-12
ActiveX/COM Adapter ... 5-12

Debugging ActiveX Automation Servers ... 5-13
Registering and Unregistering ActiveX/COM Servers................................... 5-13
Server Compatibility Options for Visual Basic .. 5-13

HTBasic Adapter ... 5-15
Debugging HTBasic Subroutines.. 5-15

Sequence Adapter .. 5-16
Remote Sequence Execution... 5-17

Setting up TestStand as a Server for Remote
Sequence Execution.. 5-19
Setting Windows System Security ... 5-19

Contents

© National Instruments Corporation ix NI TestStand Reference Manual

Chapter 6
Database Logging and Report Generation

Database Concepts ...6-1
Databases and Tables ..6-1
Database Sessions..6-2
Microsoft ADO, OLE DB, and ODBC Database Technologies6-2
Data Links ...6-4

Database Logging Implementation ..6-5
Using Database Logging..6-6

Logging Property in the Sequence Context...6-7
TestStand Database Result Tables ...6-8

Default TestStand Table Schema ..6-8
Creating Default Result Tables with the Database Viewer6-9
Adding Support for Other Database Management Systems............................6-9
On-the-Fly Database Logging ...6-11

Using Data Links ...6-11
Using the ODBC Administrator ..6-12
Example Data Link and Result Table Setup for Microsoft Access.................6-12

Database Options—Specifying a Data Link and Schema.................6-12
Database Viewer—Creating Result Tables.......................................6-13

Test Report Implementation ..6-14
Using Test Reports...6-14

Failure Chain in Reports..6-15
Batch Reports ..6-15
Property Flags that Affect Reports ..6-15
On-the-Fly Report Generation...6-16
XML Report Schema...6-16

Chapter 7
User Management

Privileges ...7-1
Accessing Privilege Settings for the Current User ..7-2
Accessing Privilege Settings for Any User ...7-3
Defining Custom Privileges ..7-3

Contents

NI TestStand Reference Manual x ni.com

Chapter 8
Customizing and Configuring TestStand

Tools Menu.. 8-2
TestStand Directory Structure ... 8-2

<TestStand> Directory.. 8-2
Components Directory.. 8-3

<TestStand Public> Directory... 8-5
RuntimeServers Directory .. 8-6
Copying Read-Only Files to Modify .. 8-6

<TestStand Application Data> Directory ... 8-7
Creating String Resource Files.. 8-7

String Resource File Format ... 8-8
Configuring Sequence Editor

and User Interface Startup Options .. 8-9
Configure Menu... 8-11

Chapter 9
Creating Custom User Interfaces

Example User Interfaces.. 9-1
TestStand User Interface Controls... 9-2
Writing an Application with the TestStand UI Controls ... 9-3

Manager Controls.. 9-3
Application Manager .. 9-3
SequenceFileView Manager... 9-4
ExecutionView Manager .. 9-4

Visible Controls .. 9-5
Connecting Manager Controls to Visible Controls... 9-7

View Connections... 9-7
List Connections ... 9-8
Command Connections... 9-9
Information Source Connections .. 9-10

Specifying and Changing Control Connections.. 9-12
Editor Versus Operator Interface Applications ... 9-13

Creating Editor Applications .. 9-13
License Checking .. 9-13
Using TestStand UI Controls in Different Environments ... 9-14

LabVIEW .. 9-14
LabWindows/CVI ... 9-14
Microsoft Visual Studio .. 9-15
Visual C++ .. 9-16
Obtaining an Interface Pointer and CWnd for an ActiveX Control................ 9-17

Using GetDlgItem... 9-17

Contents

© National Instruments Corporation xi NI TestStand Reference Manual

Handling Events...9-17
Events Typical Applications Handle ...9-18

ExitApplication ...9-18
Wait ...9-18
ReportError ...9-19
DisplaySequenceFile...9-19
DisplayExecution ..9-19

Startup and Shutdown..9-20
TestStand Utility Functions Library ..9-21

Adding Assembly References in Visual Studio ..9-23
Menus and Menu Items..9-23

Updating Menus ..9-24
Localization ...9-25
User Interface Application Styles ..9-26

Single Window ..9-27
Multiple Window...9-27
No Visible Window...9-29

Command-Line Arguments ...9-29
Persistence of Application Settings ...9-30

Configuration File Location ..9-30
Adding Custom Application Settings..9-31

Documenting Custom User Interfaces ...9-31
Deploying a User Interface ..9-32
Authenticode Signatures for Windows Vista...9-32
Application Manifests..9-33

Chapter 10
Customizing Process Models and Callbacks

Modifying Process Model Sequence Files...10-1
Normal Sequences ...10-2
Callback Sequences ...10-2
Entry Point Sequences...10-3

Modifying Callbacks..10-4
Engine Callbacks ...10-4

Caveats for Using Engine Callbacks...10-8
Front-End Callbacks..10-9

Contents

NI TestStand Reference Manual xii ni.com

Chapter 11
Type Concepts

Storing Types in Files and Memory .. 11-1
Modifying Types ... 11-1
Type Versioning .. 11-2
Resolving Type Conflicts .. 11-2
Types Window... 11-4

Type Palette Files.. 11-4
Sequence Files... 11-5
Station Globals .. 11-5
User Manager .. 11-5

Chapter 12
Standard and Custom Data Types

Using Data Types .. 12-1
Specifying Array Sizes.. 12-2

Dynamic Array Sizing .. 12-3
Empty Arrays.. 12-4

Modifying Data Types and Values.. 12-4
Object References ... 12-5

Using Standard Named Data Types .. 12-5
Error and CommonResults.. 12-6
Path.. 12-6
Expression... 12-7

Creating Custom Data Types... 12-7
Properties Common to All Data Types ... 12-7
Custom Properties of Data Types.. 12-8

Chapter 13
Custom Step Types

Creating Custom Step Types ... 13-1
Properties Common to All Step Types.. 13-2

Step Type Properties Dialog Box.. 13-2
General Tab .. 13-3
Menu Tab.. 13-3
Substeps Tab... 13-4
Disable Properties Tab.. 13-5
Code Templates Tab... 13-6
Version Tab .. 13-8

Custom Properties of Step Types .. 13-9
Backward Compatibility.. 13-9

Contents

© National Instruments Corporation xiii NI TestStand Reference Manual

Chapter 14
Deploying TestStand Systems

TestStand System Components ...14-1
Setting Up the TestStand Deployment Utility ...14-1

Identifying Components to Deploy ...14-2
Determining If You Need to Create an Installer ...14-2
Creating a System Workspace File..14-2
Configuring and Building the Deployment ...14-3

Building a Deployment ..14-3
Collecting Files..14-3
Processing VIs ...14-4
Processing Sequence Files...14-4
Installing National Instruments Components ..14-5

Guidelines for Successful Deployment..14-5
Common Deployment Scenarios ...14-6

Deploying the TestStand Engine ...14-6
Distributing Tests from a Workspace..14-7
Adding Dynamically Called Files to a Workspace ...14-8
Distributing a User Interface ...14-10

Chapter 15
Sequence File Translators

Using a Sequence File Translator ..15-1
Creating a Translator DLL...15-2
Example Sequence File Translators...15-2
Versioning Translators and Custom Sequence Files ...15-3
Deploying Translators and Custom Sequence Files ..15-4

Appendix A
Process Model Architecture

Appendix B
Synchronization Step Types

Appendix C
Database Step Types

Appendix D
IVI Step Types

Contents

NI TestStand Reference Manual xiv ni.com

Appendix E
LabVIEW Utility Step Types

Appendix F
Technical Support and Professional Services

Index

© National Instruments Corporation xv NI TestStand Reference Manual

About This Manual

Use this manual to learn about TestStand concepts and features. Refer to the
NI TestStand System and Architecture Overview Card for information
about how to use the entire TestStand documentation set.

Conventions
The following conventions appear in this manual:

» The » symbol leads you through nested menu items and dialog box options
to a final action. The sequence File»Page Setup»Options directs you to
pull down the File menu, select the Page Setup item, and select Options
from the last dialog box.

This icon denotes a note, which alerts you to important information.

This icon denotes a caution, which advises you of precautions to take to
avoid injury, data loss, or a system crash.

bold Bold text denotes items that you must select or click in the software, such
as menu items and dialog box options. Bold text also denotes parameter
names, controls and buttons on the front panel, dialog boxes, sections of
dialog boxes, menu names, and palette names.

italic Italic text denotes variables, emphasis, a cross-reference, or an introduction
to a key concept. Italic font also denotes text that is a placeholder for a word
or value that you must supply.

monospace Text in this font denotes text or characters that you should enter from the
keyboard, sections of code, programming examples, and syntax examples.
This font is also used for the proper names of disk drives, paths, directories,
programs, subprograms, subroutines, device names, functions, operations,
variables, filenames, and extensions.

monospace italic Italic text in this font denotes text that is a placeholder for a word or value
that you must supply.

Platform Text in this font denotes a specific platform and indicates that the text
following it applies only to that platform.

© National Instruments Corporation 1-1 NI TestStand Reference Manual

1
NI TestStand Architecture

National Instruments recommends that you read the NI TestStand System
and Architecture Overview Card and the Using TestStand manual before
you read this manual. National Instruments also recommends that you
become familiar with the concepts of this chapter before you proceed
through this manual.

General Test Executive Concepts
A test executive organizes and executes sequences of reusable code
modules you can create in a variety of programming environments.

This manual uses the following concepts applicable to test executives in
general:

• Code module—A program module, such as a Microsoft Windows
dynamic link library (.dll) or LabVIEW VI (.vi), that contains one
or more functions that perform a specific test or other action.

• Step—An individual element of a test sequence that can call
code modules or perform other operations.

• Sequence—A series of steps you specify to execute in a particular
order. Whether and when a step executes depends on the results of
previous steps.

• Subsequence—A sequence another sequence calls as a step.

• Sequence file—A file that contains the definition of one or more
sequences.

• Sequence editor—A program that provides a graphical user interface
(GUI) for creating, editing, executing, and debugging sequences.

• User interface—A program that provides a GUI for executing
sequences on a production station. A sequence editor and user
interface can be separate applications or different aspects of the same
application.

• Test executive engine—A module or set of modules that provide
an application programming interface (API) for creating, editing,
executing, and debugging sequences. A sequence editor or user
interface uses the services of a test executive engine.

Chapter 1 NI TestStand Architecture

NI TestStand Reference Manual 1-2 ni.com

• Application Development Environment (ADE)—A programming
environment, such as LabVIEW, LabWindows™/CVI™, or Microsoft
Visual Studio, in which you create code modules and user interfaces.

• Unit Under Test (UUT)—The device or component to test.

Major Software Components of TestStand
Refer to the NI TestStand System and Architecture Overview Card for a
visual representation of how TestStand components interact. You can also
refer to the NI TestStand Help for more information about each component.

Note If you open help files directly from the <TestStand>\Doc\Help directory,
National Instruments recommends that you open TSHelp.chm first because this file is a
collection of all the TestStand help files and provides a complete table of contents and
index.

TestStand Sequence Editor
The TestStand Sequence Editor is a development environment in which
you create, edit, execute, and debug sequences and the tests sequences call.
Use the sequence editor to access all TestStand features, such as step types
and process models. The sequence editor also includes the following
debugging tools you are familiar with in ADEs such as LabVIEW,
LabWindows/CVI (ANSI), and Visual Studio:

• Setting breakpoints

• Stepping into, out of, or over steps

• Tracing through program executions

• Displaying variables

• Monitoring variables, expressions, and output messages during
executions

In the TestStand Sequence Editor, you can start multiple concurrent
executions. You can execute multiple instances of the same sequence,
or you can execute different sequences at the same time. Each execution
instance opens an Execution window. In Trace Mode, the Execution
window shows the steps in the currently executing sequence. If the
execution suspends, the Execution window shows the next step to execute
and provides debugging options.

Chapter 1 NI TestStand Architecture

© National Instruments Corporation 1-3 NI TestStand Reference Manual

The TestStand Sequence Editor contains the following advanced editing
features:

• Panes you can dock, float, or hide

• Multiple step editing

• Workspace pane to manage sequence files and test source code

• Source code integration

• Type editing

• Undo and redo edits (except for types)

• Graphical sequence call hierarchy display

• Forward and backward navigation among sequences

• Find and replace

• Integrated sequence file differ

• User management

In the TestStand Sequence Editor, you can fully customize the pane and
tab layout to optimize development and debugging tasks. You can also
interactively customize the menus, toolbars, and keyboard shortcuts. Refer
to the NI TestStand Help for more information about working with panes in
the sequence editor.

Additionally, you can save custom layouts and reset the layout to the
default. TestStand does not automatically save the sequence editor
layout from a previous session. Click the Save Current button on the
UI Configuration tab of the Sequence Editor Options dialog box to save
the sequence editor layout with a name you specify. Refer to the
NI TestStand Help for more information about the Sequence Editor
Options dialog box.

TestStand User Interfaces
A TestStand User Interface provides a GUI for executing and debugging
test sequences on test stations. User interfaces are designed to protect the
integrity of test sequences and are intended for use with deployed custom
sequence editors or test systems.

TestStand includes separate user interface applications developed in
LabVIEW, LabWindows/CVI, Microsoft Visual Basic .NET, C#, and
C++ (MFC). Because TestStand also includes the source code for each user
interface, you can fully customize the user interfaces. You can create your
own user interface using any programming language that can host ActiveX
controls or control ActiveX Automation servers.

Chapter 1 NI TestStand Architecture

NI TestStand Reference Manual 1-4 ni.com

With the user interfaces in Editor Mode, you can modify sequences and
display sequence variables, sequence parameters, step properties, and so
on. With the user interfaces in Operator Mode, you can start multiple
concurrent executions, set breakpoints, and single-step through sequences.

Refer to the NI TestStand System and Architecture Overview Card, the
NI TestStand User Interface Controls Reference Poster, and Chapter 9,
Creating Custom User Interfaces, for more information about user
interfaces.

Features Comparison of Sequence Editor and User
Interfaces
Table 1-1 shows the feature differences among the TestStand Sequence
Editor, the TestStand User Interfaces in Editor Mode, and the TestStand
User Interfaces in Operator Mode.

Table 1-1. Features of TestStand Sequence Editor and TestStand User Interfaces

Features

Application

TestStand
Sequence Editor

User Interface
Editor Mode

User Interface
Operator Mode

Environment

Docking, hiding, and floating panes ✔ — —

Configurable menus and toolbars ✔ — —

Navigation among sequences ✔ — —

Sequence Hierarchy window ✔ — —

User management configuration ✔ — —

User privileges enforced ✔ ✔ ✔

Configurable step list ✔ ✔ ✔

Workspace support Dockable pane Modal dialog Modal dialog

Source code control support Integrated Modal dialog —

Configure report generation ✔ ✔ ✔

Configure database logging ✔ ✔ ✔

Configure station options ✔ ✔ ✔

Chapter 1 NI TestStand Architecture

© National Instruments Corporation 1-5 NI TestStand Reference Manual

Editing

Edit sequence files ✔ ✔ —

Insertion Palette ✔ ✔ —

Edit steps and modules Dockable panes Modal dialogs —

Integration with ADEs ✔ ✔ —

Edit variables and station globals ✔ ✔ —

Editing

Edit types ✔ — —

Edit process models ✔ ✔ —

Multiple step editing ✔ — —

Undo and redo ✔ ✔ —

Find and replace ✔ — —

Integrated file differ ✔ — —

Running

Multithreaded execution ✔ ✔ ✔

Single-step debugging ✔ ✔ ✔

Conditional breakpoints ✔ ✔ ✔

Call stack and thread lists ✔ ✔ ✔

Variables view ✔ ✔ ✔

Watch view ✔ — —

Output messages view ✔ — —

Table 1-1. Features of TestStand Sequence Editor and TestStand User Interfaces (Continued)

Features

Application

TestStand
Sequence Editor

User Interface
Editor Mode

User Interface
Operator Mode

Chapter 1 NI TestStand Architecture

NI TestStand Reference Manual 1-6 ni.com

TestStand User Interface Controls
The user interfaces use the TestStand User Interface (UI) Controls,
a collection of ActiveX controls for creating custom user interfaces and
sequence editors in TestStand. These controls simplify common user
interface tasks, such as displaying sequences and executions. You can use
these controls in any programming environment that can host ActiveX
controls.

Refer to the NI TestStand Help, the NI TestStand User Interface Controls
Reference Poster, and Chapter 9, Creating Custom User Interfaces, for
more information about the TestStand UI Controls.

TestStand Engine
The TestStand Engine is a set of DLLs that exports an ActiveX Automation
API. The TestStand Sequence Editor and User Interface Controls use the
TestStand API, which you can call from any programming environment
that supports access to ActiveX Automation servers, including code
modules you write in LabVIEW and LabWindows/CVI.

Refer to the NI TestStand Help for more information about the
TestStand API.

Other

Can include in deployment ✔ ✔ ✔

Source code available — ✔ ✔

Minimum license required TestStand
Development

System License

TestStand Custom
Sequence Editor

License

TestStand Base
Deployment

Engine License

Table 1-1. Features of TestStand Sequence Editor and TestStand User Interfaces (Continued)

Features

Application

TestStand
Sequence Editor

User Interface
Editor Mode

User Interface
Operator Mode

Chapter 1 NI TestStand Architecture

© National Instruments Corporation 1-7 NI TestStand Reference Manual

Module Adapters
The TestStand Engine uses module adapters to invoke code modules
TestStand sequences call. Module adapters load and call code modules,
pass parameters to code modules, and return values and status from code
modules. TestStand includes the following module adapters to obtain the
list of parameters the code module requires:

• LabVIEW Adapter—Calls LabVIEW VIs with a variety of
connector panes.

• LabWindows/CVI Adapter—Calls C functions with a variety of
parameter types in source files in the current LabWindows/CVI
project, object files, library files, or DLLs.

• C/C++ DLL Adapter—Calls functions or methods in a DLL with
a variety of parameter types, including National Instruments
Measurement Studio classes.

• .NET Adapter—Calls methods and accesses the properties of objects
in a .NET assembly.

• ActiveX/COM Adapter—Calls methods and accesses the properties
of objects in an ActiveX server.

• HTBasic Adapter—Calls HTBasic subroutines.

• Sequence Adapter—Calls other TestStand sequences with
parameters.

The module adapters contain other important information in addition to the
calling convention and parameter lists. ADE-specific module adapters can
open the ADE, create source code for a new code module in the ADE, and
display the source for an existing code module in the ADE.

Refer to Chapter 5, Module Adapters, for more information about module
adapters.

TestStand Building Blocks
You use properties, variables, data types, expressions, steps, sequences,
sequence files, process models, result collection, and sequence executions
to create test systems. Refer to the NI TestStand System and Architecture
Overview Card for a visual representation of how these building blocks
interact.

Chapter 1 NI TestStand Architecture

NI TestStand Reference Manual 1-8 ni.com

Properties
A property is a storage space for information and can store a single value
or a multidimensional array of values of the same data type.

A value can be a number, string, Boolean, .NET object reference, or
ActiveX object reference. TestStand stores numbers as 64-bit,
floating-point values in the IEEE 754 format. Values are not containers and
thus cannot contain subproperties.

TestStand uses the following major categories of properties, defined by the
kinds of values the properties contain:

• Single-valued property—Contains a single value. TestStand supports
number, string, Boolean, and object reference single-valued properties.

• Array property—Contains an array of values. TestStand supports
number, string, Boolean, and object reference array properties.

• Property-array property—Contains a value that is an array of
subproperties of a single type.

• Container property—Contains no values but contains multiple
subproperties. Container properties are analogous to clusters in
LabVIEW and to structures in C/C++.

Built-In and Custom Properties
TestStand defines a set of built-in properties for some objects, such as steps
and sequences. The TestStand Sequence Editor hides these built-in
properties by default, but you can modify the property values through panes
and dialog boxes. You can also access the built-in properties through the
TestStand API.

You can define new custom properties, such as high- and low-limit
properties in a step or local variables in a sequence.

Variables
Variables are properties you can freely create in certain contexts. Variables
can apply globally to a sequence file or locally to a particular sequence.
You can also use station global variables with values that persist across
different executions and across different invocations of the sequence editor
or user interfaces. The TestStand Engine maintains the value of station
global variables in a file on the computer on which you installed the
TestStand Engine.

Chapter 1 NI TestStand Architecture

© National Instruments Corporation 1-9 NI TestStand Reference Manual

You can use TestStand variables to share data among tests written in
different programming languages, even if the data representations are
incompatible. You can pass values you store in variables and properties to
code modules. You can also use the TestStand API to access variable and
property values directly from code modules.

Each step in a sequence can include properties. The type of step determines
its set of properties. Refer to the Step Types section of this chapter for more
information about types of steps.

When executing sequences, TestStand maintains a SequenceContext
object that contains references to all global variables, all local variables,
and all step properties in active sequences. The content of the
SequenceContext object changes according to the currently executing
sequence and step. If you pass a SequenceContext object reference to a
code module, you can use the code module to access information stored
within the SequenceContext object.

Standard and Custom Data Types
When you create a variable or property, you specify its data type. In some
cases, you use a built-in data type, such as a number or a Boolean. In other
cases, you might want to use an arbitrarily complex data structure by
defining a custom named data type you can reuse with other variables or
properties. When you define your own named data type, the data type must
use a unique name. You can add or delete subproperties in each named data
type you create without restriction. For example, you might create a
Transmitter data type that contains subproperties such as NumChannels
and PowerLevel.

TestStand defines a set of standard named data types, which include Error,
CommonResults, Path, and Expression. You can add subproperties to some
standard named data types, but you cannot delete any of the built-in
subproperties.

Note Modifying the standard named data types might result in type conflicts when you
open other sequence files that reference these types. Refer to Chapter 12, Standard and
Custom Data Types, for more information about the standard named data types.

Although each variable or property you create with a named data type has
the same data structure, the variable or property can contain different
values.

Chapter 1 NI TestStand Architecture

NI TestStand Reference Manual 1-10 ni.com

Expressions
You can use the values of variables and properties in numerous ways, such
as passing a variable to a code module or using a property value to
determine whether to execute a step. For these same purposes, you can use
an expression, which is a formula that calculates a new value from the
values of multiple variables or properties. In expressions, you can access
all variables and properties active in the sequence context when TestStand
evaluates the expression.

You can use an expression wherever you would use a simple variable or
property value. TestStand supports all applicable expression operators and
syntax you can use in C, C++, Java, and Visual Basic .NET. You can also
call the TestStand API directly from within expressions.

The following is an example of an expression:

Locals.MidBandFrequency = (Step.HighFrequency +

Step.LowFrequency) / 2

Note Accessing the TestStand API from within expressions is slightly slower than using
multiple ActiveX/COM Adapter steps to perform similar operations.

All TestStand controls that accept expressions provide context-sensitive
editing features, such as drop-down lists, syntax checking, and expression
coloring to help you create expressions.

Refer to the NI TestStand Help for more information about TestStand
expressions.

Steps
TestStand steps can perform many actions, such as initializing an
instrument, performing a complex test, or affecting the flow of execution
in a sequence. Steps perform these actions through several types of
mechanisms, including jumping to another step, executing an expression,
calling a subsequence, or calling an external code module.

Steps can include built-in and custom properties. For steps that call code
modules, the TestStand adapter uses the built-in step properties to store
parameters to pass to the code module and to specify where to store results
the code module returns.

Chapter 1 NI TestStand Architecture

© National Instruments Corporation 1-11 NI TestStand Reference Manual

Not all steps call code modules. Some steps perform standard actions you
configure using panes and dialog boxes. In this case, the panes and dialog
boxes use the custom step properties to store the configuration settings you
specify.

Step Types
Just as each property or variable has a data type, each step has a step type.
Each step of a type includes the built-in step properties and any number of
custom step properties. Although all steps of the same type have the same
properties, the values of those properties can differ. The step type specifies
the initial values of all the step properties. Refer to Chapter 4, Built-In Step
Types, for descriptions of the predefined step types.

You can create a test application using only the predefined step types, and
you can also create your own custom step types to define standard, reusable
classes of steps that apply specifically to the application. Refer to
Chapter 13, Custom Step Types, for more information about creating your
own step types.

Source Code Templates
You can define a source code template for a new step type. When you
create a new step of a particular type, you can use a source code template
to generate source code for the code module of the step. You can specify
different source code templates for different module adapters.

Sequences
A sequence consists of a series of steps. A TestStand sequence can consist
of the following components:

• Setup step group

• Main step group

• Cleanup step group

• Sequence local variables

• Parameters

• Built-in sequence properties

• Callback sequences

Chapter 1 NI TestStand Architecture

NI TestStand Reference Manual 1-12 ni.com

Step Groups
TestStand executes the steps in the Setup step group first, the Main step
group second, and the Cleanup step group last. The Setup step group
typically contains steps that initialize instruments, fixtures, or a UUT.
The Main step group typically contains the bulk of the steps in a sequence,
including the steps that test the UUT. The Cleanup step group typically
contains steps that power down or restore the initial state of instruments,
fixtures, and the UUT.

Use separate step groups to ensure that the steps in the Cleanup step group
execute regardless of whether the sequence completes successfully or a
run-time error occurs in the sequence. If a step in the Setup or Main step
group generates a run-time error, the flow of execution jumps to the
Cleanup step group. The cleanup steps always run even if some of the setup
steps do not run. If a cleanup step causes a run-time error, execution
continues to the next cleanup step.

If a run-time error occurs in a sequence, TestStand reports the run-time
error to the calling sequence. Execution in the calling sequence jumps to
the Cleanup step group in the calling sequence. This process continues up
the call stack to the top-level sequence. Thus, when a run-time error occurs,
TestStand terminates execution after running all the cleanup steps in all the
sequences in the sequence call stack.

Sequence Local Variables
You can create an unlimited number of local variables in a sequence.
Use local variables to store data relevant to the execution of the sequence.
You can pass local variables by value or by reference to any step in
the sequence that calls a subsequence or any step that calls a code module
that uses the LabVIEW, LabWindows/CVI, C/C++ DLL, .NET, or
ActiveX/COM Adapter. You can also access local variables from code
modules of steps in the sequence using the TestStand API.

Note TestStand can pass data to LabVIEW VIs only by value. LabVIEW does not support
passing data by reference. You can return a value as an indicator, which TestStand treats as
a separate parameter.

Chapter 1 NI TestStand Architecture

© National Instruments Corporation 1-13 NI TestStand Reference Manual

Sequence Parameters
Each sequence includes its own list of parameters. Use these parameters to
pass data to a sequence when you call the sequence as a subsequence. Using
parameters in this way is analogous to wiring data to terminals when
you call a subVI in LabVIEW and to passing arguments to a function call
in LabWindows/CVI. You can also specify a default value for each
parameter.

You can specify the number of parameters and the data type of each
parameter. You can select a value to pass to the parameter or use the default
value of the parameter. You can pass sequence parameters by value or by
reference to any step in the sequence that calls a subsequence or any step
that calls a code module that uses the LabVIEW, LabWindows/CVI, C/C++
DLL, .NET, or ActiveX/COM Adapter. You can also access parameters
from code modules of steps in the sequence by using the TestStand API.

Note TestStand can pass data to LabVIEW VIs only by value. LabVIEW does not support
passing data by reference. You can return a value as an indicator, which TestStand treats as
a separate parameter.

Creating parameterized code modules can be helpful when you develop a
TestStand system because you can reuse the code modules with different
parameters in future systems. Carefully analyze use cases and create
extensible code modules accordingly. Be aware that code modules you have
parameterized too much can be difficult to use and maintain.

Built-in Sequence Properties
Sequences include built-in properties you can specify using the Sequence
Properties dialog box. For example, you can specify that the flow of
execution jumps to the Cleanup step group whenever a step sets the status
of the sequence to Failed.

Refer to the NI TestStand Help for more information about the Sequence
Properties dialog box.

Sequence Files
Sequence files can contain one or more sequences. Sequence files can also
contain global variables, which all sequences in the sequence file can
access.

Sequence files include built-in properties. Use the Sequence File Properties
dialog box to specify values for the built-in properties. For example, you

Chapter 1 NI TestStand Architecture

NI TestStand Reference Manual 1-14 ni.com

can specify Load and Unload Options that override the Load and Unload
Options of all the steps in all the sequences in the file.

Refer to the NI TestStand Help for more information about the Sequence
File Properties dialog box.

Process Models
Testing a UUT requires more than just executing a set of tests. Usually, the
test system must perform a series of operations before and after it executes
the sequence that performs the tests. Common operations that define the
testing process include identifying the UUT, notifying the operator of
pass/fail status, logging results, and generating a test report. The set of such
operations and their flow of execution is called a process model.

Some commercial test executives implement their process model internally
and do not allow you to modify the model. Other test executives do not
come with a process model at all. TestStand includes a predefined
Sequential model, Parallel model, and Batch model you can modify or
replace. Use the Sequential model to run a test sequence on one UUT at a
time. Use the Parallel and Batch models to run the same test sequence on
multiple UUTs at the same time.

With TestStand, you can define your own process model, which is a
sequence file in which you can write different test sequences without
repeating standard testing operations in each sequence. The ability to
modify a process model is essential because the testing process can vary
according to production lines, production sites, or company systems and
practices. You can edit a process model in the same way you edit other
sequence files.

You can use client sequence files to customize various model operations by
overriding the callback sequences process models define. Refer to the
Modifying Process Model Sequence Files section of Chapter 10,
Customizing Process Models and Callbacks, for more information about
customizing model operations.

Specifying Process Model Files
The station model file is the process model file TestStand uses for all
sequence files. The Sequential model is the default station model file. Use
the Station Options dialog box to select a different station model and to
specify if individual sequence files can use their own process model files.

Chapter 1 NI TestStand Architecture

© National Instruments Corporation 1-15 NI TestStand Reference Manual

If you allow individual sequence files to specify their own process model
files, use the Sequence File Properties dialog box to set the process model
file for the sequence file. You can also specify if a sequence file does not
use a process model.

Refer to the NI TestStand Help for more information about the Station
Options dialog box and the Sequence File Properties dialog box.

Main Sequence and Client Sequence File
The Main sequence initiates the tests on a UUT. The process model defines
what is constant about the testing process, and Main sequences define the
unique steps for the different types of tests to run. When you create a new
sequence file, TestStand automatically inserts a Main sequence in the file.
You must name each Main sequence MainSequence. The process model
invokes the Main sequence as part of the overall testing process. TestStand
determines which process model file to use with the Main sequence.
TestStand uses the station model file unless the sequence file specifies a
different process model file and you enabled the Allow Other Models
option in the Station Options dialog box to allow sequence files to override
the station model setting.

After TestStand identifies the process model to use with the Main sequence,
the file that contains the Main sequence becomes a client sequence file of
the process model.

Entry Points
A process model defines a set of entry points, and each entry point is a
sequence in the process model file. Defining multiple entry points in a
process model gives the test station operator different ways to invoke a
Main sequence or configure the process model.

The sequence for a process model entry point can contain calls to DLLs,
subsequences, Goto steps, and so on. You can specify two types of entry
points—Execution entry points and Configuration entry points.

Refer to the Using Execution Entry Points section of Chapter 3,
Executions, for more information about entry points.

Chapter 1 NI TestStand Architecture

NI TestStand Reference Manual 1-16 ni.com

Automatic Result Collection
TestStand can automatically collect the results of each step. You can enable
or disable result collection for a step, a sequence, an execution, or for the
entire test station.

Each sequence includes a local array that stores the results of each step. The
content of the results for each step varies depending on the step type.
TestStand stores the results for a step in the array and adds information,
such as the name of the step and its position in the sequence. For a step that
calls a sequence, TestStand also adds the result array from the subsequence.

Refer to the Result Collection section of Chapter 3, Executions, for more
information about how TestStand collects results. Refer to Chapter 6,
Database Logging and Report Generation, for more information about
report generation and database logging features for processing the collected
test results.

Callback Sequences
Callbacks are sequences TestStand calls under specific circumstances. You
can create new callback sequences or you can override existing callbacks
to customize the operation of the test station. Use the Sequence File
Callbacks dialog box to add a callback sequence to a sequence file.

Refer to the NI TestStand Help for more information about the Sequence
File Callbacks dialog box.

TestStand defines Model callbacks, Engine callbacks, and Front-End
callbacks based on the entity that invokes the callback and the location in
which you define the callback, as shown in Table 1-2. Use Model callbacks
to customize the behavior of a process model for each Main sequence that
uses it. The TestStand Engine defines and invokes Engine callbacks at
specific points during execution. User interface programs call Front-End
callbacks so multiple user interfaces can share the same behavior for a
specific operation.

Chapter 1 NI TestStand Architecture

© National Instruments Corporation 1-17 NI TestStand Reference Manual

Sequence Executions
When you run a sequence, TestStand creates an Execution object that
contains all the information TestStand needs to run the sequence and the
subsequences it calls. While an execution is active, you can start another
execution by running the same sequence again or by running a different
one. TestStand does not limit the number of executions you can run
concurrently. An Execution object initially starts with a single execution
thread. You can use sequence call multithreading options to create
additional threads within an execution or to launch new executions. An
execution groups related threads so that setting a breakpoint suspends all
threads in the execution. In the same way, terminating an execution also
terminates all threads in the execution.

Table 1-2. Callback Types

Callback Type Where You Define the Callback What Calls the Callback

Model Callbacks The process model file defines Model
callbacks, and the client sequence file or
StationCallbacks.seq can override
the callback

Sequences in the process
model file

Engine Callbacks StationCallbacks.seq for Station
Engine callbacks, the process model file
for Process Model Engine callbacks, or a
regular sequence file for Sequence File
Engine callbacks

Engine

Front-End Callbacks FrontEndCallbacks.seq User interface application

© National Instruments Corporation 2-1 NI TestStand Reference Manual

2
Sequence Files and Workspaces

Sequence files and workspaces help you organize your work.

Sequence Files
A TestStand sequence file (.seq) contains any number of sequences, a set
of types the sequence file uses, and any global variables steps and
sequences in the file share.

Types of Sequence Files
TestStand includes the following types of sequence files:

• Normal—Contains sequences that test UUTs

• Model—Contains process model sequences

• Station Callback—Contains Station callback sequences

• Front-End Callback—Contains Front-End callback sequences

Most sequence files you create are normal sequence files. Usually, an
application has one Station callback sequence file and one Front-End
callback sequence file.

Normal sequence files specify if they always use the station process model,
a specific process model, or no process model.

From within the TestStand Sequence Editor, use the Sequence File
Properties dialog box to set the type of sequence, the sequence file process
model settings, and other sequence file properties.

Refer to the NI TestStand Help for more information about the Sequence
File Properties dialog box.

Chapter 2 Sequence Files and Workspaces

NI TestStand Reference Manual 2-2 ni.com

Sequence File Callbacks
TestStand uses callback sequences under specific circumstances. Sequence
files can contain sequences that override these callback sequences. Use the
Sequence File Callbacks dialog box to specify these callback sequences.

Refer to the NI TestStand Help for more information about the Sequence
File Callbacks dialog box. Refer to Chapter 10, Customizing Process
Models and Callbacks, for more information about callbacks and
overriding callback sequences.

Sequence File Globals
Each sequence file can contain any number of global variables, which you
can access from any step or sequence within the sequence file in which you
define the global variables. View and edit the global variables in the
Variables pane. Use the Value column in the Variables pane to modify
string, numeric, and Boolean values.

Refer to the NI TestStand Help for more information about the Variables
pane.

Sequence File Type Definitions
Sequence files contain the type definitions for every step, property, and
variable the sequence file contains. View and edit the types a sequence file
contains in the Types pane.

Refer to the NI TestStand Help for more information about the Types pane.
Refer to Chapter 11, Type Concepts, for more information about types and
type editing.

Comparing and Merging Sequence Files
The Sequence File Differ is a stand-alone application and a tool within the
sequence editor you can use to compare and merge differences between
two sequence files. The Sequence File Differ compares the sequence files
and presents the differences in a separate, two-pane window.

Refer to the NI TestStand Help for more information about the Differ
window and Sequence File Differ application.

Chapter 2 Sequence Files and Workspaces

© National Instruments Corporation 2-3 NI TestStand Reference Manual

Sequences
Each sequence can contain steps, parameters, and local variables. View and
edit the list of sequences in the Sequences pane of the Sequence File
window. View and edit the contents of a selected sequence in the Steps
pane of the Sequence File window.

Sequences have properties you can view and edit in the Sequence
Properties dialog box. Refer to the NI TestStand Help for more information
about the Sequence Properties dialog box.

Step Groups
Sequences contain steps in a Setup group, a Main group, and a Cleanup
group. You can view and edit the step groups in the Steps pane of the
Sequence File window.

Use the Setup step group for steps that initialize or configure instruments,
fixtures, and UUTs. Use the Main step group for steps that test the UUTs.
Use the Cleanup step group for steps that power down or release handles to
instruments, fixtures, and UUTs.

Refer to the NI TestStand Help for more information about the Steps pane.

Parameters
Each sequence has its own list of parameters. Use these parameters to pass
data to and from a sequence when you call the sequence as a subsequence.
View and edit the parameters for a sequence in the Variables pane of the
Sequence File window. Use the Value column in the Variables pane to
modify string, numeric, and Boolean values.

Refer to the NI TestStand Help for more information about the Variables
pane.

Chapter 2 Sequence Files and Workspaces

NI TestStand Reference Manual 2-4 ni.com

Local Variables
Use local variables to store data relevant to the execution of the sequence.
You can access local variables from within steps and code modules. You
can also use local variables for maintaining counts, holding intermediate
values, or any other purpose. View and edit the local variables in the
Variables pane. Use the Value column in the Variables pane to modify
string, numeric, and Boolean values.

Refer to the NI TestStand Help for more information about the Variables
pane.

Sequence File Window and Views
Within the TestStand Sequence Editor, you can view and edit sequence
files in the Sequence File window, as shown in Figure 2-1.

Figure 2-1. Sequence File Window and Insertion Palette

Chapter 2 Sequence Files and Workspaces

© National Instruments Corporation 2-5 NI TestStand Reference Manual

To open an existing sequence file in the Sequence File window, select
File»Open Sequence File. To create a new Sequence File window, select
File»New Sequence File.

The Sequence File window contains the following panes:

• Sequences—Displays a list of sequences in a file. Use this pane to
create new sequences and to cut, copy, and paste sequences.

• Steps—Displays the steps in a specific sequence. Expand the Setup,
Main, or Cleanup group to view its contents.

• Variables—Displays the variables the steps you select in the Steps
pane can access at run time. The variables include locals, parameters,
file globals, station globals, and run state information accessible to
TestStand when the sequence executes.

Refer to the NI TestStand Help for more information about the Sequence
File window and its panes.

Sequence Hierarchy Window
TestStand sequences can use the Sequence Call step type to call
subsequences. The Sequence Hierarchy window shows the relationship
between sequences and subsequences by displaying a graph that represents
all the sequence calls that start at a root sequence. Each sequence appears
as a node in the graph, and each sequence call step appears as a link
between nodes.

Refer to the NI TestStand Help for more information about accessing the
Sequence Hierarchy window and using the buttons on the Sequence
Hierarchy toolbar. Refer to Chapter 4, Built-In Step Types, for more
information about the Sequence Call step type.

Workspaces
Create a workspace to organize and access development files. Use
workspaces early in development so you can easily keep track of files while
you are developing. A TestStand workspace file (.tsw) contains references
to any number of TestStand project files. A TestStand project file (.tpj)
contains references to any number of other files of any type.

Use TestStand project files to organize related files in the test system. You
can insert any number of files into a project. You can also insert folders in
a project to contain files or other folders.

Chapter 2 Sequence Files and Workspaces

NI TestStand Reference Manual 2-6 ni.com

In the sequence editor, use the Workspace pane to view and edit a
workspace file and the project files it references. You can open only
one workspace file at a time. To open an existing workspace file, select
File»Open Workspace File. To create a new workspace file, select
File»New Workspace File.

Note If you modify or replace a file in a workspace, TestStand reflects the changes only
if the file maintains the same filename and either the file maintains the same path if the
workspace uses an absolute path to locate the file or the workspace can still locate the file
using the TestStand search paths. Refer to the Search Paths section of Chapter 5, Module
Adapters, for more information about TestStand search directories.

The TestStand Deployment Utility also uses a workspace to specify the
files to include in the deployment image or installer the utility creates.

Refer to the NI TestStand Help for more information about the Workspace
pane.

Source Code Control
Use workspace files early in development to easily access files in a source
code control (SCC) system. To perform SCC operations on files from
within TestStand, select an SCC provider on the Source Control tab of
the Station Options dialog box and configure the SCC settings for the
workspace on the Source Control tab of the Workspace Object Properties
dialog box.

Note National Instruments tested TestStand with Microsoft Visual SourceSafe, Perforce,
MKS Source Integrity, Rational ClearCase, and Merant PVCS.

Refer to the NI TestStand Help for more information about using SCC tools
with TestStand.

System Deployment
You must create a workspace to use the TestStand Deployment Utility,
which uses workspace and project files to collect all the files required to
successfully distribute a test system to a target computer. The deployment
utility creates an image or an installer for the test system.

Refer to Chapter 14, Deploying TestStand Systems, for more information
about system deployment and the TestStand Deployment Utility.

© National Instruments Corporation 3-1 NI TestStand Reference Manual

3
Executions

An execution is an object that contains all the information TestStand uses
to run a sequence and subsequences. When an execution is active, you can
start other executions by running the same sequence again or by running
different sequences. TestStand does not limit the number of executions you
can run concurrently. An execution can start with a single thread and then
launch additional threads. When you suspend, terminate, or abort an
execution, you stop all threads in the execution.

When TestStand begins executing a sequence, it makes a run-time copy of
the sequence local variables and the custom properties of the steps in
a sequence. If the sequence calls itself recursively, TestStand creates a
separate run-time copy of the local variables and custom step properties for
each running instance of the sequence. Modifications to the values of local
variables and custom step properties apply only to the run-time copy and
do not affect the sequence file in memory or on disk.

Note TestStand shares built-in properties of steps and sequences at run time. For these
shared properties, TestStand does not create a unique run-time copy but instead references
the edit-time copy. Any changes to the run-time reference of these built-in properties edits
the original Step or Sequence object in the sequence file.

For each execution thread, TestStand maintains an execution pointer
that points to the current step, a call stack, and a run-time copy of the
local variables and custom properties for all sequences and steps on the
call stack.

The Execution tab of the Station Options dialog box provides a number of
execution options that control tracing, breakpoints, and result collection.
Refer to the NI TestStand Help for more information about the Execution
tab of the Station Options dialog box.

Chapter 3 Executions

NI TestStand Reference Manual 3-2 ni.com

Sequence Context
Before executing the steps in a sequence, TestStand creates a run-time copy
of the sequence, which allows TestStand to maintain separate local variable
and step property values for each sequence invocation.

TestStand maintains a sequence context that contains references to the
run-time copy of the sequence, to all global variables, and to step properties
in the active sequence. The content of a sequence context varies depending
on the currently executing step. Refer to the NI TestStand Help for more
information about the content of the sequence context.

Using the Sequence Context
In expressions, you can access the value of a variable or property by
specifying a path from the sequence context to the particular variable or
property. For example, you can set the status of a step using the following
expression:

Step.Result.Status = "Passed"

During an execution, you can view and modify the values of the properties
in the sequence context from the Variables pane in the Execution window.
The Variables pane displays the sequence context for the sequence
invocation currently selected in the Call Stack pane. You can also monitor
individual variables or properties from the Watch View pane. Refer to the
NI TestStand Help for more information about using the Variables pane,
Watch View pane, and Call Stack pane of the Execution window.

You can pass a reference to a SequenceContext object to a code module.
In code modules, you access the value of a variable or property by using
PropertyObject methods in the TestStand API with the sequence
context. As with expressions, you must specify a path from the sequence
context to the particular property or variable. Refer to the NI TestStand
Help for more information about accessing the properties in the sequence
context from code modules.

Select View»Sequence File»Variables or View»Execution»Variables in
the sequence editor to open the Variables pane, which contains the names
of variables, properties, and sequence parameters you can access from
expressions and code modules. Refer to the NI TestStand Help for more
information about the Variables pane.

Note Some properties are not populated until run time.

Chapter 3 Executions

© National Instruments Corporation 3-3 NI TestStand Reference Manual

Lifetime of Local Variables, Parameters, and
Custom Step Properties
Multiple instances of a sequence can run at the same time, such as when
you call a sequence recursively or when a sequence runs in multiple
concurrent threads. For each instance of the sequence, TestStand creates a
copy of the sequence parameters, local variables, and custom properties of
each step. When a sequence completes, TestStand discards the values of the
parameters, local variables, and custom properties.

Sequence Editor Execution Window
The sequence editor displays each execution in a separate Execution
window, as shown in Figure 3-1.

Figure 3-1. Sequence Editor Execution Window

Refer to the NI TestStand Help for more information about the Execution
window.

Chapter 3 Executions

NI TestStand Reference Manual 3-4 ni.com

Executing Sequences
You can initiate an execution by launching a sequence through an
Execution entry point, by launching a sequence directly, or by executing
a group of steps interactively. You can debug executions, and you can
terminate or abort executions.

Using Execution Entry Points
You can use an Execution entry point to start an execution only when
a sequence file that contains a sequence with the name MainSequence
occupies the active window. The Execute menu of the sequence editor
includes a list of Execution entry points.

Each Execution entry point in the menu represents a separate entry point
sequence in the process model that applies to the active sequence file. When
you select an Execution entry point from the Execute menu, you actually
run an entry point sequence in a process model file. The Execution entry
point sequence invokes the Main sequence one time or multiple times.

Execution entry points in a process model provide different ways for the
test station operator to invoke a Main sequence. Execution entry points
handle common operations, such as UUT identification and test report
generation. For example, the default TestStand process model provides
two Execution entry points—Test UUTs and Single Pass. The Test UUTs
Execution entry point initiates a loop that repeatedly identifies and tests
UUTs. The Single Pass Execution entry point tests a single UUT without
identifying it.

Refer to Chapter 10, Customizing Process Models and Callbacks, and
Appendix A, Process Model Architecture, for more information about
using process models.

Executing a Sequence Directly
To execute a sequence without using a process model, select Execute»
Run <Sequence Name>, where <Sequence Name> is the name of the
current sequence. Executing a sequence directly skips the process model
operations, such as UUT identification and test report generation. You can
use this method to execute any sequence. Executing a sequence directly is
helpful for performing unit testing or debugging.

Chapter 3 Executions

© National Instruments Corporation 3-5 NI TestStand Reference Manual

Interactively Executing Steps
To interactively execute selected steps in a sequence, select
Run Selected Steps or Loop On Selected Steps from the context menu
or from the Execute menu in the sequence editor or user interfaces.

You can run steps the following two ways in interactive mode:

• Run steps interactively from a Sequence File window to create a new
execution called a root interactive execution. You can set station
options to control if the Setup and Cleanup step groups of the sequence
run as part of a root interactive execution.

• Run steps interactively from an existing Execution window for a
normal execution suspended at a breakpoint. The selected steps run in
a nested interactive execution within the context of the normal
execution.

The steps you run interactively can access the variable values of the
normal execution and add to the results. If you used the process model
for the original execution, the test report includes these results. When
the selected steps complete, the execution returns to the originally
suspended step. A configurable station option specifies if step failures
and errors propagate to the original execution.

In interactive mode, the selected steps run in the order in which they appear
in the sequence.

To configure TestStand to evaluate preconditions when executing
interactively, select Configure»Station Options and enable the Evaluate
Preconditions option in the Interactive Executions section of the
Execution tab of the Station Options dialog box. You can also use the
Branching Mode control in this dialog box to configure if interactive
executions branch to unselected steps. Refer to the NI TestStand Help for
more information about the Station Options dialog box.

Debugging Executions
Use the following panes to gather information when you single-step
through an execution:

• Threads and Call Stack panes—The Threads pane displays the
threads running in the execution and selects the active thread to view.
The Call Stack pane displays the sequence invocations for the active
thread and selects the active sequence invocation to view. Refer to the
NI TestStand Help for more information about the Threads and Call
Stack panes.

Chapter 3 Executions

NI TestStand Reference Manual 3-6 ni.com

• Variables pane—Displays the sequence context for the sequence
invocation currently selected in the Call Stack pane. The sequence
context contains all the variables and properties the steps in the
selected sequence invocation can access. Use the Variables pane to
examine and modify the values of these variables and properties. Refer
to the NI TestStand Help for more information about the Variables
pane.

• Watch View pane—Displays the values of the watch expressions you
enter. The sequence editor updates the values in the Watch View pane
when execution suspends at a breakpoint. If you enabled tracing, the
sequence editor also updates the values after executing each step and
highlights values that change in red. Refer to the NI TestStand Help for
more information about the Watch View pane.

• Output pane—Displays generic messages, warnings, and error
messages. By default, the Output pane is empty. Use the OutputMessage
expression function or the Engine.NewOutputMessage method and
the OutputMessage.Post method to generate the messages you want
to display. Each message specifies a severity and a timestamp. The
message can also specify an icon, a category, and additional execution
information. Double-click a message or right-click a message and select
Goto Location In»Step from the context menu to go to the step that
generates the message. By default, the sequence editor generates output
messages for any information an SCC provider generates. Refer to the
NI TestStand Help for more information about the Output pane and the
Output pane context menu.

Terminating and Aborting Executions
The menus in the sequence editor and user interfaces include commands to
stop execution before the execution completes normally. The TestStand
API includes corresponding methods to stop execution from inside a code
module or to determine if the execution stopped. You can issue a stop
request at any time to stop one execution or all executions. Stop requests do
not take effect in each execution until the currently executing code module
returns control.

You can terminate an execution, or you can abort an execution.

When you terminate an execution, all the cleanup steps in the sequences on
the call stack run before execution ends. Also, if you terminate an execution
while the client sequence file is still running, the process model continues
to run, possibly testing the next UUT or generating a test report.

Chapter 3 Executions

© National Instruments Corporation 3-7 NI TestStand Reference Manual

When you abort an execution, the cleanup steps do not run, and the process
model does not continue. Abort an execution in cases when you want an
execution to completely stop as soon as possible. In general, it is better to
terminate execution so the cleanup steps can return the system to a known
state. Abort an execution only when you are debugging or when you are
sure it is safe to skip the cleanup steps for a sequence.

Result Collection
TestStand automatically collects the results of each step. You can configure
result collection for each step on the Run Options panel of the Step Settings
pane. You can disable result collection for an entire sequence in the
Sequence Properties dialog box or completely disable result collection on
a computer in the Station Options dialog box.

Each sequence includes a ResultList local variable, which is an empty array
of container properties. TestStand appends a new container property, the
step result, to the end of the ResultList array before a step executes. After
the step executes, TestStand copies the contents of the Result subproperty
for the step into the step result in the ResultList array.

Each step type can define different contents for its Result subproperty, and
TestStand can append step results that contain Result properties from
different step types to the same ResultList array. When TestStand copies the
Result property for a step to the step result, TestStand also adds the name
of the step, its position in the sequence, and other identifying information.
For a step that calls a subsequence, TestStand also adds the ResultList array
variable from the subsequence.

Using the TestStand API, a process model can request that TestStand insert
additional step properties in the step results for all steps automatically.
A code module can also use the TestStand API to insert additional
step result information for a particular step.

Refer to the NI TestStand Help for more information about the Step
Settings pane, Sequence Properties dialog box, and the Station Options
dialog box.

Chapter 3 Executions

NI TestStand Reference Manual 3-8 ni.com

Custom Result Properties
Because each step type can have a different set of subproperties under
its Result property, the step result varies according to the step type.
Table 3-1 lists the custom properties the step result can contain for steps
that use one of the built-in step types.

Table 3-1. Custom Properties in the Step Results for Steps that
Use the Built-In Step Types

Custom Step Property Step Types that Use the Property

Error.Code All

Error.Msg All

Error.Occurred All

Status All

Common All

Numeric Numeric Limit Test,
Multiple Numeric Limit Test

PassFail Pass Fail Test

Limits.String String Value Test

Refer to the Exceptions section in this
chapter for more information.

ButtonHit Message Popup

Response Message Popup

ExitCode Call Executable

NumPropertiesRead Property Loader

NumPropertiesApplied Property Loader

ReportText All

Limits.Low Numeric Limit Test,
Multiple Numeric Limit Test,
String Value Test

Refer to the Exceptions section in this
chapter for more information.

Chapter 3 Executions

© National Instruments Corporation 3-9 NI TestStand Reference Manual

Note Table 3-1 does not include the result properties for Synchronization, Database, IVI,
or LabVIEW Utility step types. Refer to Appendix B, Synchronization Step Types,
Appendix C, Database Step Types, Appendix D, IVI Step Types, and Appendix E,
LabVIEW Utility Step Types, for more information about these step types.

The Common property uses the CommonResults custom data type and is
a subproperty of the Result property for every step type. Consequently,
you can add a subproperty to the result of every step type by adding a
subproperty to the definition of the CommonResults custom data type.
However, if you modify the CommonResults custom data type without
incrementing the type version number, you might see a type conflict when
you open other sequence files, such as FrontEndCallbacks.seq when
you log in or out. TestStand prompts you to increment the version number
when you save changes to any data type or step type. National Instruments
recommends modifying the CommonResults data type only if you want to
make an architectural change to all step types that you use. Share the
modified CommonResults data type and the step types that use the
CommonResults data type only with systems on which you are certain
no conflicting changes to CommonResults will be deployed.

Limits.High Numeric Limit Test,
Multiple Numeric Limit Test

Refer to the Exceptions section in this
chapter for more information.

Comp Numeric Limit Test,
Multiple Numeric Limit Test

Refer to the Exceptions section in this
chapter for more information.

Measurement Multiple Numeric Limit Test

AsyncID Sequence Call

Refer to the Exceptions section in this
chapter for more information.

AsyncMode Sequence Call

Refer to the Exceptions section in this
chapter for more information.

Table 3-1. Custom Properties in the Step Results for Steps that
Use the Built-In Step Types (Continued)

Custom Step Property Step Types that Use the Property

Chapter 3 Executions

NI TestStand Reference Manual 3-10 ni.com

Exceptions
The Limits.Low, Limits.High, Limits.String, and Comp properties are not
subproperties of the Result property for the Numeric Limit Test and the
String Value Test step types. Therefore, TestStand does not automatically
include these properties in the step result. Depending on options you set
during the step configuration, the default process model uses the TestStand
API to include the Limits.Low, Limits.High, Limits.String, and Comp
properties in the step results for Numeric Limit Test and String Value Test
steps that contain these properties.

The AsyncID and AsyncMode properties are not subproperties of the
Result property for the Sequence Call step type. TestStand adds these
properties to the step results only for Sequence Call steps that call
subsequences asynchronously.

Standard Result Properties
In addition to copying step properties to step results, TestStand also adds
a set of standard properties to each step result as subproperties of the
TS property, as shown in Table 3-2.

Table 3-2. Standard Step Result Properties

Standard Result Property Description

TS.StartTime Time at which the step began executing; specifically, the
number of seconds since the TestStand Engine initialized.

TS.TotalTime Number of seconds the step took to execute; includes the time
for all step options, including preconditions, expressions, post
actions, module loading, and module execution.

TS.ModuleTime Number of seconds the code module took to execute.

TS.Index Zero-based position of the step in the step group.

TS.StepName Name of the step.

TS.StepGroup Step group that contains the step. The values are Main, Setup,
or Cleanup.

TS.StepId Unique Step Id, which is a GUID represented as a string
that begins with “ID#:” and contains 26 characters (only
alphanumeric characters and the special characters “#,” “:,” “+,”
and “/”). TestStand attempts to maintain globally unique step
Ids, but copying files on disk does not prevent duplicate Ids.

Chapter 3 Executions

© National Instruments Corporation 3-11 NI TestStand Reference Manual

Subsequence Results
If a step calls a subsequence or generates a call to a callback sequence,
TestStand creates a special step result subproperty to store the result of the
subsequence unless the callback or sequence disables results. Table 3-3
lists the name of the subproperty for each type of subsequence call.

TS.Id A number TestStand assigns to the step result. The number
is unique with respect to all other step results in the current
TestStand session.

TS.InteractiveExeNum A number TestStand assigns to an interactive execution. The
number is unique with respect to all other interactive executions
in the current TestStand session. TestStand adds this property
only if you run the step interactively.

TS.StepType Name of the step type.

TS.Server The name of the server computer on which the step runs the
subsequence it calls. TestStand adds this property only for
Sequence Call steps that run subsequences on a remote
computer.

TS.StepCausedSequenceFailure TestStand adds this property only if the step fails. The value is
True if the step failure causes the sequence to fail. The value is
False if the step failure does not cause the sequence to fail or
if the sequence has already failed.

TS.BlockLevel Indicates the number of blocks that encloses the step, such as
If and For steps. The value is zero for top-level steps.

Table 3-3. Subproperty Names for Subsequence Results

Result Subproperty Name Type of Subsequence Call

TS.SequenceCall Sequence Call

TS.PostAction Post Action callback

TS.SequenceFilePreStep SequenceFilePreStep callback

TS.SequenceFilePostStep SequenceFilePostStep callback

TS.ProcessModelPreStep ProcessModelPreStep callback

TS.ProcessModelPostStep ProcessModelPostStep callback

Table 3-2. Standard Step Result Properties (Continued)

Standard Result Property Description

Chapter 3 Executions

NI TestStand Reference Manual 3-12 ni.com

TestStand adds the following properties to the subproperty for each
subsequence:

• SequenceFile—Absolute path of the sequence file that contains the
subsequence.

• Sequence—Name of the subsequence the step called.

• Status—Status of the subsequence the step called.

• ResultList—Value of Locals.ResultList for the subsequence the
step called. This property contains the results for the steps in the
subsequence.

TS.StationPreStep StationPreStep callback

TS.StationPostStep StationPostStep callback

TS.SequenceFilePreInteractive SequenceFilePreInteractive callback

TS.SequenceFilePostInteractive SequenceFilePostInteractive callback

TS.ProcessModelPreInteractive ProcessModelPreInteractive callback

TS.ProcessModelPostInteractive ProcessModelPostInteractive callback

TS.StationPreInteractive StationPreInteractive callback

TS.StationPostInteractive StationPostInteractive callback

TS.SequenceFilePostResultListEntry SequenceFilePostResultListEntry callback

TS.ProcessModelPostResultListEntry ProcessModelPostResultListEntry callback

TS.StationPostResultListEntry StationPostResultListEntry callback

TS.SequenceFilePostStepRuntimeError SequenceFilePostStepRuntimeError callback

TS.ProcessModelPostStepRuntimeError ProcessModelPostStepRuntimeError callback

TS.StationPostStepRuntimeError StationPostStepRuntimeError callback

TS.SequenceFilePostStepFailure SequenceFilePostFailure callback

TS.ProcessModelPostStepFailure ProcessModelPostFailure callback

TS.StationPostStepFailure StationFilePostFailure callback

Table 3-3. Subproperty Names for Subsequence Results (Continued)

Result Subproperty Name Type of Subsequence Call

Chapter 3 Executions

© National Instruments Corporation 3-13 NI TestStand Reference Manual

Loop Results
When you configure a step to loop, you can use the Record Result of Each
Iteration option on the Looping panel of the Step Settings pane to direct
TestStand to store a separate result for each loop iteration in the result list.
In the result list, the results for the loop iterations immediately follow the
result for the step as a whole.

TestStand adds a TS.LoopIndex numeric property to each loop iteration
result to record the value of the loop index for the iteration. TestStand also
adds the following special loop result properties to the main result for
the step:

• TS.EndingLoopIndex—Value of the loop index when looping
completes.

• TS.NumLoops—Number of times the step loops.

• TS.NumPassed—Number of loops for which the step status is
Passed or Done.

• TS.NumFailed—Number of loops for which the step status is
Failed.

Report Generation
When you run a sequence using the Test UUTs or Single Pass Execution
entry point, the default process model generates the test report by traversing
the results for the Main sequence in the client sequence file and all the
subsequences it calls.

Refer to the Process Models section of Chapter 1, NI TestStand
Architecture, Chapter 10, Customizing Process Models and Callbacks, and
Appendix A, Process Model Architecture, for more information about
process models. Refer to Chapter 6, Database Logging and Report
Generation, for more information about report generation.

Engine Callbacks
TestStand specifies a set of Engine callback sequences it invokes at specific
points during execution.

Use Engine callbacks to make TestStand call certain sequences before and
after the execution of individual steps, before and after interactive
executions, after loading a sequence file, and before unloading a sequence

Chapter 3 Executions

NI TestStand Reference Manual 3-14 ni.com

file. Because the TestStand Engine controls the execution of steps and the
loading and unloading of sequence files, TestStand defines the set of
Engine callbacks and their names.

Refer to Chapter 10, Customizing Process Models and Callbacks, for more
information about Engine callbacks.

Step Execution
Depending on the options you set during step configuration, a step
performs a number of actions as it executes. Table 3-4 lists the most
common actions a step can take, in the order the step performs them.

Table 3-4. Order of Actions a Step Performs

Action Number Description Remarks

1 Allocate step result —

2 Enter batch synchronization
section

If option is set

3 Evaluate precondition If False, perform Action
Number 25, then proceed to
Action Number 29

4 Acquire step lock If option is set

5 Check run mode —

6 Load module if not already loaded —

7 Execute step switching —

8 Evaluate Loop Initialization
expression

Only if looping

9 Evaluate Loop While expression,
skip to Action Number 23
if False

Only if looping

10 Allocate loop iteration result Only if looping

11 Call Pre-Step Engine callbacks —

12 Evaluate Pre-Expression —

13 Call Pre-Step substeps for
step type

—

Chapter 3 Executions

© National Instruments Corporation 3-15 NI TestStand Reference Manual

14 Call module —

15 Call Post-Step substeps for
step type

TestStand calls Post-Step substeps
even if the user code module
generates a run-time error, which
enables Post-Step substeps to
perform error handling,
if appropriate.

16 Evaluate Post-Expression —

17 Evaluate Status expression —

18 Call Post-Step Engine callbacks —

19 Call Post-Step Failure Engine
callback

Only if loop iteration fails

20 Fill out loop iteration result Only if looping

21 Call Post-ResultList Entry Engine
callback

Only if looping

22 Evaluate Loop Increment
expression, return to Action
Number 9

Only if looping

23 Evaluate Loop Status expression Only if looping

24 Disconnect switching routes with
step lifetime

—

25 Unload module if required —

26 Update sequence failed state

27 Call Post-Step Failure Engine
callback

Only if step fails

28 Execute post action —

29 Release step lock If option is set

30 Exit batch synchronization section If option is set

Table 3-4. Order of Actions a Step Performs (Continued)

Action Number Description Remarks

Chapter 3 Executions

NI TestStand Reference Manual 3-16 ni.com

Usually, a step performs only a subset of these actions depending on the
configuration of the step and the test station. When TestStand detects a
run-time error, it calls the Post-Step Error Engine callbacks. If you do not
define these callbacks or if the callbacks do not reset the error state for the
step, TestStand unloads the module and then releases the step lock. If a
run-time error occurs in a loop iteration, TestStand fills out the loop
iteration result before unloading the module and releasing the step lock.

Step Status
Every step has a Result.Status property, which is a string that indicates the
result of the step execution. Although TestStand imposes no restrictions on
the values to which the step or its code module can set the status property,
TestStand and the built-in step types use and recognize the values that
appear in Table 3-5.

31 Fill out step result —

32 Call Post-ResultList Entry Engine
callback

—

Table 3-5. Standard Values for the Status Property

String Value Meaning
Source of the
Status Value

Passed Indicates the step performed a test that passed. Step or code module

Failed Indicates the step performed a test that failed. Step or code module

Error Indicates a run-time error occurred. TestStand

Done Indicates the step completed without setting its status. TestStand

Table 3-4. Order of Actions a Step Performs (Continued)

Action Number Description Remarks

Chapter 3 Executions

© National Instruments Corporation 3-17 NI TestStand Reference Manual

Failures
If you enable the Step Failure Causes Sequence Failure option on the Run
Options panel of the Step Settings pane, TestStand sets the sequence status
to Failed when a step fails. When the sequence returns as Failed, the
Sequence Call step also fails. In this way, a step failure in a subsequence
can propagate up through the chain of Sequence Call steps. By default,
TestStand enables the Step Failure Causes Sequence Failure option for
most step types.

You can also control how execution proceeds after a step failure causes a
sequence to fail. To configure an execution to jump to the Cleanup step
group upon failure, enable the Immediately Goto Cleanup on Sequence
Failure option in the Sequence Properties dialog box. By default, TestStand
disables this option.

Terminated Indicates the step did not set the status and a request to
terminate the execution occurred while executing the
step. When TestStand returns a status of Terminated
to a calling sequence, TestStand sets the step status to
Terminated. If you enabled the Ignore Termination
option on the Run Options panel of the Step Settings
pane for a Sequence Call step, TestStand does not
return the request to terminate the execution to the
calling sequence invocation. The status of the execution
is Terminated if TestStand returns the request to
terminate the execution to the root sequence invocation.

TestStand

Skipped Indicates the step did not execute because the run mode
for the step is Skip.

TestStand

Running Indicates the step is currently running. TestStand

Looping Indicates the step is currently running in loop mode. TestStand

Table 3-5. Standard Values for the Status Property (Continued)

String Value Meaning
Source of the
Status Value

Chapter 3 Executions

NI TestStand Reference Manual 3-18 ni.com

Terminations
When you request to terminate an execution, the currently executing
sequence invocation for each thread immediately calls the Cleanup step
group. When a terminating subsequence returns to a calling sequence,
TestStand sets the calling sequence step status to Terminated, and the
calling sequence continues the termination process down the call stack
unless you enabled the Ignore Termination option on the Run Options
panel of the Step Settings pane for the Sequence Call step. If you enabled
this setting, TestStand ignores the termination of the execution for the
thread, and the thread execution continues normally. If TestStand returns
the request to terminate the execution to the root sequence invocation, the
result status for the execution is Terminated.

Run-Time Errors
TestStand generates a run-time error if it encounters a condition that
prevents a sequence from executing. For example, if a precondition refers
to the status of a step that does not exist, TestStand generates a run-time
error when it attempts to evaluate the precondition. TestStand also
generates a run-time error when a code module causes an access
violation or any other exception.

TestStand does not use run-time errors to indicate UUT test failures.
Instead, a run-time error indicates a problem exists with the testing process
itself and testing cannot continue. Usually, a code module reports a
run-time error if it detects an error in a hardware or software resource it uses
to perform a test.

TestStand allows you to decide interactively how to handle a run-time error.
To interactively handle a run-time error, configure TestStand to launch the
Run-Time Error dialog box in the event of an error by selecting Show
Dialog from the On Run-Time Error ring control on the Execution tab of
the Station Options dialog box. Refer to the NI TestStand Help for more
information about the Station Options and Run-Time Error dialog boxes.

TestStand also allows you to invoke Post-Step RunTime Error Engine
callbacks when a run-time error occurs. Refer to Chapter 10, Customizing
Process Models and Callbacks, for more information about Engine
callbacks.

© National Instruments Corporation 4-1 NI TestStand Reference Manual

4
Built-In Step Types

TestStand groups the core set of built-in step types into the following
categories:

• Step types you can use with any module adapter. Step types such as the
Numeric Limit Test and the String Value Test call any code module
you specify. They also might perform additional actions, such as
comparing a value the code module returns with limits you specify.

• Step types that always use a specific module adapter to call code
modules. Sequence Call is the only step type in this category.

• Step types that perform a specific action and do not require you to
specify a code module. Step types such as Message Popup, Statement,
and Flow Control perform actions you configure in an edit tab or edit
dialog box specific to the step type.

Note TestStand also includes sets of application-specific step types. For example,
TestStand provides sets of step types that make it easier to synchronize multiple threads,
access databases, control IVI instruments, and access VIs and remote systems. Refer to
Appendix B, Synchronization Step Types, Appendix C, Database Step Types, Appendix D,
IVI Step Types, and Appendix E, LabVIEW Utility Step Types, for more information about
these step types.

Using Step Types
Use step types when you insert steps in the Setup, Main, and Cleanup
groups of the Steps pane in the Sequence File window. You can insert a step
using the Step Types list in the Insertion Palette, shown in Figure 4-1, or
the Insert Step submenu in the Steps pane context menu. The Insertion
Palette and the Insert Step submenu list all the available step types. Refer
to the NI TestStand Help for more information about the Insertion Palette.

Chapter 4 Built-In Step Types

NI TestStand Reference Manual 4-2 ni.com

Figure 4-1. Insertion Palette

When you insert a step type from the Insertion Palette or the Insert Step
submenu, TestStand creates a step using the step type and the module
adapter selected in the Insertion Palette or toolbar. After you insert the step,
select Specify Module from the context menu to specify the code module
or sequence, if any, the step calls. The Specify Module command displays
a Module tab on the Step Settings pane that is different for each adapter.
Refer to Chapter 5, Module Adapters, and the NI TestStand Help for more
information about the Module tab for each adapter.

For each step type, other items appear in the context menu above the
Specify Module item. For example, the Edit Limits item appears in the
context menu for Numeric Limit Test steps, and the Edit Data Source item
appears in the context menu for Pass/Fail Test steps. Select the menu item
to display a step-type-specific pane or launch a step-type-specific dialog

Chapter 4 Built-In Step Types

© National Instruments Corporation 4-3 NI TestStand Reference Manual

box in which you can modify step properties specific to the step type. Refer
to the NI TestStand Help for more information about the menu items for
each of the built-in step types.

To modify step properties common to all step types, select the Properties
tab on the Step Settings pane. Refer to the NI TestStand Help for more
information about the Step Settings pane.

The Insertion Palette also contains a Templates list you can use to hold
copies of sequences, steps, and variables you reuse. Refer to the
NI TestStand Help for more information about the Templates list of
the Insertion Palette.

Built-In Step Properties
TestStand steps include built-in properties you can specify using the
following panels on the Properties tab of the Step Settings pane:

General Panel
• Name—Specifies the name of the step.

• Type—Specifies the type of the step.

• Adapter—Specifies the adapter the step uses to call a code module.

• Icon—Specifies the icon to display for the step.

• Comment—Specifies the comment of the step.

Run Options Panel
• Load/Unload Options—Specifies how TestStand loads and unloads

the code modules or subsequences each step invokes.

• Run Mode—Specifies if TestStand skips a step or forces the step to
pass or fail without executing the code module of the step.

• Precondition Evaluation in Interactive Mode—Specifies if
TestStand evaluates the step precondition when you run the step
interactively.

• TestStand Window Activation—Specifies if the TestStand
application activates its window when the step completes.

• Sequence Call Trace Setting—Specifies if TestStand traces the steps
in the subsequence the step calls. This property exists only for
Sequence Call steps.

Chapter 4 Built-In Step Types

NI TestStand Reference Manual 4-4 ni.com

• Record Result—Specifies if TestStand collects the results for this
step. Refer to the Result Collection section of Chapter 3, Executions,
for more information about result collection.

• Step Failure Causes Sequence Failure—Specifies if TestStand sets
the status of the sequence to Failed when the status of the step is
Failed.

• Ignore Run-Time Errors—Specifies if TestStand continues
execution normally after the step when a run-time error occurs in the
step.

Caution Some run-time errors can place the system in a bad state, and continuing with the
execution can result in an undefined behavior.

• Ignore Termination—Specifies if a Sequence Call step ignores the
request to terminate execution.

Looping Panel
• Loop—Specifies if the step executes once or multiple times before

executing the next step. You can specify the conditions under which to
terminate the loop. You can also specify to collect results for each loop
iteration, for the loop as a whole, or for both.

Post Actions Panel
• Post Actions—Specifies if TestStand executes a specific sequence or

jumps to other steps after executing the step, depending on the pass/fail
status of the step or any custom condition.

Switching Panel
• Switching—Specifies if TestStand performs any switching operations

when the step executes.

Synchronization Panel
• Synchronization—Specifies if a step should block another instance of

the step from executing at the same time in a different thread.

Chapter 4 Built-In Step Types

© National Instruments Corporation 4-5 NI TestStand Reference Manual

Expressions Panel
• Pre-Expressions—Specifies an expression to evaluate before

executing the code module of the step.

• Post-Expressions—Specifies an expression to evaluate after
executing the code module of the step.

• Status Expression—Specifies an expression that determines the value
of the status property of the step.

Preconditions Panel
Specifies the conditions that must be True for TestStand to execute the step
during the normal flow of execution in a sequence.

Requirements Panel
Notates product and unit requirements a step covers.

Additional Results Panel
Allows you to add and configure additional results. An additional result is
a value TestStand adds to the result list of a step when the step executes. An
additional result can be a module parameter or a custom additional result in
which you specify the name and value of the result.

Property Browser Panel
Displays the built-in and custom properties for a step.

Custom Step Properties
You can usually modify the values of custom step properties using the tabs
on the Step Settings pane. If the step type does not include a tab for the
custom properties, select the Property Browser panel to view the custom
properties for the step. Although code modules usually do not modify the
values of the built-in step properties at run time, they often modify and read
the values of the custom step properties when determining the pass/fail
status.

Refer to the NI TestStand Help for more information about the Properties
tab of the Step Settings pane.

Chapter 4 Built-In Step Types

NI TestStand Reference Manual 4-6 ni.com

Custom Properties All Step Types Share
Each step type defines its own set of custom properties. All steps that use
the same step type have the same set of custom properties.

All built-in step types contain the following custom properties:

• Step.Result.Error.Code—Code that describes the error that
occurred.

• Step.Result.Error.Msg—Message string that describes the error that
occurred.

• Step.Result.Error.Occurred—Boolean flag that indicates if a
run-time error occurred in the step. TestStand documentation refers to
this property as the error occurred flag.

The error occurred flag can become True when a run-time error
condition occurs and the code module or module adapter sets the value
to True or when an unhandled exception occurs in the code module or
at any other time during step execution. When a step finishes execution
and the error occurred flag is True, the TestStand Engine responds in
the following ways:

– Makes no evaluation of status and post-expressions for a step and
sets the step status to Error.

– Evaluates the Ignore Run-Time Errors step property.

• If False, TestStand reports the run-time error to the
sequence.

• If True, TestStand continues execution normally after the
step.

• Step.Result.Status—Specifies the status of the last execution of the
step, such as Done, Passed, Failed, Skipped, or Error. TestStand
documentation refers to this property as the step status.

Before TestStand executes a step, it sets the step status to Running or
Looping. When a step finishes execution and the error occurred flag
is False, TestStand changes the step status to Done. The step status
becomes Passed or Failed only when a code module, module
adapter, or step type explicitly sets the step status to Passed or
Failed. Refer to Chapter 5, Module Adapters, for more information
about the assignments module adapters make to and from step
properties.

Chapter 4 Built-In Step Types

© National Instruments Corporation 4-7 NI TestStand Reference Manual

• Step.Result.ReportText—Contains a message string TestStand
includes in the report.

• Step.Result.Common—Placeholder container you can customize by
modifying the CommonResults standard data type. Refer to the Using
Data Types section of Chapter 12, Standard and Custom Data Types,
for more information about standard TestStand data types.

Step Types You Can Use with Any Module Adapter
TestStand includes five built-in step types you can use with any module
adapter—Pass/Fail Test, Numeric Limit Test, Multiple Numeric Limit
Test, String Value Test, and Action. When you insert a step in a sequence,
you must select a module adapter in the Step Types list of the Insertion
Palette or from the Adapter ring control located on the sequence editor
toolbar. TestStand assigns the adapter you selected when you insert the
step. Once you add a step, you can change the adapter associated with the
selected step on the General panel on the Step Settings pane.

TestStand uses the following adapter icons for each step:

LabVIEW Adapter

LabWindows/CVI Adapter

C/C++ DLL Adapter

.NET Adapter

ActiveX/COM Adapter

HTBasic Adapter

Sequence Adapter

<None>

If you choose the <None> adapter, the step does not call a code module.

To specify the code module the step calls, select Specify Module from the
step context menu or click the Module tab on the Step Settings pane. Refer
to the NI TestStand Help for more information about the Module tab for
each module adapter.

Chapter 4 Built-In Step Types

NI TestStand Reference Manual 4-8 ni.com

Pass/Fail Test
Use a Pass/Fail Test step to call a code module that makes its own pass/fail
determination. After the code module executes, the Pass/Fail Test step type
evaluates the Step.Result.PassFail property. If Step.Result.PassFail is
True, the step type sets the step status to Passed. If Step.Result.PassFail
is False, the step type sets the step status to Failed.

A code module can set the value of Step.Result.PassFail in the following
ways:

• LabVIEW Adapter—Specify Step.Result.PassFail as the
Value expression for a Boolean output of a VI on the LabVIEW
Module tab.

• LabWindows/CVI, C/C++ DLL, .NET, ActiveX/COM, or
Sequence Adapter—Pass Step.Result.PassFail as a reference
parameter to a subsequence or code module.

• LabVIEW or LabWindows/CVI Adapter—The LabVIEW and
LabWindows/CVI Adapters update the value of Step.Result.PassFail
automatically after calling legacy code modules. The LabVIEW
Adapter updates the value of Step.Result.PassFail based on the value
of the Pass/Fail Flag element of the Test Data cluster the VI returns.
The LabWindows/CVI Adapter updates the value of
Step.Result.PassFail based on the value of the result field of the
tTestData parameter it passes to the C function.

Refer to the Using LabVIEW with TestStand manual and the Using
LabWindows/CVI with TestStand manual for more information about
the assignments the module adapters automatically make to and
from step properties for legacy code modules in LabVIEW and
LabWindows/CVI.

• All Adapters—Use the TestStand API to set the value of
Step.Result.PassFail directly in a code module.

By default, the step type uses the value of the Step.Result.PassFail Boolean
property to determine if the step passes or fails. To customize the Boolean
expression that determines if the step passes, select Edit Data Source from
the context menu for the step or click the Data Source tab of the Step
Settings pane.

Refer to the NI TestStand Help for more information about the Pass/Fail
Test step edit tabs.

Chapter 4 Built-In Step Types

© National Instruments Corporation 4-9 NI TestStand Reference Manual

In addition to the common custom properties, the Pass/Fail Test step type
defines the following step properties:

• Step.Result.PassFail—Specifies the Boolean pass/fail flag. Pass is
True. Fail is False. Usually, you set this value in the code module or
with a custom pass/fail source expression.

• Step.InBuf—Specifies an arbitrary string the LabVIEW and
LabWindows/CVI Adapters pass to the test in the Input Buffer
control or tTestData structure of legacy code modules.

This property exists to maintain compatibility with previous test
executives. Usually, code modules you develop for TestStand receive
data as input parameters or access data as properties using the
TestStand API.

• Step.DataSource—Specifies the Boolean expression the step uses to
set the value of Step.Result.PassFail. The default value of the
expression is "Step.Result.PassFail", which has the effect of
using the value the code module sets. You can customize this
expression if you do not want to set the value of Step.Result.PassFail
in the code module. For example, you can set the data source
expression to refer to multiple variables and properties, such as
RunState.PreviousStep.Result.Numeric *

Locals.Attenuation > 12.

Numeric Limit Test
Use a Numeric Limit Test step to call a code module that returns a single
measurement value. After the code module executes, the Numeric Limit
Test step type compares the measurement value to predefined limits. If the
measurement value is within the bounds of the limits, the step type sets the
step status to Passed. Otherwise, the step type sets the step status to
Failed.

A Numeric Limit Test step uses the Step.Result.Numeric property to store
the measurement value. A code module can set the value of
Step.Result.Numeric in the following ways:

• LabVIEW Adapter—Specify Step.Result.Numeric as the Value
expression for a Numeric output of a VI on the LabVIEW Module tab.

• LabWindows/CVI, C/C++ DLL, .NET, ActiveX/COM, or
Sequence Adapter—Pass Step.Result.Numeric as a reference
parameter to a subsequence or code module.

• LabVIEW or LabWindows/CVI Adapter—The LabVIEW and
LabWindows/CVI Adapters update the value of Step.Result.Numeric
automatically after calling legacy code modules. The LabVIEW

Chapter 4 Built-In Step Types

NI TestStand Reference Manual 4-10 ni.com

Adapter updates the value of Step.Result.Numeric based on the value
of the Numeric Measurement element of the Test Data cluster the VI
returns. The LabWindows/CVI Adapter updates the value of
Step.Result.Numeric based on the value of the measurement field of
the tTestData parameter it passes to the C function.

Refer to the Using LabVIEW with TestStand manual and the Using
LabWindows/CVI with TestStand manual for more information about
the assignments the module adapters automatically make to and
from step properties for legacy code modules in LabVIEW and
LabWindows/CVI.

• All Adapters—Use the TestStand API to set the value of
Step.Result.Numeric directly in a code module.

Refer to the NI TestStand Help for more information about the Numeric
Limit Test step edit tab.

By default, the step type uses the value of the Step.Result.Numeric property
as the numeric measurement to compare the limits against.

In addition to the common custom properties, the Numeric Limit Test step
type defines the following step properties:

• Step.Result.Numeric—Specifies the numeric measurement value.
Usually, you set this value in the code module.

• Step.Result.Units—Specifies a label that indicates the unit of
measurement.

• Step.Limits.Low, High, LowExpr, HighExpr, UseLowExpr, and
UseHighExpr—Specify the limits for the comparison.

• Step.Comp—Specifies the type of comparison, such as EQ.

• Step.CompExpr—Specifies the comparison operation using an
expression.

• Step.UseCompExpr—Specifies to use the expression to compare the
measurement values.

• Step.InBuf—Specifies an arbitrary string the LabVIEW and
LabWindows/CVI Adapters pass to the test in the Input Buffer
control or tTestData structure of legacy code modules.

This property exists to maintain compatibility with previous test
executives. Usually, code modules you develop for TestStand receive
data as input parameters or access data as properties using the
TestStand API.

Chapter 4 Built-In Step Types

© National Instruments Corporation 4-11 NI TestStand Reference Manual

• Step.DataSource—Specifies a numeric expression the step type uses
to set the value of Step.Result.Numeric. The default value of the
expression is "Step.Result.Numeric", which has the effect of
using the value the code module sets. You can customize this
expression if you do not want to set the value of Step.Result.Numeric
in the code module.

You can use a Numeric Limit Test step without a code module, which is
useful when you want to limit-check a value you have already acquired. To
set up this limit check, select <None> as the module adapter before you
insert the step in the sequence and configure Step.DataSource to specify
the value you have already acquired.

Multiple Numeric Limit Test
Use a Multiple Numeric Limit Test step to limit-check a set of related
measurements. Although you can use several Numeric Limit Test steps to
limit test a set of related measurements, using the Multiple Numeric Limit
Test step type to check limits for multiple measurements in a single step
might be easier.

You can test limits for any number of measurements with the Multiple
Numeric Limit Test step. Each measurement can have independent limits,
units, display formats, data sources, and comparison types. A Multiple
Numeric Limit Test step passes if all its measurements pass. Configure
each measurement the same way you configure an individual Numeric
Limit Test step.

Refer to the NI TestStand Help for more information about the Multiple
Numeric Limit Test step edit tabs.

In addition to the common custom properties, the Multiple Numeric Limit
Test step type defines the following step properties:

• Step.Result.Measurement—An array that stores the measurements
you configure for the step. Each element of the measurement array
is an instance of the NI_LimitMeasurement data type. The
NI_LimitMeasurement type defines the following fields:

– Limits.Low, High, LowExpr, HighExpr, UseLowExpr, and
UseHighExpr—Specify the limits for the comparison.

– Units—Specifies a label that describes the measurement units for
the limits and the measurement value.

– Comp—Specifies the type of comparison, such as EQ.

Chapter 4 Built-In Step Types

NI TestStand Reference Manual 4-12 ni.com

– CompExpr—Specifies the comparison operation using an
expression.

– UseCompExpr—Specifies to use the expression to compare the
measurement values.

– Data—Stores the numeric measurement value. The step obtains
this value from the corresponding element in Step.NumericArray
or from the data source you specify.

– Status—Stores the result of the comparison of the measurement
value with the limits. The result is Passed or Failed.

• Step.DataSource—Specifies an expression that identifies the numeric
array that provides the data values for all measurements when you do
not use a separate data source for each measurement.

• Step.NumericArray—Provides a numeric array that is the default
data source Step.DataSource specifies.

• Step.UseIndividualDataSources—Specifies if the step stores
separate data source expressions for each measurement in the
Step.DataSourceArray. If this property is False, the step obtains
the data values for each measurement from the numeric array the
Step.DataSource property specifies.

• Step.DataSourceArray—Specifies a data source for each
measurement element in the measurement array.

• Step.ExpectedNumMeasure—Specifies the number of
measurements for the step.

• Step.ExtraDataAction—Specifies how the step processes data
if the numeric array contains more elements than the number of
measurements. The step can apply a specific measurement to extra
data, repeat the measurement set again, generate a run-time error, or
ignore the extra data.

• Step.MeasToRepeat—Specifies a measurement to repeat when the
Step.ExtraDataAction is set to RepeatOne.

• Step.ExtraMeasAction—Specifies if the step ignores, takes no
action, or generates a run-time error when the numeric array contains
fewer elements than the expected number of measurements.

Chapter 4 Built-In Step Types

© National Instruments Corporation 4-13 NI TestStand Reference Manual

String Value Test
Use a String Value Test step to call a code module that returns a string
value. After the code module executes, the String Value Test step type
compares the string the step obtains to the string the step expects to receive.
If the string the step obtains matches the string it expects, the step type sets
the step status to Passed. Otherwise, the step type sets the step status to
Failed.

A String Value Test step uses the Step.Result.String property to store the
string value. A code module can set the value of Step.Result.String in the
following ways:

• LabVIEW Adapter—Specify Step.Result.String as the Value
expression for a Numeric output of a VI on the LabVIEW Module tab.

• LabWindows/CVI, C/C++ DLL, .NET, ActiveX/COM, or
Sequence Adapter—Pass Step.Result.String as a reference
parameter to a subsequence or code module.

• LabVIEW or LabWindows/CVI Adapter—The LabVIEW and
LabWindows/CVI Adapters update the value of Step.Result.String
automatically after calling legacy code modules. The LabVIEW
Adapter updates the value of Step.Result.String based on the value of
the String Measurement element of the Test Data cluster the VI
returns. The LabWindows/CVI Adapter updates the value of
Step.Result.String based on the value of the stringMeasurement field
of the tTestData parameter it passes to the C function.

Refer to the Using LabVIEW with TestStand manual and the Using
LabWindows/CVI with TestStand manual for more information about
the assignments the module adapters automatically make to and
from step properties for legacy code modules in LabVIEW and
LabWindows/CVI.

• All Adapters—Use the TestStand API to set the value of
Step.Result.String directly in a code module.

By default, the step type uses the value of the Step.Result.String property
as the string value to compare the limits against.

Refer to the NI TestStand Help for more information about the String Value
Test step edit tabs.

Chapter 4 Built-In Step Types

NI TestStand Reference Manual 4-14 ni.com

In addition to the common custom properties, the String Value Test step
type defines the following step properties:

• Step.Result.String—Specifies the string value. Usually, you set this
value in the code module.

• Step.Limits.String, StringExpr, and UseStringExpr—Specifies the
expected string for the string comparison.

• Step.Comp—Specifies the type of comparison, such as Ignore Case.

• Step.CompExpr—Specifies the comparison operation using an
expression.

• Step.UseCompExpr—Specifies to use the expression to compare the
string values.

• Step.InBuf—Specifies an arbitrary string the LabVIEW and
LabWindows/CVI Adapters pass to the test in the Input Buffer
control or tTestData structure of legacy code modules.

This property exists to maintain compatibility with previous test
executives. Usually, code modules you develop for TestStand receive
data as input parameters or access data as properties using the
TestStand API.

• Step.DataSource—Specifies a string expression the step type uses to
set the value of Step.Result.String. The default value of the expression
is “Step.Result.String”, which has the effect of using the value
that the code module sets. You can customize this expression if you do
not want to set the value of Step.Result.String in the code module.

You can use a String Value Test step without a code module, which is useful
when you want to test a string you have already acquired. To set up this test,
select <None> as the module adapter before you insert the step in the
sequence and configure Step.DataSource to specify the string you have
already acquired.

Chapter 4 Built-In Step Types

© National Instruments Corporation 4-15 NI TestStand Reference Manual

Action
Use Action steps to call code modules that do not perform tests but perform
actions necessary for testing, such as initializing an instrument. By default,
Action steps do not pass or fail. The step type does not modify the step
status. Therefore, the status for an Action step is Done or Error unless the
code module specifically sets another status for the step or the step calls a
subsequence that fails. When an action uses the Sequence Adapter to call a
subsequence, and the subsequence fails, the Sequence Adapter sets the
status of the step to Failed.

The Action step type does not define any additional step properties other
than the custom properties all steps contain.

Step Types That Work with a Specific Module Adapter
Use a Sequence Call step, shown at left, to call another sequence in the
current sequence file or in another sequence file. A Sequence Call step
always uses the Sequence Adapter.

Note By default, the Sequence Adapter is hidden in the Adapter ring control. To enable it,
select Configure»Adapters from the TestStand menu bar and remove the checkmark from
the checkbox in the Hidden column.

You can use the Sequence Adapter with other step types, such as the
Pass/Fail Test or the Numeric Limit Test. Using a Sequence Call step is the
same as using an Action step with the Sequence Adapter except that
the Sequence Call step type sets the step status to Passed rather than Done
when the subsequence succeeds. If the sequence fails, the Sequence
Adapter sets the Sequence Call step status to Failed. A sequence fails if
the status for a step in the sequence is Failed and you enabled the Step
Failure Causes Sequence Failure option on the Run Options panel of the
Step Settings pane. If a run-time error occurs in the subsequence, the
Sequence Adapter sets the step status to Error.

Refer to the NI TestStand Help for more information about the Step
Settings pane and the Edit Sequence Call dialog box.

The Sequence Call step type does not define any additional step properties
other than the custom properties all steps contain.

TestStand adds the following properties to the results for Sequence Call
steps in sequences you configured to run in a new thread or execution.

Chapter 4 Built-In Step Types

NI TestStand Reference Manual 4-16 ni.com

These properties are not subproperties of the Result property for the
Sequence Call step type.

• AsyncMode—Set to True if the Sequence Call step ran the sequence
in a new thread. Set to False if the Sequence Call step ran the
sequence in a new execution.

• AsyncID—Contains the value of the ID property of the thread or
execution running the sequence.

Step Types That Do Not Use Module Adapters
Some step types do not use module adapters. When you create an instance
of one of these step types, you use the edit tabs or dialog boxes, which you
access through the context menu of the step or the Step Settings pane, to
configure the step. You do not specify a code module.

Flow Control
Use Flow Control steps to control execution flow within a sequence. The
Steps pane automatically inserts steps that complete the flow control block,
such as inserting a Case and End step when you insert a Select step. The
Steps pane also indents flow control blocks and highlights errors in flow
control. Refer to the NI TestStand Help for more information about the edit
tabs for the Flow Control step types.

If
Use If steps, shown at left, to define a block of steps that execute if a
condition is met.

In addition to the common custom properties, the If step type defines the
following step property:

• Step.ConditionExpr—Specifies the expression that must evaluate to
True for the steps within the If block to execute.

Else
Use Else steps, shown at left, to define a block of steps that execute if the
condition defined by the preceding If or Else If step is not met.

The Else step type does not define any additional step properties other than
the custom properties all steps contain.

Chapter 4 Built-In Step Types

© National Instruments Corporation 4-17 NI TestStand Reference Manual

Else If
Use Else If steps, shown at left, to define a block of steps that execute if a
condition is met and the conditions defined by the preceding If step and any
preceding Else If step are not met.

In addition to the common custom properties, the Else If step type defines
the following step property:

• Step.ConditionExpr—Specifies the expression that must evaluate to
True for the steps within the Else If block to execute.

For
Use For steps, shown at left, to define a block of steps that execute
repeatedly for a number of iterations.

In addition to the common custom properties, the For step type defines the
following step properties:

• Step.InitializationExpr—Specifies the expression the step evaluates
before executing the steps within the block the first time. The
expression typically initializes a count variable.

• Step.ConditionExpr—Specifies the expression that must evaluate to
True for the steps within the For block to execute.

• Step.IncrementExpr—Specifies the expression the step evaluates
after each execution of the steps within the block. The expression
typically increments a count variable.

• Step.CustomLoop—Specifies if the step uses custom expressions to
define the looping behavior for the steps within the For block.

Chapter 4 Built-In Step Types

NI TestStand Reference Manual 4-18 ni.com

For Each
Use For Each steps, shown at left, to define a block of steps that execute
once for each element in an array.

In addition to the common custom properties, the For Each step type
defines the following step properties:

• Step.ArrayExpr—Specifies the expression that determines the array
over which the loop iterates.

• Step.ArrayElementExpr—Specifies the expression that determines
the variable into which to store the current element of the array during
each iteration of the loop.

• Step.OffsetExpr—Specifies the expression that determines the
variable into which to store the current offset of the array during each
iteration of the loop.

• Step.SubscriptExpr—Specifies the expression that determines the
variable into which to store the subscript of the current element in the
array during each iteration of the loop.

While
Use While steps, shown at left, to define a block of steps that execute while
a condition is True.

In addition to the common custom properties, the While step type defines
the following step property:

• Step.CustomExpr—Specifies the expression the step evaluates
before executing the steps within the block.

Do While
Use Do While steps, shown at left, to define a block of steps that execute
once and then repeatedly while a condition is True.

In addition to the common custom properties, the Do While step type
defines the following step property:

• Step.CustomExpr—Specifies the expression the step evaluates
before executing the steps within the block.

Chapter 4 Built-In Step Types

© National Instruments Corporation 4-19 NI TestStand Reference Manual

Break
Use a Break step, shown at left, to cause a For, For Each, While, or
Do While loop block or a Case block to exit before completing.

The Break step type does not define any additional step properties other
than the custom properties all steps contain.

Continue
Use a Continue step, shown at left, to cause the next iteration of an
enclosing For, For Each, While, or Do While loop block to begin.

The Continue step type does not define any additional step properties other
than the custom properties all steps contain.

Select
Use a Select step, shown at left, to define a block of steps that encloses the
sub-blocks a Case step defines. The Select step specifies an expression that
determines which Case block executes.

In addition to the common custom properties, the Select step type defines
the following step property:

• Step.ItemExpr—Specifies the expression that determines which Case
block within the Select block executes.

Case
Use a Case step, shown at left, to define a block of steps within a Select
block that executes if the expression the Select step specifies evaluates to a
certain value.

In addition to the common custom properties, the Case step type defines the
following step properties:

• Step.ItemExpr—Specifies the expression that determines which Case
block within the Select block executes.

• Step.IsDefault—Specifies which step defines the default case for the
surrounding Select block.

Chapter 4 Built-In Step Types

NI TestStand Reference Manual 4-20 ni.com

Goto
Use Goto steps, shown at left, to set the next step the TestStand Engine
executes. You usually use a Label step as the target of a Goto step, which
you can use to rearrange or delete other steps in a sequence without having
to change the specification of targets in Goto steps.

Refer to the NI TestStand Help for more information about the Destination
edit tab.

The Goto step type does not define any additional step properties other than
the custom properties all steps contain.

End
Use an End step, shown at left, to define the end of any block of steps.

The End step type does not define any additional step properties other than
the custom properties all steps contain.

Statement
Use Statement steps, shown at left, to execute expressions. For example,
you can use a Statement step to increment the value of a local variable in a
sequence.

By default, Statement steps do not pass or fail. If the step cannot evaluate
the expression or if the expression sets Step.Result.Error.Occurred to True,
TestStand sets the step status to Error. Otherwise, TestStand sets the step
status to Done.

Refer to the NI TestStand Help for more information about the Expression
edit tab.

The Statement step type does not define any additional step properties other
than the custom properties all steps contain.

Label
Use a Label step, shown at left, as the target for a Goto step, which you can
use to rearrange or delete other steps in a sequence without having to
change the specification of targets in Goto steps.

Label steps do not pass or fail and by default do not record results. After a
Label step executes, the TestStand Engine sets the step status to Done or

Chapter 4 Built-In Step Types

© National Instruments Corporation 4-21 NI TestStand Reference Manual

Error. You can edit a Label step to specify a description that appears next
to the Label step name in the sequence editor.

Refer to the NI TestStand Help for more information about the Label step
edit tab.

In addition to the common custom properties, the Label step type defines
the following step property:

• Step.Description—Specifies a string that appears next to the step
name in the sequence editor.

Message Popup
Use Message Popup steps, shown at left, to display messages to the user
and to receive response strings from the user. For example, you can use a
Message Popup step to warn the user when a calibration routine fails.

By default, Message Popup steps do not pass or fail. After a step executes,
TestStand sets the step status to Done or Error.

Refer to the NI TestStand Help for more information about the Message
Popup step edit tab.

In addition to the common custom properties, the Message Popup step type
defines the following step properties:

• Step.Result.ButtonHit—Contains the one-based index of the button
you select.

• Step.Result.Response—Contains the response text the user entered.

• Step.TitleExpr—Contains the expression for the string that appears as
the title of the message popup dialog box.

• Step.MessageExpr—Contains the expression for the string that
appears as the text message in the message popup dialog box.

• Step.MessageFontData—Specifies the font for the text message in
the message popup dialog box.

• Step.Button1Label, Button2Label, Button3Label, Button4Label,
Button5Label, and Button6Label—Specify the expression for the
label text for each button.

• Step.ButtonFontData—Specifies the font for the label text for
buttons in the message popup dialog box.

• Step.ShowResponse—Enables the response text box control in the
message popup dialog box.

Chapter 4 Built-In Step Types

NI TestStand Reference Manual 4-22 ni.com

• Step.NumberLines—Specifies the number of visible text lines in the
response text box.

• Step.MaxResponseLength—Specifies the maximum number of
characters the user can enter in the response text box control.

• Step.RespFontData—Specifies the font for the response text box
control in the message popup dialog box.

• Step.DefaultResponseExpr—Contains the initial text string the step
displays in the response text box control.

• Step.FileData—Specifies to display a graphic or Web page in the
message popup dialog box.

• Step.ActiveCtrl—Identifies one of the six buttons or the input string
as the active control.

• Step.DefaultButton—Specifies which button, if any, uses <Enter> as
a shortcut key.

• Step.CancelButton—Specifies which button, if any, uses <Esc> as a
shortcut key.

• Step.TimerButton—Specifies the index of the button that activates
automatically after a timeout elapses. A value of zero indicates no
timeout occurs.

• Step.TimeToWait—Specifies the number of seconds before the
button Step.TimerButton specifies activates.

• Step.Position.Top and Step.Position.Left—Specify the location of
the message popup dialog box when CenterDialog is False.

• Step.CenterDialog—Specifies if the message popup dialog box
appears in the center of the screen.

• Step.Modal—Specifies if the message popup dialog box is modal to
the TestStand application.

• Step.Floating—Specifies if the message popup dialog box stays on
top of the TestStand application.

• Step.CtrlArrangement—Specifies the order for the controls in the
message popup dialog box.

• Step.ButtonLocation—Specifies to display the buttons on the bottom
or side of the message popup dialog box.

• Step.ButtonAlignment—Specifies to align the buttons in the center,
left, right, top, or bottom of the message popup dialog box.

• Step.ResizeDialog—Specifies if the message popup dialog box is
resizable.

Chapter 4 Built-In Step Types

© National Instruments Corporation 4-23 NI TestStand Reference Manual

Call Executable
Use Call Executable steps, shown at left, to launch an application or run a
system command. For example, you can use a Call Executable step to call
a system command to copy files to a network drive.

The final status of a Call Executable step depends on if the step waits for
the executable to exit. If the step does not wait for the executable to exit, the
step type always sets the step status to Done. If a timeout occurs while the
step is waiting for the executable to exit, the step type sets the status to
Error. If the step waits for the executable to exit and a timeout does not
occur, the step type sets the step status to Done, Passed, or Failed,
depending on the status action you specify in the Exit Code Status Action
ring control on the Call Executable edit tab for the step. If you set the Exit
Code Status Action ring control to No Action, the step type always sets the
step status to Done. Otherwise, you can choose to set the step status to
Failed based on if the exit code is less than zero, greater than zero, equal
to zero, or not equal to zero.

Refer to the NI TestStand Help for more information about the Call
Executable step edit tab.

In addition to the common custom properties, the Call Executable step type
defines the following step properties:

• Step.Result.ExitCode—Contains the exit code the executable returns.

• Step.Executable—Specifies the pathname of the executable to
launch.

• Step.Arguments—Specifies the expression for the argument string
the step passes to the executable.

• Step.WaitCondition—Specifies if the step waits for the executable to
exit before completing.

• Step.TimeToWait—Specifies the number of seconds to wait for the
executable to exit.

• Step.InitialWindowState—Specifies if the executable is initially
active, not active, hidden, normal, minimized, or maximized.

• Step.TerminateOnAbort—Specifies to terminate the executable
process when the execution terminates or aborts.

• Step.ProcessHandle—Contains the Windows process handle for the
executable.

• Step.ExitCodeStatusAction—Specifies to set the step status using
the exit code the executable returns.

Chapter 4 Built-In Step Types

NI TestStand Reference Manual 4-24 ni.com

• Step.RemoteSettings—Contains the following settings for calling the
executable on a remote computer:

– Enabled—Specifies to call the executable on a remote computer.

– Host—Specifies the computer name or IP address of the remote
computer.

– HostByExpr—Specifies if you can use an expression in the
Remote Host field.

– Port—Specifies the port number the remote host server
application uses.

– Password—Specifies the password configured on the remote host
server application.

– PasswordByExpr—Specifies if you can use an expression in the
Password field.

Property Loader
Use the Property Loader step type, shown at left, to dynamically load
property and variable values from a text file, a Microsoft Excel file, or a
database management system (DBMS) at run time. Refer to Appendix C,
Database Step Types, for more information about the Property Loader step.
Refer to the NI TestStand Help for more information about the Edit
Property Loader dialog box.

FTP Files
Use an FTP Files step, shown at left, to transfer files between the local
system and an FTP server.

Refer to the NI TestStand Help for more information about the FTP Files
step edit tab.

In addition to the common custom properties, the FTP Files step type
defines the following step properties:

• Step.RemoteHost—Specifies the computer name or IP address of the
remote computer.

• Step.RemoteHostByExpr—Specifies if you can use an expression in
the Hostname field.

• Step.FTPUsername—Specifies the login name to use when
connecting to the server.

Chapter 4 Built-In Step Types

© National Instruments Corporation 4-25 NI TestStand Reference Manual

• Step.FTPPassword—Specifies the password to use when connecting
to the server.

• Step.FilesToFTP—Specifies the local and remote file paths, the
direction to transfer the file, and to overwrite a file if it exists.

Additional Results
Use an Additional Results step, shown at left, to specify values to add to the
result list of a step. Optionally include the values in a report or log the
values to a database. An additional result is a value TestStand adds to the
result list of a step when the step executes. An additional result can be a
module parameter or a custom additional result in which you specify the
name and value of the result.

Refer to the NI TestStand Help for more information about the Additional
Results edit tab.

Synchronization Step Types
Refer to Appendix B, Synchronization Step Types, for more information
about the Synchronization steps. Refer to the NI TestStand Help for more
information about the Synchronization step edit tabs.

Database Step Types
Refer to Appendix C, Database Step Types, for more information about the
Database steps. Refer to the NI TestStand Help for more information about
the Database step edit dialog boxes.

IVI Step Types
Refer to Appendix D, IVI Step Types, for more information about the
IVI steps. Refer to the NI TestStand Help for more information about the
IVI step edit dialog boxes.

LabVIEW Utility Step Types
Refer to Appendix E, LabVIEW Utility Step Types, for more information
about the LabVIEW Utility steps. Refer to the NI TestStand Help for more
information about the LabVIEW Utility step edit tabs.

© National Instruments Corporation 5-1 NI TestStand Reference Manual

5
Module Adapters

The TestStand Engine uses module adapters to invoke code modules
TestStand sequences call. Module adapters load and call code modules,
pass parameters to code modules, and return values and status from code
modules. The module adapters support the following types of
code modules:

• LabVIEW VIs

• LabWindows/CVI functions in source files, object files, or library
modules you create in LabWindows/CVI or other compilers

• C/C++ functions in DLLs

• .NET assemblies

• ActiveX Automation servers

• HTBasic subroutines

When you edit a step that uses a module adapter, TestStand displays the
Module tab on the Step Settings pane, where you specify the code module
for the step and specify parameters to pass when you invoke the code
module. TestStand stores the name and location of the code module, the
parameter list, and any additional options as built-in properties of the step.

ADE-specific adapters can open the ADE, create source code for a new
code module in the ADE, and display the source for an existing code
module in the ADE. The adapters support stepping into the source code in
the ADE while you execute the step from the TestStand Sequence Editor or
user interfaces.

Configuring Adapters
Select Configure»Adapters from the sequence editor menu to configure
the module adapters. Refer to the NI TestStand Help for more information
about configuring adapters.

Chapter 5 Module Adapters

NI TestStand Reference Manual 5-2 ni.com

Source Code Templates
With the LabVIEW, LabWindows/CVI, C/C++ DLL, .NET, and HTBasic
Adapters, you can use a code template to generate a source code shell for a
code module. The code template files are different for each step type and
each module adapter. A step type can define multiple code templates for an
adapter/step combination.

TestStand includes default code templates for each built-in step type. You
can also create additional code templates for built-in step types when
you create a new step type. Refer to the Code Templates Tab section of
Chapter 13, Custom Step Types, for more information about creating code
templates for step types.

Search Paths
TestStand includes a list of search directories module adapters use to
resolve relative paths of code modules for steps and substeps in step
types and to locate code modules when executing steps. TestStand also
uses the search directories to resolve relative pathnames for files and
directories when calling the TestStand API Engine.FindFile and
Engine.FindPath methods. Refer to the NI TestStand Help for more
information about the TestStand API. Refer to the Substeps Tab section of
Chapter 13, Custom Step Types, for more information about substeps.

Select Configure»Search Directories in the TestStand Sequence Editor to
launch the Edit Search Directories dialog box, in which you can view and
edit the default list of search paths. The list of default directories includes
specific TestStand directories and Windows system directories, and you
can add custom directories to the list. Use relative paths if possible when
you add directories. The paths that appear first in the list take precedence
over the paths that appear later in the list. You can exclude directories,
reorder directories, specify to recursively search directories, and specify
file extension restrictions for directories. Refer to the NI TestStand Help for
more information about the Edit Search Directories dialog box.

TestStand includes the following directories by default, in order of
precedence:

• Current sequence file directory

• Current workspace directory

• Application directory (disabled by default)

• <TestStand> directory

Chapter 5 Module Adapters

© National Instruments Corporation 5-3 NI TestStand Reference Manual

• <TestStand>\bin directory

• Initial working directory (disabled by default)

• Windows system directory

• Windows directory

• PATH environment variable (disabled by default)

• <TestStand Public> directory

• <TestStand Public>\Components directory

• <TestStand>\Components directory

If you list a directory and a subdirectory within that directory, TestStand
performs a double search. You might want to use a double search only if
both directories contain a file with the same name but different content. In
most cases, include only the higher level directory.

Refer to the TestStand Directory Structure section of Chapter 8,
Customizing and Configuring TestStand, for more information about
TestStand directories.

Configuring Search Paths for Deployment
When you want to configure search directories for deploying a TestStand
system, you can manually add additional search paths to the list of default
search paths on the target computer. The TestStand Deployment Utility
does not copy additional search paths because the new directories might not
exist on the target computer.

National Instruments recommends installing the <TestStand
Application Data>\Cfg\TestExec.ini file with the deployment
for that system because TestStand stores the search directories in
TestExec.ini. However, a limitation in the TestStand installer prevents a
non-versioned file from replacing an existing file on a system if the date of
the file you replace is more recent than the one you install. Because the
TestStand Engine updates TestExec.ini when TestStand runs the file,
you might encounter this limitation when you try to install a deployment
over a previously installed deployment. You can work around this
limitation by manually removing the file before you install the deployed
TestStand system or by adding a command to a script you execute before
you invoke the installer. Refer to Chapter 14, Deploying TestStand Systems,
for more information about building a TestStand system for deployment.

Chapter 5 Module Adapters

NI TestStand Reference Manual 5-4 ni.com

LabVIEW Adapter
Use the LabVIEW Adapter to call LabVIEW VIs with a variety of
connector panes. Use the LabVIEW Module tab on the Step Settings pane
to configure calls to LabVIEW VIs. Refer to the NI TestStand Help for
more information about the LabVIEW Module tab and passing parameters
between TestStand and VIs. Refer to the Using LabVIEW with TestStand
manual for more information about using the LabVIEW Adapter,
supported data types, and tutorials that use the adapter.

LabWindows/CVI Adapter
Use the LabWindows/CVI Adapter to call C functions with a variety of
parameter types. The function can exist in an object file, library file, or
DLL. The function can also exist in a source file located in the project you
are currently using in the LabWindows/CVI development environment.
Use the LabWindows/CVI Module tab on the Step Settings pane to
configure calls to LabWindows/CVI code modules.

Refer to the Debugging DLLs section of this chapter for more information
about debugging DLLs built with LabWindows/CVI. Refer to the
NI TestStand Help for more information about the LabWindows/CVI
Module tab and passing parameters between TestStand and code modules.
Refer to the Using LabWindows/CVI with TestStand manual for more
information about using the LabWindows/CVI Adapter, supported data
types, and tutorials that use the adapter.

C/C++ DLL Adapter
Use the C/C++ DLL Adapter to call C functions and C++ methods in a DLL
with a variety of parameter types. You can call global static methods or
static class methods in C++ DLLs. You can create DLL code modules with
Microsoft Visual Studio, LabWindows/CVI, or any other ADE that creates
a C/C++ DLL you can call.

Use the C/C++ DLL Module tab on the Step Settings pane to specify a
C/C++ DLL Adapter module call, to specify the source code associated
with the module call, and to create and edit C/C++ code modules directly
from TestStand.

Chapter 5 Module Adapters

© National Instruments Corporation 5-5 NI TestStand Reference Manual

If you use Visual Studio, you must have National Instruments
Measurement Studio 8.0.1 (or later) Enterprise Edition and
Visual Studio 2005 or later installed.

For DLLs built with LabWindows/CVI, you must use the
LabWindows/CVI Adapter to create and edit code modules directly from
TestStand. The LabWindows/CVI Adapter provides full integration with
the LabWindows/CVI ADE for debugging.

You can also use a text editor to create and edit code directly from
TestStand.

Refer to the NI TestStand Help for more information about using the C/C++
DLL Adapter, the C/C++ DLL Module tab, and passing parameters
between TestStand and code modules.

Using DLLs
You can call LabVIEW, MFC, and subordinate DLLs from TestStand,
which can display parameter information on the Module Tab on the Step
Settings pane if the DLL contains export information.

Using ActiveX Controls in LabVIEW DLLs
LabVIEW shared libraries (DLLs) that use ActiveX controls must load in
a thread initialized as single-threaded apartment (STA) for the controls to
function correctly. If the TestStand step that calls the DLL preloads the
DLL, TestStand ensures that the DLL loads in an STA thread. However, if
you dynamically load a step that calls the DLL, you must ensure that the
loading sequence executes in an STA thread.

Use the Run Sequence in a New Thread option or the Run Sequence in a
New Execution option located in the Multithreading and Remote Execution
section in the Edit Sequence Call dialog box to select an STA thread. Click
the Settings button in the Edit Sequence Call dialog box to launch the
Thread Settings dialog box, which contains the STA thread options.

Using MFC in DLLs
The Microsoft Foundation Class (MFC) Library places several
requirements on DLLs that use the DLL version of the MFC run-time
library. If you call a DLL that includes MFC functions, verify that the DLL
meets these requirements. Also, if the DLL uses resources such as dialog
boxes, verify that the AFX_MANAGE_STATE macro appears at the beginning

Chapter 5 Module Adapters

NI TestStand Reference Manual 5-6 ni.com

of the function body of each function you call. Refer to the MFC
documentation for more information about calling DLLs.

Loading Subordinate DLLs
TestStand directly loads and runs the DLLs you specify on the C/C++ DLL
Module tab of the C/C++ DLL Adapter. Because code modules most likely
call subsidiary DLLs, such as instrument drivers, you must ensure that the
operating system can find and load any DLL you specify.

The C/C++ DLL Adapter attempts to load subordinate DLLs using the
following search directory precedence:

1. The directory that contains the DLL the adapter calls directly

2. (Windows 2000 and Windows XP SP1 and earlier) The current working
directory of the application

3. The Windows\System32 and Windows\System directories

4. The Windows directory

5. (Windows XP SP2 and later) The current working directory of the
application

6. The directories listed in the PATH environment variable

For backward compatibility, when the C/C++ DLL Adapter fails to load
a DLL, the adapter temporarily sets the current working directory to the
directory of the DLL and attempts to load subordinate DLLs using the
following deprecated search directory precedence:

1. The directory that contains the application that loaded the adapter

2. (Windows 2000 and Windows XP SP1 and earlier) The current working
directory of the application, which the adapter sets to the directory that
contains the DLL it calls directly

3. The Windows\System32 and Windows\System directories

4. The Windows directory

5. (Windows XP SP2 and later) The current working directory of the
application, which the adapter sets to the directory that contains the
DLL it calls directly

6. The directories listed in the PATH environment variable

Note National Instruments does not recommend placing subordinate DLLs in the
directory that contains the application that loads the adapter because TestStand might not
support loading DLLs from this location in future versions.

Chapter 5 Module Adapters

© National Instruments Corporation 5-7 NI TestStand Reference Manual

Reading Parameter Information
If a DLL contains export information or if a DLL file contains a type
library, the LabWindows/CVI and C/C++ DLL Adapters automatically
populate the Function control on the Module tab of the step with all the
function names exported from the DLL. In addition, when you select a
function in the DLL, the adapter queries the export information or the type
library for the parameter list information and displays it in the Parameter
Table control on the Module tab. If the adapter cannot determine parameter
information, you must enter the parameter information manually.

Refer to Appendix B, Adding Type Libraries to LabWindows/CVI DLLs, of
the Using LabWindows/CVI with TestStand manual for more information
about using a function panel file to generate a type library to include in a
DLL.

Debugging DLLs
To debug a DLL TestStand calls, first create the DLL with debugging
enabled in the ADE. Then, launch the sequence editor or user interface
executable from the ADE or attach to the sequence editor or user interface
process from the ADE, if supported.

Note Save sequence files and workspaces before you stop debugging and terminate the
TestStand process because most ADEs terminate the process without prompting you
to save modified files in TestStand.

For LabWindows/CVI, select Run»Select External Process in the Project
window to identify the executable for the sequence editor or user interface
and select Run»Debug <executable name> to start debugging the
executable. For Visual Studio, you must enable native code debugging.

If you suspend a sequence on a step that calls a debuggable DLL, click the
Step Into button in TestStand to suspend at the first statement in the DLL
function within LabWindows/CVI or Visual Studio 2005.

Note You cannot debug DLLs the C/C++ Adapter calls using Visual Studio .NET 2003 or
using Visual Studio 2005 when the process loads Microsoft .NET Framework 1.1.

To step into a code module with LabWindows/CVI, you must configure the
step to use the LabWindows/CVI Adapter. You can step into a code module
when you configure the LabWindows/CVI Adapter to execute steps
in-process or in an external instance of LabWindows/CVI.

Chapter 5 Module Adapters

NI TestStand Reference Manual 5-8 ni.com

To step into a DLL with Visual Studio 2005, you must configure
the step to use the C/C++ DLL Adapter and you must have
Measurement Studio 8.0.1 or later Enterprise Edition installed. If
you attempt to step into a DLL while Visual Studio is not attached to the
TestStand process, TestStand launches Visual Studio, which automatically
attaches to the TestStand process using native debugging.

Table 5-1 lists the options for stepping out of a LabWindows/CVI
or Visual Studio DLL function.

Note If the Step Over command executes on an END step in a Pre-Step callback,
TestStand attempts to step into the code module.

Refer to the LabWindows/CVI and Visual Studio documentation for more
information about debugging DLLs in an external process.

Debugging LabVIEW 8.0 and Later Shared Libraries (DLLs)
With LabVIEW 8.0 and later, you can enable debugging in shared libraries
you build with the Application Builder. Using the LabVIEW development
environment, you can configure the shared library to debug in and connect
to the TestStand application process. Refer to the LabVIEW Help for more
information about debugging applications and shared libraries.

Debugging LabVIEW 7.1.1 Shared Libraries (DLLs)
You must use a TestStand User Interface built with LabVIEW to debug any
VIs you include in a LabVIEW 7.1.1 shared library. Before you open and
run the user interface in the LabVIEW development environment, open the
VI that represents the DLL function in the shared library you want to debug

Table 5-1. Options for Stepping Out of DLL Functions

ADE Command for
Stepping Out Result in TestStand

Finish Function or Step Out Function executes. When you use this command on the last
function in the call stack, TestStand suspends execution on the
next step in the sequence.

Step Into or Step Over When you use this command on the last executable statement of
the function, TestStand suspends execution on the next step in
the sequence.

Continue TestStand does not suspend execution when the function call
returns.

Chapter 5 Module Adapters

© National Instruments Corporation 5-9 NI TestStand Reference Manual

and place a breakpoint on the block diagram. Use the TestStand User
Interface to load and execute the sequence file that calls the LabVIEW
shared library. When LabVIEW loads the shared library the step calls,
LabVIEW uses the VI in memory instead of the VI in the DLL. When the
step calls the DLL function, LabVIEW suspends at the breakpoint you set
in the VI.

.NET Adapter
Use the .NET Adapter to call .NET assemblies written in any
.NET-compliant language, such as C# or Visual Basic .NET. You must
have the .NET Framework 2.0 or later installed to use the .NET Adapter.

Use the .NET Module tab on the Step Settings pane to configure calls to
.NET assemblies.

With the .NET Adapter, you can create instances of classes and structs, call
methods, and access properties or fields on classes and structs. With an
instance of a class you previously created and stored in an object reference
variable or created in the calling step, you can call or access all non-static
public members. You do not need to use an instance to call or access static
public members. When you call a struct, you can store the definition in a
variable of a data type mapped to the struct members or initialized in the
calling step.

The .NET Adapter does not support creating or calling methods on generic
classes.

You can create and edit .NET code modules in Visual Studio directly from
TestStand if you install National Instruments Measurement Studio 8.0.1
(or later) Enterprise Edition.

Refer to the NI TestStand Help for more information about using the
.NET Adapter, the .NET Module tab, and passing parameters between
TestStand and code modules.

Debugging .NET Assemblies
To debug a .NET assembly, first create the assembly with debugging
enabled in the ADE. Then, launch the sequence editor or user interface
from Visual Studio or attach to the sequence editor or user interface process
from Visual Studio.

Chapter 5 Module Adapters

NI TestStand Reference Manual 5-10 ni.com

Note Save sequence files and workspaces before you stop debugging and terminate the
TestStand process because Visual Studio might terminate the process without prompting
you to save modified files in TestStand.

If you use Visual Studio 2005 or later, you have Measurement Studio 8.0.1
(or later) Enterprise Edition installed, and you suspend a sequence on a step
that calls a debuggable assembly, click the Step Into button in TestStand to
suspend Visual Studio at the first statement in the assembly method or
property.

If you attempt to step into an assembly while Visual Studio is not attached
to the TestStand process, TestStand launches Visual Studio, which
automatically attaches to the TestStand process using managed debugging.
When you debug managed code in a TestStand process with Visual Studio,
TestStand does not unload assemblies when you select File»Unload All
Modules.

Note You cannot debug managed code the .NET Adapter calls using
Visual Studio .NET 2003 or using Visual Studio 2005 when the process loads the
.NET Framework 1.1. You cannot attach to a TestStand process when the process loads
the .NET Framework 1.1 and you are debugging with Visual Studio 2005 or when the
process loads the .NET Framework 2.0 and you are debugging with
Visual Studio .NET 2003.

Table 5-2 lists the options for stepping out of a Visual Studio assembly.

Table 5-2. Options for Stepping Out of Assemblies in Visual Studio

Visual Studio Command
for Stepping Out Result in TestStand

Step Out Function executes. When you use this command on the last
function in the call stack, TestStand suspends execution on the
next step in the sequence.

Step Into or Step Over When you use this command on the last executable statement of
the function, TestStand suspends execution on the next step in
the sequence.

Continue TestStand does not suspend execution when the function call
returns.

Chapter 5 Module Adapters

© National Instruments Corporation 5-11 NI TestStand Reference Manual

Refer to the Visual Studio documentation for more information about
debugging managed code in an external process.

Note If you use LabWindows/CVI to debug a DLL in the TestStand process, you cannot
debug a .NET assembly at the same time. If you use Visual Studio to debug an assembly
in TestStand and you want to use LabWindows/CVI to debug code modules at the same
time, you must configure the LabWindows/CVI Adapter to execute the steps in an external
instance of LabWindows/CVI.

Using the .NET Framework
An application can load only one version of the .NET runtime into memory.
For unmanaged applications, such as the LabVIEW user interface, the
.NET Adapter uses the latest version of the .NET runtime. For managed
applications, such as the TestStand Sequence Editor and the C# and Visual
Basic .NET user interfaces, the .NET Adapter uses the runtime specified
when the application was created.

You can call .NET 1.1 assemblies in TestStand with the .NET 2.0 runtime
loaded in memory, but you cannot call .NET 2.0 assemblies in TestStand
with the .NET 1.1 runtime loaded in memory. Also, you cannot use
Visual Studio .NET 2003 to debug the Common Language Runtime with
the .NET 2.0 runtime loaded in memory.

You can force an application to use a specific version of the
.NET Framework by creating a configuration file in the same directory as
the executable. For example, to force an unmanaged user interface to use
the .NET Framework 1.1, create the following testexec.exe.config
file:

<?xml version="1.0"?>

<configuration>

<runtime>

<assemblyBinding

xmlns="urn:schemas-microsoft-com:asm.v1">

</assemblyBinding>

</runtime>

<startup>

<supportedRuntime version="v1.1.4322" />

</startup>

</configuration>

Chapter 5 Module Adapters

NI TestStand Reference Manual 5-12 ni.com

Accessing the TestStand API in Visual Studio .NET 2003 and
Visual Studio 2005

TestStand installs .NET interop assemblies for the TestStand API in the
<TestStand>\API\DotNet\Assemblies directory and adds references
to the assemblies to the Global Assembly Cache (GAC). The interop
assemblies support the current and earlier versions of the TestStand API.
The TestStand 4.0 and later assemblies require the .NET 2.0 runtime, and
the TestStand 3.5 and earlier assemblies require the .NET 1.1 or later
runtime.

To add a reference to the TestStand 4.0 and later API assembly in
Visual Studio 2005, select the project in the Solution Explorer. Select
Project»Add Reference to launch the Add Reference dialog box. Click the
.NET tab and select the TestStand <APIName> Interop Assembly
component from the list. Click OK to close the Add Reference dialog box.

To add a reference to the TestStand API assembly in
Visual Studio .NET 2003, you must use a .NET 1.1-compatible assembly,
such as TestStand 3.5 or earlier. Select the project in the Solution Explorer.
Select Project»Add Reference to launch the Add Reference dialog box.
Click the .NET tab and click the File Browse button to launch the Select
Components dialog box. Navigate to the <TestStand>\API\DotNet\
Assemblies\PreviousVersion\<VersionNumber> directory. Select
NationalInstruments.TestStand.Interop.<APIName>.dll and
click Open. Click OK to close the Add Reference dialog box.

ActiveX/COM Adapter
Use the ActiveX/COM Adapter to create objects, call methods, and access
properties of ActiveX/COM objects. When you create an object, you can
assign the object reference to a variable or property for later use in other
ActiveX/COM Adapter steps. When you call methods and access
properties, you can specify an expression for each input and output
parameter.

Use the ActiveX/COM Module tab on the Step Settings pane to configure
calls to ActiveX/COM servers.

Refer to the NI TestStand Help for more information about the
ActiveX/COM Module tab and configuring calls to ActiveX/COM servers.

Chapter 5 Module Adapters

© National Instruments Corporation 5-13 NI TestStand Reference Manual

Debugging ActiveX Automation Servers
TestStand does not step into ActiveX/COM servers. To debug an
out-of-process executable server, launch the server in the ADE in which
it was created and independently launch the sequence editor or user
interface. If you want to debug an in-process DLL server, launch the
sequence editor or user interface from the ADE, or attach to the sequence
editor or user interface process from the ADE, if supported.

When you work in Microsoft Visual Basic, place breakpoints in the
automation server source code and select Run»Start with Full Compile.
In TestStand, run the sequence that calls into the automation server to cause
the execution to automatically suspend at the breakpoint you set in
Visual Basic. Refer to the ADE documentation for more information about
debugging ActiveX automation servers.

Note When TestStand requests that the Windows operating system unload a DLL server,
the operating system ignores the request because TestStand is still using the DLL server.
The operating system keeps the DLL server in memory, which prevents the development
environment from rebuilding the DLL. You must exit the TestStand application to release
the DLL server.

Registering and Unregistering ActiveX/COM Servers
To register an ActiveX/COM server DLL, call the Windows executable
regsvr32.exe and use the DLL pathname as the command-line
argument. To unregister the DLL server, call regsvr32.exe and
use /u and the DLL pathname as the command-line argument.

To register an ActiveX/COM server executable, run the server executable
with the /RegServer command-line argument. To unregister an
executable server, run the executable with the /UnregServer
command-line argument.

Visual Basic does not automatically register a server when you build the
server DLL or executable. You must manually register the server.
Visual Basic temporarily registers a server when you run the server project
inside the Visual Basic ADE. When you complete the debugging session,
Visual Basic unregisters the server.

Server Compatibility Options for Visual Basic
If you develop an automation server in an ADE that does not give you
direct control over IDs, you must ensure that the ActiveX/COM Adapter
can find the server identifiers or the names you define in the TestStand step.

Chapter 5 Module Adapters

NI TestStand Reference Manual 5-14 ni.com

When you rebuild an ActiveX/COM server in Visual Basic, you can select
a compatibility option. Depending on the level of compatibility and the
changes you make to a project, Visual Basic compiles an appropriate new
server, which can contain new identifiers.

Select Project»Project Properties in Visual Basic to specify the level of
compatibility. On the Components tab of the Project Properties dialog box,
select one of the following options in the Version Compatibility section:

• No compatibility—Maintains no compatibility between the new
server and a previously compiled server. Visual Basic generates new
unique identifiers for the server, which prevents any previously
compiled client application that uses early binding from working
properly with the server.

Because Visual Basic changes the IDs it uses to uniquely identify the
type information of the server, TestStand cannot properly update an
ActiveX/COM Adapter step, regardless if you configure the
ActiveX/COM Adapter for early or late binding.

Note National Instruments does not recommend using the No compatibility setting with
TestStand projects.

• Project compatibility—Maintains the current ID assignments
Visual Basic uses to uniquely identify the type information for the
server. Use this option when you are developing multiple projects with
Visual Basic. Using this setting does not ensure compatibility with
client applications not compiled in Visual Basic or with compiled
client applications that use early binding.

When you use this option to rebuild a server, TestStand can use the
type information to determine the IDs associated with the names stored
in the step.

Use the Project compatibility option to rebuild the server in
Visual Basic while you develop and debug sequences. Configure the
ActiveX/COM Adapter to use late binding.

• Binary compatibility—Maintains the current ID assignments
Visual Basic uses to uniquely identify objects and methods.
Visual Basic attempts to maintain compatibility with compiled client
applications that use early binding. If you remove a member from the
server, Visual Basic can no longer maintain binary compatibility.

When you use this option to rebuild a server, TestStand can use the IDs
stored in the step without accessing the type information at run time.

Chapter 5 Module Adapters

© National Instruments Corporation 5-15 NI TestStand Reference Manual

Use the Binary compatibility option to rebuild the server in
Visual Basic when the interface for the server is completely developed
and debugged. Select Tools»Update Automation Identifiers in the
TestStand Sequence Editor to assign the new server identifiers to the
steps. Enable the ActiveX/COM Adapter to use early binding.

Refer to the Visual Basic documentation and to the following Internet
document for more information about creating and debugging Visual Basic
ActiveX/COM servers:

Ivo Salmre, “Building, Versioning, and Maintaining Visual Basic
Components,” Microsoft Developer Network, Microsoft Corporation,
February 1998.

HTBasic Adapter
Use the HTBasic Adapter to call HTBasic subroutines without passing
parameters directly to a subroutine. TestStand provides a library of CSUB
routines that use the TestStand API to access TestStand variables and
properties from an HTBasic subroutine. Refer to the NI TestStand Help for
more information about HTBasic subroutines.

Note HTBasic currently does not support Windows Vista. However, if you installed the
HTBasic 9.0 development environment under Windows Vista, you can still perform the
Edit Subroutine and Create Subroutine functions on the HTBasic Module tab in the
TestStand Sequence Editor when you use a step configured to use the HTBasic Adapter.
However, HTBasic code modules might not run correctly.

Use the HTBasic Module tab on the Step Settings pane to specify the
subroutine file path, subroutine name, and other options. Refer to the
NI TestStand Help for more information about the HTBasic Module tab.

Debugging HTBasic Subroutines
To debug an HTBasic subroutine while executing the subroutine from
TestStand, you must configure the adapter to use the HTBasic development
environment as the HTBasic server.

If you suspend a sequence on a step that calls an HTBasic subroutine, click
the Step Into button in TestStand to display the HTBasic server window
and pause at the call of the subroutine. Press <Alt-F1> to single-step
through the subroutine. When you finish debugging a particular subroutine,

Chapter 5 Module Adapters

NI TestStand Reference Manual 5-16 ni.com

click Continue to resume execution and return control to TestStand. After
you step out of the subroutine, TestStand suspends execution on the next
step in the sequence.

Refer to the HTBasic documentation for more information about
debugging HTBasic programs.

Sequence Adapter
Use the Sequence Adapter to pass parameters when you make a call to
a subsequence. You can call a subsequence in the current sequence file
or in another sequence file, and you can make recursive sequence calls.
For subsequence parameters, you can specify a literal value, pass a variable
or property by reference or by value, or use the default value the
subsequence defines for the parameter.

Use the Sequence Module tab on the Step Settings pane to specify a
Sequence Adapter module call.

You can use the Sequence Adapter from any step type that can use module
adapters, such as the Pass/Fail Test or the Numeric Limit Test. Using the
Sequence Adapter this way is similar to using the built-in Sequence Call
step type, except that the Sequence Call step sets the step status to Passed
instead of Done if no failure or error occurs.

After the Sequence Call step executes, the Sequence Adapter can set the
step status. If no run-time error occurs, the adapter does not set the step
status, which is Done or Passed, depending on the type of step. If the
sequence the step calls fails, the adapter sets the step status to Failed. If a
run-time error occurs in the sequence, the adapter sets the step status to
Error and sets the Result.Error.Occurred property to True. The adapter
also sets the Result.Error.Code and Result.Error.Msg properties to the
values of these same properties in the subsequence step that generated the
run-time error.

Use the Variables pane in the Sequence File window to define parameters
for a sequence, including the parameter name, its TestStand data type, its
default value, and whether to pass the argument by value or by reference.
Refer to the NI TestStand Help for more information about the Sequence
Module tab and sequence file parameters.

Chapter 5 Module Adapters

© National Instruments Corporation 5-17 NI TestStand Reference Manual

Remote Sequence Execution
When you specify a sequence file pathname on the Sequence Module tab
and specify Use Remote Computer in the Execution Options section,
TestStand locates the sequence file according to the type of path, as
described in Table 5-3.

When you edit a step in a sequence file on a client computer and you
specify an absolute or relative path for the sequence file the step calls,
TestStand resolves the path for the sequence file on the client computer.
When you execute the step on the client computer, TestStand resolves the
path for the sequence file on the server computer.

You can manage remote sequence files for remote execution in the
following ways:

• Add a common pathname to the search paths for the client and the
server computers so that each resolves to the same relative pathname.
Refer to the Search Paths section of this chapter for more information
about TestStand search directories.

• Duplicate the files on the client and the server computers so that the file
you edit on the client computer is identical to the file the server
computer executes.

• Use absolute paths that specify a mapped network drive or full network
path so that the file the client computer edits and the file the server
computer executes are the same sequence file.

Table 5-3. Path Resolution of Sequence Pathnames for Remotely Executed Steps

Type
of Path

Where Found
When You Edit

Where Found
When You Execute Example

Relative In the TestStand
search paths you
configure on the
client (local)
computer

In the TestStand
search paths you
configure on the server
(remote) computer

Transmit.seq

Absolute On the client
(local) computer

On the server (remote)
computer

C:\Projects\Transmit.seq

Network On the computer
the network path
specifies

On the computer the
network path specifies

\\Remote\Projects\
Transmit.seq

Chapter 5 Module Adapters

NI TestStand Reference Manual 5-18 ni.com

When you execute a remote sequence, you cannot single-step or set
breakpoints in the remote sequence. If you enable tracing, TestStand
updates the status bar with tracing information for the remote sequence.

When a remote sequence executes on a server, the sequence context and
call stack include only the sequences that run on the remote computer. If
you want to access properties from the client sequence context, you must
pass the PropertyObject objects or their values as parameters to the
remote sequence. You can use the TestStand API to access properties
within a property object.

If you want to use the TestStand API on the server computer to access
objects on a client computer that runs Windows XP Service Pack 2 (SP2)
or Windows Vista, you must configure the Distributed COM (DCOM)
access permissions on the client computer. Complete the following steps to
configure DCOM access permissions on the client computer. You must
restart TestStand for these changes to take effect.

1. Log in as a user with administrator privileges.

2. (Windows XP) Navigate to Administrative Tools on the Windows
Control Panel and select Component Services or run dcomcnfg from
the command line to launch the Component Services window.

(Windows Vista) Run dcomcnfg from the command line or open
<Windows>\system32\comexp.msc to launch the Component
Services window.

3. In the left pane of the Component Services window, select
Component Services»Computers»My Computer.

4. Right-click My Computer and select Properties to launch the
My Computer Properties dialog box.

5. Click the COM Security tab of the My Computer Properties
dialog box.

a. Click the Edit Limits button in the Access Permissions section to
launch the Access Permissions dialog box.

b. Select ANONYMOUS LOGON in the user name list and enable
Remote Access in the Permissions Section.

c. Click OK to close the Access Permissions dialog box.

You must properly configure a remote computer and the TestStand server
application on the remote computer if you want to invoke a sequence on the
remote computer from TestStand on a client computer. You must enable the
TestStand server on the remote computer to accept remote execution
requests. You must also configure Windows system security to allow users

Chapter 5 Module Adapters

© National Instruments Corporation 5-19 NI TestStand Reference Manual

to access and launch the TestStand server remotely. For Windows XP SP2,
you must also configure the Windows Firewall on the remote computer.

Setting up TestStand as a Server for Remote
Sequence Execution
Enable the Allow Sequence Calls from Remote Machines to Run on this
Machine option located on the Remote Execution tab of the Station
Options dialog box to allow the TestStand server to accept remote
execution requests from a client computer.

A TestStand server is active while the TestStand application
<TestStand>\bin\REngine.exe runs on a remote computer. Each
TestStand client communicates with a dedicated version of the TestStand
server, which launches automatically when a TestStand client uses the
server.

Enable the Show the System Tray Icon While the TestStand Remote
System is Active on this Machine option in the Station Options dialog box
on the remote computer to make the TestStand icon visible in the remote
computer system tray for each instance of the remote engine application.
The tooltip for the icon indicates which computer is connected to the
remote engine. Right-click the TestStand icon to display when the engine
was created or to force the remote engine application to close.

TestStand automatically registers the server during installation. To
manually register or unregister the server, invoke the executable with
the /RegServer or /UnregServer command-line arguments.

Setting Windows System Security
To minimize the configuration of security permissions, enable the Allow
All Users Access From Remote Machines option in the Station Options
dialog box.

(Windows Vista) Windows Vista launches a User Account Control elevation
prompt for you to manually resolve when you enable this option.

When you enable the Allow All Users Access From Remote Machines
option, TestStand configures the security permissions for you by adding the
name Everyone for Windows 2000 Service Pack 4 (SP4) and the name
ANONYMOUS LOGON for Windows XP SP2 and Windows Vista to the list of
users who have permission to access and launch the TestStand remote
server. When you disable this option, TestStand removes the names from
the list.

Chapter 5 Module Adapters

NI TestStand Reference Manual 5-20 ni.com

Windows XP Service Pack 2 and Windows Vista
Complete the following steps to configure the security permissions for the
server on a remote computer.

1. Log in as a user with administrator privileges.

2. (Windows XP) Navigate to Administrative Tools on the Windows
Control Panel and select Component Services or run dcomcnfg from
the command line to launch the Component Services window.

(Windows Vista) Run dcomcnfg from the command line or open
<Windows>\system32\comexp.msc to launch the Component
Services window.

3. In the left pane of the Component Services window, select
Component Services»Computers»My Computer.

4. Right-click My Computer and select Properties to launch the
My Computer Properties dialog box.

5. On the Default Properties tab of the My Computer Properties dialog
box, enable the Enable Distributed COM on this computer option.

Note You must restart the computer for changes to the value of the Enable Distributed
COM on this computer option to take effect.

6. Click the COM Security tab of the My Computer Properties
dialog box.

a. Click the Edit Limits button in the Access Permissions section to
launch the Access Permission dialog box. Click Add to add the
users you want to give remote access to. Click OK to close the
Select Users, Computer, Groups dialog box. Select the user you
added and enable Remote Access in the Permissions section.
Click OK to close the Access Permission dialog box.

b. Click the Edit Limits button in the Launch and Activation
Permissions section to launch the Launch Permission dialog box.
Click Add to add the users you want to give remote access to.
Click OK to close the Select Users, Computer, Groups dialog box.
Select the user you added and enable Remote Launch and
Remote Activation in the Permissions section. Click OK to
close the Launch Permission dialog box.

Note You can grant access permission to the remote computer to everyone but grant
launch permissions only to appropriate users because launch permissions allow access to
the TestStand server on the remote computer.

Chapter 5 Module Adapters

© National Instruments Corporation 5-21 NI TestStand Reference Manual

7. Click OK to close the My Computer Properties dialog box.

8. In the left pane of the Component Services window, select
My Computer»DCOM Config to display a list of applications on
the right pane.

9. Right-click NI TestStand Remote Engine and select Properties from
the context menu to launch the NI TestStand Remote Engine Properties
dialog box.

10. On the Identity tab of the NI TestStand Remote Engine Properties
dialog box, select the The interactive user option. Click OK to close
the dialog box.

Windows XP Service Pack 2 Firewall Settings
Complete the following steps to configure the Windows Firewall to allow
the REngine.exe application to communicate with the TestStand client.

1. Log in as a user with administrator privileges.

2. Navigate to Windows Firewall on the Windows Control to launch the
Windows Firewall dialog box.

3. Click Off on the General tab of the Windows Firewall dialog box to
disable the firewall, or complete the following steps to add exceptions
for the REngine.exe application with the firewall enabled.

a. Click the Exceptions tab.

b. Click the Add Program button to launch the Add a Program
dialog box. Click Browse and select <TestStand>\bin\
REngine.exe. Click OK to close the Add a Program dialog box.

c. Click the Add Port button to launch the Add a Port dialog box.
In the Name control, type DCOM. In the Port Number control,
type 135. Select the TCP radio button and click OK to close the
Add a Port dialog box

4. Click OK to close the Windows Firewall dialog box.

Windows Vista Firewall Settings
Complete the following steps to configure the Windows Firewall to allow
the REngine.exe application to communicate with the TestStand client.

1. Log in as a user with administrator privileges.

2. Navigate to Windows Firewall on the Windows Control Panel and
select the Change settings option in the Windows Firewall window to
launch the Windows Firewall Settings dialog box.

Chapter 5 Module Adapters

NI TestStand Reference Manual 5-22 ni.com

3. Complete the following steps to add exceptions for the REngine.exe
application with the firewall enabled.

a. Click the Exceptions tab.

b. Click the Add program button to launch the Add a Program
dialog box. Click Browse and select <TestStand>\bin\
REngine.exe. Click OK to close the Add a Program dialog box.

c. Click the Add port button to launch the Add a Port dialog box.
In the Name control, type DCOM. In the Port Number control,
type 135. Select the TCP radio button and click OK to close the
Add a Port dialog box.

4. Click OK to close the Windows Firewall Settings dialog box.

Windows 2000 Service Pack 4
Complete the following steps to configure the security permissions for the
server on a remote computer.

1. Log in as a user with administrator privileges.

2. Run dcomcnfg from the command line to launch the
Distributed COM Configuration Properties dialog box.

3. Click the Default Security tab and specify the default security.

4. On the Default Properties tab, enable the Enable Distributed COM
on this computer option.

Note You must restart the computer for changes to the value of the Enable Distributed
COM on this computer option to take effect.

5. On the Applications tab, select NI TestStand Remote Engine and
click the Properties button to launch the NI TestStand Remote Engine
Properties dialog box. Click the Security tab to configure the
permissions for a specific server and to give individual users access to
the server.

Note You can grant access permission to the remote computer to everyone but grant
launch permissions only to appropriate users because launch permissions allow access to
the TestStand server on the remote computer.

6. On the Identity tab of the NI TestStand Remote Engine Properties
dialog box, select the Interactive User option.

7. Click OK to close the dialog box.

© National Instruments Corporation 6-1 NI TestStand Reference Manual

6
Database Logging and Report
Generation

TestStand can log results of a sequence execution to a database and
generate reports in multiple formats. You must have a working knowledge
of database concepts, SQL, and database management system (DBMS)
client software to understand the TestStand database concepts in this
chapter.

Database Concepts
Review the following key concepts for using databases with TestStand and
the following key Windows features TestStand uses to communicate with
a DBMS.

Databases and Tables
A database is an organized collection of data, where you can store and
retrieve information. Most modern DBMSs, also known as database
servers, store data in tables.

Tables contain records, also known as rows. Each row contains fields, also
known as columns. Every table in a database must have a unique name, and
every column within a table must have a unique name. Each column in a
table has a data type, which varies depending on the DBMS. For example,
Table 6-1 contains columns for the UUT number, a step name, a step result,
and a measurement.

Table 6-1. Example Database Table

UUT_NUM STEP_NAME RESULT MEAS

20860B456 TEST1 PASS 0.5

20860B456 TEST2 PASS (NULL)

20860B123 TEST1 FAIL 0.1

Chapter 6 Database Logging and Report Generation

NI TestStand Reference Manual 6-2 ni.com

A row can contain an empty column value, which means the specific cell
contains a NULL value, also referred to as an SQL NULL value.

The order of the data in the table is not important. Ordering, grouping, and
other manipulations of the data occur when you retrieve the data from the
table. Use an SQL SELECT command, or query, to retrieve records from a
database. The query defines the content and order of the data you want to
retrieve. The result of a query is called a record set or SQL Statement data.
You can retrieve certain columns and rows from one table, or you can
retrieve data from multiple tables. You can refer to each column you
retrieve by the name of the column or by a one-based number that refers
to the order of the column in the query.

Database Sessions
Database operations occur within a database session. A simple session uses
the following order of operations:

1. Connect to the database.

2. Open database tables.

3. Retrieve data from and store data in the open database tables.

4. Close the database tables.

5. Disconnect from the database.

Microsoft ADO, OLE DB, and ODBC Database Technologies
TestStand uses Microsoft ActiveX Data Objects (ADO) as its database
client technology. ADO, which is built on top of the Object Linking and
Embedding Database (OLE DB), is one of several database interface
technologies integrated into Windows operating systems.

Applications that use ADO, such as TestStand, use the OLE DB interfaces
indirectly. The OLE DB layer interfaces to databases directly through
a specific OLE DB provider for the DBMS or through a generic Open
Database Connectivity (ODBC) provider, which interfaces to a specific
ODBC driver for the DBMS. Figure 6-1 shows the high-level relationships
between TestStand and components of Windows database technologies.

20860B789 TEST1 PASS 0.3

20860B789 TEST2 PASS (NULL)

Table 6-1. Example Database Table (Continued)

UUT_NUM STEP_NAME RESULT MEAS

Chapter 6 Database Logging and Report Generation

© National Instruments Corporation 6-3 NI TestStand Reference Manual

Figure 6-1. Microsoft Windows Database Technologies

Refer to www.microsoft.com for more information about database
technologies for Windows operating systems.

Process Model
Sequence

Database
Logger

ODBC
Drivers

Main
Sequences

Database
Steps

TestStand
Engine

ADO

OLE DB

Flat File
Database

???Access
MDB Files

OLE DB Providers

Access
Provider

SQL Server
Provider

Oracle Server
Provider

ODBC
Provider

Future
Providers

SQL
Server

Oracle
Server

Chapter 6 Database Logging and Report Generation

NI TestStand Reference Manual 6-4 ni.com

Data Links
Before you can access data from a database within TestStand, you must use
a data link to specify the server on which the data resides, the database or
file that contains the data, the user ID, and the permissions to request when
connecting to the data source.

For example, to connect to a Microsoft SQL Server database, specify the
OLE DB provider for an SQL Server, a server name, a database name,
a user ID, and a password. To connect to a Microsoft Access database,
specify Microsoft Jet or specify the OLE DB provider for ODBC and an
ODBC data source name. The ODBC data source name specifies which
ODBC driver to use, the database file (.mdb), and an optional user ID and
password. Use the ODBC Administrator on the Windows Control Panel to
define ODBC data source names. Refer to the Using the ODBC
Administrator section of this chapter for more information about the
ODBC Administrator.

A connection string is a string version of the connection information in the
data link required to open a session to a database. Use the Data Link
Properties dialog box to build a connection string. The Data Link
Properties dialog box and the information contained in the connection
string vary according to the OLE DB provider. For example, a connection
string for an SQL Server database might contain the following information:

Provider=SQLOLEDB.1;Integrated Security=SSPI;Persist

Security Info=True;User ID=guest;Initial

Catalog=pubs;Data Source=SERVERCOMPUTER

Complete the following steps to store the contents of a connection string in
a Microsoft Data Link file (.udl).

1. Create a Data Link file by right-clicking in Windows Explorer and
selecting New»Text Document.

2. Change the file extension to .udl.

3. Right-click the new file and select Open to launch the Data Link
Properties dialog box.

4. Click the Connection tab and enable the Use connection string
option.

5. Click the Build button to launch the Select Data Source dialog box, in
which you can build a connection string. When you finish, click OK to
close the Select Data Source dialog box.

Chapter 6 Database Logging and Report Generation

© National Instruments Corporation 6-5 NI TestStand Reference Manual

6. Use the other options on the Provider, Connection, Advanced, and All
tabs to provide additional configuration information for the .udl file.

7. Click OK to close the Data Link Properties dialog box. The .udl file
automatically saves when you exit the dialog box.

Refer to the Using Data Links section of this chapter for more information
about specifying data links. Refer to the NI TestStand Help for more
information about the Data Link Properties dialog box.

Database Logging Implementation
The database logging capability is not native to the TestStand Engine
or the TestStand Sequence Editor. The default process model contains
customizable sequences that implement the database logging features.
You can also customize or replace any portion of the database logging
sequences. Refer to Appendix A, Process Model Architecture, for more
information about customizing the default process model.

The default process model, which calls the Main sequence in the client
sequence file to test a UUT, relies on the automatic result collection
capabilities of the TestStand Engine to accumulate the raw data to log to
a database for each UUT. The engine automatically compiles the result of
each step into a result list for an entire sequence, which contains the result
of each step and the result list of each subsequence call it makes. Refer to
the Result Collection section of Chapter 3, Executions, for more
information about automatic result collection.

The Test UUTs and Single Pass Execution entry points in the TestStand
process models log the raw results to a database. By default, the Test UUTs
entry point logs results after each pass through the UUT loop.

Select Configure»Database Options to launch the Database Options
dialog box, in which you can specify the following options:

• The data link connection string TestStand uses to log results.

• The database schema TestStand uses. A schema contains the
SQL statements, table definitions, and TestStand expressions that
instruct TestStand how to log results to a database. TestStand includes
a set of predefined schemas, which contains at least one schema for
each supported DBMS. You can also create new schemas that log
results to tables you define.

Chapter 6 Database Logging and Report Generation

NI TestStand Reference Manual 6-6 ni.com

• Filtering options to limit the amount of data TestStand logs.

• If the process models log data after executing each step or after passing
through each UUT loop.

Refer to the NI TestStand Help for more information about the Database
Options dialog box.

Using Database Logging
Complete the following steps before you use the default process model to
log results to a database.

1. Decide which DBMS you want to use. By default, TestStand supports
SQL Server, Oracle, Access, Sybase, and MySQL. Refer to the Adding
Support for Other Database Management Systems section of this
chapter if you want to use another DBMS.

2. Make sure you installed the appropriate client DBMS software
required to communicate with the DBMS.

You must decide to use an ODBC driver or a specific OLE DB provider
for the DBMS. Use the OLE DB providers for SQL Server and Access.
Most Oracle ODBC drivers and OLE DB providers require that you
install Oracle Client.

Refer to the Recommended Database Client Software section of the
NI TestStand Release Notes for more information about suggested
providers, versions of ODBC drivers, client DBMS software, and any
known issues.

3. Create the default database tables in the DBMS.

The <TestStand>\Components\Models\TestStandModels\
Database directory contains SQL script files to create and delete the
default database tables the default TestStand schemas require. For
example, the Access Create Generic Recordset Result
Tables.sql file contains SQL commands to create the default tables
for Access. The Access Drop Result Tables.sql file contains
SQL commands to delete the default tables.

TestStand includes an example Access database, TestStand
Results.mdb, in the <TestStand>\Components\Models\
TestStandModels\Database directory.

Refer to the Database Viewer—Creating Result Tables section of this
chapter for more information about creating the default database tables
using an SQL script file. Refer to the Default TestStand Table Schema

Chapter 6 Database Logging and Report Generation

© National Instruments Corporation 6-7 NI TestStand Reference Manual

section of this chapter for more information about the default table
schema the process model uses.

4. Use the Database Options dialog box to enable database logging and
to define a data link and schema for the default process model to use.

Refer to the NI TestStand Help for more information about the Database
Options dialog box. Refer to the Using Data Links section of this chapter
for more information about defining data links.

Logging Property in the Sequence Context
When TestStand starts logging data to a database, it creates a temporary
Logging property in the sequence context to evaluate expressions. The
Logging property contains subproperties that provide information about
database settings, process model data structures, and the results TestStand
processes. As the Logging property processes the result list, TestStand
updates the subproperties of the Logging property to refer to the
UUT result, step result, and the step result subproperty TestStand
is processing. You can reference the Logging subproperties in the
precondition and value expressions you specify for schema statements
and columns.

The Logging property contains the following subproperties:

• UUTResult—Contains the UUT result TestStand is processing.
If TestStand is processing a step or a subproperty, this property holds
the UUT result that contains the step result or subproperty.

• StepResult—Contains the step result TestStand is processing.
If TestStand is processing a subproperty, this property holds the step
result that contains the subproperty. If TestStand is processing a
UUT result, this property contains the result of the sequence call in
the process model that calls the Main sequence in the client file.

• PropertyResult—Contains the subproperty of the step result
TestStand is processing. If TestStand is not processing a subproperty,
this property does not exist.

• PropertyResultDetails—Contains information about the subproperty
of the step result TestStand is processing. If TestStand is not processing
a subproperty, this container does not exist.

• ExecutionOrder—Contains a numeric value TestStand increments
after it processes each step result.

• StartDate—Specifies the date on which the UUT test began. This
property is an instance of the DateDetails custom data type.

Chapter 6 Database Logging and Report Generation

NI TestStand Reference Manual 6-8 ni.com

• StartTime—Specifies the time at which the UUT test began. This
property is an instance of the TimeDetails custom data type.

• UUT—Specifies the serial number, test socket index, and other
information about the UUT. This property is an instance of the
UUT custom data type.

• DatabaseOptions—Contains the process model database settings
you configure in the Database Options dialog box. This property is
an instance of the DatabaseOptions custom data type.

• StationInfo—Specifies the station ID and the user name. This
property is an instance of the StationInfo custom data type.

The TestStand process model files define the structure of the DateDetails,
TimeDetails, UUT, DatabaseOptions, and StationInfo custom data types.

TestStand Database Result Tables
You can use the default table schemas, modify the existing schemas, or
create new schemas.

Default TestStand Table Schema
The default TestStand database schema requires the following database
tables:

• UUT_RESULT

• STEP_RESULT

• STEP_SEQCALL

• PROP_RESULT

• PROP_BINARY

• PROP_ANALOGWAVEFORM

• PROP_DIGITALWAVEFORM

• PROP_NUMERICLIMIT

The UUT_RESULT table contains information about each UUT TestStand
tests. The STEP_RESULT table contains information about each step
TestStand executes while testing each UUT. The STEP_SEQCALL table
contains the sequence a Sequence Call step calls. The PROP_RESULT
table contains information about the properties in a step result. The other
table names with the PROP prefix contain information about specific
property data types.

Chapter 6 Database Logging and Report Generation

© National Instruments Corporation 6-9 NI TestStand Reference Manual

Each table contains a primary key column ID and might contain foreign
key column IDs. The column data types are Number, String, or GUID
depending on the schema. The column data types must match the primary
key the data types reference.

Refer to the NI TestStand Help for more information about each TestStand
database table.

Creating Default Result Tables with the Database Viewer
Use the TestStand Database Viewer application, which is located at
<TestStand>\Components\Tools\DatabaseView\

DatabaseView.exe, to create the default result tables the schema
requires. You can also use the Database Viewer application to view data in
a database, edit table information, and execute SQL commands.

Note To use the Database Viewer application, you must have previously set up the DBMS
server and any required DBMS client software.

Refer to the NI TestStand Help for more information about the Database
Viewer application. Refer to the Database Viewer—Creating Result Tables
section of this chapter for more information about creating the default
database tables using an SQL script file. Refer to the NI TestStand Help and
to the Using Data Links section of this chapter for more information about
configuring a computer to access the DBMS.

Adding Support for Other Database Management Systems
You can add support for DBMSs other than SQL Server, Oracle, Access,
Sybase, and MySQL by adding a new schema in the Database Options
dialog box or by using SQL scripts.

Use the Duplicate button on the Schemas tab of the Database Options
dialog box to copy an existing schema and then customize its statement,
column, and parameter settings to work with the new DBMS. The
TestStand schemas for each DBMS conform to the default database tables.

Alternatively, you can create result tables for the default table schema for a
similar DBMS by using the SQL script files located in the <TestStand>\
Components\Models\TestStandModels\Database directory and
modifying the schema for the new DBMS.

Chapter 6 Database Logging and Report Generation

NI TestStand Reference Manual 6-10 ni.com

You can also complete the following steps to create new script files for a
DBMS.

1. Create new script files in the <TestStand Public>\Components\
Models\TestStandModels\Database directory. National
Instruments recommends including the name of the DBMS in the
filename.

2. In the new script files, enter the SQL commands for creating and
deleting DBMS tables. Refer to the SQL database script files
TestStand provides for guidelines. For example, the SQL database
syntax file for Oracle result tables might contain the following
commands for creating a UUT_Result table:

CREATE TABLE UUT_RESULT

(

ID NUMBER PRIMARY KEY,

UUT_SERIAL_NUMBER CHAR (255),

USER_LOGIN_NAME CHAR (255),

START_DATE_TIME DATE,

EXECUTION_TIME NUMBER,

UUT_STATUS CHAR (255),

UUT_ERROR_CODE NUMBER,

UUT_ERROR_MESSAGE CHAR (255)

)

/

CREATE SEQUENCE SEQ_UUT_RESULT START WITH 1

/

CREATE FUNCTION UUT_RESULT_NEXT_ID RETURN NUMBER IS

X NUMBER;

BEGIN

SELECT SEQ_UUT_RESULT.NextVal INTO X FROM DUAL;

RETURN X;

END;

/

Note Notice that the script uses three separate commands, each separated by the " / "
character, to create the UUT_RESULT table in Oracle.

Chapter 6 Database Logging and Report Generation

© National Instruments Corporation 6-11 NI TestStand Reference Manual

Use a similar syntax for deleting tables. For example, the SQL script
file for Oracle might contain the following commands for deleting a
UUT_RESULT table:

DROP TABLE UUT_RESULT

/

DROP SEQUENCE SEQ_UUT_RESULT

/

DROP FUNCTION UUT_RESULT_NEXT_ID

/

On-the-Fly Database Logging
When you enable the Use On-The-Fly Logging option in the Database
Options dialog box, the process models progressively log result
data concurrently with the execution instead of waiting until the
execution or UUT test completes. Database logging uses the
ProcessModelPostResultListEntry and SequenceFilePostResultListEntry
callbacks to process the step results. The final data TestStand logs is almost
identical to the data the process model generates at the end of execution.

When you use this option, you can use the Database Viewer application to
view the data in the database tables while the sequence executes.Use the
Discard Results or Disable Results When Not Required by Model
option in the Model Options dialog box to conserve memory by discarding
step results after TestStand logs each result.

If you use on-the-fly database logging with a schema that uses a stored
procedure or command statements that do not use the INSERT command,
you cannot define constraints for foreign keys in step result statements that
reference primary keys in UUT results. Defining constraints for these types
of foreign keys generates an error because the on-the-fly database logger
cannot execute the statement to create the record that contains the primary
key before executing the statement to create the record that contains the
foreign key.

Using Data Links
You must define a data link when you specify the database where
TestStand logs results or when you use the Database step types. Use the
Data Link Properties dialog box to create or edit a data link connection
string and to specify initialization properties for an OLE DB provider.

Refer to the NI TestStand Help for more information about the Data Link
Properties dialog box.

Chapter 6 Database Logging and Report Generation

NI TestStand Reference Manual 6-12 ni.com

Using the ODBC Administrator
To access databases through the ODBC standard, you must have an ODBC
driver for each database system you use. Each ODBC driver must register
itself with the operating system when you install it. You must also define
and name data sources in the ODBC Administrator on the Windows
Control Panel, which typically requires information such as a server,
database, and additional database-specific options. You can define one or
more data sources for each ODBC driver. Navigate to Administrative
Tools on the Windows Control Panel and select Data Sources (ODBC) to
launch the ODBC Administrator.

(Windows Vista) If you use the ODBC Administrator on Windows Vista and
you receive any warnings, follow the prompts. You might need
administrator access to create a new Database Source Name (DSN).

Note Because the database features of TestStand comply with the ODBC standard, you
can use any ODBC-compliant database drivers. TestStand does not install any ODBC
database drivers. DBMS vendors and third-party developers offer their own drivers. Refer
to the vendor documentation for information about registering the specific database drivers
with the ODBC Administrator.

Refer to the NI TestStand Help for more information about the ODBC Data
Source Administrator dialog box.

Example Data Link and Result Table Setup for Microsoft Access
Use the following sections as an example of how to link a TestStand data
link to an Access database file (.mdb) using the Jet OLE DB provider to log
results using the default process model.

Database Options—Specifying a Data Link and
Schema
Complete the following steps to configure the database logging options.

1. Launch the sequence editor and log in as Administrator.

2. Select Configure»Database Options to launch the Database Options
dialog box. The Logging Options tab is active.

3. Enable database logging by removing the checkmark in the Disable
Database Logging option.

4. Click the Data Link tab of the Database Options dialog box and select
Access from the Database Management System ring control.

5. Click the Build button to launch the Data Link Properties dialog box.

Chapter 6 Database Logging and Report Generation

© National Instruments Corporation 6-13 NI TestStand Reference Manual

6. Select Microsoft Jet 4.0 OLE DB Provider on the Provider tab of
the Data Link Properties dialog box and click Next.

7. On the Connection tab, click Browse to launch the Select Access
Database dialog box.

8. Using the Select Access Database dialog box, locate an Access
database file (.mdb) and click Open to select the file.

9. In the Data Link Properties dialog box, click the Test Connection
button to verify that you properly entered the required information.

10. Click OK to close the Data Link Properties dialog box.

Notice that the Connection String Expression in the Database Options
dialog box now contains a literal string expression version of the data link
connection string.

Database Viewer—Creating Result Tables
Complete the following steps to create the default result tables in a
database.

1. If you are continuing from the steps in the previous section, skip to
step 2. Otherwise, complete the following steps.

a. Launch the sequence editor and log in as Administrator.

b. Select Configure»Database Options to launch the Database
Options dialog box. The Logging Options tab is active.

c. Enable database logging by removing the checkmark in the
Disable Database Logging option.

d. Click the Data Link tab of the Database Options dialog box.

2. Click the View Data button to launch the Database Viewer application
and open the data link.

Note The Connection String Expression must contain a valid expression to launch the
Database Viewer application.

3. In the Database Viewer application, select File»New Execute SQL
Window to open an Execute SQL window.

4. Click the Load SQL Commands From File button, select
<TestStand>\Components\Models\TestStandModels\

Database\Access Create Generic Recordset Result

Tables.sql, and click Open.

Notice that the SQL Commands control now contains a set of SQL
commands for creating the default result tables.

Chapter 6 Database Logging and Report Generation

NI TestStand Reference Manual 6-14 ni.com

5. Click the Execute SQL Commands button to create the default result
tables. Review the results of the SQL commands in the SQL History
control to ensure that you created the tables successfully.

6. Click the Data Link window and select Window»Refresh to view the
tables.

After you have completed these steps, any execution you launch with
the Test UUTs or Single Pass entry point automatically logs its results
to the database.

Test Report Implementation
Most of the test report capabilities are not native to the TestStand Engine
or the TestStand Sequence Editor. The default process model contains
customizable sequences that implement the test report features. You can
also customize or replace any portion of the test reporting sequences. Refer
to Appendix A, Process Model Architecture, for more information about
customizing the default process model.

The default process model, which calls the Main sequence in the client
sequence file to test a UUT, relies on the automatic result collection
capabilities of the TestStand Engine to accumulate the raw data for each
UUT test report. The engine automatically compiles the result of each step
into a result list for an entire sequence, which contains the result of each
step and the result list of each subsequence call it makes. Refer to the Result
Collection section of Chapter 3, Executions, for information about
automatic result collection.

You can also use the Report Options dialog box to customize the content of
test reports. Refer to the NI TestStand Help for more information about the
Report Options dialog box.

Using Test Reports
The Test UUTs and Single Pass entry points in the TestStand process
models generate UUT test reports. The Test UUTs entry point generates a
test report and writes it to disk after each pass through the UUT loop. Select
Configure»Report Options to launch the Report Options dialog box, in
which you can set options that determine the contents and format of the test
report and the names and locations of test report files.

Chapter 6 Database Logging and Report Generation

© National Instruments Corporation 6-15 NI TestStand Reference Manual

In the TestStand Sequence Editor, the Report tab on the Execution window
displays the report for the current execution. Usually, the Report pane is
empty until execution completes. The default process model generates
reports in XML, HTML, or ASCII-text formats. You can also use an
external application to view reports in these or other formats. Select
Configure»External Viewers to specify the external application
TestStand launches to display a particular report format. In the Execution
window, click the Viewer button on the Report pane to view the report in
the external viewer you specified.

Refer to the NI TestStand Help for more information about the Report
pane, the Report Options dialog box, and the Configure External Viewers
dialog box.

Failure Chain in Reports
For UUTs that fail, XML, HTML, and ASCII-text reports include a failure
chain section in the report header. The first item in the failure chain table
shows the step failure that caused the UUT to fail. The remaining items
show the Sequence Call steps through which the execution reached the
failing step. In XML and HTML reports, each step name in the failure chain
links to the section of the report that displays the result for the step.

Batch Reports
When you use the Batch process model, the model generates a Batch report
in addition to a report for each UUT. The batch report summarizes the
results for all the UUTs in the batch. XML and HTML reports link to each
UUT report.

Property Flags that Affect Reports
Set the PropFlags_IncludeInReport, PropFlags_IsLimit, and
PropFlags_IsMeasurementValue flags to identify the result properties to
automatically display in the report.

The IncludeInReport flag specifies to include a property in the report.
For properties that hold limit values or output values, use the IsLimit and
IsMeasurementValue flags to selectively exclude limits or output values
according to the options you select in the Report Options dialog box. If you
set a reporting flag for an array or container property, TestStand sets the flag
for all array elements or subproperties within the container property.

Chapter 6 Database Logging and Report Generation

NI TestStand Reference Manual 6-16 ni.com

On-the-Fly Report Generation
When you enable the On-The-Fly Reporting option on the Contents tab of
the Report Options dialog box, the process models progressively generate
the test report concurrently with the execution instead of waiting until the
execution or UUT test completes. The final test report TestStand generates
is identical to the test report the process model generates at the end of
execution. You can use on-the-fly reporting only for HTML and ASCII
reports.

When you use on-the-fly reporting, you can select the Report tab in the
Execution window to view the test report during the execution. If the
Report tab is the active view of the Execution window while a sequence
executes, the test report periodically updates as TestStand processes step
results.

In addition to generating the test report concurrently with execution,
on-the-fly reporting periodically persists the current test report to a
temporary file based on the persistence interval the process model
sequences specify. TestStand deletes the temporary file and saves the
final test report to a file at the end of a UUT loop execution. Refer to
Appendix A, Process Model Architecture, for more information about
process model sequences.

If you enable the Conserve Memory and Only Display Latest Results report
option, on-the-fly reporting periodically purges internal data structures.
As a result, the test report TestStand displays in the Report pane of the
Execution window shows only the results for the steps on-the-fly reporting
has not yet purged. The persisted temporary and final test report files
contain all the step results. For these files, the step results for Sequence Call
and Loop Result steps appear after the corresponding Sequence Call and
Loop Index step results, respectively.

Use the Discard Results or Disable Results When Not Required By
Model option in the Model Options dialog box to conserve memory by
discarding step results after TestStand reports each result.

XML Report Schema
XML Test Reports conform to the XML W3C Schema. The XML Schema
Definition (XSD) file is located at <TestStand>\Components\Models\
TestStandModels\Report.xsd.

© National Instruments Corporation 7-1 NI TestStand Reference Manual

7
User Management

Use the TestStand User Manager to maintain the list of users, user names,
user passwords, user privileges, groups, group privileges, and members of
groups. TestStand can limit the functionality of the TestStand Sequence
Editor and User Interfaces depending on the privilege settings you define
in the user manager for the current user and the groups to which the user
belongs.

By default, the sequence editor and the user interfaces launch the Login
dialog box when you run TestStand.

Use the User Manager tab of the Station Options dialog box to specify if
TestStand enforces user privileges and to specify the location of the user
manager configuration file.

Note The TestStand User Manager helps you implement policies and procedures that
concern the use of test stations. The user manager is not a security system, and it does not
inhibit or control the operating system or third-party applications. Use the system-level
security features your operating system provides to secure test station computers against
unauthorized use.

Refer to the NI TestStand Help for more information about the User
Manager tab of the Station Options dialog box, the User Manager window,
adding groups and users, and setting privileges.

Privileges
The TestStand User Manager stores user and group privileges as Boolean
properties and organizes the privileges in the following categories:

• Operate—Contains privileges for executing sequences and for
terminating and aborting executions.

• Debug—Contains privileges for controlling execution flow, for
executing manual and interactive executions, and for editing station
globals and run-time variables.

• Develop—Contains privileges for editing and saving sequence files,
for editing workspace files, and for using source code control.

Chapter 7 User Management

NI TestStand Reference Manual 7-2 ni.com

• Configure—Contains privileges for configuring station options, user
management, adapters, application settings, reports, database logging
options, model options, and for editing process model files.

• Custom—Contains custom privileges you define. Customize the
NI_UserCustomPrivileges data type to add new privileges.

You can grant all privileges in a specific category for each user or group in
the user manager, and you can grant specific privileges for each user or
group. In addition, when you add a user as a member of a group, TestStand
grants the user all the privileges of the group. TestStand grants a privilege
to a user or group if the property value for the privilege is True or if the
value of the GrantAll property in any enclosing parent privilege category is
True. For example, a user has the privilege to terminate an execution if one
of the following properties is True:

• <User>.Privileges.Operate.Terminate

• <User>.Privileges.Operate.GrantAll

• <User>.Privileges.GrantAll

• <Group>.Privileges.Operate.Terminate

• <Group>.Privileges.Operate.GrantAll

• <Group>.Privileges.GrantAll

TestStand also grants all privileges to a user when you disable privilege
checking on the User Manager tab of the Station Options dialog box.

Accessing Privilege Settings for the Current User
Call the CurrentUserHasPrivilege expression function to verify
in an expression that the current user has a specific privilege.
Use the Engine.CurrentUserHasPrivilege method in the
TestStand API to verify the privilege in a code module. The
Engine.CurrentUserHasPrivilege method behaves identically
to the CurrentUserHasPrivilege expression function.

When you call the CurrentUserHasPrivilege method or expression
function, you must specify the property name of the privilege as a
string argument. You can pass any subset of the property name tree
structure to CurrentUserHasPrivilege. For example, you can call

Chapter 7 User Management

© National Instruments Corporation 7-3 NI TestStand Reference Manual

CurrentUserHasPrivilege with the following expressions to
determine if the current user has the privilege to terminate an execution:

• CurrentUserHasPrivilege("Terminate")

• CurrentUserHasPrivilege("Operate.Terminate")

You can pass "*" as the string argument to CurrentUserHasPrivilege
to determine if a user is currently logged in. Refer to the Expressions
section of Chapter 1, NI TestStand Architecture, for more information
about using expressions. Refer to the NI TestStand Help for more
information about the Engine.CurrentUserHasPrivilege method
and the CurrentUserHasPrivilege expression function.

Accessing Privilege Settings for Any User
The TestStand API includes methods to access the privileges of any user or
group. Use the Engine.GetUser and Engine.GetUserGroup methods
to return a User object, then call the User.HasPrivilege method, which
returns True if the user or any group to which the user belongs has the
privilege you specify by name. When you call the User.HasPrivilege
method on a User object the Engine.GetUser method returns,
the User.HasPrivilege method behaves identically to the
CurrentUserHasPrivilege method or expression function. Refer to
the NI TestStand Help for more information about the User object and its
methods.

Defining Custom Privileges
By default all users and groups include an empty Privileges.Custom
category. Add Boolean properties to the NI_UserCustomPrivileges
standard data type in the User Manager file in the Types window to define
new privileges in the category. When you add new properties to the data
type, increment the version of the type to remove the modified flag and to
ensure that TestStand uses the modified type instead of the default type
TestStand installs.

The sequence editor and user interfaces that use the TestStand User
Interface (UI) Controls do not recognize custom privileges you define. You
must add code to user interfaces to handle the custom privileges you create.
For example, you can add a calibration operation to the user interface where
you want to define a custom privilege so only specific users can perform the
operation.

© National Instruments Corporation 8-1 NI TestStand Reference Manual

8
Customizing and Configuring
TestStand

You can customize TestStand User Interfaces, process models, callbacks,
data types, step types, the Tools menu, and the directory structure. You can
configure options for the sequence editor, user interfaces, and test station.

Other chapters in this manual describe user interfaces, process models,
callbacks, data types, and step types in greater detail. Table 8-1 includes
a brief description of how you can modify these components and where you
can find more information about the component.

Table 8-1. TestStand Customizable Components

Component How to Customize More Information

User Interfaces TestStand includes full source code in
several different programming languages
so you can modify the user interfaces to
meet specific needs.

Refer to Chapter 9, Creating
Custom User Interfaces.

Process Models TestStand includes fully customizable
Sequential, Parallel, and Batch process
models to meet specific testing needs.

Refer to Chapter 10, Customizing
Process Models and Callbacks.

Callbacks You can modify callback sequences to
customize the operation of test stations.

Refer to Chapter 10, Customizing
Process Models and Callbacks.

Data Types You can customize copies of the standard
TestStand data types, and you can create
and modify your own data types.

Refer to Chapter 11, Type
Concepts, and Chapter 12,
Standard and Custom Data
Types.

Step Types You can customize copies of the standard
TestStand step types, and you can create
and modify your own step types.

Refer to Chapter 11, Type
Concepts, and Chapter 13,
Custom Step Types.

Chapter 8 Customizing and Configuring TestStand

NI TestStand Reference Manual 8-2 ni.com

Tools Menu
The Tools menu in the TestStand Sequence Editor and User Interfaces
contains common tools for use with TestStand. You can modify the Tools
menu to contain exactly the tools you need, and you can also add new items
to the Tools menu. Refer to the NI TestStand Help for more information
about the Tools menu and about using the Customize Tools Menu
dialog box to add your own commands to the Tools menu.

TestStand Directory Structure
To comply with Windows Vista restrictions on writing to the
Program Files directory and to improve usability for Windows XP users
who do not have access to the Program Files directory, TestStand 4.1
installs some files in different locations from previous versions of
TestStand. Refer to the NI TestStand Release Notes for more information
about specific directories and files relocated in TestStand 4.1.

TestStand 4.1 installs files in the following directories:

• <TestStand>—Located by default at C:\Program Files\
National Instruments\TestStand x.x on Windows 2000/XP
and Windows Vista (32-bit) and at C:\Program Files (x86)\
National Instruments\TestStand x.x on
Windows Vista (64-bit).

• <TestStand Public>—Located by default at C:\Documents and
Settings\All Users\Documents\National Instruments\

TestStand x.x on Windows 2000/XP and at C:\Users\Public\
Documents\National Instruments\TestStand x.x on
Windows Vista.

• <TestStand Application Data>—Hidden by default and located at
C:\Documents and Settings\All Users\Application

Data\National Instruments\TestStand x.x on
Windows 2000/XP and at C:\ProgramData\National
Instruments\TestStand x.x on Windows Vista.

<TestStand> Directory
The <TestStand> directory is the location where you installed TestStand
on the computer and contains the read-only TestStand program files.
Table 8-2 shows the name and content of each subdirectory of the
<TestStand> directory.

Chapter 8 Customizing and Configuring TestStand

© National Instruments Corporation 8-3 NI TestStand Reference Manual

Components Directory
TestStand installs the default sequences, executables, project files,
and source files for TestStand components in the <TestStand>\
Components directory. Table 8-3 lists each subdirectory in the
<TestStand>\Components directory.

Table 8-2. <TestStand> Subdirectories

Directory Name Contents

AdapterSupport Read-only support files for the .NET and HTBasic Adapters.

API Read-only TestStand ActiveX automation server libraries and utility
libraries for several programming languages.

Bin Read-only TestStand Sequence Editor executable, TestStand Engine DLLs,
and support files.

CodeTemplates Read-only source code templates for step types.

Components Read-only components installed with TestStand, including callback files,
converters, icons, language files, process model files, step types, source
files, compatibility files, and utility files. Refer to the Components
Directory section of this chapter for more information about the
subdirectories in the Components directory.

Doc Documentation files.

UserInterfaces Read-only LabVIEW, LabWindows/CVI, Microsoft Visual Basic, C#,
and C++ (MFC) user interfaces with source code.

Table 8-3. TestStand Component Subdirectories

Directory Name Contents

Callbacks Contains the sequence files in which TestStand stores Station Engine
callbacks and Front-End callbacks. Refer to Chapter 10, Customizing
Process Models and Callbacks, for more information about customizing
the Station Engine and Front-End callbacks.

Compatibility Contains type palette files TestStand uses to save sequence files compatible
with earlier versions of TestStand.

Icons Contains icon files for module adapters and step types.

Chapter 8 Customizing and Configuring TestStand

NI TestStand Reference Manual 8-4 ni.com

The TestStand Engine searches for sequences and code modules using
the TestStand search directory path. The default search precedence
places the <TestStand Public>\Components directory before
the <TestStand>\Components directory to ensure that TestStand loads
the sequences and code modules you customize instead of loading the
default TestStand versions of the files. Select Configure»Search
Directories from the sequence editor menu bar to modify the precedence
of the TestStand search directory paths. Refer to the <TestStand Public>
Directory section of this chapter for more information about the

Language Contains string resource files in language-specific subdirectories. Refer
to the Creating String Resource Files section of this chapter for more
information about creating string resource files.

Models Contains the default process model sequence files and supporting code
modules. Refer to Chapter 10, Customizing Process Models and Callbacks,
for more information about customizing process models.

Obsolete Contains components TestStand no longer uses but installs to maintain
backward compatibility.

RuntimeServers Contains a LabVIEW 7.1.1 run-time application for executing
LabVIEW 7.1.1-based code modules on a computer on which you have
not installed the LabVIEW Development System. Refer to the Selecting
a LabVIEW Server section of Chapter 5, Configuring the LabVIEW Adapter,
of the Using LabVIEW with TestStand manual for more information about
using LabVIEW executables built with an ActiveX server enabled.

StepTypes Contains support files for step types. TestStand installs support files for
the built-in step types in the <TestStand>\Components\StepTypes
directory. Refer to Chapter 13, Custom Step Types, for more information
about customizing step types.

Tools Contains sequences and supporting files for the Tools menu commands.
Refer to the Tools Menu section of this chapter for more information about
customizing the Tools menu.

TypePalettes Contains the default type palette files. Refer to Chapter 4, Built-In Step
Types, for more information about the default step types. Refer to
Chapter 11, Type Concepts, for more information about step types and data
types.

Table 8-3. TestStand Component Subdirectories (Continued)

Directory Name Contents

Chapter 8 Customizing and Configuring TestStand

© National Instruments Corporation 8-5 NI TestStand Reference Manual

<TestStand Public> directory. Refer to the Search Paths section of
Chapter 5, Module Adapters, for more information about TestStand search
directories.

When you deploy a run-time version of the TestStand Engine, you can
bundle customized components in the <TestStand Public> directory
with the TestStand run-time deployment. Refer to Chapter 14, Deploying
TestStand Systems, for more information about deploying the TestStand
Engine with custom components.

<TestStand Public> Directory
The <TestStand Public> directory contains your modifications,
customizations, and other files you can directly edit. Table 8-4 shows the
name and content of each subdirectory of the <TestStand Public>
directory.

Table 8-4. <TestStand Public> Subdirectories

Directory Name Contents

AdapterSupport Support files for the LabVIEW and LabWindows/CVI Adapters.

CodeTemplates Empty by default. You can store modified source code templates for step
types, or code templates you create.

Components Placeholder subdirectories for modified TestStand components and
components you develop, including callback files, language files, process
model files, run-time servers, and type palette files. Refer to the
Components Directory section of this chapter for more information about
the subdirectories in the default Components directory TestStand installs.
Refer to the RuntimeServers Directory section of this chapter for more
information about run-time servers.

Examples Example sequences and tests. Most example sequences that use LabVIEW
VIs call subVIs in the <LabVIEW>\vi.lib directory, which you can
access after you install LabVIEW.

Setup Support files for the TestStand installer.

Chapter 8 Customizing and Configuring TestStand

NI TestStand Reference Manual 8-6 ni.com

RuntimeServers Directory
The <TestStand Public>\Components\RuntimeServers directory
contains a LabVIEW 7.1.1 run-time application for executing
LabVIEW 7.1.1-based code modules on a computer on which you have not
installed the LabVIEW Development System. Refer to the Selecting
a LabVIEW Server section of Chapter 5, Configuring the LabVIEW
Adapter, of the Using LabVIEW with TestStand manual for more
information about using LabVIEW executables built with an ActiveX
server enabled.

Copying Read-Only Files to Modify
By default, TestStand installs read-only source files in the
<TestStand>\CodeTemplates, <TestStand>\Components, and
<TestStand>\UserInterfaces directories. To modify the installed
code templates or components or to create new code templates or
components, copy the files from the <TestStand> directories to the
<TestStand Public> directories and make changes to the copies of the
files. To modify the installed user interfaces or to create new user
interfaces, modify the files TestStand installs in the <TestStand
Public>\UserInterfaces directory. When you copy installed files to
modify, rename the files after you modify them if you want to create a
separate custom component. You do not have to rename the files after you
modify them if you only want to modify the behavior of an existing
component. If you do not rename the files and you use the files in a future
version of TestStand, changes National Instruments makes to the
component might not be compatible with the modified version of the
component. Storing new and customized files in the <TestStand
Public> directory ensures that new installations of the same version of
TestStand do not overwrite the customizations and ensures that uninstalling

Tutorial Sequences and code modules you use in tutorials in this manual, the Using
TestStand manual, the Using LabVIEW with TestStand manual, the Using
LabWindows/CVI with TestStand manual, and the NI TestStand Evaluation
Guide.

UserInterfaces Copies of the LabVIEW, LabWindows/CVI, Microsoft Visual Basic, C#,
and C++ (MFC) user interfaces with source code installed in the
<TestStand>\UserInterfaces directory.

Table 8-4. <TestStand Public> Subdirectories (Continued)

Directory Name Contents

Chapter 8 Customizing and Configuring TestStand

© National Instruments Corporation 8-7 NI TestStand Reference Manual

TestStand does not remove the files you customize. The <TestStand
Public> directory also acts as a temporary location for components you
use to build a deployment.

<TestStand Application Data> Directory
TestStand 4.1 also installs the <TestStand Application Data>
directory. This directory is hidden by default and contains configuration
files users generally do not edit but a program can edit. The directory
includes the Cfg subdirectory, which contains configuration files for
TestStand Engine, TestStand Sequence Editor, and TestStand User
Interface options.

Creating String Resource Files
TestStand uses the Engine.GetResourceString method to obtain the
string messages to display in sequence editor and user interface windows
and dialog boxes. The Engine.GetResourceString method uses a
string category and a tag name as arguments and searches for the string
resource in all string resource files in the following predefined order of
directories:

1. <TestStand Public>\Components\Language\<current
language>

2. <TestStand Public>\Components\Language\English

3. <TestStand Public>\Components\Language

4. <TestStand>\Components\Language\<current language>

5. <TestStand>\Components\Language\English

6. <TestStand>\Components\Language

Select Configure»Station Options to change the current language setting.

To customize a string resource file for a supported language or to create a
resource file for a new language, copy an existing language file from the
<TestStand>\Components\Language\<language> directory, place
the file in the <TestStand Public>\Components\Language\
<language> directory, and modify the file. To create a resource string
file that applies to all languages, place the resource file in the base
<TestStand Public>\Components\Language directory.

Note The TestStand Engine loads resource files when you start TestStand. If you make
changes to the resource files, you must restart TestStand for the changes to take effect, or
you must call the Engine.ReloadStringResourceFiles method.

Chapter 8 Customizing and Configuring TestStand

NI TestStand Reference Manual 8-8 ni.com

String Resource File Format
String resource files must use the .ini file extension and use the following
format:

[category1]

tag1 = "string value 1"

tag2 = "string value 2"

[category2]

tag1 = "string value 1"

tag2 = "string value 2"

When you create new entries in a string resource file or create a string
resource file for custom components, use unique category names to avoid
conflicts with the default names TestStand uses. For example, begin new
category names with a unique ID, such as a company prefix.

You can create an unlimited number of categories and tag names. You can
create strings of unlimited size, but you must break a string with more than
512 characters into multiple lines. Each line includes a lineNNNN tag
suffix, where NNNN is the line number with zero padding, as shown in the
following example:

[category1]

tag1 line0001 = "This is the first sentence of a long "

tag1 line0002 = "paragraph. This is the second sentence."

You can use the escape codes in Table 8-4 to insert unprintable characters.

Table 8-5. Resource String File Escape Codes

Escape Code Description

\n Embedded linefeed character.

\r Carriage return character.

\t Tab character.

\xnn Hexadecimal value that represents the character.
For example, \x1B represents the ASCII ESC
character.

\\ Backslash character.

\" Double quotation mark.

Chapter 8 Customizing and Configuring TestStand

© National Instruments Corporation 8-9 NI TestStand Reference Manual

Configuring Sequence Editor
and User Interface Startup Options

The sequence editor and all user interface applications support
command-line options for opening and running sequences. You can append
the startup options in Table 8-5 to the sequence editor and user interface
command line. The “/” and “-” characters are valid command prefixes.
Use spaces to separate command parameters. You must use quotation
marks for arguments that contain spaces, such as "Test UUTs" and
"C:\My Documents\MySeq.seq".

Table 8-6. Sequence Editor and User Interface Startup Options

Option Purpose

sequencefile
{sequencefile2}...

Instructs the application to automatically load the sequence files at
startup, as shown in the following example:

SeqEdit.exe "c:\My Seqs\seq1.seq"

"c:\My Seqs\seq2.seq"

/run sequence
sequencefile

Instructs the application to automatically load and run the sequence in
the sequence file at startup, as shown in the following example:

SeqEdit.exe /run MainSequence "c:\My Seqs\test.seq"

/runEntryPoint
entrypointname
sequence file

Instructs the application to automatically load and run the sequence file
at startup using the Execution entry point you specify, as shown in the
following example:

SeqEdit.exe /runEntryPoint "Test UUTs"

"c:\My Seqs\test.seq"

/editor Instructs the application to open in Editor Mode if the application
supports editing, as shown in the following example:

testexec.exe /editor

/operatorInterface Instructs the application to open in Operator Mode, as shown in the
following example:

testexec.exe /operatorInterface

Chapter 8 Customizing and Configuring TestStand

NI TestStand Reference Manual 8-10 ni.com

Refer to the ApplicationMgr.ProcessUserCommandLineArguments
event documentation in the NI TestStand Help for more information about
processing user-defined command-line arguments in a user interface. If an
error exists in the command-line argument, the Application Manager
control generates an ApplicationMgr.ReportError event.

/quit Instructs the application to exit after running the executions you
specify, as shown in the following example:

SeqEdit.exe /run MainSequence "c:\My Seqs\test\seq"

/quit

TestStand ignores the /quit option if the execution fails to launch.

/useExisting Instructs the application to use the existing running instance of the
application instead of opening a new instance, as shown in the
following example:

SeqEdit.exe /useExisting

TestStand ignores the /useExisting option if you specify the
/quit option.

/setCurrentDir Instructs the application to set the current directory to the first directory
in the File dialog box directory history list, as shown in the following
example:

SeqEdit.exe /setCurrentDir

The current directory is the directory the File dialog box initially
displays when you open or save a file. Use this option to set the
directory the File dialog box displays to the directory the File dialog
box displayed the last time you ran the application. TestStand sets the
current directory after processing the other command-line options.

/? Instructs the application to launch a help dialog box that contains a list
of valid command-line arguments and then close immediately, as
shown in the following example:

SeqEdit.exe /?

TestStand ignores all other options if you specify the "/?" option.

Table 8-6. Sequence Editor and User Interface Startup Options (Continued)

Option Purpose

Chapter 8 Customizing and Configuring TestStand

© National Instruments Corporation 8-11 NI TestStand Reference Manual

Configure Menu
Use the Configure menu in the sequence editor and in the user interfaces to
control the operation of the TestStand station. Refer to the NI TestStand
Help for more information about the dialog boxes that each item in the
Configure menu launches.

© National Instruments Corporation 9-1 NI TestStand Reference Manual

9
Creating Custom User Interfaces

You can create or customize a user interface application, including custom
sequence editors and applications that can only run sequences.

Refer to the following documents before you create a custom user interface
application:

• The Example User Interfaces section and the Writing an Application
with the TestStand UI Controls section of this chapter.

• The following sections of the NI TestStand Help:

– TestStand ActiveX API Overview

– Core UI Classes, Properties, Methods, and Events

– Core API Classes, Properties, and Methods

• The NI TestStand User Interface Controls Reference Poster.

• Chapter 6, Creating Custom User Interfaces in LabVIEW, of the Using
LabVIEW with TestStand manual and Chapter 6, Creating Custom
User Interfaces in LabWindows/CVI, of the Using LabWindows/CVI
with TestStand manual.

If you use an environment other than LabVIEW or LabWindows/CVI,
refer to one of these sources for general instructions for constructing
a user interface application.

Example User Interfaces
The <TestStand>\UserInterfaces directory includes the executable,
project, and source code files for each example user interface. The
Full-Featured subdirectory contains user interfaces for loading,
viewing, editing, saving, executing, and debugging sequence files. The
Simple subdirectory contains similar but limited user interfaces with
fewer commands and options but no menus. Also, the simple example user
interfaces display the steps for executions you run but do not display steps
for sequences you load. Both subdirectories contain source code for
LabVIEW, LabWindows/CVI, Microsoft Visual Basic .NET, C#, and
C++ (MFC).

Chapter 9 Creating Custom User Interfaces

NI TestStand Reference Manual 9-2 ni.com

TestStand installs the source code files for the default user interfaces in
the <TestStand>\UserInterfaces and <TestStand Public>\
UserInterfaces directories. To modify the installed user interfaces
or to create new user interfaces, modify the files in the <TestStand
Public>\UserInterfaces directory. You can use the read-only
source files for the default user interfaces in the <TestStand>\
UserInterfaces directory as a reference. When you modify installed
files, rename the files after you modify them if you want to create a separate
custom component. You do not have to rename the files after you modify
them if you only want to modify the behavior of an existing component. If
you do not rename the files and you use the files in a future version of
TestStand, changes National Instruments makes to the component might
not be compatible with the modified version of the component. Storing new
and customized files in the <TestStand Public> directory ensures that
new installations of the same version of TestStand do not overwrite
the customizations and ensures that uninstalling TestStand does not remove
the files you customize.

Note National Instruments recommends that you track the changes you make to the user
interface source code files so you can integrate the changes with any enhancements in
future versions of the TestStand User Interfaces.

TestStand User Interface Controls
All user interface examples use the TestStand User Interface (UI) Controls,
which are a set of ActiveX controls that implement the common
functionality for applications to display, execute, edit, save, and debug test
sequences. These ActiveX controls greatly reduce the amount of source
code a user interface application requires and greatly reduce the need for an
application to directly call the TestStand API.

Note National Instruments strongly recommends using the TestStand UI Controls to
develop user interface applications.

You can create an application by directly calling the TestStand API on
objects you create or obtain from the TestStand UI Controls properties,
methods, or events. Consider the following guidelines when you call the
TestStand API in a user interface that uses the TestStand UI Controls:

• You do not need to create the TestStand Engine. Use the
ApplicationMgr.GetEngine method to obtain the Engine object.

• If you call the Engine.NewExecution method to create an
execution, the TestStand UI Controls recognize the new execution.

Chapter 9 Creating Custom User Interfaces

© National Instruments Corporation 9-3 NI TestStand Reference Manual

• If you call the Engine.GetSequenceFileEx method to load a
sequence file, the TestStand UI Controls do not display the file you
load. You must call the ApplicationMgr.OpenSequenceFile
method to open and display a file in the user interface.

• You can obtain sequence file and execution references from events or
from the SequenceFiles and Executions collections.

• If you hold references to TestStand objects, release them in the handler
for the ApplicationMgr.QueryShutdown event if the event handler
does not cancel the shut down process.

Refer to the Writing an Application with the TestStand Engine API section
of the NI TestStand Help for more information about writing an application
by directly calling the TestStand Engine API.

Writing an Application with the TestStand UI Controls
TestStand provides manager controls and visible controls that work
together to simplify programming a user interface.

Manager Controls
Application Manager, SequenceFileView Manager, and ExecutionView
Manager controls call the TestStand API to perform tasks such as loading
files, launching executions, and retrieving sequence and execution
information. Manager controls also notify you when application events
occur, such as when a user logs in, an execution reaches a breakpoint, or a
user changes the file or sequence they are viewing. Manager controls are
visible at design time and invisible at run time.

Connect the manager controls to visible TestStand UI Controls to display
information or to allow users to select items to view.

Application Manager
The Application Manager control performs the following basic operations,
which are necessary to use the TestStand Engine in an application:

• Processes command-line arguments.

• Maintains an application configuration file.

• Initializes and shuts down the TestStand Engine.

• Logs users in and out.

• Loads and unloads files.

Chapter 9 Creating Custom User Interfaces

NI TestStand Reference Manual 9-4 ni.com

• Launches executions.

• Tracks existing sequence files and executions.

An application must have a single Application Manager control that exists
for the duration of the application.

SequenceFileView Manager
The SequenceFileView Manager control performs the following tasks to
manage how other visible TestStand UI Controls view and interact with
a selected sequence file:

• Designates a sequence file as the selected sequence file.

• Tracks which sequence, step group, and steps users select in the
sequence file.

• Tracks which variables or properties users select in the sequence file.

• Displays aspects of the sequence file in the visible TestStand
UI Controls to which the SequenceFileView Manager control
connects.

• Enables visible TestStand UI Controls to which the SequenceFileView
Manager control connects to change the selected file, sequence, step
group, and steps.

• Provides editing and saving commands.

• Provides methods for executing the sequence file users select.

An application needs one SequenceFileView Manager control for each
location, such as a window, form, or panel, in which you display a sequence
file or let users select a sequence file.

ExecutionView Manager
The ExecutionView Manager control performs the following tasks to
manage how other visible TestStand UI Controls view and interact with
a selected TestStand execution:

• Designates an execution as the selected execution.

• Tracks which thread, stack frame, sequence, step group, and steps
users select in the execution.

• Tracks which variables or properties users select in the execution.

• Displays aspects of the selected execution in the visible TestStand
UI Controls to which the ExecutionView Manager control connects.

Chapter 9 Creating Custom User Interfaces

© National Instruments Corporation 9-5 NI TestStand Reference Manual

• Enables visible TestStand UI Controls to which the ExecutionView
Manager control connects to change the selected thread, stack frame,
sequence, step group, and steps.

• Sends events to notify the application of the progress and state of the
execution.

• Provides debugging commands.

• Updates the ReportView control to show the current report for the
execution.

An application needs one ExecutionView Manager control for each
location, such as a window, form, or panel, in which you display
an execution or let users select an execution.

Visible Controls
The TestStand UI Controls in Table 9-1 are visible at design time and run
time and are similar to common Windows UI controls. Connect visible
TestStand UI Controls to manager controls to display information or to
allow users to select items to view.

Table 9-1. Visible TestStand UI Controls

Control Name Description

Button Connect a manager control to a Button control to specify that the button
performs a common user interface command, such as “Open Sequence
File.” The Button control uses a localized caption and automatically
enables or disables according to the application state.

CheckBox Connect a manager control to a CheckBox control so users can toggle the
state of a common user interface command, such as “Break on Step
Failure.”

ComboBox Connect a manager control to a ComboBox control so users can view or
select from a list of adapters, sequence files, sequences, step groups,
executions, threads, or stack frames.

Chapter 9 Creating Custom User Interfaces

NI TestStand Reference Manual 9-6 ni.com

ExpressionEdit Use an ExpressionEdit control so users can edit a TestStand expression
with syntax coloring, popup help, and statement completion.

Although you typically do not need to edit expressions in a user interface
application, you can connect a manager control to a read-only
ExpressionEdit control to display text information about the
application state, such as the pathname of the selected sequence file or the
name of the current user.

You can also use ExpressionEdit controls in dialog boxes for step types
and in tools in which you prompt users to enter a TestStand expression.

InsertionPalette Connect a SequenceFileView Manager control to an InsertionPalette
control so users can insert steps and template items into a sequence file by
dragging or double-clicking.

Label Connect a manager control to a Label control to display text information
about the application state in the label, such as the name of the current user
or the status of the current UUT.

ListBar Use a ListBar control to display multiple pages, where each page
contains a list of items users can view or select. Connect a manager control
to a ListBar page so users can view and select from a list of adapters,
sequence files, sequences, step groups, executions, threads, or stack
frames.

ListBox Connect a manager control to a ListBox control so users can view or
select from a list of adapters, sequence files, sequences, step groups,
executions, threads, or stack frames.

ReportView Connect an ExecutionView Manager control to a ReportView control to
display the report for the selected execution.

SequenceView Connect a SequenceFileView Manager control or an ExecutionView
Manager control to a SequenceView control to display the steps of a
sequence from a sequence file or execution. The SequenceView control
displays the steps in a list with columns you specify when you configure
the control.

Table 9-1. Visible TestStand UI Controls (Continued)

Control Name Description

Chapter 9 Creating Custom User Interfaces

© National Instruments Corporation 9-7 NI TestStand Reference Manual

Connecting Manager Controls to Visible Controls
Connect a Manager control to a visible control to display sequences or
reports, present a list of items to users, invoke an application command, or
display information about the current state of the application. When you
connect controls, you do not need to write the majority of the source code
you usually write for the application to update the user interface and
respond to user input.

You can make view connections, list connections, command connections,
and information source connections, depending on the type of manager
control and visible control you connect.

Refer to the NI TestStand User Interface Controls Reference Poster for an
illustration of control connections in a sample user interface.

View Connections
You can connect manager controls to specific UI controls to display the
steps in a sequence file or an execution, the report for an execution, the
sequence context for a sequence file or execution, and the set of step types
and templates users can insert into sequence files.

Connect a SequenceFileView Manager control or an ExecutionView
Manager control to a SequenceView control to display the steps of a
sequence from a sequence file or execution. You can also connect an
ExecutionView Manager control to a ReportView control to display the
report for the execution.

Connect a SequenceFileView Manager control or an ExecutionView
Manager control to a VariablesView control to display the sequence
context for the sequence file or execution.

StatusBar Connect a manager control to panes of a StatusBar control to display
textual, image, or progress information about the application state. You can
programmatically control individual StatusBar panes to display custom
information.

VariablesView Connect a SequenceFileView Manager control or an ExecutionView
Manager control to a VariablesView control to display the sequence
context for the sequence file or execution.

Table 9-1. Visible TestStand UI Controls (Continued)

Control Name Description

Chapter 9 Creating Custom User Interfaces

NI TestStand Reference Manual 9-8 ni.com

Connect a SequenceFileView Manager control to an InsertionPalette
control so users can insert steps and template items into a sequence file by
dragging or double-clicking.

Call the following methods to connect to view controls:

• SequenceFileViewMgr.ConnectSequenceView

• SequenceFileViewMgr.ConnectVariables

• SequenceFileViewMgr.ConnectInsertionPalette

• ExecutionViewMgr.ConnectExecutionView

• ExecutionViewMgr.ConnectReportView

• ExecutionViewMgr.ConnectVariables

List Connections
You can connect a ComboBox control, a ListBox control, or a ListBar
page to a list a manager control provides, as shown in Table 9-2.

A manager control designates one item in each list as the selected item.
A visible control you connect to a list displays the list and indicates the
selected item. The visible control also allows users to change the selection
unless the application state or control configuration prohibits changing the
selection. When users change the selection, other controls that display the
list or the selected list item update to display the new selection. For
example, you can connect a SequenceFileView Manager control to a
SequenceView control and connect the sequence file list to a combo box.
When users change the file selection in the combo box, the SequenceView
control updates to show the steps in the newly selected sequence file.

Table 9-2. Available List Connections

List Manager Control

Adapters Application Manager

Sequence files SequenceFileView Manager

Sequences SequenceFileView Manager

Step groups SequenceFileView Manager

Executions ExecutionView Manager

Threads ExecutionView Manager

Stack frames ExecutionView Manager

Chapter 9 Creating Custom User Interfaces

© National Instruments Corporation 9-9 NI TestStand Reference Manual

Call the following methods to connect a list to a ComboBox control, a
ListBox control, or a ListBar page:

• ApplicationMgr.ConnectAdapterList

• SequenceFileViewMgr.ConnectSequenceFileList

• SequenceFileViewMgr.ConnectSequenceList

• SequenceFileViewMgr.ConnectStepGroupList

• ExecutionViewMgr.ConnectExecutionList

• ExecutionViewMgr.ConnectThreadList

• ExecutionViewMgr.ConnectCallStack

Command Connections
TestStand applications typically use menus, buttons, or other
controls to provide commands to users. The OpenSequenceFile,
ExecuteEntryPoint, RunSelectedSteps, Break, Resume,
Terminate, and Exit commands are common to most TestStand
applications.

The CommandKinds enumeration in the TestStand UI Controls API defines
a set of common commands you can add to an application. Refer to the
NI TestStand Help for more information about this enumeration before you
add commands to an application so you do not unnecessarily re-implement
an existing command.

You can connect these commands to TestStand buttons or application menu
items, which automatically execute the command. You do not need an event
handler to implement the command.

The commands also determine the menu item or button text to display
according to the current language and automatically dim or enable buttons
or menu items according to the state of the application. Because the
TestStand UI Controls API implements many common application
commands, connecting commands to buttons and menu items significantly
reduces the amount of source code an application requires.

Some commands apply to the selected item in the manager control to which
you connect. For example, the Break command suspends the current
execution an ExecutionView Manager control selects. Other commands,
such as Exit, function the same regardless of the manager control you use
to connect them.

Refer to the NI TestStand Help for more information about each
CommandKinds enumeration constant and the manager controls to
which the CommandKinds enumeration constant applies.

Chapter 9 Creating Custom User Interfaces

NI TestStand Reference Manual 9-10 ni.com

Call the following methods to connect a command to a Button or
CheckBox control:

• ApplicationMgr.ConnectCommand

• SequenceFileViewMgr.ConnectCommand

• ExecutionViewMgr.ConnectCommand

Refer to the Menus and Menu Items section of this chapter for more
information about connecting commands to menu items.

To invoke a command without connecting it to a control, call one of the
following methods to obtain a Command object:

• ApplicationMgr.GetCommand

• ApplicationMgr.NewCommands

• SequenceFileViewMgr.GetCommand

• ExecutionViewMgr.GetCommand

After you obtain a Command object, call the Command.Execute method to
invoke the command.

Information Source Connections
You can use manager controls to establish caption, image, and
numeric value information source connections to Label controls,
ExpressionEdit controls, and StatusBar panes to display information
about the state of the application.

Caption Connections
Caption connections display text that describes the status of the application.
For example, you can use the Application Manager control to connect a
caption to a Label control so that the Label control displays the name of
the currently logged-in user.

The CaptionSources enumeration defines the set of captions to
which you can connect. Some captions apply to the selected item in
the manager control with which you connect them. For example, the
UUTSerialNumber caption displays the serial number of the current
UUT for the execution an ExecutionView Manager control selects. Other
captions, such as UserName, function the same regardless of which
manager control you use to connect them.

Refer to the NI TestStand Help for more information about each
CaptionSources enumeration constant and the manager controls
with which the caption source functions.

Chapter 9 Creating Custom User Interfaces

© National Instruments Corporation 9-11 NI TestStand Reference Manual

Call the following methods to connect a caption to a Label control,
an ExpressionEdit control, or a StatusBar pane:

• ApplicationMgr.ConnectCaption

• SequenceFileViewMgr.ConnectCaption

• ExecutionViewMgr.ConnectCaption

Call the following methods to obtain the text of a caption without
connecting the caption to a control:

• ApplicationMgr.GetCaptionText

• SequenceFileViewMgr.GetCaptionText

• ExecutionViewMgr.GetCaptionText

Image Connections
Image connections display icons that illustrate the status of the application.
For example, you can use the ExecutionView Manager control to connect
an image to a Button control or a StatusBar pane so the button or pane
displays an image that indicates the execution state of the selected
execution.

The ImageSources enumeration defines the set of images to which you
can connect. Some images apply to the selected item in the manager control
with which you connect them. For example, the CurrentStepGroup
enumeration constant displays an image for the currently selected step
group when you connect it to a SequenceFileView Manager control and
displays an image for the currently executing step group when you connect
it to an ExecutionView Manager control.

Refer to the NI TestStand Help for more information about each
ImageSources enumeration constant and the manager controls with
which the image source functions.

Call the following methods to connect an image to a Button control or
a StatusBar pane:

• ApplicationMgr.ConnectImage

• SequenceFileViewMgr.ConnectImage

• ExecutionViewMgr.ConnectImage

Call the following methods to obtain an image without connecting the
image to a control:

• ApplicationMgr.GetImageName

• SequenceFileViewMgr.GetImageName

• ExecutionViewMgr.GetImageName

Chapter 9 Creating Custom User Interfaces

NI TestStand Reference Manual 9-12 ni.com

To obtain an image from an image name, you must use properties from
the TestStand API, such as the Engine.SmallImageList property, the
Engine.LargeImageList property, and the Engine.Images property.

Numeric Value Connections
A numeric value connection graphically displays a numeric value that
illustrates the status of the application. For example, you can use the
ExecutionView Manager control to connect a numeric value to a
StatusBar pane so that the StatusBar pane displays a progress bar
that indicates the percentage of progress made in the current execution.

The NumericSources enumeration defines the set of values to which you
can connect. Refer to the NI TestStand Help for more information about
each NumericSources enumeration constant and the manager controls to
which the NumericSources enumeration constant applies.

Call the ExecutionViewMgr.ConnectNumeric method to connect a
numeric source to a StatusBar pane. Call the
ExecutionViewMgr.GetNumericValue method to obtain a numeric
value without connecting the value to a control.

Specifying and Changing Control Connections
An application typically establishes control connections after loading
the window that contains the controls to connect, but the application can
establish or change control connections at any time.

You can make the same connection from a manager control to multiple
visible controls. For example, if you connect two combo boxes to the
sequence list of a SequenceFileView Manager control, both combo boxes
display the selected sequence in the current file. If the selection in one
combo box changes, the other combo box updates to show the new
selection. However, a visible control or a connectable element of a visible
control, such as a ListBar page or a StatusBar pane, can have only one
connection of a particular type.

When you connect a manager control to a visible control that has an
existing connection, the new connection replaces the existing connection.

Chapter 9 Creating Custom User Interfaces

© National Instruments Corporation 9-13 NI TestStand Reference Manual

Editor Versus Operator Interface Applications
An Editor application permits users to create, edit, and save sequence files.
An Operator Interface application allows users only to run sequences.

Use the TestStand UI Controls to create Editor applications, Operator
Interface applications, and applications that can switch between Editor
Mode and Operator Mode.

Creating Editor Applications
You must enable the Editor Mode for the TestStand UI Controls to create
an Editor application.

Set the ApplicationMgr.IsEditor property at design time to specify
if Editor Mode is on or off by default. Alternatively, you can set the
ApplicationMgr.IsEditor property in the application source code
before you call the ApplicationMgr.Start method.

You can pass a command-line argument to override the default
editing mode for the application. Pass /editor to set the
ApplicationMgr.IsEditor property and pass /operatorInterface
to clear the ApplicationMgr.IsEditor property. Set the
ApplicationMgr.CommandLineCanChangeEditMode property to
False to prevent users from changing the ApplicationMgr.IsEditor
property from the command line.

The full-featured user interface examples allow users with sequence
file editing permissions to toggle the editing mode by pressing
<Ctrl-Alt-Shift-Insert>. To change or disable this keystroke
in an application based on a full-featured example, set
the ApplicationMgr.EditModeShortcutKey and
ApplicationMgr.EditModeShortcutModifier properties
in the designer or in the user interface source code.

License Checking
The ApplicationMgr.Start method verifies that a license exists to run
the application. If no license exists, the ApplicationMgr.Start method
returns an error the application displays before exiting. If an unactivated
license or an evaluation license exists, the ApplicationMgr.Start
method prompts users to activate a license.

Chapter 9 Creating Custom User Interfaces

NI TestStand Reference Manual 9-14 ni.com

If the ApplicationMgr.IsEditor property is True, the
ApplicationMgr.Start method requires a license that permits
editing. If you call the ApplicationMgr.Start method when the
ApplicationMgr.IsEditor property is False and later
set the ApplicationMgr.IsEditor property to True, the
ApplicationMgr.IsEditor property returns an error if it cannot
obtain a license that permits editing.

Using TestStand UI Controls in Different Environments
You can use the TestStand UI Controls in LabVIEW, LabWindows/CVI,
Microsoft Visual Studio, and Visual C++.

LabVIEW
To use the TestStand UI Controls in LabVIEW, use the VIs, functions, and
controls on the TestStand Functions and Controls palettes. Refer to
Chapter 6, Creating Custom User Interfaces in LabVIEW, of the Using
LabVIEW with TestStand manual for more information about using the
TestStand UI Controls in LabVIEW.

LabWindows/CVI
To use the TestStand UI Controls in LabWindows/CVI, add the following
files to the project from the <TestStand>\API\CVI directory:

• tsui.fp—ActiveX API for the TestStand UI Controls

• tsuisupp.fp—ActiveX API for use with less commonly used
interfaces the TestStand UI Controls provide

• tsutil.fp—Functions that facilitate using the TestStand API and the
TestStand UI Controls in LabWindows/CVI

• tsapicvi.fp—ActiveX API for the TestStand Engine

Include the following header files located in the <TestStand>\API\CVI
directory in the source code files as needed:

• tsui.h

• tsuisupp.h

• tsutil.h

• tsapicvi.h

Chapter 9 Creating Custom User Interfaces

© National Instruments Corporation 9-15 NI TestStand Reference Manual

To add a TestStand UI Control to a panel in the LabWindows/CVI UIR
editor, select Create»ActiveX and select a control that begins with
TestStand UI.

Refer to Chapter 6, Creating Custom User Interfaces in LabWindows/CVI,
of the Using LabWindows/CVI with TestStand manual for more
information about using the TestStand UI Controls in LabWindows/CVI.

Microsoft Visual Studio
To use the TestStand UI Controls in Visual Studio, drag the TestStand
UI Controls from the TestStand tab on the Visual Studio Toolbox onto
a form.

When you create a new project in Visual Studio 2005, select Project»
<Project Name> Properties»Compile, click the Advanced Compile
Options button, and select x86 from the Target CPU ring control in the
Advanced Compiler Settings dialog box so the project can access the
TestStand API and UI Controls on 64-bit versions of Windows.

If the Visual Studio Toolbox window does not display the TestStand tab
when you edit a form or if the TestStand Interop assemblies do not appear
in the Add References dialog box, exit all running copies of Visual Studio,
select Start»All Programs»National Instruments»TestStand x.x»
TestStand Version Selector to run the TestStand Version Selector utility,
select the current version of TestStand, and click the Make Active button.

You must also add references to the TestStand Interop assemblies and the
TestStand Utility (TSUtil) assembly to the project. Refer to the Accessing
the TestStand API in Visual Studio .NET 2003 and Visual Studio 2005
section of Chapter 5, Module Adapters, for more information about adding
references to .NET interop assemblies for the TestStand API. Refer to the
TestStand Utility Functions Library section of this chapter for more
information about adding a reference to the TSUtil library for .NET.

When you create a Multiple Document Interface (MDI) application
with TestStand UI Controls on an MDI child form, the Microsoft
.NET Framework resets the properties you programmatically set on the
TestStand UI Controls to default values when you set the MdiParent
property on the child form. The .NET Framework resets these properties
because the .NET Framework destroys and recreates ActiveX controls on a
form when you set the property on the form. To avoid this issue, set the
TestStand control properties after you set the MdiParent property on the
form or place all TestStand UI Controls and other ActiveX controls on a
Panel control instead of directly on the form.

Chapter 9 Creating Custom User Interfaces

NI TestStand Reference Manual 9-16 ni.com

Visual C++
To use the TestStand UI Controls in Visual C++, add the TSUtil Functions
Library to the project as described in the TestStand Utility Functions
Library section of this chapter. The TSUtilCPP.cpp and TSUtilCPP.h
files automatically import the type libraries for the TestStand API and the
TestStand UI Controls.

You can view the header files the #import directive generates for the
TestStand API type libraries by opening the tsui.tlh, tsuisupp.tlh,
and tsapi.tlh files Visual C++ creates in the Debug or Release
directory. The header files the #import directive generates define a C++
class for each object class in the TestStand API. The I prefix in class names
denotes ActiveX controls and objects you can create without calling
another class. The header files use macros to define a corresponding smart
pointer class for each object class. Each smart pointer class uses the name
of its corresponding class and adds a Ptr suffix. Typically, you use only
smart pointer classes in an application because the smart pointer releases
the reference to the object when the pointer is destroyed. For example,
instead of using the SequenceFile class, use the SequenceFilePtr
class.

Note National Instruments recommends, in accordance with Microsoft guidelines, using
the classes the #import directive generates to call the TestStand ActiveX API instead of
using the Class Wizard tool to generate MFC wrapper class files.

Select Insert ActiveX Control from the dialog box context menu and
select a control that begins with TestStand UI to add a TestStand UI
Control to a dialog box as a resource.

Note If you programmatically create a TestStand UI Control in an MFC container, you
must remove the WS_CLIPSIBLINGS style from the control window for the TestStand
UI Control to remain visible inside an MFC Group Box control. If you do not remove
the WS_CLIPSIBLINGS style, a native MFC control always obscures the TestStand
UI Control, even if the MFC control comes after the TestStand UI Control in the tab order.

Chapter 9 Creating Custom User Interfaces

© National Instruments Corporation 9-17 NI TestStand Reference Manual

Obtaining an Interface Pointer and CWnd for an ActiveX Control
Complete the following steps to obtain an interface pointer to an ActiveX
control, such as a TestStand UI control, that you insert into an MFC dialog
resource.

Using GetDlgItem
1. Add a CWnd member to the dialog class for the control as follows:

CWnd mExprEditCWnd;

2. Insert the following code into the OnInitDialog method of the dialog
class:

mExprEditCWnd.Attach(GetDlgItem
(IDC_MYEXPRESSIONEDIT)->m_hWnd);

3. Obtain the interface pointer from the CWnd member as follows:

TSUI::IExpressionEditPtr myExprEdit =
mExprEditCWnd.GetControlUnknown();

Note National Instruments does not recommend using DoDataExchange to obtain an
interface pointer and CWnd for a TestStand ActiveX User Interface Control because the
pointer can be invalid in some instances. Use DoDataExchange only when controls are
windowless or do not recreate internal windows.

Handling Events
TestStand UI Controls generate events to notify an application of user input
and of application events, such as an execution completing. The visible
controls generate user input events, such as KeyDown or MouseDown.
The manager controls generate application state events, such as
the ApplicationMgr.SequenceFileOpened event or the
ApplicationMgr.UserChanged event. You can handle events
according to the needs of the application, as shown in Table 9-3.

Chapter 9 Creating Custom User Interfaces

NI TestStand Reference Manual 9-18 ni.com

Events Typical Applications Handle
When you create an application, you can direct the application to handle
any subset of the available TestStand UI Control events. However,
an application typically handles the ExitApplication, Wait,
ReportError, DisplaySequenceFile, and DisplayExecution
events.

ExitApplication
The Application Manager control generates this event to request that
the application exit. Handle this event by directing the application to exit
normally. Refer to the Startup and Shutdown section of this chapter for
more information about shutting down the application.

Wait
The Application Manager control generates this event to request that the
application display or remove a busy indicator. Handle this event by
displaying or removing a wait cursor according to the value of the
showWait event parameter.

Table 9-3. Creating Event Handlers in Specific ADEs

ADE Description

LabVIEW Register event handler VIs with the Register Event Callback function.

Refer to the Handling Events section of Chapter 6, Creating Custom User
Interfaces in LabVIEW, of the Using LabVIEW with TestStand manual for
more information about handling events from the TestStand UI Controls
in LabVIEW.

LabWindows/CVI Install ActiveX event callback functions by calling the TSUI_<object
class>EventsRegOn<event name> functions in tsui.fp.

Refer to the Handling Events section of Chapter 6, Creating Custom User
Interfaces in LabWindows/CVI, of the Using LabWindows/CVI with
TestStand manual for more information about handling events from the
TestStand UI Controls in LabWindows/CVI.

.NET Create .NET control event handlers from the form designer.

C++ (MFC) Create ActiveX event handlers from the Message Maps page in the Class
Wizard dialog box.

Chapter 9 Creating Custom User Interfaces

© National Instruments Corporation 9-19 NI TestStand Reference Manual

ReportError
The Application Manager control generates this event to request that the
user interface return an error during user input or during an asynchronous
operation. Handle this event by displaying the error code and description
in a dialog box or by appending the error code and description to
an error log. The ApplicationMgr.ReportError event indicates
an application error, not a sequence execution error. The
ApplicationMgr.BreakOnRunTimeError event indicates a
sequence execution error.

DisplaySequenceFile
The Application Manager control generates this event to request
that the application display a particular sequence file. Handle
this event by displaying the sequence file by setting the
SequenceFileViewMgr.SequenceFile property. If the application
has only a single window, set this property on the SequenceFileView
Manager control that resides on the window. If the application
displays each sequence file in a separate window using
separate SequenceFileView Manager controls, call the
ApplicationMgr.GetSequenceFileViewMgr method to find the
SequenceFileView Manager control that currently displays the sequence
file so you can activate the window that contains the sequence file. If no
SequenceFileView Manager control currently displays the sequence file, a
multiple window application can create a new window that contains a
SequenceFileView Manager control. The application can then set the
SequenceFileViewMgr.SequenceFile property to display the
sequence file in the new window.

DisplayExecution
The Application Manager control generates this event to request that the
application display a particular execution. Handle this event by displaying
the execution by setting the ExecutionViewMgr.Execution property.
If the application has only a single window, set this property on the
ExecutionView Manager control that resides on the window.
If the application displays each execution in a separate window
using separate ExecutionView Manager controls, call the
ApplicationMgr.GetExecutionViewMgr method to find the
ExecutionView Manager control that currently displays the execution
so you can activate the window that contains the execution. If no
ExecutionView Manager control currently displays the execution, a
multiple window application can create a new window that contains an

Chapter 9 Creating Custom User Interfaces

NI TestStand Reference Manual 9-20 ni.com

ExecutionView Manager control. The application can then set the
ExecutionViewMgr.Execution property to display the execution in the
new window.

Startup and Shutdown
As a final step in the initialization of the application, call the
ApplicationMgr.Start method to initialize the Application Manager
control and launch the LoginLogout Front-End callback if you did not set
the ApplicationMgr.LoginOnStart property to False.

Complete the following steps to shut down the application.

1. If the application holds any references to TestStand objects,
such as sequence files or executions, handle the
ApplicationMgr.QueryShutDown event by canceling the
shutdown process or releasing the TestStand object references the
application holds.

2. Call the ApplicationMgr.ShutDown method. If the method returns
True, exit the application. If the method returns False, do not exit the
application. Leaving the application running allows the method to shut
down any running executions and unload sequence files. If the shut
down process completes, the Application Manager control generates
the ApplicationMgr.ExitApplication event to notify you to exit
the application. If the application cancels the shutdown process, the
Application Manager control generates the
ApplicationMgr.ShutDownCancelled event, which occurs when
users choose not to terminate a busy execution.

Note When you use the TestStand UI Controls to create an Exit button or an Exit menu
item that invokes the Exit command, the button or menu item automatically calls the
ApplicationMgr.ShutDown method for you.

3. Exit the application in the event handler you create for the
ApplicationMgr.ExitApplication event. The window in which
the Application Manager control resides must exist until you receive
the ApplicationMgr.ExitApplication event.

Chapter 9 Creating Custom User Interfaces

© National Instruments Corporation 9-21 NI TestStand Reference Manual

TestStand Utility Functions Library
Use the TSUtil Functions Library to use certain aspects of the
TestStand API in particular ADEs. Many TSUtil functions operate on
environment-specific objects, such as menus, that the environment-neutral
TestStand API cannot access. The functions available in TSUtil vary
according to the ADE.

The TSUtil library contains functions to insert menu items that
automatically execute commands the TestStand UI Controls API provides.
The TSUtil library also provides functions to help localize the strings on a
user interface.

Refer to the Menus and Menu Items section of this chapter for more
information about using TSUtil functions to create menu items that perform
common TestStand commands. Refer to the Localization section of this
chapter for more information about displaying application user interface
strings in a different language.

Table 9-4 describes how to use the TSUtil library in different ADEs. If
Table 9-4 does not include the ADE you use, a version of TSUtil does not
exist for the ADE.

Chapter 9 Creating Custom User Interfaces

NI TestStand Reference Manual 9-22 ni.com

You can use the source code for one of the existing TSUtil libraries as a
guide to write your own code that performs similar functionality.

Table 9-4. Using the TSUtil Library in Different ADEs

ADE Help Location Files How to Use

LabVIEW Context help for
each VI and in the
NI TestStand VIs
and Functions
Help, accessible
by right-clicking
the VI and
selecting Help
from the shortcut
menu or by
selecting Help»
NI TestStand VIs
and Functions

VIs on the Functions»TestStand
palette

_TSUtility.llb located in
<TestStand>\API\LabVIEW

Place VIs on the block diagram.
Refer to Chapter 6, Creating
Custom User Interfaces in
LabVIEW, of the Using LabVIEW
with TestStand manual for more
information about using the TSUtil
library in LabVIEW.

LabWindows/CVI Function panels
(TSUtil.fp)

TSUtil.c, TSUtil.h, TSUtil.fp,
and TSUtil.obj located in
<TestStand>\API\CVI

Insert TSUtil.fp into the
LabWindows/CVI project. Include
TSUtil.h in the source files as
needed. The names of
TestStand-related functions begin
with a TS_ prefix. Refer to
Chapter 6, Creation Custom User
Interfaces in LabWindows/CVI, of
the Using LabWindows/CVI with
TestStand manual for more
information about using the TSUtil
library in LabWindows/CVI.

.NET Languages In the Object
Browser and in the
source window
using Intellisense

National Instruments.

TestStand.Utility.dll located in
<TestStand>\API\DotNet\

Assemblies\CurrentVersion

Add a reference to the assembly to
the project. The classes in this
assembly reside in the National
Instruments.TestStand.

Utility namespace. Refer to the
Adding Assembly References in
Visual Studio section of this chapter
for more information about adding
references to assembly files in
Visual Studio.

C++ (MFC) Comments in the
C++ header file,
TSUtilCPP.h

TSUtilCPP.cpp and TSUtilCPP.h
located in <TestStand>\API\VC

Add TSUtilCPP.cpp to the project
once. Include TSUtilCPP.h in the
source files as needed. The classes
in this library reside in the TSUtil
namespace.

Chapter 9 Creating Custom User Interfaces

© National Instruments Corporation 9-23 NI TestStand Reference Manual

Adding Assembly References in Visual Studio
Complete the following steps to add an assembly reference in
Visual Studio 2005.

1. Select the project in the Solution Explorer.

2. Select Project»Add Reference to launch the Add Reference
dialog box.

3. Click the .NET tab and select
National Instruments.TestStand.Utility from the list of
components.

4. Click OK to close the Add Reference dialog box.

Complete the following steps to add an assembly reference in
Visual Studio .NET 2003. You must use an assembly compatible with
TestStand 3.5 or earlier because Visual Studio .NET 2003 requires the
assembly to be compatible with the .NET Framework 1.1, and the
assemblies in TestStand 4.0 and later require the .NET Framework 2.0.

1. Select the project in the Solution Explorer.

2. Select Project»Add Reference to launch the Add Reference
dialog box.

3. Click the .NET tab and click the File Browse button to launch the
Select Components dialog box.

4. Navigate to the <TestStand>\API\DotNet\Assemblies\
PreviousVersion\3.5 directory.

5. Select National Instruments.TestStand.Utility.dll and
click Open.

6. Click OK to close the Add Reference dialog box.

Menus and Menu Items
TestStand applications that provide non-trivial menus can require a large
amount of source code to build and update the state of menus and to handle
events for menu items. Use the TSUtil functions to create menu items that
invoke TestStand commands to greatly reduce the amount of code required
to implement menus in an application. TestStand automatically dims or
enables these menu items according to the application state and sets their
captions according to the language selection. The menu items execute
commands automatically so that the application does not need to handle
menu events or provide command implementations.

Chapter 9 Creating Custom User Interfaces

NI TestStand Reference Manual 9-24 ni.com

The application can also insert sets of dynamic menu items, such as a set of
menu items to open files from the most recently used file list or a set of
menu items that run the current sequence with each available Process
Model entry point. To create TestStand menu items, you must first add
TSUtil to the project as described in the TestStand Utility Functions
Library section of this chapter.

Note The TSUtil .NET menu functions support using the MainMenu control in
Visual Studio .NET 2003 but do not support using the MenuStrip control in
Visual Studio 2005. To access the .NET MainMenu control in the Visual Studio 2005
Toolbox, select Choose Items from the context menu on the Toolbox pane, enable
MainMenu 2.0 on the .NET Framework Components tab of the Choose Toolbox Items
dialog box, and click OK to close the dialog box. The full-featured .NET example user
interface applications use MainMenu to display menus.

Updating Menus
The contents of a menu can vary depending on the current selection, other
user input, or asynchronous execution state changes. Instead of updating a
menu in response to any event or change that might affect the menu, update
the state of a menu just before the menu displays when the user opens the
menu. Table 9-5 lists the notification method different ADEs use to notify
the application when a user is about to open a menu.

Table 9-5. Menu Open Notification Methods in Different ADEs

ADE Menu Open Notification Method

LabVIEW <This VI>:Menu Activation? event

Refer to the Menu Bars and Menu Event
Handling section of Chapter 6, Creating
Custom User Interfaces in LabVIEW, of the
Using LabVIEW with TestStand manual for
more information about determining when a
menu is about to open in LabVIEW.

LabWindows/CVI InstallMenuDimmerCallback

Refer to the Menu Bars section of Chapter 6,
Creating Custom User Interfaces in
LabWindows/CVI, of the Using
LabWindows/CVI with TestStand manual for
more information about determining when a
menu is about to open in LabWindows/CVI.

Chapter 9 Creating Custom User Interfaces

© National Instruments Corporation 9-25 NI TestStand Reference Manual

Use the RemoveMenuCommands, InsertCommandsInMenu, and
CleanupMenu TSUtil functions to handle the menu open notifications and
remove and reinsert TestStand menu items. You can remove and insert
TestStand commands in menus that contain non-TestStand menu items.

The InsertCommandsInMenu function accepts an array of
CommandKinds enumeration constants. Depending on the element value
and the application state, each array element can create a single menu item,
a set of several menu items, or no menu items. The CommandKinds
enumeration also provides constants that expand into the full set of items
commonly found in test application top-level menus, such as the File menu,
Debug menu, or Configure menu.

Refer to the TestStand Utility Functions Library section of this chapter for
more information about the utility functions. Refer to the examples in the
<TestStand>\UserInterfaces\Full-Featured directory for
sample code that handles menu open notification events.

Localization
The StationOptions.Language property specifies the current
language. Localized TestStand applications use the
Engine.GetResourceString method to obtain text in the current
system language from language resource files. Refer to the Creating String
Resource Files section of Chapter 8, Customizing and Configuring
TestStand, for more information about creating string resource files.

Call the ApplicationMgr.LocalizeAllControls method to localize
all the user-visible TestStand UI Control strings you configure at design
time. Using the ApplicationMgr.LocalizeAllControls method
reduces the number of strings you must explicitly localize using the
Engine.GetResourceString method by localizing items such as list
column headers in the SequenceView control, text in the StatusBar
pane, captions in the Button control, and captions in the ListBar page.

.NET Form.MenuStart

C++ (MFC) CWnd::OnInitMenuPopup

Table 9-5. Menu Open Notification Methods in Different ADEs (Continued)

ADE Menu Open Notification Method

Chapter 9 Creating Custom User Interfaces

NI TestStand Reference Manual 9-26 ni.com

Buttons and menu items you connect to commands automatically localize
caption text. Refer to the Command Connections section of this chapter for
more information about connecting buttons and menu items to commands.

The ApplicationMgr.LocalizeAllControls method operates only
on TestStand UI Controls. For other controls and user interface elements,
the application must set each item of localized text. Table 9-6 lists the
TSUtil library functions you can use to localize non-TestStand controls and
menu items.

Refer to the TestStand Utility Functions Library section of this chapter for
more information about the TSUtil library.

User Interface Application Styles
Although you can use the TestStand UI Controls to create any type of
application, the single window, multiple window, and no visible window
formats are the most common. Applications of a particular style usually
share a similar implementation strategy, particularly with respect to the use
of the TestStand manager controls.

Table 9-6. TSUtil Library Localization Functions in Different ADEs

ADE TSUtil Library Localization Function

LabVIEW TestStand - Localize Front Panel.vi

TestStand - Localize Menu.vi

TestStand - Get Resource String.vi

LabWindows/CVI TS_LoadPanelResourceStrings

TS_LoadMenuBarResourceStrings

TS_SetAttrFromResourceString

TS_GetResourceString

.NET Localizer.LocalizeForm

Localizer.LocalizeMenu

C++ (MFC) Localizer.LocalizeWindow

Localizer.LocalizeMenu

Localizer.LocalizeString

Chapter 9 Creating Custom User Interfaces

© National Instruments Corporation 9-27 NI TestStand Reference Manual

Single Window
A single window application typically displays one execution and sequence
file at a time. Users can select the execution and sequence file to display
from a ListBar, ComboBox, or ListBox control. The examples in
the <TestStand>\UserInterfaces\Full-Featured and
<TestStand>\UserInterfaces\Simple directories are single window
applications.

A single window application contains one Application Manager control,
one SequenceFileView Manager control, and one ExecutionView Manager
control. To display sequences, connect the SequenceFileView Manager
and ExecutionView Manager controls to separate SequenceView
controls, alternate a connection from each manager control to a single
SequenceView control, or leave one or both manager controls
unconnected to a SequenceView control.

In the examples in the Full-Featured directory, the SequenceFileView
Manager control and the ExecutionView Manager control connect to
separate SequenceView controls, and only one SequenceView control is
visible at a time. Visibility depends on if you select to view sequence files
or executions.

In the examples in the Simple directory, the ExecutionView Manager
control connects to the SequenceView control. Because the
SequenceFileView Manager control does not connect to a SequenceView
control, these examples display only sequences for the current execution,
not sequences from the sequence file selection.

Multiple Window
A multiple window application includes at least one window that always
exists to contain the Application Manager control. Although this window
can be visible or invisible, it is typically visible and contains controls for
users to open sequence files.

For each sequence file users open, the application creates a Sequence File
window that contains a SequenceFileView Manager control and a
SequenceView control to which the manager control connects.
The application sets the SequenceFileViewMgr.UserData
property to attach a handle, reference, or pointer that represents
the window. When the application receives the
ApplicationMgr.DisplaySequenceFile event, the application
calls ApplicationMgr.GetSequenceFileViewMgr to determine if a
SequenceFileView Manager control currently displays the sequence

Chapter 9 Creating Custom User Interfaces

NI TestStand Reference Manual 9-28 ni.com

file. If so, the application retrieves the window from the
SequenceFileViewMgr.UserData property and activates the window.
If no window currently displays the sequence file, the application creates
a new window and sets the SequenceFileViewMgr.SequenceFile
property to display the sequence file. Because the window displays
only this sequence file, the application also sets the
SequenceFileViewMgr.ReplaceSequenceFileOnClose property to
False.

If a Sequence File window attempts to close and the
SequenceFileViewMgr.SequenceFile property is NULL, the
application closes the window immediately. If the
SequenceFileViewMgr.SequenceFile property is not NULL, the
application does not close the window. Instead, the application passes the
sequence file to the ApplicationMgr.CloseSequenceFile method.
When the application receives the
SequenceFileViewMgr.SequenceFileChanged event with a NULL
sequence file event parameter, the application closes the window that holds
the SequenceFileView Manager control.

The Sequence File window contains controls for users to execute the
sequence file the window displays. For each execution users start, the
application creates an Execution window that contains an ExecutionView
Manager control and a SequenceView control to which the manager
control connects. The application sets the
ExecutionViewMgr.UserData property to attach a handle, reference, or
pointer that represents the window. When the application receives the
ApplicationMgr.DisplayExecution event, the application calls the
ApplicationMgr.GetExecutionViewMgr method to determine if an
ExecutionView Manager control currently displays the execution. If so, the
application retrieves the window from the
ExecutionViewMgr.UserData property and activates the window. If no
window currently displays the execution, the application creates a new
window and sets the ExecutionViewMgr.Execution property to
display the execution. Because the window displays only this execution, the
application also sets the
ExecutionViewMgr.ReplaceExecutionOnClose property to False.

If an Execution window attempts to close and the
ExecutionViewMgr.Execution property is NULL, the application
closes the window immediately. If the ExecutionViewMgr.Execution
property is not NULL, the application does not close the window. Instead,
the application passes the execution to the
ApplicationMgr.CloseExecution method. The application does not

Chapter 9 Creating Custom User Interfaces

© National Instruments Corporation 9-29 NI TestStand Reference Manual

immediately close the Execution window to ensure that the window exists
until the execution the window displays completes. When the application
receives the ExecutionViewMgr.ExecutionChanged event with
a NULL execution event parameter, the application closes the window that
holds the ExecutionView Manager control.

A multiple window application can display multiple child windows instead
of displaying sequence files and executions in separate top-level windows.
Child windows can be visible or reside on tab control pages or similar
locations that allow users to easily select which child window to view.

No Visible Window
An application without a visible window is similar to a single window
application. The application can execute command-line arguments and
then exit, or the application can have a different mechanism to determine
which files to load and execute. Although an invisible application does not
require an ExecutionView Manager control, the application can use a
SequenceFileView Manager control to provide methods to launch an
execution for a sequence file. Use the
SequenceFileViewMgr.ExecutionEntryPoints property,
the SequenceFileViewMgr.Run method,
the SequenceFileViewMgr.RunSelectedSteps method,
the SequenceFileViewMgr.LoopOnSelectedSteps method, and
the SequenceFileViewMgr.GetCommand method to launch executions
in an application without a visible window.

Command-Line Arguments
The Application Manager control automatically processes the
command-line argument that invokes the application when you call the
ApplicationMgr.Start method. Set the
ApplicationMgr.ProcessCommandLine property to False before you
call the ApplicationMgr.Start method to disable command-line
processing. Refer to the Configuring Sequence Editor and User Interface
Startup Options section of Chapter 8, Customizing and Configuring
TestStand, for a description of the command-line arguments the
Application Manager control processes.

You can also handle the
ApplicationMgr.ProcessUserCommandLineArguments event
to support additional command-line arguments.
The ApplicationMgr.ProcessUserCommandLineArguments event
occurs when the Application Manager control parses and processes an

Chapter 9 Creating Custom User Interfaces

NI TestStand Reference Manual 9-30 ni.com

unrecognized command-line flag. Refer to the NI TestStand Help for more
information about using the
ApplicationMgr.ProcessUserCommandLineArguments event to
support user command-line flags in a user interface.

Persistence of Application Settings
The TestStand Engine stores Station Options dialog box settings and other
settings that apply to all TestStand applications. However, each user
interface also stores additional custom settings, including breaking
on the first step of execution, breaking when a step fails, and listing the
most recently used sequence files. The Application Manager control
stores these settings in the configuration file the
ApplicationMgr.ConfigFilePath property specifies.

The ApplicationMgr.BreakonFirstStep,
ApplicationMgr.PromptForOverwrite,
ApplicationMgr.EditReadOnlyFiles,
ApplicationMgr.MakeStepNamesUnique, and
ApplicationMgr.SaveOnClose properties persist to the configuration
file. Setting the value of one of these properties on the Application Manager
control in a designer sets the default value for the property. The Application
Manager control stores the default value in the configuration file it creates
if a configuration file does not already exist. If the configuration file already
exists, the Application Manager control loads the values of these properties
from the file.

Configuration File Location
The default value of the ApplicationMgr.ConfigFilePath property is
%TestStandLocalAppData%\UserInterface.xml, in which
%TestStandLocalAppData% is a macro that expands to a directory to
which the currently logged-in user has permission to write files. The
directory is typically <User Directory>\Local Settings\
Application Data\National Instruments\TestStand x.x on
Windows2000/XP and <User Directory>\AppData\Local\
National Instruments\TestStand x.x on Windows Vista. Set the
ApplicationMgr.ConfigFilePath property before the application
calls the ApplicationMgr.Start method to change the configuration
file location.

Chapter 9 Creating Custom User Interfaces

© National Instruments Corporation 9-31 NI TestStand Reference Manual

If you specify a relative file path or just a filename, the file location is
relative to the directory that contains the application. If users who do not
have Windows administrator privileges can run the application, you must
store the configuration file in a location to which users have permission to
write files.

Adding Custom Application Settings
After the application calls the ApplicationMgr.Start method,
complete the following steps to add your own setting to persist in the
configuration file.

1. Access the ApplicationMgr.ConfigFile property to obtain the
PropertyObjectFile that holds the contents of the configuration
file.

2. Access the PropertyObjectFile.Data property to obtain the
PropertyObject that holds the application settings.

3. Ensure your custom setting exists in the PropertyObject by setting
a default value of the setting by calling a method, such as the
PropertyObject.SetValBoolean method, with a lookup string,
such as “CustomSettings.MyExampleBooleanSetting,” and an
options parameter of PropOption_SetOnlyIfDoesNotExist.

4. Call a method, such as the PropertyObject.GetValBoolean
method, to obtain the current value of the custom option.

5. Call a method, such as the PropertyObject.SetValBoolean
method, with an options parameter of PropOption_NoOptions to
set the custom option in response to user input.

When you call the ApplicationMgr.ShutDown method or change any
Application Manager control setting, the Application Manager control
persists the application settings to the configuration file. You can also call
the PropertyObjectFile.WriteFile method at any time to persist
the settings.

Documenting Custom User Interfaces
You can use the Using the TestStand User Interfaces document, located at
<TestStand>\Doc\UsingtheTestStandUserInterfaces.doc, as a
starting point for creating a custom manual for user interface applications
you customize based on the TestStand full-featured user interface
examples. In addition, the menus for the TestStand full-featured user
interface examples include CommandKind_DefaultHelpMenu_Set, which

Chapter 9 Creating Custom User Interfaces

NI TestStand Reference Manual 9-32 ni.com

contains a set of commands that corresponds to the typical items in the Help
menu of a TestStand application, including support for using the <F1> key
to display help for the currently active TestStand UI control.

Deploying a User Interface
Refer to the Distributing a User Interface section of Chapter 14, Deploying
TestStand Systems, for more information about deploying a TestStand User
Interface application.

Authenticode Signatures for Windows Vista
Authenticode signatures can help identify the publisher of a binary file and
can help ensure that a binary file has not been modified since publication.
Refer to Microsoft documentation for more information about
Authenticode signatures.

Add an Authenticode signature to a TestStand user interface you create if
you plan to allow users to download the user interface from a non-trusted
public site and you want the operating system to identify your company
as the publisher of the user interface. Also add an Authenticode signature
to a user interface you create if the user interface requires administrator
privileges to run on Windows Vista and you want the UAC elevation
prompt to identify your company as the publisher of the user interface.

To verify an Authenticode signature, the requesting computer must connect
to the Internet to obtain a current Certificate Revocation List (CRL).
For .NET applications, the .NET Common Language Runtime (CLR)
verifies Authenticode signatures for assemblies. If the computer that loads
the assembly is not connected to the Internet, the CLR waits 15 seconds
before timing out.

Complete the following steps to disable CRL validation in Microsoft
Internet Explorer to avoid the timeout period on the computer, even if the
default browser on the computer is not Internet Explorer. Using the Internet
Explorer Internet Options to disable CRL validation does not expose the
computer to any additional security threats.

1. Navigate to Internet Options on the Windows Control Panel and click
the Advanced tab.

2. In the Security section, disable the Check for publisher’s certificate
revocation option.

Chapter 9 Creating Custom User Interfaces

© National Instruments Corporation 9-33 NI TestStand Reference Manual

Alternatively, you can disable CRL validation by setting the registry key
value of HKCU\Software\Microsoft\Windows\CurrentVersion\
WinTrust\Trust Providers\Software Publishing\State to
0x00023e00. To enable CRL validation, set the registry key value to
0x00023c00.

When you disable CRL validation to avoid the timeout period, the CLR
does not validate Authenticode-signed assemblies and does not grant the
assemblies publisher evidence or publisher identity permissions, which is
the same result when a timeout occurs. If the assemblies need these
permissions, the computer must connect to the Internet or you must
download a current CRL every 10–15 days.

As an alternative to disabling CRL validation for the entire computer, you
can work around CRL validation if an application that uses the .NET
Framework 2.0 and that has an Authenticode signature experiences the
15-second load time delay. Microsoft provides a fix you can download so
you can correct this delay for .NET Framework 2.0 applications. The
.NET Framework 2.0 Service Pack 1 also includes this fix. Refer to
Microsoft Knowledge Base article 936707 at support.microsoft.com/
kb/936707 for more information about correcting delays in
.NET Framework 2.0 applications that use Authenticode signatures.

The TestStand Sequence Editor and user interface examples do not include
Authenticode signatures because National Instruments distributes
TestStand through trusted channels and because the TestStand Sequence
Editor and user interface examples do not require administrator privileges
to run on Windows Vista. Additionally, National Instruments finds the
15-second load time delay on isolated networks unacceptable and believes
that you should use discretion when disabling CRL validation. Therefore,
if you run the sequence editor or example user interfaces as administrator
on Windows Vista, the UAC elevation prompt does not identify the
sequence editor or example user interface as a National Instruments
product.

Application Manifests
When an application launches on Windows Vista, the User Account
Control (UAC) security component determines whether to grant the
application administrative privileges. A user that logs into Windows Vista
as a standard user can write only to specific locations on disk and in the
registry. Standard user is the default login for Windows Vista.

Chapter 9 Creating Custom User Interfaces

NI TestStand Reference Manual 9-34 ni.com

Microsoft recommends that applications run without requiring
administrator privileges. If you design applications that do not attempt to
access protected areas of the operating system, all users can run the
application as intended without requiring administrator privileges. You can
also include manifests to specify the execution level the application
requires.

If an application does not specify an execution level in its manifest, the
UAC launches the application with the standard or administrator privileges
of the user. With standard privileges, the system uses virtualization to
redirect any read and write operations for system files and registry keys to
a per-user location instead of the actual system copy of the file or registry
key. Do not create applications that rely on virtualization to perform these
types of administrative operations.

The default TestStand user interface application binary files include
manifests that instruct the UAC to execute the application without
virtualization and without requiring administrative privileges.
LabVIEW 8.5 and later automatically include a default manifest in built
applications. LabWindows/CVI 8.5 and later allow you to specify a
manifest for built applications. When you build the application, refer to the
documentation for the ADE you used for more information on how to
include a manifest.

© National Instruments Corporation 10-1 NI TestStand Reference Manual

10
Customizing Process Models
and Callbacks

You can customize the default TestStand process models and callbacks.
Customize callbacks to implement custom functionality specific to UUT
models. Customize process models to implement functionality that is
standard throughout an organization and applies to all or most UUTs. Use
callbacks to implement functionality you might change. Use process
models to implement functionality you are unlikely to change. Refer to
Appendix A, Process Model Architecture, for more information about the
TestStand process models.

Modifying Process Model Sequence Files
You must modify the process model sequence files directly to make
changes that apply wherever TestStand uses the process model.

TestStand installs the SequentialModel.seq, ParallelModel.seq,
and BatchModel.seq process model sequence files and supporting files
in the <TestStand>\Components\Models\TestStandModels
directory. To modify the installed process model files or to create a new
process model file, copy the <TestStand>\Components\Models\
TestStandModels directory to the <TestStand Public>\
Components\Models directory and make changes to the copies of the
files. When you copy installed files to modify, rename the files after you
modify them if you want to create a separate custom component. You do
not have to rename the files after you modify them if you only want to
modify the behavior of an existing component. If you do not rename the
files and you use the files in a future version of TestStand, changes National
Instruments makes to the component might not be compatible with the
modified version of the component. Storing new and customized files in the
<TestStand Public> directory ensures that new installations of the
same version of TestStand do not overwrite the customizations and ensures
that uninstalling TestStand does not remove the files you customize.

Chapter 10 Customizing Process Models and Callbacks

NI TestStand Reference Manual 10-2 ni.com

In addition to editing process model sequence files, you can convert
sequence files to process model sequence files. Complete the following
steps to specify a sequence file as a process model sequence file.

1. Select the sequence file and select Edit»Sequence File Properties.

2. In the Sequence File Properties dialog box, click the Advanced tab.

3. Select Model from the Type ring control.

4. Click OK.

Although you edit a process model sequence file in a regular Sequence File
window, the file includes Model entry points and Model callbacks.
TestStand maintains special properties for entry point and callback
sequences, and you can specify the values of these properties when you edit
the sequences in a process model file.

When you access the Sequence Properties dialog box for any sequence in a
model file, the dialog box contains a Model tab you use to specify if the
sequence is a normal sequence, a callback sequence, or an entry point
sequence.

Normal Sequences
A normal sequence is any sequence other than a callback or an entry point.
In process model files, use normal sequences as Utility subsequences that
entry points or callbacks call. When you select Normal from the Type ring
control on the Model tab of the Sequence Properties dialog box, the Model
tab does not include any other options.

Callback Sequences
Model callbacks are sequences entry point sequences call and client
sequence files can override. Use Model callbacks to customize the behavior
of a process model for each client sequence file that uses the process model.
By defining one or more Model callbacks in a process model file, you
specify the set of process model operations you can customize from a client
sequence file.

Complete the following steps to define a Model callback.

1. Add a sequence to the process model file.

2. Select Edit»Sequence Properties to launch the Sequence Properties
dialog box.

3. Click the Model tab and select Callback from the Type ring control.

Chapter 10 Customizing Process Models and Callbacks

© National Instruments Corporation 10-3 NI TestStand Reference Manual

4. Click OK.

5. Call the new sequence you just created from the process model.

You can override a callback in the process model sequence file by using the
Sequence File Callbacks dialog box to create a sequence with the same
name but different functionality in the client sequence file. Select Edit»
Sequence File Callbacks to launch the Sequence File Callbacks dialog
box. Refer to the NI TestStand Help for more information about the
Sequence File Callbacks dialog box.

Some Model callbacks, such as the TestReport callback in the default
process model, are sufficient for handling specific types of operations.
Other Model callbacks are placeholders you override with sequences in the
client sequence file. For example, the MainSequence callback in the default
process model file is a placeholder for the MainSequence callback you
create in the client sequence file.

A primary process model file can directly call model callback sequences in
a secondary process model file. At run time, if the client sequence file of
the primary sequence file implements a callback defined in the secondary
process model file, TestStand invokes the callback sequence in the client
sequence file, even if the primary process model file does not define the
callback. You must add a copy of the callback sequence to the primary
model file for the callback to appear in the Sequence File Callbacks dialog
box for the client sequence file.

Entry Point Sequences
You can invoke Execution entry point sequences and Configuration entry
point sequences from the TestStand Sequence Editor or user interface
menus to run client files or to configure model settings.

Execution entry points run test programs typically by calling the
MainSequence callback in the client sequence file. The TestStand
Sequential, Parallel, and Batch process models contain the following
Execution entry points:

• Test UUTs—Tests and identifies multiple UUTs or batches of UUTs
in a loop.

• Single Pass—Tests one UUT or a single batch of UUTs without
identifying the UUTs.

By default, the Execute menu lists Execution entry points only when the
active window contains a sequence file that uses the process model.

Chapter 10 Customizing Process Models and Callbacks

NI TestStand Reference Manual 10-4 ni.com

Configuration entry points configure a feature of the process model and
usually save the configuration information in a .ini file the <TestStand
Application Data>\Cfg directory. The TestStand process models
contain the following Configuration entry points:

• Report Options—Launches the Report Options dialog box, in which
you enable UUT report generation and configure the report type and
contents of the report files.

• Database Options—Launches the Database Options dialog box, in
which you enable UUT result logging and configure the schema for
mapping TestStand results to database tables and columns.

• Model Options—Launches the Model Options dialog box, in which
you configure the number of test sockets and other process
model-related options.

By default, the Configure menu lists the Configuration entry points.

Modifying Callbacks
TestStand includes Engine callback and Front-End callback sequences you
can customize to meet specific needs.

Engine Callbacks
The TestStand Engine invokes a set of Engine callbacks at specific points
during execution. TestStand defines the set of Engine callbacks and the
callback names because the TestStand Engine controls the execution of
steps and the loading and unloading of sequence files.

Use Engine callbacks to configure TestStand to call certain sequences at
various points during a test, including before and after the execution of
individual steps, before and after interactive executions, after loading a
sequence file, or before unloading a sequence file.

TestStand categorizes Engine callbacks according to the file in which the
callback sequence appears. You can define Engine callbacks in sequence
files, process model files, and in StationCallbacks.seq in the
<TestStand Public>\Components\Callbacks\Station directory.

Note TestStand does not predefine any Station Engine callbacks in
StationCallbacks.seq in the <TestStand>\Components\Callbacks\Station
directory but might in a future version of TestStand.

Chapter 10 Customizing Process Models and Callbacks

© National Instruments Corporation 10-5 NI TestStand Reference Manual

TestStand invokes Engine callbacks in normal sequence files only when
executing steps in the sequence file or when loading or unloading the
sequence file. TestStand invokes Engine callbacks in process model files
when executing steps in the model file, steps in sequences the model calls,
and steps in any nested calls to subsequences. TestStand invokes Engine
callbacks in StationCallbacks.seq when TestStand executes steps on
the test station.

Table 10-1 lists the engine callbacks TestStand defines, indicates where
you must define the callback sequence, and specifies when the engine calls
the callback.

Table 10-1. Engine Callbacks

Engine Callback
Where You Define

the Callback
When the Engine
Calls the Callback

SequenceFilePreStep Any sequence file Before the engine executes
each step in the sequence
file.

SequenceFilePostStep Any sequence file After the engine executes
each step in the sequence
file.

SequenceFilePreInteractive Any sequence file Before the engine begins an
interactive execution of
steps in the sequence file.

SequenceFilePostInteractive Any sequence file After the engine completes
an interactive execution of
steps in the sequence file.

SequenceFileLoad Any sequence file When the engine loads the
sequence file into memory.

SequenceFileUnload Any sequence file When the engine unloads
the sequence file from
memory.

SequenceFilePostResultListEntry Any sequence file After the engine fills out
the step result for a step in
the sequence file.

SequenceFilePostStepRuntimeError Any sequence file After a step in the sequence
file generates a run-time
error.

Chapter 10 Customizing Process Models and Callbacks

NI TestStand Reference Manual 10-6 ni.com

SequenceFilePostStepFailure Any sequence file After a step in the sequence
fails.

ProcessModelPreStep Process model file Before the engine executes
each step in any client
sequence file the process
model calls and each step
in any resulting
subsequence calls.

ProcessModelPostStep Process model file After the engine executes
each step in any client
sequence file the process
model calls and each step
in any resulting
subsequence calls.

ProcessModelPreInteractive Process model file Before the engine begins an
interactive execution of
steps in a client sequence
file and steps in any
resulting subsequence
calls.

ProcessModelPostInteractive Process model file After the engine completes
an interactive execution of
steps in a client sequence
file and steps in any
resulting subsequence
calls.

ProcessModelPostResultListEntry Process model file After the engine fills out
the step result for a step in
any client sequence file the
process model calls
or in any resulting
subsequence calls.

Table 10-1. Engine Callbacks (Continued)

Engine Callback
Where You Define

the Callback
When the Engine
Calls the Callback

Chapter 10 Customizing Process Models and Callbacks

© National Instruments Corporation 10-7 NI TestStand Reference Manual

ProcessModelPostStepRuntimeError Process model file After a step generates a
run-time error when the
step is in a client sequence
file the process model calls
or in any resulting
subsequence calls.

ProcessModelPostStepFailure Process model file After a step fails when the
step is in a client sequence
file the process model calls
or in any resulting
subsequence calls.

StationPreStep StationCallbacks.seq Before the engine executes
each step in any sequence
file.

StationPostStep StationCallbacks.seq After the engine executes
each step in any sequence
file.

StationPreInteractive StationCallbacks.seq Before the engine begins
any interactive execution.

StationPostInteractive StationCallbacks.seq After the engine completes
any interactive execution.

StationPostResultListEntry StationCallbacks.seq After the engine fills out
the step result for a step in
any sequence file.

StationPostStepRuntimeError StationCallbacks.seq After any step generates a
run-time error.

StationPostStepFailure StationCallbacks.seq After any step fails.

Table 10-1. Engine Callbacks (Continued)

Engine Callback
Where You Define

the Callback
When the Engine
Calls the Callback

Chapter 10 Customizing Process Models and Callbacks

NI TestStand Reference Manual 10-8 ni.com

You can use Engine callbacks in the following ways:

• Use the SequenceFileLoad callback to ensure that you configure
external resources the sequence file uses only once before you execute
the sequence. Usually, you initialize devices a sequence requires by
creating steps in the Setup step group for the sequence. However, if
you call the sequence repeatedly, you can move the Setup steps into a
SequenceFileLoad callback for the subsequence file so that the steps
run only when the sequence file loads.

• Use the StationPreStep and StationPostStep callbacks to accumulate
statistics on all steps that execute on the test station. You can inspect
the name and types of steps that accumulate data on specific steps.

Caveats for Using Engine Callbacks
Consider the following issues when you define Engine callbacks:

• If you define a SequenceFilePreStep, SequenceFilePostStep,
SequenceFilePreInteractive, or SequenceFilePostInteractive callback
in a process model file, the callback applies only to the steps in the
process model file.

• Do not define a SequenceFileLoad or SequenceFileUnload callback in
the StationCallbacks.seq because TestStand does not call these
callbacks.

• If a callback sequence is empty, TestStand does not invoke the Engine
callback.

• Process models use the Execution.EnableCallback
method to disable the ProcessModelPostResultListEntry and
SequenceFilePostResultListEntry callbacks when the model does not
need to process results on-the-fly for report generation or database
logging.

• TestStand calls other Engine callbacks only when executing the
SequenceFileLoad and SequenceFileUnload Engine callbacks.
TestStand does not call Engine callbacks when executing the other
Engine callbacks.

Chapter 10 Customizing Process Models and Callbacks

© National Instruments Corporation 10-9 NI TestStand Reference Manual

Front-End Callbacks
Front-End callbacks are sequences in the FrontEndCallbacks.seq file
multiple user interface applications can call to share the same
implementation for a specific operation. The FrontEndCallback.seq
file TestStand installs in the <TestStand>\Components\Callbacks\
FrontEnd directory contains one LoginLogout Front-End callback
sequence. The TestStand Sequence Editor and default user interfaces call
the LoginLogout callback.

Use Front-End callback sequences to implement operations so you can
modify a Front-End callback without modifying the source code for the
user interfaces or rebuilding the executables for the user interfaces. For
example, to change how various user interfaces perform the login
procedure, modify only the LoginLogout sequence in
FrontEndCallbacks.seq.

To modify the default implementation of the Front-End callback or to
create new Front-End callbacks, copy the FrontEndCallbacks.seq file
from the <TestStand>\Components\Callbacks\FrontEnd directory
to the <TestStand Public>\Components\Callbacks\FrontEnd
directory and make any changes to copy of the file. When you copy
installed files to modify, rename the files after you modify them if you want
to create a separate custom component. You do not have to rename the files
after you modify them if you only want to modify the behavior of an
existing component. If you do not rename the files and you use the files in
a future version of TestStand, changes National Instruments makes to the
component might not be compatible with the modified version of the
component. Storing new and customized files in the <TestStand
Public> directory ensures that new installations of the same version of
TestStand do not overwrite the customizations and ensures that uninstalling
TestStand does not remove the files you customize. You can use functions
in the TestStand API to invoke the modified Front-End callback sequence
file from each user interface application you create. However, because you
cannot edit the source for the sequence editor, you cannot make the
sequence editor call new Front-End callbacks you create.

© National Instruments Corporation 11-1 NI TestStand Reference Manual

11
Type Concepts

TestStand stores step type and data type definitions in files and in memory.
You can modify TestStand types and use type version numbers to
determine which version of the type to load. Use the Types window to
create, modify, and examine step types and data types. Refer to Chapter 4,
Built-In Step Types, for more information about the step types TestStand
installs. Refer to Chapter 12, Standard and Custom Data Types, for more
information about data types.

Storing Types in Files and Memory
TestStand files store the definition for each step type and data type the file
uses. You can also specify that a file always saves the definition for a type,
even if the file does not currently use the type. Because many files can use
the same type, many files can contain the definition for the type. All
sequence files, for example, might contain the definitions for the
Pass/Fail Test step type and the Error standard data type.

TestStand allows only one definition for each uniquely named type in
memory. The type can appear in multiple files, but only one underlying
definition of the type exists in memory. If you modify the type in one file,
the type definition updates in all loaded files. Refer to the Types Window
section of this chapter for more information about viewing the types in
memory and the files that reference the type.

Modifying Types
You can modify the built-in and custom properties of step types you create
and custom data types you create. However, you cannot modify the built-in
step types and standard data types TestStand installs.

Use the Copy and Paste context menu items to copy and rename an existing
or built-in step type or standard data type in the Types pane of the Types
window of the sequence editor.

Chapter 11 Type Concepts

NI TestStand Reference Manual 11-2 ni.com

When you modify a type, TestStand enables the Modified built-in property
for the type. TestStand cannot automatically resolve type conflicts unless
you disable the Modified property. To disable the Modified property, you
typically increment the version number of the type on the Version tab of the
Step Type Properties dialog box or on the Version tab of the Type Properties
dialog box when you complete all the modifications to the type.

By default, the Before Saving Modified Types option on the Preferences tab
of the Station Options dialog box is set to Prompt to Increment Version
Types. This causes TestStand to launch the Modified Types Warning dialog
box when you select File»Save and the sequence file or type palette
contains types that are marked as modified. The prompt allows you to
increment the type version or remove the modified mark on the type before
saving, or save the type as modified. Refer to the NI TestStand Help for
more information about the Before Saving Modified Types option on the
Preferences tab of the Station Options dialog box and about the Modified
Types Warning dialog box.

Type Versioning
When you complete edits to a type, increment the version number of the
type. TestStand uses the version number to determine whether to load a
type from a file when the type is already in memory and to determine which
version of a type to use when the version numbers are different.

You can also specify the earliest TestStand version that can use a type
to prevent the TestStand Engine from using the type if the version of the
engine is earlier than the TestStand version you specify. If you enable this
option and an earlier version of the engine attempts to load the type,
TestStand ignores the type and loads the file only if an earlier version of
the type already exists in memory.

Resolving Type Conflicts
If you load a file that contains a type definition and another type definition
with the same name already exists in memory, TestStand compares the
two type definitions, including all the built-in and custom subproperties in
the types. If the types are identical, TestStand continues to use the type in
memory.

Chapter 11 Type Concepts

© National Instruments Corporation 11-3 NI TestStand Reference Manual

If the types are not identical, TestStand attempts to resolve the type conflict.
TestStand automatically selects the type with the greater version number
when all of the following conditions exist:

• The Modified property is disabled for both types

• The Always prompt the user to resolve the conflict option on the
Version tab of the Type Properties dialog box or the Step Type
Properties dialog box is disabled for both types

• The Allow Automatic Type Conflict Resolution option on the
Preferences tab of the Station Options dialog box does not restrict
automatic type conflict resolution in this situation

If TestStand cannot automatically determine which type to use or if an
execution is running and the type TestStand wants to use is located in the
file being loaded, TestStand launches the Type Conflict in File dialog box,
in which you can resolve the conflict. However, if TestStand is loading the
file for execution and the type TestStand wants to use is located in the file
being loaded, TestStand generates an error.

Type conflicts can occur when you use an earlier version of TestStand to
open files saved in a newer version of TestStand. Typical differences
include the addition of step type subproperties and altered flags. Select to
use the earlier TestStand version of the type instead of the types from the
file you are trying to open.

To prevent the altered version of a type from being used in or accidentally
propagated to earlier TestStand version sequence files, enable the Set
Earliest TestStand Version that can Use this Type option on the Version
tab of the Step Type Properties dialog box and set the earliest version to the
current version of TestStand.

In addition, when TestStand saves a sequence file as an earlier version of a
TestStand sequence file, the TestStand Engine saves the types from the type
palette files in the <TestStand>\Components\Compatibility\
<VersionNumber> and <TestStand Public>\Components\
Compatibility\<VersionNumber> directories with the sequence file.
Place type palette files from earlier versions of TestStand in the
<TestStand Public>\Components\Compatibility\

<VersionNumber> directory to ensure that TestStand saves the correct
version of the types with the sequence file.

Refer to the NI TestStand Help for more information about the Station
Options dialog box, the Step Type Properties dialog box, the Type Conflict
in File dialog box, and the Type Properties dialog box.

Chapter 11 Type Concepts

NI TestStand Reference Manual 11-4 ni.com

Types Window
Use the Types window in the sequence editor to view and edit step types,
standard data types, and custom data types.

The View Types For pane of the Types window contains sections for type
palettes, sequence files, and other items. When you select a file in the View
Types For pane, the Types pane of the Types window lists the step types,
standard data types, and custom data types used by or attached to the file.
You can also display types for all loaded files. Use the Standard Data Types
section to examine subproperties of the standard data types. Use the
Custom Data Types section to create and modify custom data types. When
you select File»Save in the Types window, TestStand saves the file you
select in the Types pane.

Refer to the NI TestStand Help for more information about the Types
window.

Type Palette Files
Type palette files contain step types, standard data types, and custom data
types you want available in the sequence editor at all times. Drag a type to
a type palette file in the Types window to ensure that the type is always
available, even if the user manager, station globals, or any open sequence
files do not use the type. Type palette files are located in the
<TestStand>\Components\TypePalettes directory. Typically, you
create new types in the MyTypes.ini type palette file in the <TestStand
Public>\Components\TypePalettes directory or in a new type
palette file you create.

You can distribute step types and data types you create to other computers
by installing a type palette file in the <TestStand Public>\
Components\TypePalettes directory. Use the Install_ prefix in the
name of the type palette files you want to install. At startup, TestStand
searches the TypePalettes directory for type palette files with the
Install_ prefix. When TestStand finds a type palette file to install with a
base filename that is not the same as any existing type palette file, TestStand
removes the Install_ prefix and adds the type palette to the type palette
list. When TestStand finds a type palette file to install with a base filename
that matches an existing type palette, TestStand merges the types from the
install file into the existing type palette file and deletes the install file. This
method is better than modifying the existing type palette file because this
method is more modular and flexible for deployment and updates.

Chapter 11 Type Concepts

© National Instruments Corporation 11-5 NI TestStand Reference Manual

Sequence Files
Sequence files contain step types, standard data types, and custom data
types the variables and steps in the file use. When you save the contents of
the Sequence File window, TestStand saves the definitions of the types the
sequence file uses in the sequence file itself.

When you create a new type in the Types pane for a sequence file, the type
appears in the Insert Local, Insert Global, Insert Parameter, Insert Field, or
Insert Step submenus only in that Sequence File window. To use a new type
in other sequence files, copy or drag the new type to a type palette file
because each type in a type palette file appears in the appropriate Insert
submenu for all windows. You can also manually copy or drag the new type
from one sequence file to another. Refer to the NI TestStand Help for more
information about the Sequence File window.

Station Globals
Station globals contain standard and custom data types the station global
variables use. When you save the contents of the Station Globals window,
TestStand saves the definitions of the types station global variables use
in the StationGlobals.ini file in the <TestStand Application
Data>\Cfg directory. Refer to the NI TestStand Help for more information
about the Station Globals window.

Because station globals are prone to race conditions and data validity
issues, use queues and notifications for intrathread communication. Refer
to Appendix B, Synchronization Step Types, and the NI TestStand Help for
more information about Queue and Notification objects.

User Manager
All users and user profiles use the User standard data type. To add
new privileges for all users and groups, add the privileges to the
NI_UserCustomPrivileges type. When you save the contents of the User
Manager window, TestStand saves the definitions of the types used to
define users in the Users.ini file in the <TestStand Application
Data>\Cfg directory. Refer to the NI TestStand Help for more information
about the User Manager window. Refer to Chapter 7, User Management,
for more information about using the TestStand User Manager.

© National Instruments Corporation 12-1 NI TestStand Reference Manual

12
Standard and Custom Data
Types

When you insert variables, parameters, or step properties, you can select a
data type to modify for the item. You can also create and modify custom
data types to meet the needs of an application. Refer to Chapter 11, Type
Concepts, for more information about types.

Using Data Types
The context menu of each window or pane in which you can insert a
variable, parameter, or property includes an Insert item, as listed in
Table 12-1.

Table 12-1. Creating Data Type Instances from Context Menus

Context
Menu Item Location of Context Menu Item Inserted

Insert File Global File Globals section of the Variables
pane in the Sequence File window

Sequence file global variable

Insert Parameter Parameters section of the Variables
pane in the Sequence File window

Sequence parameter

Insert Local Locals section of the Variables pane in
the Sequence File window

Sequence local variable

Insert Station
Global

Station Globals window Station global variable

Insert User
Insert Group

User Manager window New object with the User data
type

Insert Field Types window New element in an existing
data type

Chapter 12 Standard and Custom Data Types

NI TestStand Reference Manual 12-2 ni.com

With the exception of the Insert User and Insert Group items, all the context
menu items in Table 12-1 provide a submenu from which you can select the
following categories of data types:

• Simple data types TestStand defines, including the number, string,
Boolean, and object reference data types.

• Container data type, in which you can add other data types. You can
use an empty container as a parameter when you want to pass an object
of any type to the sequence, in which case you also must turn off type
checking for the parameter.

• Named data types, including all the custom named data types in type
palette files or in the files you are currently editing. The submenu also
includes standard TestStand named data types, such as Error, Path,
Expression, and CommonResults. Refer to the Using Standard Named
Data Types section of this chapter for more information about the
standard named data types.

• An array of elements that all have the same data type.

If the submenu does not contain the data type you require, you must create
the data type in the Types window and then select the new data type from
the Type submenu of the Insert context menu. If the data type already exists
in another window or pane, copy or drag the data type to a type palette file
or to the file you are editing.

To create a parameter with a complex data type, first create the data type in
the Types window and then select the complex data type from the Insert
Parameter»Type submenu.

Specifying Array Sizes
Select an item from the Array of submenu of the Insert context menu to
launch the Array Bounds dialog box, in which you can set and modify
the array bounds. Figure 12-1 shows the settings for a three-dimensional
array.

Chapter 12 Standard and Custom Data Types

© National Instruments Corporation 12-3 NI TestStand Reference Manual

Figure 12-1. Array Bounds Dialog Box

The first and outermost dimension has five elements, with 0 as the
minimum index and 4 as the maximum index. The second dimension has
10 elements, with 1 as the minimum index and 10 as the maximum index.
The third and innermost dimension has three elements, with –1 as the
minimum index and 1 as the maximum index.

After you create the variables, parameter, or property as an array, you can
modify the array bounds by clicking the Resize Array button in the Name
column of the list view to launch the Array Bounds dialog box. On the
Types pane of the Types window, right-click the variable, parameter, or
property, select Properties from the context menu, and click the Bounds
tab of the Type Properties dialog box to modify the array bounds.

Dynamic Array Sizing
You can also resize an array during execution.

In an expression, use the GetNumElements and SetNumElements
expression functions to obtain and modify the upper and lower bounds for
a one-dimensional array. For multi-dimensional arrays or to change the
number of dimensions in the array, use the GetArrayBounds and
SetArrayBounds expression functions. The Operators/Functions tab of the
Expression Browser dialog box includes documentation for each
expression function. Refer to the NI TestStand Help for more information
about the Expression Browser dialog box.

In a code module, use the PropertyObject.GetDimensions method
and the PropertyObject.SetDimensions method to obtain or set the
upper and lower bounds of an array or to change the number of dimensions
in the array. Refer to the NI TestStand Help for more information about the

Chapter 12 Standard and Custom Data Types

NI TestStand Reference Manual 12-4 ni.com

PropertyObject.GetDimensions method and the
PropertyObject.SetDimensions method.

Empty Arrays
Enable the Empty option in the Array Bounds dialog box or on the Bounds
tab of the Type Properties dialog box if you want the array to be empty
when you start the execution. When you enable this option, the Upper
Bounds control for each dimension dims. Defining an initially empty array
is useful when you do not know the maximum array size the sequence
requires during execution and when you want to save memory during the
periods of execution when the sequence does not use the array.

Modifying Data Types and Values
With the exception of resizing arrays, you cannot change the internal
structure of a variable, parameter, or property after you create it from a data
type. You cannot change the data type setting or deviate from the data type.

You can, however, change the content of the data type itself. Changing the
content of a data type affects all variables, parameters, and properties that
use the data type.

Use the Value column on the Variables pane to modify the value of a
variable, parameter, or property. For variables and properties, the data type
value is the initial value TestStand uses when you start execution or call the
sequence. For parameters, the data type value is the default value TestStand
uses when you do not pass an argument value explicitly. On the Types pane
of the Types window, right-click the variable, parameter, or property and
select Properties from the context menu to launch the Type Properties
dialog box, in which you can specify additional properties of the type. In
general, if you make changes to property values in a type, the changes do
not affect all instances of the type. Enable the Apply Changes in this
Dialog to all Loaded Instances of the Type option in the Type Properties
dialog box to apply the change to all loaded instances of the type. Refer to
the NI TestStand Help for more information about using the Type
Properties dialog box.

You can also rearrange variables, parameters, and properties in the
Variables pane by dragging or copying the items you want to move.
The order of variables and properties does not matter, but the order of
parameters affects how you configure a Sequence Call step that invokes
the sequence.

Chapter 12 Standard and Custom Data Types

© National Instruments Corporation 12-5 NI TestStand Reference Manual

Object References
Object reference properties can contain references to .NET or
ActiveX/COM objects. TestStand stores ActiveX references as
an IDispatch pointer or an IUnknown pointer. If the variable, parameter,
or property is an object reference, you can use the Release Object button,
which displays only if the value of the variable, parameter, or property
is non-zero, in the Value column on the Variables pane to release the
reference.

You can set the reference value only by using an expression, by using a code
module that uses the TestStand API, or by calling the TestStand API
directly using the ActiveX/COM Adapter.

The value you assign to the object reference must be a valid object pointer.
When you assign a non-zero value to an object reference, TestStand
maintains a reference to the object for as long as the variable, parameter, or
property contains the value. TestStand automatically releases the reference
to the object when the variable, parameter, or property loses its scope. For
example, if a sequence local variable contains a reference to an object,
TestStand releases the reference when the call to the sequence completes.
You can also release the reference to the object by assigning the variable,
parameter, or property a new value or the constant Nothing. Do not release
an object variable by assigning it a value of 0 because TestStand assigns a
reference to the Numeric property for the reference object. Instead, use the
constant Nothing to clear the reference. When you release all references
to a .NET object, TestStand marks the object for garbage collection. When
you release all references to an ActiveX/COM object, TestStand destroys
the object.

If you have two reference properties, TestStand performs an equality
comparison on the IUnknown pointers for ActiveX objects and the pointer
values for .NET objects.

Using Standard Named Data Types
TestStand defines a set of standard named data types, such as Error,
CommonResults, Path, and Expression. The only standard named
data types you can modify are the CommonResults and the
NI_UserCustomPrivileges types. With the CommonResults standard data
type, you can add subproperties to the standard data types, but you cannot
delete any of the built-in subproperties.

Chapter 12 Standard and Custom Data Types

NI TestStand Reference Manual 12-6 ni.com

Error and CommonResults
TestStand inserts a Results property in every step you create. The Results
property includes at least three subproperties—Error, Status, and
CommonResults.

Steps use the Error subproperty to indicate run-time errors. The Error
subproperty uses the Error standard data type, which is a container that
includes three subproperties—Code, Msg, and Occurred. When a run-time
error occurs in a step, the step sets the Code subproperty to a value that
indicates the source of the error, the Msg subproperty to a string that
describes the error, and the Occurred subproperty to True.

The CommonResults subproperty uses the CommonResults standard data
type, which is an initially empty object. By adding subproperties to the
CommonResults data type, you can add extra result information to all steps
in a standard way. Newer versions of TestStand do not overwrite the
subproperties you add to the CommonResults data type.

If you modify CommonResults without incrementing the type version
number, you might see a type conflict when you open other sequence files,
such as FrontEndCallbacks.seq when TestStand loads the
LoginLogout Front-End callback before you log in or out. TestStand
prompts you to increment the version number when you save changes to
any data type or step type. National Instruments recommends modifying
the CommonResults data type only if you want to make an architectural
change to all step types that you use. Share the modified CommonResults
data type and the step types that use the CommonResults data type only
with systems on which you are certain no conflicting changes to
CommonResults will be deployed. Refer to the Type Versioning section of
Chapter 11, Type Concepts, for more information about incrementing type
version numbers.

Path
Use the Path standard data type to store a pathname as a string so TestStand
can locate path values saved in variables and step properties when
processing sequence files for deployment. National Instruments
recommends always using relative paths when you prepare for deployment
so TestStand can find files even if you install the files in a location on the
target computer that is different than the location of the files on the
development computer.

Chapter 12 Standard and Custom Data Types

© National Instruments Corporation 12-7 NI TestStand Reference Manual

Expression
Use the Expression standard data type to store an expression as a string so
TestStand can locate expression values saved in variables and step
properties when editing sequence files.

Creating Custom Data Types
Complete the following steps to create a custom data type.

1. On the Types pane of the Types window, expand the Custom Data
Types section.

2. Right-click and select Insert Custom Data Type from the context
menu. You can also use the Copy and Paste context menu items to copy
and rename an existing data type.

3. Select the data type you want from the submenu. Refer to the Using
Data Types section of this chapter for more information about
selecting a data type. If you select the Container type from the
submenu, TestStand creates the data type without any fields in which
you can insert additional data types.

4. Right-click the new data type and select Properties from the context
menu to launch the Type Properties dialog box, in which you can
specify the version number of the type and how to pass the data type to
LabVIEW, LabWindows/CVI, and .NET code modules.

When you create new data types, use unique names to avoid conflicts with
the default names TestStand uses. For example, begin new custom data type
names with a unique ID, such as a company prefix.

Properties Common to All Data Types
TestStand defines many built-in data type properties common to all data
types. You can examine and modify the values of the built-in data type
properties in the Types window. Right-click a data type and select
Properties from the context menu to launch the Type Properties dialog
box, which contains the following tabs:

• General tab—Use this tab to change the value, numeric format, flags,
and comments for the property. Click the Advanced button to launch
the Edit Flags dialog box, in which you can modify the property flags.
Typically, you need to configure property flags only when you develop
a relatively sophisticated custom data type. Refer to the NI TestStand
Help for more information about the Edit Flags dialog box. Refer to the

Chapter 12 Standard and Custom Data Types

NI TestStand Reference Manual 12-8 ni.com

PropertyFlags Constants and the PropertyObjTypeFlags Constants
topics in the NI TestStand Help for a description of each property flag
constant in the TestStand API.

• Bounds tab—Use this tab to specify array sizes. This tab is visible
only for array data types.

• Version tab—Use this tab to edit the version information for the data
type, to determine if the data type is modified, to specify how
TestStand resolves data type conflicts, and to specify the earliest
version of TestStand that can use the type when you save the file for
an earlier version of TestStand.

• Cluster Passing tab—Use this tab to specify how TestStand passes
instances of the data type as a cluster to LabVIEW code modules.

• C Struct Passing tab—Use this tab to specify how TestStand passes
instances of the data type as a structure to functions and methods in
C/C++ DLL code modules.

• .NET Struct Passing tab—Use this tab to define how TestStand
passes instances of the data type as a structure to methods and
properties in .NET assemblies.

Refer to the NI TestStand Help for more information about each tab in the
Type Properties dialog box.

Custom Properties of Data Types
You can add any number of fields to a container data type or container data
type subproperty you create. On the Types pane of the Types window,
expand the data type or data type subproperty, right-click, select Insert
Field from the context menu, and select a data type from the submenu to
add fields to a container property in a new or existing data type. Right-click
the field and use the context menu to cut, copy, paste, delete, and rename
fields.

© National Instruments Corporation 13-1 NI TestStand Reference Manual

13
Custom Step Types

You can create custom step types to meet the needs of an application. Refer
to Chapter 11, Type Concepts, for more information about types.

Custom step types differ from the step templates you store in the Templates
list on the Insertion Palette. Custom step types define standard functionality
for a class of steps. Step templates are preconfigured instances of step types
you typically use, such as calls to frequently used code modules. Changes
you make to step types can affect step instances previously inserted into
sequences, but changes you make to step templates do not affect steps
previously inserted into sequences. Refer to the NI TestStand Help for more
information about the Templates list on the Insertion Palette.

Creating Custom Step Types
Complete the following steps to create a custom step type.

1. On the Types pane of the Types window, expand the Step Types
section.

2. Right-click and select Insert Step Type from the context menu. You
can also use the Copy and Paste context menu items to copy and
rename an existing step.

When you create new step types, use unique names to avoid conflicts
with the default names TestStand uses. For example, begin new custom
step type names with a unique ID, such as a company prefix.

3. Right-click the new step and select Properties from the context menu
to launch the Step Type Properties dialog box.

4. Click the Menu tab and specify the menu item name for the new step.

5. Click the General tab and specify the default name for new steps you
create from the new type and specify the description expression for
those steps.

6. Click the Substeps tab, select an adapter, click Add, and select the
type of step to create substeps. Use the Substep Info section of the
Substeps tab to specify the menu item name of Edit steps.

Chapter 13 Custom Step Types

NI TestStand Reference Manual 13-2 ni.com

Properties Common to All Step Types
TestStand defines many built-in step type properties common to all step
types.

The class step type properties exist only in the step type itself. TestStand
uses the class step type properties to define how the step type works for all
step instances. Step instances do not contain copies of the class step type
properties.

The instance step type properties exist in each step instance. Each step
you create with the step type includes a copy of the instance step type
properties. TestStand uses the value you specify for an instance step type
property as the initial value of the property in each new step you create.

After you create a step, you can change the values of the properties for a
step type instance, but these changes do not propagate to other step type
instances. When you create a custom step type, you can prevent users from
changing the values of specific instance step type properties in the steps
they create. For example, you can use the Edit substep of a step type to set
the Status Expression for the step, in which case you do not want users to
explicitly change the Status Expression value. Some of the built-in step
types, such as the Numeric Limit Test and the String Value Test, prevent
you from changing the value of the instance step type properties.

Step Type Properties Dialog Box
You can examine and modify the values of the built-in step type properties
in the Types window. Right-click a step and select Properties from the
context menu to launch the Step Type Properties dialog box. TestStand
uses the values on the Default Run Options, Default Post Actions, Default
Expressions, Default Loop Options, Default Switching, and Default
Synchronization tabs as the initial values for new steps you create. These
tabs have the same appearance and behavior as the Run Options, Post
Actions, Expressions, Looping, and Synchronization panels on the
Properties tab on the Step Setting pane for a step instance in the sequence
editor. Changes to the default values do not automatically propagate to
existing steps of this type. You can enable the Apply Changes in this Dialog
to all Loaded Steps of this Type option to propagate changes to steps of this
type currently in memory, but unloaded files are not updated. Refer to the
NI TestStand Help for more information about these tabs. The General,
Menu, Substeps, Disable Properties, Code Templates, and Version tabs
include class step type properties.

Chapter 13 Custom Step Types

© National Instruments Corporation 13-3 NI TestStand Reference Manual

General Tab
Use the General tab to specify a name, description, and comment for the
step type. You can also specify the default module adapter and the default
code module the step type calls. However, after you create an instance step
type, you can use the Properties tab of the Step Settings pane in the
sequence editor or the Step Properties dialog box in a user interface to
change the adapter and code module call. If you want code module changes
to propagate to all instances of the step type, you must change all instances
of the step type to use the <None> adapter so the step does not call a code
module, and create a Post-Step substep for the step type and call the code
module from this substep instead of specifying a default adapter and code
module. You must also enable the Specify Module option on the Disable
Properties tab if you do not want sequence developers to change or edit the
default code module call. Refer to the Substeps Tab section of this chapter
for more information about substeps. Refer to the Disable Properties Tab
section of this chapter and the NI TestStand Help for more information
about the Disable Properties tab.

Click the Advanced button and select Flags to launch the Edit Flags dialog
box, in which you can modify the property flags. Typically, you need to
configure property flags only when you develop a relatively sophisticated
custom step type. Refer to the NI TestStand Help for more information
about the Edit Flags dialog box. Refer to the PropertyFlags Constants and
the PropertyObjTypeFlags Constants topics in the NI TestStand Help for a
description of each property flag constant in the TestStand API.

Click the Advanced button and select Block Structure to launch the Block
Structure dialog box, in which you can specify if instances of this step type
affect the block structure in a sequence. The TestStand Flow Control step
types, such as If, ElseIf, and End, use these built-in properties. Refer to the
NI TestStand Help for more information about the Block Structure
dialog box.

Menu Tab
Use the Menu tab to specify the menu item name that appears for the step
type in the Insert Step context menu. Use the Step Type Menu Editor to
organize the Step Types list of the Insertion Palette and the Insert Step
submenu of the Steps pane context menu. Refer to the NI TestStand Help
for more information about the Step Type Menu Editor. Refer to the Using
Step Types section of Chapter 4, Built-In Step Types, for more information
about the Insertion Palette.

Chapter 13 Custom Step Types

NI TestStand Reference Manual 13-4 ni.com

Substeps Tab
Use the Substeps tab to specify Pre-Step, Post-Step, Edit, and Custom
substeps for the step type. Substeps use substep code modules to define
standard actions, other than calling the step code module, TestStand
performs for all instances of the step type.

After you add a substep to a step type, use the Specify Module button to
configure the substep module call. For each step that uses the step type,
TestStand calls the same substep modules with the same arguments. You
cannot add or remove substeps or otherwise alter the substep module call
the substep performs when you configure a step instance.

Although you can specify any number of substeps for a step type, the list of
substeps is not a sequence, and substeps do not have preconditions, post
actions, or other execution options. The order in which Pre- and Post-Step
substeps execute is the only execution option you specify.

TestStand calls the Pre-Step substep before calling the step code module.
For example, a Pre-Step substep might call a substep code module that
retrieves measurement configuration parameters and stores those
parameters in step properties the step code module uses.

TestStand calls the Post-Step substep after calling the step code module.
For example, a Post-Step substep might call a substep code module that
compares the values the step code module stored in step properties against
limit values the Edit substep stored in other step properties. You can have
multiple Post-Step substeps that execute in order.

TestStand calls an Edit substep when you select the substep menu item
from the Steps pane context menu. On the Substeps tab, select the Edit
substep and click the Rename button to specify the name of the substep
menu item and the caption of the button on the Step Type Edit tab of the
Step Settings pane.

The Edit substep typically calls a substep code module that launches a
dialog box in which you can edit the values of the custom step properties.
For example, an Edit substep might launch a dialog box in which you
specify the high and low limits for a test. The Edit substep might then store
the high and low limit values as step properties.

Dialog boxes the Edit substep launches must be modal. Refer to the
<TestStand Public>\Examples\ModalDialogs directory for
LabVIEW and MFC examples of modal dialog boxes.

Chapter 13 Custom Step Types

© National Instruments Corporation 13-5 NI TestStand Reference Manual

Note You can initialize threads within TestStand executions to use the single-threaded
apartment model or the multi-threaded apartment model. TestStand executes Edit substeps
only in threads initialized using the single-threaded apartment model so the substep can
open windows that contain ActiveX controls.

Typically, TestStand does not call custom substeps during an execution.
Use the TestStand API to invoke a custom substep from a code module or
user interface. You can create a custom substep named OnNewStep for
TestStand to call each time you create a new step of that type. For example,
the built-in If step type uses an OnNewStep substep to insert an End step.

The <TestStand>\Components\StepTypes directory includes source
code for many of the substep modules the built-in step types use. To modify
the installed step types or to create a new step type, copy the step type
source code from the <TestStand>\Components\StepTypes directory
to the <TestStand Public>\Components\StepTypes directory and
make changes to the copy of the source code. When you copy installed files
to modify, rename the files after you modify them if you want to create a
separate custom component. You do not have to rename the files after you
modify them if you only want to modify the behavior of an existing
component. If you do not rename the files and you use the files in a
future version of TestStand, changes National Instruments makes to the
component might not be compatible with the modified version of the
component. Storing new and customized files in the <TestStand
Public> directory ensures that new installations of the same version of
TestStand do not overwrite the customizations and ensures that uninstalling
TestStand does not remove the files you customize.

Disable Properties Tab
Use the Disable Properties tab to prevent sequence developers from
modifying the settings of built-in instance step type properties in individual
steps. Each option on the Disable Properties tab represents one built-in
instance property or a group of built-in instance properties. When you
enable an option, you prevent sequence developers from modifying the
value of the corresponding property or group of properties for all step
instances.

Note When you create new steps, TestStand uses the default values of built-in step type
properties as the initial values for the new steps. Subsequent changes to these default
property values do not automatically propagate to existing step type instances, even when
you enable the corresponding option on the Disable Properties tab.

Chapter 13 Custom Step Types

NI TestStand Reference Manual 13-6 ni.com

Code Templates Tab
Use the Code Templates tab to associate one or more code templates with
the step type. A code template is a set of source files that contains skeleton
code to serve as a starting point for developing code modules for steps that
use the step type. TestStand uses the code template when you click the
Create Code button on the Module tab of the Step Settings pane for a step
in the sequence editor.

You can use the default TestStand code templates for any step type, and you
can customize code templates for individual step types. For example, for
the Numeric Limit Test step type, you might want to include code for
accessing the high- and low-limit properties in a step.

Template Files for Different Development Environments
Because different module adapters require different types of code modules,
code templates typically correspond to a particular programming language
in a specific development environment. The <TestStand>\
CodeTemplates directory includes the default code templates for each
development environment, as shown in Table 13-1.

Table 13-1. Default Code Templates in <TestStand>\CodeTemplates

Subdirectory Name Template Description

Default_Template Legacy default template

DefaultC++.NET Default template for C++ in Microsoft
Visual Studio .NET 2003 or
Visual Studio 2005

DefaultCSharp.NET Default template for C# in
Visual Studio

DefaultCVI Default template for C in
LabWindows/CVI

DefaultHTB72_Template Default template for HTBasic 7.2

DefaultHTB80_Template Default template for HTBasic 8.0

DefaultLabVIEW Default template for LabVIEW

DefaultVB.NET Default template for Microsoft
Visual Basic NET

DefaultVC++_Template Default template for C++ in
Visual Studio

Chapter 13 Custom Step Types

© National Instruments Corporation 13-7 NI TestStand Reference Manual

Each subdirectory includes the source file for the module adapter and a
.ini file that contains parameter information and a description string
TestStand displays for the code template. TestStand uses the directory
names from the <TestStand>\CodeTemplates or <TestStand
Public>\CodeTemplates directory as the code template name to display
in the Code Templates tab of the Step Type Properties dialog box.

Code templates for the LabVIEW, LabWindows/CVI, and C/C++ DLL
Adapters can have any number of parameters compatible with the data
types you can specify on the Module tab for those adapters.

When TestStand uses a code template for a DLL to create skeleton code,
it compares the parameter list in the source file to the parameter
information on the Module tab. If these two sources of information do not
match, TestStand prompts you to select which prototype to use for the
skeleton code. If you use the prototype from the template source file,
TestStand updates the Module tab to match the prototype in the template
source file. However, the template source file does not contain sufficient
information for TestStand to update the Value controls for the parameters
on the Module tab. Use the Parameter Name/Value Mappings section in the
Edit Code Template dialog box to specify entries for TestStand to place in
the Value controls. TestStand stores the parameter values in the .ini file
in the template subdirectory.

Legacy Code Templates
In TestStand 3.5 and earlier, code template directories contain source files
for multiple development environments. For example, a legacy code
template directory might include one .c file for the LabWindows/CVI
Adapter and multiple VIs for the LabVIEW Adapter, where each VI
corresponds to the different combinations of parameter options users can
set in the Edit LabVIEW VI Call dialog box. TestStand includes these
legacy code templates to provide backward compatibility with previous
versions of TestStand. The [TemplateType] section of the config.ini
file in each code template directory includes Type = "Legacy" for legacy
code templates.

Legacy code templates for the LabVIEW Adapter always specify Test
Data and Error Out clusters as parameters. The VIs for each LabVIEW
Adapter legacy code template specify various combinations of the Input
Buffer, Invocation Info, and Sequence Context parameters. When
TestStand uses a legacy LabVIEW template VI to create skeleton code, it
selects the correct VI to use according to the current settings in the Optional
Parameters dialog box in TestStand 3.5 and earlier.

Chapter 13 Custom Step Types

NI TestStand Reference Manual 13-8 ni.com

Legacy code templates for the LabWindows/CVI Adapter always specify
two parameters—a pointer to a tTestData structure and a pointer to a
tTestError structure. When TestStand uses a legacy LabWindows/CVI
template module to create skeleton code, it validates the function prototype
in the template module against this requirement. TestStand reports an error
if the prototype is incorrect.

Creating and Customizing Code Template Files
Click the Create button on the Code Templates tab to launch the Create
Code Templates dialog box. TestStand copies the files for the existing code
template you select into a new subdirectory in the <TestStand Public>\
CodeTemplates directory based on the code template name you specified
in the Create Code Templates dialog box. You can then customize the code
template files in the new <TestStand Public>\CodeTemplates
directory.

For example, you can include example code that shows users how to access
the custom properties of the step. For most environments, you can add a
value parameter to pass the information from TestStand. You can also show
how to obtain the high- and low-limit properties in a LabVIEW or
LabWindows/CVI code template for a Numeric Limit Test step by
customizing the prototype for the code module to specify the high and low
limits as value parameters. As another example, you might want to show
how to return a measurement value from a code module. For the LabVIEW,
LabWindows/CVI, and C/C++ DLL Adapters, you can customize the
prototype in the code template by specifying the measurement as a
reference parameter.

Multiple Code Templates per Step Type
You can specify more than one code template for a step type. For example,
you might want to have code templates that contain example code for
conducting the same type of tests with different types of instruments or data
acquisition boards. When a step type has multiple code templates and you
click the Create Code button on the Module tab, TestStand prompts you to
select from a list of templates or uses the template you selected on the
Module tab if it exists.

Version Tab
Use the Version tab to edit the version information for the data type, to
determine if the data type is modified, to specify how TestStand resolves
data type conflicts, and to specify the earliest version of TestStand that can
use the type when you save the file for an earlier version of TestStand.

Chapter 13 Custom Step Types

© National Instruments Corporation 13-9 NI TestStand Reference Manual

Custom Properties of Step Types
You can add any number of custom properties in a step type you create.
Each step you create using the step type includes the custom properties you
create. On the Types pane of the Types window, expand the step type,
right-click, select Insert Field from the context menu, and select a data
type to add fields to a step type. Right-click the field and use the context
menu to cut, copy, paste, delete, and rename fields.

Backward Compatibility
When you modify custom step types, avoid making changes that might
jeopardize backward compatibility. Ensure that previously configured
steps behave properly when you execute the steps using the modified
custom step type. Also ensure that new step instances based on the
modified step type behave properly when you save a sequence file to an
earlier version of TestStand that uses the original custom step type.

Do not rename custom step type properties or change the functionality of
existing properties. For example, if you have an existing property that
performs a specified task and you later decide you want the property to do
something completely different in a future instance of the step type, you
break backward compatibility. When you create new properties, provide
default values that preserve the functionality of previously created steps.
When you extend enumerated values, do not change the functionality of
previously used values.

© National Instruments Corporation 14-1 NI TestStand Reference Manual

14
Deploying TestStand Systems

The TestStand Deployment Utility helps to simplify the complex process
of deploying a TestStand system by automating many of the steps involved,
including collecting sequence files, code modules, and support files for the
test system and creating an installer for the files. The versions of the
TestStand Deployment Utility and the TestStand development system must
match.

TestStand System Components
The following components work together to create the entire
TestStand system:

• TestStand Engine and supporting files

• LabVIEW and LabWindows/CVI Run-Time Engines

• Process models and supporting files

• Step types and supporting files

• Configuration files

• User interface applications

• Workspace files

• Sequence files

• Code modules and supporting files

• Hardware drivers

When you deploy a TestStand system from a development computer to a
target computer, you must deploy all the components the system uses to the
target computer, including files you call dynamically.

Setting Up the TestStand Deployment Utility
To deploy a TestStand test system using the TestStand Deployment Utility,
you must identify the components to deploy, determine if you need to
create an installer for the system, create a system workspace file, if
necessary, and configure and build the deployment.

Chapter 14 Deploying TestStand Systems

NI TestStand Reference Manual 14-2 ni.com

Identifying Components to Deploy
You can deploy TestStand components in the <TestStand Public>
directory and you can deploy a TestStand workspace file and its dependent
files, including sequence files, code modules, and so on. Additionally, you
can use the TestStand Deployment Utility to create an installer that also
includes the TestStand Engine, hardware drivers, and components in the
<TestStand> subdirectories. Refer to the TestStand Directory Structure
section of Chapter 8, Customizing and Configuring TestStand, for more
information about TestStand directories.

Make sure the files you want to deploy use unique filenames because using
files with the same name can cause the deployment utility to locate
incorrect files, which can result in incorrect behavior.

Determining If You Need to Create an Installer
If you plan to deploy the TestStand Engine and the TestStand components
in the <TestStand> subdirectories, you must use the TestStand
Deployment Utility to create an installer.

You do not need to use the deployment utility to create an installer if you
plan to use a third-party installer development tool, such as Wise or
InstallShield, or if you plan to use a source code or revision control system
to deploy the system files to target computers.

Creating a System Workspace File
Before you deploy sequence files and code modules, you must create a
workspace file that contains all the sequence files the test system might
execute, files you do not store in a <TestStand Public> directory, files
that sequence files do not reference directly, such as support files code
module DLLs require, and files the sequence calls dynamically. The
deployment utility analyzes the sequence files to determine which files the
sequence files reference, such as code module files.

If you use the TestStand Deployment Utility to deploy only the TestStand
Engine or the components in the <TestStand Public> subdirectories,
you do not need to create a workspace file for the test system.

Refer to the Workspaces section of Chapter 2, Sequence Files and
Workspaces, for more information about TestStand workspace files.

Chapter 14 Deploying TestStand Systems

© National Instruments Corporation 14-3 NI TestStand Reference Manual

Configuring and Building the Deployment
Select Tools»Deploy TestStand System in the sequence editor or in a user
interface in Editor Mode to launch the TestStand Deployment Utility to
configure the settings for deploying a test system, including the
components to install and the installer settings. Refer to the NI TestStand
Help for more information about the TestStand Deployment Utility.

Building a Deployment
The TestStand Deployment Utility collects and filters files to include in the
deployment, processes VIs and sequence files, and packages National
Instruments hardware drivers and components to build a deployable test
system.

Collecting Files
When deploying a workspace file, the deployment utility analyzes the
workspace for any dependent files. For example, the deployment utility
searches the steps in every sequence of a sequence file in the workspace file
to find the referenced code modules and continues recursively searching
until the utility analyzes all the files in the workspace hierarchy.

The TestStand Deployment Utility does not automatically deploy .NET or
ActiveX/COM code modules. You must manually add these code modules
and supporting files to the workspace file or install the files separately on
the target computer.

Because distributing every file sequences use might be problematic, the
deployment utility includes a filtering function that removes potentially
unwanted files. For example, if steps in a sequence call functions in
Windows system DLLs, the deployment utility does not deploy those DLLs
to the target computer.

Edit the Filter.ini file in the <TestStand Application
Data>\Cfg directory to define the files the deployment utility
automatically excludes from any deployment package it creates.
By default, the deployment utility does not deploy any files in the
<TestStand>\Bin or <TestStand> subdirectories or any .exe or .dll
files in the <Windows> or <Windows>\System32 directories.

Chapter 14 Deploying TestStand Systems

NI TestStand Reference Manual 14-4 ni.com

You can add automatically excluded files to a workspace file, but do so with
caution to prevent incompatibility issues. For example, deploying a
Windows system DLL from a development computer running Windows XP
to a target computer running Windows 2000 might result in DLL version
incompatibility issues.

Processing VIs
You must have the LabVIEW Development System installed on the
development computer for the TestStand Deployment Utility to
process VIs.

The deployment utility analyzes the LabVIEW VIs it deploys to determine
their complete hierarchies, including all subVIs, DLLs, external
subroutines, run-time menus, Express VI configurations, and help files
the VIs might reference. The deployment utility packages these VIs and
their hierarchies to ensure that the VIs can run on computers that do not
have the LabVIEW Development System installed. If the VIs you want to
deploy call other VIs dynamically using VI Server, you must add the
dynamically called VIs manually to the workspace file.

Refer to the Building a TestStand Deployment with LabVIEW 8.0 section
of Appendix A, Using LabVIEW 8.x with TestStand, of the Using LabVIEW
with TestStand manual for more information about restrictions for
deploying LabVIEW 8.0 or later VIs.

Processing Sequence Files
The TestStand Deployment Utility also processes sequence files to remove
absolute paths because functional absolute paths on a development
computer might be invalid on the target computer, especially if the two
computers use different base installation directories. The deployment
utility changes absolute path references in sequence files to relative path
references that initiate from one of the following search directories:

• Current sequence file directory

• TestStand installation directory

• Windows\System32 directory

• Windows directory

• <TestStand Public> directory

Chapter 14 Deploying TestStand Systems

© National Instruments Corporation 14-5 NI TestStand Reference Manual

If the files do not reside in one of these directories, the deployment utility
does not change the absolute paths, which might not resolve correctly on
the target computer.

Refer to the Search Paths section of Chapter 5, Module Adapters, for more
information about TestStand search directories.

Installing National Instruments Components
Use the TestStand Deployment Utility to package National Instruments
hardware drivers and other components, such as run-time engines, in
deployment installers. Click the Drivers and Components button on the
Installer Options tab of the TestStand Deployment Utility to launch the
Drivers and Components dialog box.

The Drivers and Components dialog box lists only components on
the development computer you installed from the NI Device Driver CD
that ships with TestStand or from a later version of the driver CD. The
components you select contain only the product features you installed on
the development computer.

Refer to the NI TestStand Help for more information about the Drivers and
Components dialog box.

Guidelines for Successful Deployment
Use the following guidelines to ensure a successful deployment process:

• Always use unique filenames because using files with the same name
can cause the deployment utility to locate incorrect files, which can
result in incorrect behavior. The TestStand Deployment Utility returns
an error when LabVIEW 8.0 or later VIs or subcomponents, such as
DLLs, use the same filename. Before you create a deployment, you
must ensure that all sequences you include in the deployment image
reference unique VI and DLL files.

• Use relative paths and search paths so TestStand can find files even if
you install the files in a location on the target computer that is different
than the location of the files on the development computer. Refer to the
Configuring Search Paths for Deployment section of Chapter 5,
Module Adapters, for more information about configuring TestStand
search directories for deployment.

Chapter 14 Deploying TestStand Systems

NI TestStand Reference Manual 14-6 ni.com

• Manually add dynamically referenced files to the workspace.
Dynamically referenced files include any sequences an expression
specifies, property loader files expressions specify, VIs you call using
VI Server, and dynamically loaded DLLs.

• Manually add supporting DLLs code modules require to the
workspace. Do not add any DLLs that are part of TestStand or
the operating system.

• Redeploy the system if you edit any deployed system files because the
deployed system might not function properly otherwise.

• Install the complete drivers from the NI Device Driver CD on
development computers where you intend to use the TestStand
Deployment Utility to ensure that any deployments you build on the
development computer can access the most complete version of the
driver software.

Refer to the Building a TestStand Deployment with LabVIEW 8.0 section
of Appendix A, Using LabVIEW 8.x with TestStand, of the Using LabVIEW
with TestStand manual for more information about restrictions for
deploying LabVIEW 8.0 or later VIs.

Common Deployment Scenarios
To complete the following examples that describe how to use the TestStand
Deployment Utility in common deployment scenarios, you need one
development computer that contains a complete installation of TestStand
and one target computer. To run the TestStand Sequence Editor or User
Interface application on the target computer, you must activate an
appropriate license or run the application in evaluation mode. Refer to the
TestStand Licensing Options topic in the NI TestStand Help for more
information about the available TestStand license options.

Deploying the TestStand Engine
Complete the following steps to deploy the TestStand Engine.

1. Select Tools»Deploy TestStand System in the sequence editor to
launch the TestStand Deployment Utility.

2. On the System Source tab, enable the Deploy Files in TestStand
User Directories option to collect files from the <TestStand
Public> directories. When you select this option, the deployment
utility distributes to the target computer any component file
customizations, such as process models, step types, and language
strings, you saved in the <TestStand Public> subdirectories.

Chapter 14 Deploying TestStand Systems

© National Instruments Corporation 14-7 NI TestStand Reference Manual

3. Use the Location of Deployable Image field to specify the directory
to which the deployment utility copies an image of the system.

4. On the Installer Options tab, enable the Install TestStand Engine
option and click the Engine Options button to launch the TestStand
Engine Options dialog box, in which you select the TestStand
components to include in the installer.

5. Expand the TestStand Development Components section and enable
the TestStand Sequence Editor option to include the application in
the engine installation. Click OK to accept the new settings and close
the dialog box.

Refer to the Distributing a User Interface section of this chapter for
more information about including a custom user interface in a
deployment.

6. Click Save and save the build as EngineInstaller.tsd.

7. Click the Build button to create the installer.

8. To use the installer, copy all the files from the directory you specified
on the System Source tab to a CD or to a shared directory on a network.

9. On the target computer, insert the CD or connect to the network and
run the setup.exe application to start the installer.

10. When the installation completes, select Start»All Programs»
National Instruments»TestStand x.x»Sequence Editor to verify
that the TestStand Engine installed correctly. Activate a license if the
sequence editor prompts you to do so.

Distributing Tests from a Workspace
Complete the following steps to distribute tests from a workspace.

1. Select Tools»Deploy TestStand System in the sequence editor
to launch the TestStand Deployment Utility.

2. On the System Source tab, enable the Deploy Files from TestStand
Workspace File option and use the Location of Deployable Image
field to specify the directory to which the deployment utility copies an
image of the system.

3. Click the File Browse button located next to the Workspace File
Path control to browse to the <TestStand Public>\Examples\
Deployment directory and select the test.tsw workspace file.
Click Open.

4. Click the Distributed Files tab. A dialog box launches to request
permission to analyze the source files. Click Yes for the deployment
utility to analyze the workspace file and dependent files.

Chapter 14 Deploying TestStand Systems

NI TestStand Reference Manual 14-8 ni.com

5. Click the Build Status tab and review the Status Log to check for
analysis result warnings.

6. Disable the unused.dll option to remove it from the distribution
because the example test system does not use this DLL.

7. On the Installer Options tab, enable the Install TestStand Engine
option and click the Engine Options button to launch the TestStand
Engine Options dialog box, in which you select the TestStand
components to include in the installer.

8. Expand the TestStand Development Components section and enable
the TestStand Sequence Editor option to include the application in
the engine installation. Click OK to accept the new settings and close
the dialog box.

Refer to the Distributing a User Interface section of this chapter for
more information about including a custom user interface in a
deployment.

9. Click Save to save the build as test.tsd.

10. Click the Build button to create the installer.

11. To use the installer, copy all the files from the directory you specified
on the System Source tab to a CD or to a shared directory on a network.

12. On the target computer, insert the CD or connect to the network and
run the setup.exe application to start the installer.

13. When the installation completes, select Start»All Programs»
National Instruments»TestStand x.x»Sequence Editor to verify
that the TestStand Engine installed correctly. Activate a license if the
sequence editor prompts you to do so.

14. Verify the installation by loading and running <TestStand
Public>\Examples\Deployment\test.seq.

Adding Dynamically Called Files to a Workspace
Complete the following steps to add dynamically called files to a
workspace.

1. Select Tools»Deploy TestStand System in the sequence editor to
launch the TestStand Deployment Utility.

2. On the System Source tab, enable the Deploy Files from TestStand
Workspace File option and use the Location of Deployable Image
field to specify the directory to which the deployment utility copies an
image of the system.

Chapter 14 Deploying TestStand Systems

© National Instruments Corporation 14-9 NI TestStand Reference Manual

3. Click the File Browse button located next to the Workspace File
Path control to browse to the <TestStand Public>\
Examples\Deployment directory and select the
Dynamically_called_sequence.tsw workspace file.
Click Open.

4. Click the Distributed Files tab. A dialog box launches to request
permission to analyze the source files. Click Yes for the deployment
utility to analyze the workspace file and dependent files.

5. Click the Build Status tab and review the Status Log, which reports a
warning that an expression calls a sequence file you might need to add
to the workspace.

6. Click the Distributed Files tab and notice that Dynamic.seq is
missing in the Distributed Files list.

7. In the sequence editor, load the <TestStand Public>\Examples\
Deployment\Dynamically_called_sequence.tsw workspace
file.

8. Add <TestStand Public>\Examples\Deployment\
Dynamic.seq to the workspace file and save the changes.

9. On the Distributed Files tab of the TestStand Deployment Utility,
click the Analyze Source Files button to analyze the modified
workspace file. Notice that the Distributed File list now includes
Dynamic.seq.

10. Click the Build Status tab and review the Status Log, which reports a
warning about an expression calling a sequence file. You can ignore
the warning because you just added the correct sequence to the
workspace.

11. On the Installer Options tab, enable the Install TestStand Engine
option and click the Engine Options button to launch the TestStand
Engine Options dialog box, in which you select the TestStand
components to include in the installer.

12. Expand the TestStand Development Components section and enable
the TestStand Sequence Editor option to include the application in
the engine installation. Click OK to accept the new settings and close
the dialog box.

Refer to the Distributing a User Interface section of this chapter for
more information about including a custom user interface in a
deployment.

13. Click Save to save the build as Dynamic.tsd.

14. Click the Build button to create the installer.

Chapter 14 Deploying TestStand Systems

NI TestStand Reference Manual 14-10 ni.com

15. To use the installer, copy all the files from the directory you specified
on the System Source tab to a CD or to a shared directory on a network.

16. On the target computer, insert the CD or connect to the network and
run the setup.exe application to start the installer.

17. When the installation completes, select Start»All Programs»
National Instruments»TestStand x.x»Sequence Editor to verify
that the TestStand Engine installed correctly. Activate a license if the
sequence editor prompts you to do so.

18. Verify the installation by loading and running <TestStand
Public>\Examples\Deployment\

Call_sequence_dynamically.seq.

Distributing a User Interface

Note You must install on the target computer the LabVIEW or LabWindows/CVI
Run-Time Engine version that corresponds to the development environment version you
use to create user interfaces. Refer to the <TestStand>\Doc\Readme.html file for
information about the run-time engine versions TestStand installs.

Complete the following steps to distribute a user interface.

1. In the sequence editor, select File»New Workspace File to create and
save a new workspace file as Deploy User Interface.tsw.

2. Right-click the Workspace window and select Insert New Project
into Workspace from the context menu. Save the project as User
Interface.tpj.

3. Right-click the User Interface project and select Add Files to Project
from the context menu.

4. In the file browse dialog box, browse to the <TestStand Public>\
UserInterfaces\Simple\CVI directory and change the
Files of Type setting to All Files (*.*).

5. Select TestExec.exe and TestExec.uir and click Add. If
TestStand prompts you to resolve the path, select Use a relative path
for the file you selected and enable the Apply to All option.

6. Click OK to close the dialog boxes.

7. Save the workspace file.

8. Select Tools»Deploy TestStand System in the sequence editor to
launch the TestStand Deployment Utility.

Chapter 14 Deploying TestStand Systems

© National Instruments Corporation 14-11 NI TestStand Reference Manual

9. On the System Source tab, enable the Deploy Files From TestStand
Workspace File option and use the Location of Deployable Image
field to specify the directory to which the deployment utility copies an
image of the system.

10. Click the File Browse button located next to the Workspace File Path
control to browse to the workspace file you saved in step 8.
Click Open.

11. Click the Distributed Files tab. A dialog box launches to request
permission to analyze the source files. Click Yes for the deployment
utility to analyze the workspace file and dependent files.

12. Select TestExec.exe in the Distributed Files list. The File Properties
section to the right of the Distributed Files list updates to reflect this
selection.

13. In the File Properties section of the Distributed Files tab, enable the
Create Program Item option and enter Simple CVI UI in the
neighboring string field to add a shortcut menu item for
TestExec.exe.

14. On the Installer Options tab, enable the Install TestStand Engine
option.

15. Click Save to save the build as SimpleCVIUI.tsd.

16. Click the Build button to create the installer.

17. To use the installer, copy all the files from the directory you specified
on the System Source tab to a CD or to a shared directory on a network.

18. On the target computer, insert the CD or connect to the network and
run the setup.exe application to start the installer.

19. When the installation completes, select Start»All Programs»
<My TestStand System>»Simple CVI UI to verify the installation.

© National Instruments Corporation 15-1 NI TestStand Reference Manual

15
Sequence File Translators

TestStand uses custom sequence file translators to load test description files
saved in a custom format, such as text or XML. The translator reads the
content of the custom sequence file, translates the content to a TestStand
sequence file, and opens the TestStand sequence file in the sequence editor
or a user interface. A custom sequence file translator can use predefined
step types to simplify the mapping of common operations the custom file
format defines to TestStand steps in sequence files.

Within the sequence editor or user interface, you can perform all typical
operations TestStand sequence files support, such as executing and
debugging sequences, diffing files, adding custom sequence files to
workspaces, and deploying custom sequence files. However, you cannot
automatically save changes you make to the sequence file in the sequence
editor or user interface back to the custom sequence file format. You must
make all changes to the custom sequence file directly.

You can create sequence file translators in various development
environments, use versioning schemes with custom files, and deploy
translators with TestStand. Refer to the <TestStand Public>\
Examples\SequenceFileTranslators directory for example custom
sequence files and translators.

Using a Sequence File Translator
TestStand can load custom sequence files if an existing translator can read
and convert the file into a TestStand SequenceFile object. Translators
are Windows DLLs that export callback functions TestStand uses to
translate files. Refer to the Creating a Translator DLL section of this
chapter for more information about creating translators. Refer to the
NI TestStand Help for a complete list of callback functions the DLL must
implement.

When an application loads the TestStand Engine, TestStand loads the DLLs
that export the required callback functions from the <TestStand>\
Components\Translators directory or the <TestStand Public>\
Components\Translators directory. To create new translator DLLs,
add the project for the translator to the <TestStand Public>\

Chapter 15 Sequence File Translators

NI TestStand Reference Manual 15-2 ni.com

Components\Translators directory. Ensure that the project saves the
DLL to the <TestStand Public>\Components\Translators
directory. Storing new and customized files in the <TestStand Public>
directory ensures that newer installations of the same version of TestStand
do not overwrite the customizations and ensures that uninstalling TestStand
does not remove the files you customize.

A translator DLL can contain one or more translators. When TestStand
loads a translator DLL, TestStand uses the callback functions of the DLL
to obtain information about the translators the DLL contains. TestStand
calls the CanTranslate callback function to determine if the DLL contains
a translator that recognizes a file. The callback returns the index of the
translator that recognizes the file after examining the extension of the file
and the content of the file, typically the file header. Most of the callback
functions the translator DLL implements contain an index parameter,
which references a specific translator in the DLL that must operate on a file.

Creating a Translator DLL
You can create custom sequence file translators in any development
environment that can create a Windows DLL with the required C callback
functions. National Instruments recommends using the translator examples
written in LabVIEW, LabWindows/CVI, and Microsoft Visual C++
as a guide. Each example in the <TestStand Public>\Examples\
SequenceFileTranslators directory includes a template project,
which contains source code with empty callback functions you must export
from the translator DLL. You must add the necessary code to the required
callbacks to ensure that the translator properly integrates with TestStand.

Example Sequence File Translators
The LabVIEW, LabWindows/CVI, and Visual C++ example projects
demonstrate how to build translator DLLs and provide guidance for
developing translators. The examples illustrate two simple translators for
each development environment that use the TestStand API to convert
sample test descriptions in XML and ASCII text formats into TestStand
sequence files. The example translators for each file format produce the
same TestStand sequence file.

The sample test descriptions specify steps that perform a calculation,
display the result of the calculation in a graph, compare the result with
an expected value, and display a message that indicates if the test passed
or failed. The translation from the example format into a sequence file

Chapter 15 Sequence File Translators

© National Instruments Corporation 15-3 NI TestStand Reference Manual

involves adding steps and local variables to a sequence in a new sequence
file object and configuring the steps to perform the required operations. The
translators also use a custom step type TestStand loads from a type palette
file that you must place in the <TestStand Public>\Components\
TypePalettes directory.

Complete the following steps to use an example.

1. Open the TextTranslator or XMLTranslator directory for
one of the examples in the <TestStand Public>\Examples\
SequenceFileTranslators directory.

2. Copy the type NI_ExampleTranslatorTypes.ini file from the
<TestStand Public>\Examples\SequenceFileTranslators
directory to the <TestStand Public>\Components\
TypePalettes directory.

3. Open and study the project in the development environment for the
example.

4. If you make any changes to the project, rebuild the project to update
the translator DLL. Copy the translator DLL into the <TestStand
Public>\Components\Translators directory.

5. Launch the TestStand Sequence Editor or a TestStand User Interface
to load the translator DLLs.

6. Select File»Open and select SampleTestFile.xml,
SampleTestFile.lvtf for the text version of the file for LabVIEW,
SampleTestFile.cvitf for the text version of the file for
LabWindows/CVI, or SampleTestFile.vctf for the text version of
the file for Visual Studio C++.

7. Review the translated sequence file.

8. Launch an execution using the MainSequence in the sequence file.

Versioning Translators and Custom Sequence Files
When you edit a custom sequence file format, you can increment the
version number for the file format and the content of the sequence. The file
format version number identifies the structure and syntax of the file. The
file version number identifies the revision of the content of the file.

If the content of a custom sequence file includes a file format version
number, a translator can read files with the current file format and files with
an earlier file format, and the translator can identify newer file formats it
does not support. When a translator callback accesses the content of the
file, the translator ensures that it can support the file format version.

Chapter 15 Sequence File Translators

NI TestStand Reference Manual 15-4 ni.com

For example, the CanTranslate callback uses the version number to
determine if the translator can load the file. In addition, TestStand displays
the return value from the GetFileFormatVersion callback in reports the
Workspace Documentation tool creates.

If the content of a custom sequence file includes a file version number or
revision, implement the translator to assign the version to the
PropertyObjectFile.Version property in the TranslateSequenceFile
callback and return the version in the GetFileVersion callback to ensure that
the Sequence File Properties dialog box displays the file version number
and the Sequence File Documentation and Workspace Documentation tools
display the file version number in reports you create.

If the file formats between version numbers differ significantly, consider
creating two translators in a single DLL or a separate translator in
two DLLs to simplify the code necessary to translate each file format. If
files contain header fields that identify the file format and the CanTranslate
callback uses these fields, make sure that using two translators does not
affect the performance of opening files in TestStand.

Deploying Translators and Custom Sequence Files
If you place the custom sequence file translator DLL and its support files
in the <TestStand Public>\Components\Translators directory on
the computer you use to build the deployment, the deployment utility
automatically includes these files in the deployment when you enable the
Deploy Files in TestStand Public Directories option on the System Source
tab of the TestStand Deployment Utility. Alternatively, you can add the
translator files to the workspace and set the target destination directory for
the files to the <TestStand Public>\Components\Translators
directory.

When the deployment utility analyzes a TestStand sequence file, the utility
locates the code modules the steps in the sequence file call, adds the code
module files to the deployment, and changes absolute path references in
sequence files to relative path references to ensure that TestStand can locate
the code module on the computer where you deploy the files.

You can add custom sequence files to the workspace the deployment utility
uses to build a deployment. The deployment utility must load and translate
custom sequence files to locate the code modules the steps in the sequence
file call. However, the utility does not modify the paths in the custom
sequence file and returns a warning if the utility cannot ensure that
TestStand can locate the code module on the computer where you deploy

Chapter 15 Sequence File Translators

© National Instruments Corporation 15-5 NI TestStand Reference Manual

the files. You must fix the paths on the computer you use to build the
deployment, or you must fix the paths on the target computer after
deployment.

Refer to Chapter 14, Deploying TestStand Systems, and the NI TestStand
Help for more information about creating and deploying TestStand files
using the deployment utility.

© National Instruments Corporation A-1 NI TestStand Reference Manual

A
Process Model Architecture

To better understand the information in this appendix, review the Process
Models section of Chapter 1, NI TestStand Architecture, which includes
general information about process models, entry points, and the
relationship between a process model and a client sequence file.

The Sequential, Parallel, and Batch process models use the same basic
structure for running a test sequence. Using the Test UUTs or Single Pass
execution entry point, the process models run test sequences, generate
reports, and log UUT results to a database according to configuration
settings, as shown in Figure A-1.

Appendix A Process Model Architecture

NI TestStand Reference Manual A-2 ni.com

Figure A-1. Process Flow

The main differences between the process models are the number of
UUTs each process model runs for the Test UUTs or Single Pass Execution
entry points and the way each process model relates to and synchronizes
with UUTs.

Log Results to a Database

Initialization

Get UUT Serial Number

Call the Test Sequence

Display the UUT Results

Generate a Report

Cleanup

Get Current Report Options,
Database Options, and

Model Options

Continue
Testing?

Yes

No

Initialization

Call the Test Sequence

Generate a Report

Log Results to a Database

Cleanup

Get Current Report Options,
Database Options, and

Model Options

Test UUTs Process Single Pass Process

Appendix A Process Model Architecture

© National Instruments Corporation A-3 NI TestStand Reference Manual

TestStand Process Models
The Sequential model is the default TestStand process model. The Parallel
and Batch models include features to help you implement test stations for
testing multiple UUTs at the same time.

Table A-1 lists the TestStand process models and their respective sequence
files.

You can create your own process models, or you can modify a copy of the
default TestStand process models.

To modify the installed process models or to create a new process model,
copy the process model files from the <TestStand>\Components\
Models\TestStandModels directory to the <TestStand Public>\
Components\Models\TestStandModels directory and make changes
to the copy. When you copy installed files to modify, rename the files after
you modify them if you want to create a separate custom component. You
do not have to rename the files after you modify them if you only want to
modify the behavior of an existing component. If you do not rename the
files and you use the files in a future version of TestStand, changes National
Instruments makes to the component might not be compatible with the
modified version of the component. Storing new and customized files in the
<TestStand Public> directory ensures that installations of the same
version of TestStand do not overwrite the customizations and ensures that
uninstalling TestStand does not remove the files you customize.

The list of search paths includes the subdirectories in the <TestStand
Public>\Components directory, which also acts as a temporary location
for components you use to build a deployment. Refer to the Search Paths
section of Chapter 5, Module Adapters, for more information about
TestStand search directories. Refer to the TestStand Directory Structure

Table A-1. TestStand Process Models

Process Model Process Model Sequence File

Sequential Model <TestStand>\Components\Models\
TestStandModels\SequentialModel.seq

Parallel Model <TestStand>\Components\Models\
TestStandModels\ParallelModel.seq

Batch Model <TestStand>\Components\Models\
TestStandModels\BatchModel.seq

Appendix A Process Model Architecture

NI TestStand Reference Manual A-4 ni.com

section of Chapter 8, Customizing and Configuring TestStand, for more
information about TestStand directories.

When you create a custom process model, use the Model tab of the Station
Options dialog box to set the custom process model sequence file as the
process model for the station.

Features Common to all TestStand Process Models
All TestStand process models identify UUTs, generate test reports, log
results to databases, and display UUT status information. You can use
client sequence files to customize various process model operations by
overriding model-defined callback sequences.

In addition to using a primary, or parent, process model file, you can use a
secondary, or child, process model file to encapsulate specific functionality,
such as report generation.

Process models provide Configuration and Execution entry points for
configuring model settings and running client files under the model. The
Configure and Execute menus of an application typically include the model
entry points.

TestStand process models include the following Execution entry points:

• Test UUTs—Tests and identifies multiple UUTs or batches of UUTs
in a loop.

• Single Pass—Tests one UUT or a single batch of UUTs without
identifying the UUTs.

Note When you select the Test UUTs Execution entry point to start an execution that
continuously tests UUTs, any subsequent configuration changes you make to the Report,
Database, or Model Options entry points do not affect UUTs tested in the execution.

TestStand process models include the following Configuration entry
points:

• Report Options—Launches the Report Options dialog box, in which
you enable UUT report generation and configure the report type and
content of the report files.

• Database Options—Launches the Database Options dialog box, in
which you enable UUT result logging and configure the schema for
mapping TestStand results to database tables and columns.

Appendix A Process Model Architecture

© National Instruments Corporation A-5 NI TestStand Reference Manual

• Model Options—Launches the Model Options dialog box, in which
you configure the number of test sockets and other process
model-related options.

Refer to the NI TestStand Help for more information about the Report
Options, Database Options, and Model Options dialog boxes.

Sequential Model
Use the Sequential process model to test one UUT at a time.

Parallel and Batch Models
Use the Parallel and Batch process models to simultaneously run the same
test sequence on groups of similar UUTs. Select Configure»Model
Options to launch the Model Options dialog box to specify the number of
test sockets in the test system.

Parallel Model
Use the Parallel model to control multiple independent test sockets. With
the Parallel model, you can start and stop testing on any test socket at any
time. For example, if you have five test sockets for testing radios, you can
load a new radio into an open test socket while the other test sockets
continue testing other radios.

When you select the Single Pass Execution entry point, the Parallel model
launches a separate execution for each test socket without prompting for
UUT serial numbers.

Batch Model
Use the Batch model to control a set of test sockets that test multiple UUTs
as a group. For example, if you have a set of circuit boards attached to
a common carrier, use the Batch model to ensure that you start and finish
testing all boards at the same time. With the synchronization features of the
Batch model, you can specify if a step that applies to the batch as a whole
runs only once per batch instead of once for each UUT. You can also
specify if certain steps or groups of steps cannot run on more than one UUT
at a time or if certain steps must run on all UUTs at the same time. The
Batch model generates batch reports that summarize the test results for the
UUTs in the batch.

Appendix A Process Model Architecture

NI TestStand Reference Manual A-6 ni.com

When you select the Single Pass Execution entry point, the Batch model
launches a separate execution for each test socket without prompting for
UUT serial numbers.

Selecting the Default Process Model
Select Configure»Station Options and click the Model tab to change the
default process model. Select a model from the Station Model ring control
or click Browse to select a process model sequence file. You can also use
the Sequence File Properties dialog box to specify that a sequence file
always uses a particular process model.

Sequential Process Model
The Sequential process model, SequentialModel.seq, includes
sequences for Execution entry points, Configuration entry points, Model
callbacks, Utility sequences, and Engine callbacks. The Execution entry
points are Test UUTs and Single Pass.

Execution Entry Points
The Sequential process model includes the following Execution entry point
sequences:

• Test UUTs—Tests and identifies multiple UUTs in a loop. The
Execute menu includes the Test UUTs item when a window for a client
sequence file is active. Refer to the Test UUTs section of the Sequential
Process Model section of this appendix for more information about the
Test UUTs Execution entry point.

• Single Pass—Tests one UUT without identifying the UUTs. The
Single Pass Execution entry point performs a single iteration of the
loop the Test UUTs Execution entry point performs. The Execute
menu includes the Single Pass item when a window for a client
sequence file is active. Refer to the Single Pass section of the
Sequential Process Model section of this appendix for more
information about the Single Pass Execution entry point.

Configuration Entry Points
The Sequential process model includes the following Configuration entry
point sequences:

• Configure Report Options—Launches the Report Options dialog
box, in which you enable UUT report generation and configure the
report type and content of report files. Refer to Chapter 6, Database

Appendix A Process Model Architecture

© National Instruments Corporation A-7 NI TestStand Reference Manual

Logging and Report Generation, for more information about report
options.

• Configure Database Options—Launches the Database Options
dialog box, in which you enable UUT result logging and configure the
schema for mapping TestStand results to database tables and columns.
Refer to Chapter 6, Database Logging and Report Generation, for
more information about database options

• Configure Model Options—Launches the Model Options dialog box,
in which you configure the number of test sockets and other process
model-related options.

The Configuration entry points save the station report, database, and model
options to disk. The settings in the Report Options, Database Options, and
Model Options dialog boxes apply to the test station as a whole.

Model Callbacks
The Sequential process model includes the following Model callback
sequences, which you can override with client sequence files:

• MainSequence—Test UUTs and Single Pass Execution entry point
sequences call the MainSequence callback, which is empty in the
process model file. The client sequence file must contain a
MainSequence callback that performs the tests on a UUT.

• PreUUT—Launches the UUT Information dialog box to obtain the
UUT serial number. The Test UUTs Execution entry point calls the
PreUUT callback at the beginning of each iteration of the UUT loop.
If the operator enters a UUT serial number, the IdentifyUUT step
stores the serial number in the UUT.SerialNumber parameter, which is
a local variable the Test UUTs sequence passes to the PreUUT callback
sequence. If the operator stops testing, the UUT loop terminates, and
the IdentifyUUT step sets the ContinueTesting parameter to False.
The ContinueTesting parameter is another local variable the Test
UUTs sequence passes to the PreUUT callback sequence.

• PostUUT—Displays a pass, fail, error, or terminate banner to indicate
the status of the test the MainSequence callback in the client sequence
file performs on the UUT. The Test UUTs Execution entry point calls
the PostUUT callback at the end of each iteration of the UUT loop.

• PreUUTLoop—Before the UUT loop begins, the Test UUTs
Execution entry point calls the PreUUTLoop callback, which is empty
in the process model file.

Appendix A Process Model Architecture

NI TestStand Reference Manual A-8 ni.com

• PostUUTLoop—After the UUT loop terminates, the Test UUTs
Execution entry point calls the PostUUTLoop callback, which is
empty in the process model file.

• ReportOptions—After reading the test station report options from
disk, the Get Report Options subsequence of the Execution entry point
sequence calls the ReportOptions callback so the client sequence file
can modify the report options. The ReportOptions callback in the
process model file is empty.

• DatabaseOptions—After reading the test station database options
from disk, the Get Database Options subsequence of the Execution
entry point sequence calls the DatabaseOptions callback so the client
sequence file can modify the database options. The DatabaseOptions
callback in the process model file is empty.

• ModelOptions—After reading the test station model options from
disk, the Get Model Options subsequence of the Execution entry point
sequence calls the ModelOptions callback so the client sequence file
can modify the model options. The ModelOptions callback in the
process model file is empty.

• TestReport—The Test UUTs and Single Pass Execution entry points
call the TestReport callback to generate the content of the test report
for one UUT. Execution entry points do not call the TestReport
callback if you enabled the On-The-Fly Reporting option in the Report
Options dialog box. The Sequential process model defines a test report
for a single UUT as a header, an entry for each step result, and a footer.
If you do not want to override the entire TestReport callback, you can
override the ModifyReportHeader, ModifyReportEntry, and
ModifyReportFooter callbacks instead to customize the test report.

Based on the settings in the Report Options dialog box, the TestReport
callback determines if TestStand uses sequences or a DLL to build the
report body. Select the Sequence option to more easily modify the
reports TestStand generates. Select the DLL option to generate reports
more efficiently.

If you select the Sequence option in the Report Options dialog box,
the TestReport callback calls the AddReportBody sequence in
reportgen_html.seq or reportgen_txt.seq to build the report
body. The report generator uses a series of sequences with steps that
recursively process the result list for the execution. If you select the
DLL option in the Report Options dialog box, the TestReport callback
calls a function in modelsupport2.dll to build the report body.
You can access the project and source code for the DLL built in
LabWindows/CVI from the <TestStand>\Components\Models\
TestStandModels directory.

Appendix A Process Model Architecture

© National Instruments Corporation A-9 NI TestStand Reference Manual

For XML reports, the AddReportBody sequence in
reportgen_xml.seq calls the TestStand API
PropertyObject.GetXML method. For ATML reports, the
GetATMLReport sequence in reportgen_atml.seq calls the
Get_Atml_Report function in ATML_Report.c in the
ATMLSupport.prj LabWindows/CVI project.

Refer to the Report Generation Functions and Sequences section of
this appendix for more information about how TestStand generates
reports.

• ModifyReportHeader—The TestReport callback calls the
ModifyReportHeader callback so the client sequence file can modify
the report header. The ModifyReportHeader callback receives
parameters for the UUT information, the tentative report header text,
and the report options. The ModifyReportHeader callback in the
process model file is empty.

• ModifyReportEntry—The TestReport callback uses subsequences to
call the ModifyReportEntry callback for each result in the result list for
the UUT so the client sequence file can modify the entry point for each
step result. The ModifyReportEntry callback receives parameters for
an entry from the result list, the UUT information, the tentative report
entry text, the report options, and a number that indicates the call
stack depth at the time the step executed. TestStand does not call
ModifyReportEntry callbacks if you enabled the DLL option
in the Report Options dialog box. Instead, you must modify
modelsupport2.dll, located in the <TestStand>\Components\
Models\TestStandModels directory, to modify how step results
appear in the report. The ModifyReportEntry callback in the process
model file is empty.

• ModifyReportFooter—The TestReport callback calls the
ModifyReportFooter callback so the client sequence file can modify
the report footer. The ModifyReportFooter callback receives
parameters for the UUT information, the tentative report footer text,
and the report options. The ModifyReportFooter callback in the
process model file is empty.

• LogToDatabase—Execution entry points call the LogToDatabase
callback to populate a database with the results for one UUT.
Execution entry points do not call the LogToDatabase callback if you
enabled the Use On-The-Fly Logging option in the Database Options
dialog box. The LogToDatabase callback receives parameters for the
UUT information, the result list for the UUT, and the database options.

Appendix A Process Model Architecture

NI TestStand Reference Manual A-10 ni.com

• ProcessSetup—The Test UUTs and Single Pass Execution entry
points call the ProcessSetup callback from the Setup step group so the
client sequence file can execute any setup steps that must run only once
during the execution of the process model. The Process Setup callback
in the process model file is empty.

• ProcessCleanup—The Test UUTs and Single Pass Execution entry
points call the ProcessCleanup callback from the Cleanup step group
so the client sequence file can execute any cleanup steps that must run
only once during the execution of the process model. The Process
Cleanup callback in the process model file is empty.

Utility Sequences
The Sequential process model sequences call the following Utility
sequences:

• Get Report Options—Execution entry points call the Get Report
Options sequence at the beginning of an execution. The Get Report
Options callback reads the test station report options from disk and
calls the ReportOptions callback so the client sequence file can modify
the report options.

• Get Station Info—Execution entry points call the Get Station Info
sequence at the beginning of an execution to identify the test station
name and the current user.

• Get Database Options—Execution entry points call the Get Database
Options sequence at the beginning of an execution. The Get Database
Options callback reads the test station database options from disk and
calls the DatabaseOptions callback so the client sequence file can
modify the database options.

• Get Model Options—Execution entry points call the Get Model
Options sequence at the beginning of an execution. The Get Model
Options callback reads the test station model options from disk and
calls the ModelOptions callback so the client sequence file can modify
the model options.

Engine Callbacks
The Sequential process model includes the following Engine callbacks:

• ProcessModelPostResultListEntry—The process model enables this
callback if you enable the On-The-Fly Reporting option in the Report
Options dialog box or if you enable the Use On-The-Fly Logging
option in the Database Options dialog box. TestStand calls this Engine
callback after each step that tests a UUT and generates a step result.

Appendix A Process Model Architecture

© National Instruments Corporation A-11 NI TestStand Reference Manual

• SequenceFilePostResultListEntry—The process model enables this
callback if you enable the On-The-Fly Reporting option in the Report
Options dialog box or if you enable the Use On-The-Fly Logging
option in the Database Options dialog box. TestStand calls this Engine
callback after any step in the process model generates a step result.
However, this callback processes only results the MainSequence
model callback steps generate.

Test UUTs
Open SequentialModel.seq in the sequence editor and select the
Test UUTs sequence on the Sequences pane to examine the Sequential
process model Test UUTs Execution entry point, which performs the
following significant actions:

1. Calls the ProcessSetup callback.

2. Calls the PreUUTLoop callback.

3. Calls the Get Model Options utility sequence.

4. Calls the Get Station Info utility sequence.

5. Calls the Get Report Options utility sequence.

6. Calls the Get Database Options utility sequence.

7. Calls the Configure Post Result Callbacks utility sequence
to enable the ProcessModelPostResultListEntry and
SequenceFilePostResultListEntry callbacks if you enable
on-the-fly report generation or database logging.

8. Increments the UUT index.

9. Calls the PreUUT callback.

10. If no more UUTs exist, skips to step 20.

11. Sets up the report by determining the report file pathname, setting up
display settings, resetting the report, and setting the report location.

12. Clears information from the previous loop iteration by discarding the
previous results and clearing the report and failure stacks.

13. Starts on-the-fly report generation and database logging, if enabled, for
the new UUT.

14. Calls the MainSequence callback.

15. Calls the PostUUT callback.

16. Calls the TestReport callback.

Appendix A Process Model Architecture

NI TestStand Reference Manual A-12 ni.com

17. Writes the UUT report to disk by appending to an existing file or
creating a new file. Also adjusts the root tags if the report format
is XML.

18. Calls the LogToDatabase callback.

19. Loops back to step 8.

20. Calls the PostUUTLoop callback.

21. Calls the ProcessCleanup callback.

Single Pass
Open SequentialModel.seq in the sequence editor and select the
Single Pass sequence on the Sequences pane to examine the Sequential
process model Single Pass Execution entry point, which performs the
following significant actions:

1. Calls the ProcessSetup callback.

2. Calls the Get Model Options utility sequence.

3. Calls the Get Station Info utility sequence.

4. Calls the Get Report Options utility sequence.

5. Calls the Get Database Options utility sequence.

6. Calls the Configure Post Result Callbacks utility sequence to enable
the ProcessModelPostResultListEntry and
SequenceFilePostResultListEntry callbacks if you enable on-the-fly
report generation or database logging.

7. Sets up the report by determining the report file pathname, setting up
display settings, resetting the report, and setting the report location.

8. Starts on-the-fly report generation and database logging, if enabled, for
the new UUT.

9. Calls the MainSequence callback.

10. Calls the TestReport callback.

11. Writes the UUT report to disk by appending to an existing file or
creating a new file. Also adjusts the root tags if the report format is
XML.

12. Calls the LogToDatabase callback.

13. Calls the ProcessCleanup callback.

Appendix A Process Model Architecture

© National Instruments Corporation A-13 NI TestStand Reference Manual

Parallel Process Model
The Parallel process model, ParallelModel.seq, includes sequences for
main Execution entry points, Utility sequences, hidden Execution entry
points, Configuration entry points, Model callbacks, and Engine callbacks.
The main Execution entry points are Test UUTs and Single Pass. The
hidden Execution entry points are Test UUTs – Test Socket Entry Point and
Single Pass – Test Socket Entry Point.

Main Execution Entry Points
The Parallel process model includes the following main Execution entry
point sequences:

• Test UUTs—Initiates a hidden execution that controls the test socket
executions it creates using the Test UUTs – Test Socket Entry Point
sequence. The Execute menu includes the Test UUTs item when a
window for a client sequence file is active. Refer to the Test UUTs
section of the Parallel Process Model section of this appendix for
more information about the Test UUTs Execution entry point.

• Single Pass—Initiates a hidden execution that controls the test socket
executions it creates using the Single Pass – Test Socket Entry Point
sequence. The Execute menu includes the Single Pass item when a
window for a client sequence file is active. Refer to the Single Pass
section of the Parallel Process Model section of this appendix for
more information about the Single Pass Execution entry point.

Utility Sequences
The Parallel process model calls the same Get Report Options, Get Station
Info, Get Database Options, and Get Model Options Utility sequences as
the Sequential process model. Refer to the Utility Sequences section of the
Sequential Process Model section of this appendix for information about
these sequences.

The main Execution entry points in the Parallel process model use the
following additional utility sequences:

• Initialize TestSocket—The controlling execution calls the Initialize
TestSocket sequence to initialize the data for and create the test socket
executions.

• Tile Execution Windows—The controlling execution calls the Tile
Execution Windows sequence to tile the test socket Execution
windows by building a list of executions and posting a UIMessage to
the user interface that requests window tiling.

Appendix A Process Model Architecture

NI TestStand Reference Manual A-14 ni.com

• Monitor Threads—The ProcessDialogRequests sequence calls the
Monitor Threads sequence periodically from the controlling execution
to determine if any of the test socket executions terminated or aborted.
The Monitor Threads sequence updates the ModelData for terminated
or aborted test sockets to indicate the new state and updates the UUT
Information dialog box the controlling execution launches for that test
socket.

• ProcessDialogRequests—The controlling execution calls the
ProcessDialogRequests sequence from the Test UUTs sequence after
displaying the UUT Information dialog box, which enqueues requests
for sequence names into ModelData.DialogRequestQueue. The
ProcessDialogRequests sequence loops while waiting for those
requests. When the ProcessDialogRequests sequence receives a
request, it calls the requested sequence. Additionally, the
ProcessDialogRequests sequence periodically calls the Monitor
Threads sequence to verify the state of and update the information for
the test socket executions.

• Run UUT Info Dialog—The controlling execution calls the Run UUT
Info Dialog sequence from a new thread in the Test UUTs Execution
entry point to initialize and launches the UUT Information dialog box
the Test UUTs Execution entry point uses to display information and
gather serial numbers for the test socket executions.

• Continue TestSocket—The ProcessDialogRequests sequence calls
the Continue TestSocket callback to notify the test socket to continue
executing. The test socket execution waits on the notification in the
default implementation of the PreUUT and PostUUT callbacks.

• Terminate TestSocket—The ProcessDialogRequests sequence calls
this dialog box request callback. The Terminate TestSocket sequence
terminates the execution for the test socket the request specifies.

• Abort TestSocket—The ProcessDialogRequests sequence calls this
dialog box request callback. The Abort TestSocket sequence aborts the
execution for the test socket the request specifies.

• Restart TestSocket—The ProcessDialogRequests sequence calls this
dialog box request callback. The Restart TestSocket sequence restarts
the execution for the test socket the request specifies and re-tiles the
Execution windows to include the Execution window the Restart
TestSocket sequence restarts.

• Terminate All TestSockets—The ProcessDialogRequests sequence
calls this dialog box request callback. The Terminate All TestSockets
sequence terminates all the test socket executions.

Appendix A Process Model Architecture

© National Instruments Corporation A-15 NI TestStand Reference Manual

• Abort All TestSockets—The ProcessDialogRequests sequence calls
this dialog box request callback. The Abort All TestSockets sequence
aborts all the test socket executions.

• Stop All TestSockets—The ProcessDialogRequests sequence calls
this dialog box request callback. The Stop All TestSockets sequence
sets a flag for each test socket execution to stop after completing the
current UUT test sequence. The sequence also sets a notification for
test socket executions to continue to that point without interruption.

• View TestSocket Report—The ProcessDialogRequests sequence
calls this dialog box request callback to enable the View Report button
in the Status dialog box. Click the View Report button to launch a
report viewer for the report file for the test socket the request specifies.

• View TestSocket Report – Current Only—The
ProcessDialogRequests sequence calls this dialog box request callback
to enable the View Report button in the Status dialog box. Click the
View Report button to launch a report viewer for the last report
generated for the test socket the request specifies. This sequence
differs from the View TestSocket Report sequence because it shows
only the last report instead of the whole report file.

Hidden Execution Entry Points
The main Execution entry points of the Parallel process model use but do
not display the following hidden Execution entry point sequences to initiate
test socket executions:

• Test UUTs – Test Socket Entry Point—The controlling execution
uses this entry point to create the test socket executions and implement
the Test UUTs Execution entry point for the test socket executions. If
you insert a step into this sequence, disable the Record Result option
for the step to ensure that report generation and database logging
function properly. Refer to the Test UUTs – Test Socket Entry Point
section of the Parallel Process Model section of this appendix for
more information about this entry point.

• Single Pass – Test Socket Entry Point—The controlling execution
uses this entry point to create the test socket executions and implement
the Single Pass Execution entry point for test socket executions. If you
insert a step into this sequence, disable the Record Result option for the
step to ensure that report generation and database logging function
properly. Refer to the Single Pass – Test Socket Entry Point section of
the Parallel Process Model section of this appendix for more
information about this entry point.

Appendix A Process Model Architecture

NI TestStand Reference Manual A-16 ni.com

Configuration Entry Points
The Parallel process model includes the same Configuration entry point
sequences as the Sequential process model. Refer to the Configuration
Entry Points section of the Sequential Process Model section of this
appendix for information about these sequences.

Model Callbacks
The Parallel process model includes the following Model callback
sequences, which you can override with client sequence files:

• MainSequence—The Test UUTs – Test Socket Entry Point and
Single Pass – Test Socket Entry Point sequences call the
MainSequence callback, which is empty in the process model file.
The client sequence file must contain a MainSequence callback that
performs the tests on a UUT.

• PreUUT—Launches the UUT Information dialog box to obtain the
UUT serial numbers for the test sockets. The Test UUTs – Test Socket
Entry Point sequence calls the PreUUT callback at the beginning of
each iteration of the UUT loop. If the operator enters a serial number,
the code for the dialog box stores the serial number in the
TestSocket.UUT.SerialNumber parameter. If the operator stops
testing, the UUT loop terminates, and the code for the dialog box sets
the TestSocket.ContinueTesting parameter to False.

• PostUUT—Displays a pass, fail, error, or terminate banner to indicate
the status of the test the MainSequence callback in the client sequence
file performs on the UUT. The Test UUTs – Test Socket Entry Point
sequence calls the PostUUT callback at the end of each iteration of the
UUT loop.

• PreUUTLoop—Before the UUT loop begins, the Test UUTs – Test
Socket Entry Point sequence calls the PreUUTLoop callback, which is
empty in the process model file.

• PostUUTLoop—After the UUT loop terminates, the Test
UUTs – Test Socket Entry Point sequence calls the PostUUTLoop
callback, which is empty in the process model file.

• ReportOptions, DatabaseOptions, ModelOptions, TestReport,
ModifyReportHeader, ModifyReportEntry, ModifyReportFooter,
and LogToDatabase—Refer to the Model Callbacks section of the
Sequential Process Model section of this appendix for information
about these sequences.

• ProcessSetup—The Test UUTs and Single Pass Execution entry
points call the ProcessSetup callback from the Setup step group so the

Appendix A Process Model Architecture

© National Instruments Corporation A-17 NI TestStand Reference Manual

client sequence file can execute any setup steps that must run only once
during the execution of the process model. Only the controlling
execution runs these setup steps. The test socket executions do not call
the ProcessSetup callback.

• ProcessCleanup—The Test UUTs and Single Pass Execution entry
points call the ProcessCleanup callback from the Cleanup step group
so the client sequence file can execute any cleanup steps that must run
only once during the execution of the process model. Only the
controlling execution runs these cleanup steps. The test socket
executions do not call the ProcessCleanup callback.

Engine Callbacks
The Parallel process model includes the same Engine callbacks as the
Sequential process model. Refer to the Engine Callbacks section of the
Sequential Process Model section of this appendix for information about
these sequences.

Test UUTs
The Test UUTs Execution entry point is the sequence the controlling
execution runs.

Open ParallelModel.seq in the sequence editor and select the
Test UUTs sequence on the Sequences pane to examine the Parallel
process model Test UUTs Execution entry point, which performs the
following significant actions:

1. Calls the ProcessSetup callback.

2. Calls the Get Model Options utility sequence.

3. Calls the Get Station Info utility sequence.

4. Calls the Get Report Options utility sequence.

5. Calls the Get Database Options utility sequence.

6. Calls the Run UUT Info Dialog utility sequence.

7. Determines the report file pathname to use when you configure the
report options to write all UUT results for the model to the same file.

8. Creates and initializes the test socket executions. Refer to the Test
UUTs – Test Socket Entry Point section of the Parallel Process Model
section of this appendix for more information about the sequence file
the test socket executions run.

9. Calls the ProcessDialogRequests utility sequence.

10. Calls the ProcessCleanup callback.

Appendix A Process Model Architecture

NI TestStand Reference Manual A-18 ni.com

Test UUTs – Test Socket Entry Point
The Test UUTs – Test Socket entry point is the sequence the test socket
executions run. The controlling execution creates the test socket executions
in the Test UUTs Execution entry point sequence.

Open ParallelModel.seq in the sequence editor and select the
Test UUTs – Test Socket Entry Point sequence on the Sequences pane to
examine the Parallel process model Test UUTs – Test Socket entry point,
which performs the following significant actions:

1. Calls the PretUUTLoop callback.

2. Calls the Configure Post Result Callbacks utility sequence
to enable the ProcessModelPostResultListEntry and
SequenceFilePostResultListEntry callbacks if you enable
on-the-fly report generation or database logging.

3. Increments the UUT index.

4. Clears information from the previous loop iteration by discarding the
previous results and clearing the report and failure stacks.

5. Calls the PreUUT callback.

6. If no more UUTs exist, skips to step 15.

7. Sets up the report by determining the report file pathname, setting up
display settings, resetting the report, and setting the report location.

8. Starts on-the-fly report generation and database logging, if enabled, for
the new UUT.

9. Calls the MainSequence callback.

10. Calls the PostUUT callback.

11. Calls the TestReport callback.

12. Calls the LogToDatabase callback.

13. Writes the UUT report to disk by appending to an existing file or
creating a new file. Also adjusts the root tags if the report format is
XML.

14. Loops back to step 3.

15. Calls the PostUUTLoop callback.

Appendix A Process Model Architecture

© National Instruments Corporation A-19 NI TestStand Reference Manual

Single Pass
The Single Pass Execution entry point is the sequence the controlling
execution runs.

Open ParallelModel.seq in the sequence editor and select the
Single Pass sequence on the Sequences pane to examine the Parallel
process model Single Pass Execution entry point, which performs the
following significant actions:

1. Calls the ProcessSetup callback.

2. Calls the Get Model Options utility sequence.

3. Calls the Get Station Info utility sequence.

4. Calls the Get Report Options utility sequence.

5. Calls the Get Database Options utility sequence.

6. Determines the report file pathname to use when you configure the
report options to write all UUT results for the model to the same file.

7. Creates and initializes the test socket executions. Refer to the Single
Pass – Test Socket Entry Point section of the Parallel Process Model
section of this appendix for more information about the sequence file
the test socket executions run.

8. Waits for test socket executions to complete.

9. Calls the ProcessCleanup callback.

Single Pass – Test Socket Entry Point
The Single Pass – Test Socket entry point is the sequence the test socket
executions run. The controlling execution creates the test socket executions
in the Single Pass Execution entry point sequence.

Open ParallelModel.seq in the sequence editor and select the Single
Pass – Test Socket Entry Point sequence on the Sequences pane to
examine the Parallel process model Single Pass – Test Socket entry point,
which performs the following significant actions:

1. Calls the Configure Post Result Callbacks utility sequence
to enable the ProcessModelPostResultListEntry and
SequenceFilePostResultListEntry callbacks if you enable
on-the-fly report generation or database logging.

2. Sets up the report by determining the report file pathname, setting up
display settings, resetting the report, and setting the report location.

3. Starts on-the-fly report generation and database logging, if enabled, for
the new UUT.

Appendix A Process Model Architecture

NI TestStand Reference Manual A-20 ni.com

4. Calls the MainSequence callback.

5. Calls the TestReport callback.

6. Calls the LogToDatabase callback.

7. Writes the UUT report to disk by appending to an existing file or
creating a new file. Also adjusts the root tags if the report format is
XML.

Batch Process Model
The Batch process model, BatchModel.seq, includes sequences for main
Execution entry points, Utility sequences, hidden Execution entry points,
Configuration entry points, Model callbacks, and Engine callbacks. The
main Execution entry points are Test UUTs and Single Pass. The hidden
Execution entry points are Test UUTs – Test Socket Entry Point and Single
Pass – Test Socket Entry Point.

Main Execution Entry Points
The Batch process model includes the following main Execution entry
point sequences:

• Test UUTs—Initiates an execution that controls a separate execution
for each test socket using the Test UUTs – Test Socket Entry Point
sequence. The Test UUTs sequence adds the main threads of those
executions to a Batch Synchronization object and controls the flow of
execution using queues and notifications so all test socket executions
execute the Main sequence of the client sequence file together as a
group. After a group of UUTs executes, the Test UUTs sequence
generates a batch report, loops back to run the client sequence file on
the next group of UUTs, and controls the subsidiary test socket
executions to keep them synchronized. The Execute menu includes the
Test UUTs item when a window for a client sequence file is active.
Refer to the Test UUTs section of the Batch Process Model section of
this appendix for more information about the Test UUTs Execution
entry point.

• Single Pass—Initiates an execution that controls a separate execution
for each test socket using the Single Pass – Test Socket Entry Point
sequence. The Single Pass sequence adds the main threads of those
executions to a Batch Synchronization object and controls the flow of
execution using queues and notifications so all test socket executions
execute the Main sequence of the client sequence file together as a
group. After the group of UUTs executes, the Single Pass sequence
generates a batch report and waits for all subsidiary executions to

Appendix A Process Model Architecture

© National Instruments Corporation A-21 NI TestStand Reference Manual

complete. The Execute menu includes the Single Pass item when a
window for a client sequence file is active. Refer to the Single Pass
section of the Batch Process Model section of this appendix for more
information about the Single Pass Execution entry point.

Utility Sequences
The Batch process model calls the same Get Report Options, Get Station
Info, Get Database Options, and Get Model Options Utility sequences as
the Sequential process model. Refer to the Utility Sequences section of the
Sequential Process Model section of this appendix for information about
these sequences.

The main Execution entry points in the Batch process model use the
following additional Utility sequences:

• Restart TestSocket—The ProcessDialogRequests sequence calls the
Restart TestSocket callback to restart the execution for the test socket
the request specifies.

• Initialize TestSocket—The controlling execution calls the Initialize
TestSocket sequence to initialize the data for and create the test socket
executions.

• Monitor Batch Threads—The ProcessDialogRequests,
ProcessTestSocketRequests, and WaitForTestSocket sequences call
the Monitor Batch Threads sequence periodically from the controlling
execution to determine if any of the test socket executions terminated
or aborted. The Monitor Batch Threads sequence updates the
ModelData parameter for terminated or aborted test sockets to indicate
the new state and updates the UUT Information dialog box the
controlling execution launches for that test socket.

• Tile Execution Windows—The controlling execution calls the Tile
Execution Windows sequence to tile the test socket Execution
windows by building a list of executions and posting a UIMessage to
the user interface that requests window tiling. The Tile Execution
Windows sequence tiles only running, non-disabled test socket
executions.

• Add TestSocket Threads to Batch—The Test UUTs and Single Pass
Execution entry points call the Add TestSocket Threads to Batch
sequence from the controlling execution to add the main threads of the
test socket executions to a Batch Synchronization object. The threads
remove themselves from the batch in the Test UUTs – Test Socket
Entry Point and the Single Pass – Test Socket Entry Point sequences
after running the Main sequence of the client sequence file to clean up

Appendix A Process Model Architecture

NI TestStand Reference Manual A-22 ni.com

the state of the batch in case the sequence terminates or the client
sequence file did not properly handle batch synchronization.

• Notify TestSocket Threads—The controlling execution calls the
Notify TestSocket Threads sequence to make the running test socket
execution threads continue executing after waiting at the last call to the
SendControllerRequest sequence. The Notify TestSocket Threads
sequence optionally waits for each test socket to reach the
SendControllerRequest sequence, which serializes the execution of
each test socket.

• All TestSockets Waiting?—Returns True if all running test sockets
are waiting for the WaitingForRequest parameter or if all test sockets
stop.

• ProcessTestSocketRequests—The controlling execution calls the
ProcessTestSocketRequests sequence to wait for the test socket
executions to synchronize at a point the controlling execution defines
in the process model. When all running test sockets reach this point,
the ProcessTestSocketRequests sequence returns and allows the
controlling execution to continue. While waiting for the test sockets,
the ProcessTestSocketRequests sequence monitors the test socket
threads to make sure the threads continue to run. If all test sockets stop
running, the ProcessTestSocketRequests sequence returns to allow the
controlling sequence to continue.

• WaitForTestSocket—The controlling execution calls the
WaitForTestSocket sequence from the Notify TestSocket Threads
sequence to make a test socket execution wait to receive its next
controller request, such as a synchronization point, before the next test
socket execution continues. Using the WaitForTestSocket sequence
guarantees that the controlling execution allows only one test
socket to run particular sections of its sequence at a time. Use the
WaitForTestSocket sequence to write the test socket reports to a file in
test socket index order when you configure the report options to write
reports to the same file.

• ProcessDialogRequests—The controlling execution calls the
ProcessDialogRequests sequence from the Test UUTs sequence after
displaying the UUT Information dialog box, which enqueues requests
for sequence names into ModelData.DialogRequestQueue. The
ProcessDialogRequests sequence loops while waiting for those
requests. When the ProcessDialogRequests sequence receives
a request, it calls the requested sequence. Additionally, the
ProcessDialogRequests sequence periodically calls the Monitor Batch
Threads sequence to verify the state of and update the information for
the test socket executions.

Appendix A Process Model Architecture

© National Instruments Corporation A-23 NI TestStand Reference Manual

• Run Batch Info Dialog—The controlling execution calls the Run
Batch Info Dialog sequence from a new thread in the Test UUTs
Execution entry point to initialize and run the dialog box in which
users enter serial numbers and view the results for a particular run of
the batch.

• View TestSocket Report—The ProcessDialogRequests sequence
calls this dialog box request callback to enable the View Report button
in the Status dialog box. Click the View Report button to launch a
report viewer for the report file for the test socket the request specifies.

• View TestSocket Report – Current Only—The
ProcessDialogRequests sequence calls this dialog box request callback
to enable the View Report button in the Status dialog box. Click the
View Report button to launch a report viewer for the last report
generated for the test socket the request specifies. This sequence
differs from the View TestSocket Report sequence because it shows
only the last report instead of the whole report file.

• View Batch Report—The ProcessDialogRequests sequence calls this
dialog box request callback to enable the View Report button in the
Status dialog box. Click the View Report button to launch a report
viewer for the batch report file.

• View Batch Report – Current Only—The ProcessDialogRequests
sequence calls this dialog box request callback to enable the View
Report button in the Status dialog box. Click the View Report button
to launch a report viewer for the last batch report generated. This
sequence differs from the View Batch Report sequence because it
shows only the last report instead of the whole batch report file.

The hidden Execution entry points in the Batch process model call the
following utility sequence:

• SendControllerRequest—The test socket executions call the
SendControllerRequest sequence to synchronize the controlling
execution at various locations in the sequences. The test socket
executions pass string parameters to indicate the reason and location at
which the test socket executions attempt to synchronize with the other
executions. When all the running test socket executions synchronize
with the controlling sequence at the same location by calling the
SendControllerRequest sequence, the sequence of the controlling
execution performs operations and notifies the test socket execution
when to continue.

Appendix A Process Model Architecture

NI TestStand Reference Manual A-24 ni.com

Hidden Execution Entry Points
The main Execution entry points of the Batch process model use but do not
display the following hidden Execution entry point sequences to initiate
test socket executions:

• Test UUTs – Test Socket Entry Point—The controlling execution
uses this entry point to create the test socket executions and implement
the Test UUTs Execution entry point for the test socket executions. If
you insert a step into this sequence, disable the Record Result option
for the step to ensure that report generation and database logging
function properly. Refer to the Test UUTs – Test Socket Entry Point
section of the Batch Process Model section of this appendix for more
information about this entry point.

• Single Pass – Test Socket Entry Point—The controlling execution
uses this entry point to create the test socket executions and implement
the Single Pass Execution entry point for the test socket executions. If
you insert a step into this sequence, disable the Record Result option
for the step to ensure that report generation and database logging
function properly. Refer to the Single Pass – Test Socket Entry Point
section of the Batch Process Model section of this appendix for more
information about this entry point.

Configuration Entry Points
The Batch process model includes the same Configuration entry point
sequences as the Sequential process model. Refer to the Configuration
Entry Points section of the Sequential Process Model section of this
appendix for information about these sequences.

Model Callbacks
The Batch process model includes the following Model callback
sequences, which you can override with client sequence files:

• MainSequence—The Test UUTs – Test Socket Entry Point and
Single Pass – Test Socket Entry Point sequences call the
MainSequence callback, which is empty in the process model file.
The client sequence file must contain a MainSequence callback that
performs the tests on a UUT.

• PreUUT—The test socket executions call the PreUUT callback,
which is empty in the process model file. If you override the PreUUT
callback with a client sequence file to obtain the serial number for the
UUT, override the PreBatch callback also. The PreBatch callback
launches a dialog box to obtain the serial numbers for all the UUTs in

Appendix A Process Model Architecture

© National Instruments Corporation A-25 NI TestStand Reference Manual

the batch. Refer to the sequence files in the <TestStand Public>\
Examples\ProcessModels\BatchModel directory for examples
of how to override the PreUUT and PreBatch callbacks.

• PostUUT—The test socket executions call the Post UUT callback,
which is empty in the process model file. If you override the PostUUT
callback with a client sequence file to display the result status for a
UUT, override the PostBatch callback also. The PostBatch callback
launches a dialog box to show the result status for all the UUTs in the
batch. Refer to the sequence files in the <TestStand Public>\
Examples\ProcessModels\BatchModel directory for examples
of how to override the PostUUT and PostBatch callbacks.

• PreUUTLoop—Before the UUT loop begins, the Test UUTs – Test
Socket Entry Point sequence calls the PreUUTLoop callback, which is
empty in the process model file.

• PostUUTLoop—After the UUT loop terminates, the Test
UUTs – Test Socket Entry Point sequence calls the PostUUTLoop
callback, which is empty in the process model file.

• ReportOptions, DatabaseOptions, ModelOptions,
TestReport, ModifyReportHeader, ModifyReportEntry,
ModifyReportFooter, and LogToDatabase—Refer to the Model
Callbacks section of the Sequential Process Model section of this
appendix for more information about these sequences.

• ProcessSetup—The Test UUTs and Single Pass Execution entry
points call the ProcessSetup callback from the Setup step group so the
client sequence file can execute any setup steps that must run only once
during the execution of the process model. Only the controlling
execution runs these setup steps. The test socket executions do not call
the ProcessSetup callback.

• ProcessCleanup—The Test UUTs and Single Pass Execution entry
points call the ProcessCleanup callback from the Cleanup step group
so the client sequence file can execute any cleanup steps that must run
only once during the execution of the process model. Only the
controlling execution runs these cleanup steps. The test socket
executions do not call the ProcessCleanup callback.

The main Execution entry points in the Batch process model call the
following Model callback sequences, which you can override with client
sequence files:

• PreBatch—Launches a dialog box to obtain the batch and UUT serial
numbers. Refer to the sequence files in the <TestStand Public>\
Examples\ProcessModels\BatchModel directory for an example
of how to override the PreBatch callback.

Appendix A Process Model Architecture

NI TestStand Reference Manual A-26 ni.com

• PostBatch—Displays a pass, fail, error, or terminated banner and
batch and UUT reports for each test socket. Refer to the sequence files
in the <TestStand Public>\Examples\ProcessModels\
BatchModel directory for an example of how to override the
PostBatch callback.

• PreBatchLoop—Before looping on a batch of UUTs, the process
model calls the PreBatchLoop callback, which is empty in the process
model file. Use the PreBatchLoop callback to perform an action before
testing the batch.

• PostBatchLoop—After looping on a batch of UUTs, the process
model calls the PostBatchLoop callback, which is empty in the process
model file. Use the PostBatchLoop callback to perform an action after
testing all batches of UUTs.

• BatchReport—The Test UUTs and Single Pass Execution entry
points call the BatchReport callback to generate the content of the
batch report for the UUTs that ran in the last batch. The Batch process
model defines a batch report for a single group of UUTs as a header,
an entry for each UUT result, and a footer. If you do not want to
override the entire BatchReport callback, you can override the
ModifyBatchReportHeader, ModifyBatchReportEntry, and
ModifyBatchReportFooter callbacks instead to customize the
batch report.

• ModifyBatchReportHeader—The BatchReport callback calls the
ModifyBatchReportHeader callback so the client sequence file can
modify the batch report header. The ModifyBatchReportHeader
callback receives parameters for the batch serial number,
the tentative report header text, and the report options. The
ModifyBatchReportHeader callback in the process model file
is empty.

• ModifyBatchReportEntry—The BatchReport callback uses
subsequences to call the ModifyBatchReportEntry callback for each
test socket so the client sequence file can modify the entry for each
UUT result for each test socket. The ModifyBatchReportEntry
callback receives parameters for the test socket data, the batch serial
number, the tentative report entry text, and the report options. The
ModifyBatchReportEntry callback in the process model file is empty.

• ModifyBatchReportFooter—The BatchReport callback calls the
ModifyBatchReportFooter callback so the client sequence file can
modify the batch report footer. The ModifyBatchReportFooter
callback receives parameters for the tentative report footer text and the
report options. The ModifyBatchReportFooter callback in the process
model file is empty.

Appendix A Process Model Architecture

© National Instruments Corporation A-27 NI TestStand Reference Manual

Engine Callbacks
The Batch process model includes the same Engine callbacks as the
Sequential process model. Refer to the Engine Callbacks section of the
Sequential Process Model section of this appendix for information about
these sequences.

Test UUTs
The Test UUTs Execution entry point is the sequence the controlling
execution runs.

Open BatchModel.seq in the sequence editor and select the Test UUTs
sequence on the Sequences pane to examine the Batch process model Test
UUTs Execution entry point, which performs the following significant
actions:

1. Calls the ProcessSetup callback.

2. Calls the Get Model Options utility sequence.

3. Calls the PreBatchLoop callback.

4. Calls the Get Station Info utility sequence.

5. Calls the Get Report Options utility sequence.

6. Calls the Get Database Options utility sequence.

7. Creates and initializes the test socket executions. Refer to the Test
UUTs – Test Socket Entry Point section of the Batch Process Model
section of this appendix for more information about the sequence file
the test socket executions run.

8. Calls the Run Batch Info Dialog utility sequence.

9. Calls the ProcessTestSocketRequests utility sequence to wait for and
monitor test socket executions as the test sockets synchronize before
beginning initialization.

10. Calls the Add TestSocket Threads to Batch utility sequence.

11. Calls the Notify TestSocket Threads utility sequence to notify test
sockets to continue initialization.

12. Increments the Batch index.

13. Calls the ProcessTestSocketRequests utility sequence to wait for and
monitor test socket executions as the test sockets obtain UUT serial
numbers.

14. Calls the PreBatch callback.

Appendix A Process Model Architecture

NI TestStand Reference Manual A-28 ni.com

15. If no more UUTs exist, sets the ContinueTesting test socket data
variable to False for all the test sockets and marks all test sockets as
enabled to add them to the batch and so they exit normally.

16. Adds enabled test socket threads to the batch and removes disabled test
sockets from the batch so they do not block running threads.

17. Calls the Notify TestSocket Threads utility sequence to notify test
sockets to continue obtaining UUT serial numbers.

18. If no more UUTs exist, skips to step 35.

19. Calls the ProcessTestSocketRequests utility sequence to wait for and
monitor test socket executions when the test sockets are ready to run.

20. Determines the report file pathname to use for the batch and UUT
report files when you configure the report options to write all UUT
results for the model to the same file or to the same file as the batch
reports.

21. Calls the Notify TestSocket Threads utility sequence to notify test
sockets to continue running.

22. Calls the ProcessTestSocketRequests utility sequence to wait for and
monitor test socket executions as the test sockets display the test socket
status.

23. Calls the Add TestSocket Threads to Batch utility sequence to add test
socket execution threads to the batch again if necessary.

24. Calls the PostBatch callback.

25. Calls the Notify TestSocket Threads utility sequence to notify test
sockets to continue displaying the test socket status.

26. Calls the ProcessTestSocketRequests utility sequence to wait for and
monitor test socket executions as TestStand generates reports for the
test sockets.

27. Calls the BatchReport callback.

28. Writes the batch report to disk by appending to an existing file or
creating a new file. Also adjusts the root tags if the report format is
XML.

29. Calls the Notify TestSocket Threads utility sequence and returns True
for the ReleaseThreadsSequentially parameter so TestStand writes
only one UUT report at a time in the test socket index order to notify
test sockets to continue.

30. Calls the ProcessTestSocketRequests utility sequence to wait for and
monitor test socket executions as the test sockets complete execution.

Appendix A Process Model Architecture

© National Instruments Corporation A-29 NI TestStand Reference Manual

31. Notifies the Status dialog box when report generation completes and
enables the View Report button so you can view the reports from the
dialog box.

32. Waits for the Status dialog box. If TestStand launches the PostBatch
callback Status dialog box, the sequence waits for you to dismiss the
dialog box if you have not already done so.

33. Calls the Notify TestSocket Threads utility sequence to notify test
sockets to continue completing execution.

34. Loops back to step 12.

35. Waits for test socket executions to complete.

36. Calls the PostBatchLoop callback.

37. Calls the ProcessCleanup callback.

Test UUTs – Test Socket Entry Point
The Test UUTs – Test Socket entry point is the sequence the test socket
executions run. The controlling execution creates the test socket executions
in the Test UUTs Execution entry point sequence.

Open BatchModel.seq in the sequence editor and select the
Test UUTs – Test Socket Entry Point sequence on the Sequences pane to
examine the Batch process model Test UUTs – Test Socket entry point,
which performs the following significant actions:

1. Calls the SendControllerRequest utility sequence to synchronize
with the controlling execution before performing initialization.
The sequence waits until the controlling execution allows the test
socket to perform initialization.

2. Calls the PreUUTLoop callback.

3. Calls the Configure Post Result Callbacks utility sequence to enable
the ProcessModelPostResultListEntry and
SequenceFilePostResultListEntry callbacks if you enable on-the-fly
report generation or database logging.

4. Increments the UUT index.

5. Clears the information from the previous loop iteration by discarding
the previous results and clearing the report and failure stacks.

6. Calls the SendControllerRequest utility sequence to synchronize
with the controlling execution before retrieving UUT serial numbers.
The sequence waits until the controlling execution allows the test
socket to obtain UUT serial numbers.

7. Calls the PreUUT callback.

Appendix A Process Model Architecture

NI TestStand Reference Manual A-30 ni.com

8. If no more UUTs exist, skips to step 22.

9. Calls the SendControllerRequest utility sequence to synchronize with
the controlling execution before the test socket is ready to run. The
sequence waits until the controlling execution allows the test socket to
run.

10. Sets up the report. Determines the report file pathname, sets up the
display settings, resets the report, and sets the report location.

11. Starts on-the-fly report generation and database logging, if enabled, for
the new UUT.

12. Calls the MainSequence callback.

13. Removes the test socket thread from batch synchronization by cleaning
up the state of the batch in case the Main sequence terminates or the
client sequence file did not properly handle batch synchronization. The
controlling execution adds the thread to batch synchronization before
continuing past the next synchronization point. The controlling
execution does not add disabled test sockets to the batch.

14. Calls the SendControllerRequest utility sequence to synchronize with
the controlling execution before displaying the test socket status. The
sequence waits until the controlling execution allows the test socket to
display the test socket status.

15. Calls the PostUUT callback.

16. Calls the TestReport callback.

17. Calls the LogToDatabase callback.

18. Calls the SendControllerRequest utility sequence to synchronize with
controlling executions before TestStand generates reports for the test
sockets. The sequence waits until the controlling execution allows
TestStand to generate reports.

19. Writes the UUT report to disk by appending to an existing file or
creating a new file. Also adjusts the root tags if the report format is
XML.

20. Calls the SendControllerRequest utility sequence to synchronize with
controlling executions before completing execution. The sequence
waits until the controlling execution allows the test socket to complete
execution.

21. Loops back to step 4.

22. Calls the PostUUTLoop callback.

Appendix A Process Model Architecture

© National Instruments Corporation A-31 NI TestStand Reference Manual

Single Pass
The Single Pass Execution entry point is the sequence the controlling
execution runs.

Open BatchModel.seq in the sequence editor and select the Single Pass
sequence on the Sequences pane to examine the Batch process model
Single Pass Execution entry point, which performs the following
significant actions:

1. Calls the ProcessSetup callback.

2. Calls the Get Model Options utility sequence.

3. Calls the Get Station Info utility sequence.

4. Calls the Get Report Options utility sequence.

5. Calls the Get Database Options utility sequence.

6. Creates and initializes test socket executions. Refer to the
Single Pass – Test Socket Entry Point section of the Batch Process
Model section of this appendix for more information about the
sequence file the test socket executions run.

7. Calls the ProcessTestSocketRequests utility sequence to wait for and
monitor test socket executions when the test sockets are ready to run.

8. Calls the Add TestSocket Threads to Batch utility sequence.

9. Determines the report file pathname to use for the batch and UUT
report files when you configure the report options to write all UUT
results for the model to the same file or to the same file as the batch
reports.

10. Calls the Notify TestSocket Threads utility sequence to notify test
sockets to continue running.

11. Calls the ProcessTestSocketRequests utility sequence to wait for and
monitor test socket executions as the test sockets synchronize after
executing the MainSequence callback.

12. Calls the Add TestSocket Threads to Batch utility sequence to add test
socket execution threads to the batch again if necessary.

13. Calls the Notify TestSocket Threads utility sequence to notify test
sockets to continue synchronizing after executing the MainSequence
callback.

14. Calls the ProcessTestSocketRequests utility sequence to wait for and
monitor test socket executions as TestStand generates reports for the
test sockets.

15. Calls the BatchReport callback.

Appendix A Process Model Architecture

NI TestStand Reference Manual A-32 ni.com

16. Writes the batch report to disk by appending to an existing file or
creating a new file. Also adjusts the root tags if the report format is
XML.

17. Calls the Notify TestSocket Threads utility sequence and returns True
for the ReleaseThreadsSequentially parameter so TestStand writes
only one UUT report at a time in test socket index order to notify test
sockets to continue.

18. Calls the ProcessTestSocketRequests utility sequence to wait for and
monitor test socket executions as the test sockets complete execution.

19. Calls the Notify TestSocket Threads utility sequence to notify test
sockets to continue completing execution.

20. Waits for test socket executions to complete.

21. Calls the ProcessCleanup callback.

Single Pass – Test Socket Entry Point
The Single Pass – Test Socket entry point is the sequence the test socket
executions run. The controlling execution creates the test socket executions
in the Single Pass Execution entry point sequence.

Open BatchModel.seq in the sequence editor and select the
Single Pass – Test Socket Entry Point sequence on the Sequences pane to
examine the Batch process model Single Pass – Test Socket entry point,
which performs the following significant actions:

1. Calls the Configure Post Result Callbacks utility sequence
to enable the ProcessModelPostResultListEntry and
SequenceFilePostResultListEntry callbacks if you enable
on-the-fly report generation or database logging.

2. Calls the SendControllerRequest utility sequence to synchronize with
the controlling execution before the test socket is ready to run. The
sequence waits until the controlling execution allows the test socket
to run.

3. Sets up the report. Determines the report file pathname, sets up the
display settings, resets the report, and sets the report location.

4. Starts on-the-fly report generation and database logging, if enabled, for
the new UUT.

5. Calls the MainSequence callback.

6. Removes the test socket thread from batch synchronization by cleaning
up the state of the batch in case the Main sequence terminates or the
client sequence file did not properly handle batch synchronization. The
controlling execution adds the thread to batch synchronization before

Appendix A Process Model Architecture

© National Instruments Corporation A-33 NI TestStand Reference Manual

continuing past the next synchronization point. The controlling
execution does not add disabled test sockets to the batch.

7. Calls the SendControllerRequest utility sequence to synchronize with
the controlling execution before synchronizing after executing the
MainSequence callback. The sequence waits until the controlling
execution allows the test socket to synchronize after executing the
MainSequence callback.

8. Calls the TestReport callback.

9. Calls the LogToDatabase callback.

10. Calls the SendControllerRequest utility sequence to synchronize with
the controlling execution before TestStand generates a report for the
test socket. The sequence waits until the controlling execution allows
TestStand to generate reports.

11. Writes the UUT report to disk by appending to an existing file or
creating a new file. Also adjusts the root tags if the report format is
XML.

12. Calls the SendControllerRequest utility sequence to synchronize with
the controlling execution before completing execution. The sequence
waits until the controlling execution allows the test socket to complete
execution.

Process Model Support Files
Many sequences in the TestStand process model files call functions in
DLLs and subsequences in other sequence files. Table A-2 lists the process
model support files TestStand installs in the <TestStand>\Components\
Models\TestStandModels directory.

Table A-2. Installed Support Files for the Process Model Files

File Name Description

ATMLSupport.dll DLL that contains C functions the process model sequences call
to generate ATML reports.

ATMLSupport.lib Import library for ATMLsupport.dll.

banners.c C source for functions that display status banners.

BatchModel.seq Entry point and Model callback sequences for the Batch process
model.

Appendix A Process Model Architecture

NI TestStand Reference Manual A-34 ni.com

batchuutdlg.c C source for the functions that launch the UUT Information
dialog box for the Batch process model. The
modelsupport2.dll includes this file, but the default process
model, SequentialModel.seq, does not call this file.

c_report.c C source for generating HTML, XML, and ASCII text reports for
the DLL option in the Select a Report Generator for Producing
the Report Body section of the Contents tab of the Report Options
dialog box.

ColorselectPopup.c C source for the functions that display a dialog box in which you
can select a color.

ColorSelectPopup.h C header file that contains declarations for the function in
ColorselectPopup.c.

main.c C source for utility functions.

ModelOptions.c C source for the functions that launch the Model Options dialog
box and read and write the model options from and to disk.

modelpanels.h C header file that contains declarations for the panels in
modelpanels.uir.

modelpanels.uir LabWindows/CVI user interface resource file that contains
panels the functions in modelsupport2.dll use.

modelsupport2.dll DLL that contains C functions the process model sequences call.
Includes functions that launch the Report Options and Model
Options dialog boxes, read and write those options from and to
disk, determine the report file pathname, obtain the UUT serial
number from the operator, and display status banners.

modelsupport2.fp LabWindows/CVI function panels for the functions in
modelsupport2.dll.

modelsupport2.h C header file that contains declarations for the functions in
modelsupport2.dll.

modelsupport2.lib Import library in Visual C/C++ format for
modelsupport2.dll.

modelsupport2.prj LabWindows/CVI project that builds modelsupport2.dll and
modelsupport2.cws.

ModelSupport.seq Subsequences all process models use for report generation.

Table A-2. Installed Support Files for the Process Model Files (Continued)

File Name Description

Appendix A Process Model Architecture

© National Instruments Corporation A-35 NI TestStand Reference Manual

ParallelModel.seq Entry point and Model callback sequences for the Parallel process
model.

paralleluutdlg.c C source for the functions that launch the UUT Information
dialog box for the Parallel process model. The
modelsupport2.dll includes this file, but the default process
model, SequentialModel.seq, does not call this file.

PropertyObject.xsd XML schema that defines the content of the XML the
PropertyObject.GetXML method generates and the
PropertyObject.SetXML method requires. TestStand XML
reports that Report.xsd defines also use
PropertyObject.xsd.

report.c C source for functions that launch the Report Options dialog box,
read and write the report options from and to disk, and determine
the report file pathname.

report.h C header file that contains declarations for the functions in
report.c.

Report.xsd XML schema that defines the content of TestStand XML reports.

reportgen_atml.seq Subsequences that add the header, result entries, and footer for a
UUT to an ATML test report.

reportgen_html.seq Subsequences that add the header, result entries, and footer for a
UUT to an HTML test report.

reportgen_txt.seq Subsequences that add the header, result entries, and footer for a
UUT to an ASCII text test report.

reportgen_xml.seq Subsequences that add the header, result entries, and footer for a
UUT to an XML test report.

SequentialModel.seq Entry point and Model callback sequences for the Sequential
process model.

uutdlg.c C source for the function that launches the UUT Information
dialog box to obtain the UUT serial number from the operator.

Table A-2. Installed Support Files for the Process Model Files (Continued)

File Name Description

Appendix A Process Model Architecture

NI TestStand Reference Manual A-36 ni.com

You can view the content of the reportgen_atml.seq,
reportgen_html.seq, reportgen_txt.seq, and
reportgen_xml.seq files in the sequence editor. These files are
model sequence files and contain an empty ModifyReportEntry callback
you can override with a client sequence file. Each reportgen sequence
file includes a PutOneResultInReport sequence that calls the
ModifyReportEntry callback.

The TestStand process model sequence files also contain an empty
ModifyReportEntry callback, even though no sequences in the process
model sequence files call the ModifyReportEntry callback directly. The
files contain a ModifyReportEntry callback so that the ModifyReportEntry
callback appears in the Sequence File Callbacks dialog box for the client
sequence file.

Report Generation Functions and Sequences
If you want to customize report generation for a test station, modify the
default TestStand process model files or create a new process model.
To modify an installed default process model or create a new process
model, copy the default process model files from the <TestStand>\
Components\Models\TestStandModels directory to the <TestStand
Public>\Components\Models\TestStandModels directory and
make changes to the copy. When you copy installed files to modify, rename
the files after you modify them if you want to create a separate custom
component. You do not have to rename the files after you modify them if
you only want to modify the behavior of an existing component. If you do
not rename the files and you use the files in a future version of TestStand,
changes National Instruments makes to the component might not be
compatible with the modified version of the component. Storing new and
customized files in the <TestStand Public> directory ensures that new
installations of the same version of TestStand do not overwrite the
customizations and ensures that uninstalling TestStand does not remove the
files you customize.

Table A-3 lists the default process model sequences in the <TestStand>\
Components\Models\TestStandModels directory that generate report
headers and footers.

Appendix A Process Model Architecture

© National Instruments Corporation A-37 NI TestStand Reference Manual

Table A-4 lists the default process model sequences and C functions in the
<TestStand>\Components\Models\TestStandModels directory
that generate the report body for each step result.

Table A-3. Sequences that Generate Report Headers and Footers

Report Format Header Footer

ATML GetATMLReport sequence in
reportgen_atml.seq generates
the header when it generates the
report body.

GetATMLReport sequence in
reportgen_atml.seq generates
the footer when it generates the report
body.

HTML AddReportHeader sequence in
reportgen_html.seq

AddReportFooter sequence in
reportgen_html.seq

Text AddReportHeader sequence in
reportgen_txt.seq

AddReportFooter sequence in
reportgen_txt.seq

XML AddReportHeader sequence in
reportgen_xml.seq

AddReportFooter sequence in
reportgen_xml.seq

Table A-4. Sequences or C Functions that Generate the Report Body

Report Format Generator Description

ATML GetATMLReport sequence in reportgen_atml.seq calls the
Get_Atml_Report function in ATML_Report.c in the
ATMLSupport.prj LabWindows/CVI project, located in the
<TestStand>\Components\Models\TestStandModels\

ATML directory

HTML sequence AddReportBody sequence in reportgen_html.seq, which
indirectly calls the PutOneResultInReport sequence for each
result

HTML DLL PutOneResultInReport_Html function in c_report.c in
the modelsupport2.prj LabWindows/CVI project

Text sequence AddReportBody sequence in reportgen_txt.seq, which
indirectly calls the PutOneResultInReport sequence for each
result

Text DLL PutOneResultInReport_Txt function in c_report.c in the
modelsupport2.prj LabWindows/CVI project

XML AddReportBody sequence in reportgen_xml.seq calls the
TestStand API PropertyObject.GetXML method

Appendix A Process Model Architecture

NI TestStand Reference Manual A-38 ni.com

Table A-5 lists the report generation Model callbacks you can override to
alter the report generation for each client sequence file you run.

Additionally, you can use the Step.Result.ReportText property for each step
in a client sequence file to add text to the step result in the report.

Table A-5. Report Generation Model Callbacks

Section of Report to Alter Model Callback Sequence to Override

Header ModifyReportHeader

Footer ModifyReportFooter

Each step result ModifyReportEntry

TestStand does not call this callback if you select DLL in the
Select a Report Generator for Producing the Report Body section
of the Contents tab of the Report Options dialog box.

Entire report TestReport

Batch header ModifyBatchReportHeader

Batch footer ModifyBatchReportFooter

Each test socket result ModifyBatchReportEntry

Entire batch report BatchReport

© National Instruments Corporation B-1 NI TestStand Reference Manual

B
Synchronization Step Types

Use synchronization step types to pass data between and perform other
operations in multiple threads of an execution, multiple running executions
in the same process, and executions running in different processes or on
separate computers.

In the TestStand Sequence Editor, use the edit tab on the Step Settings pane
to configure Synchronization step types. Select an operation for the step to
perform and specify the settings for the operation you select. Some
operations store output values to variables you specify. You can
leave optional outputs empty. You do not write code modules for
Synchronization steps.

In a TestStand User Interface, right-click the step and select
Configure <step type> from the context menu to configure
Synchronization step types. You can also click the Configure <step type>
button on the General tab of the Step Properties dialog box.

Refer to the NI TestStand Help for more information about the edit tabs and
configuration dialog boxes for Synchronization step types. Refer to the
sequence files in the <TestStand Public>\Examples\
Synchronization directory for examples of how to use the
Synchronization step types.

Synchronization Objects
Most of the TestStand Synchronization step types create and control the
following types of Synchronization objects:

• Lock—Use a Lock object to guarantee exclusive access to a resource.
For example, if several execution threads write to a device that does not
have a thread-safe driver, use a Lock object to ensure that only one
thread accesses the device at a time.

• Rendezvous—Use a Rendezvous object to make threads wait for each
other before proceeding past a location you specify. For example, if
different threads configure different aspects of a testing environment,
use a Rendezvous object to ensure that none of the threads proceed

Appendix B Synchronization Step Types

NI TestStand Reference Manual B-2 ni.com

beyond the configuration process until all threads complete the
configuration tasks.

• Queue—Use a Queue object to pass data from the thread that produces
the data to a thread that processes the data. For example, a thread that
performs tests asynchronously with respect to the Main sequence
might use a queue to receive commands from the Main sequence.

• Notification—Use a Notification object to notify threads when an
event or condition occurs. For example, if you display a dialog box in
a separate thread, use a Notification object to notify another thread
when the user dismisses the dialog box.

• Batch—Use a Batch object to define and synchronize a group of
threads, which is useful when you want to test a group of similar UUTs
simultaneously. You can configure a synchronized section so that only
one UUT enters the section at a time, no UUTs enter the section until
all are ready, or no UUTs proceed beyond the section until all UUTs
complete, which is useful when, for a particular test, you have only one
test resource you must apply separately to each UUT. You can also
configure a synchronized section so only one thread executes the steps
in the section, which is useful for an action that applies to the entire
batch, such as raising the temperature in an environmental chamber.
When you control a separate thread for each UUT, you can exploit
parallelism and enforce serialization when necessary. You can also use
preconditions and other branching options so each UUT can use its
own flow of execution.

The TestStand Batch process model creates Batch objects. The model
uses Batch Specification steps to group test socket execution threads
together so you can use Batch Synchronization steps to synchronize
the threads in a sequence file. If you want to create a synchronized
section for a single step, use the Synchronization panel on the
Properties tab of the Step Settings pane instead of using Batch
Synchronization steps.

Refer to the Batch Process Model section of Appendix A, Process
Model Architecture, for more information about the Batch process
model. Refer to the Batch Synchronization section of this appendix
for more information about batch synchronization. Refer to the
NI TestStand Help for more information about the Synchronization
panel on the Properties tab of the Step Settings pane.

• Semaphore—Use a Semaphore object to limit access to a resource to
a specific number of threads. A Semaphore object is similar to a Lock
object except a Semaphore object restricts access to the number of
threads you specify rather than to just one thread. For example, use a
Semaphore object to restrict access to a communications channel to a

Appendix B Synchronization Step Types

© National Instruments Corporation B-3 NI TestStand Reference Manual

limited number of threads so that each thread has sufficient bandwidth.
Typically, you limit access to a shared resource to only one thread at a
time. Therefore, typical applications use Lock objects instead of
Semaphore objects.

Common Attributes of Synchronization Objects
You can configure each Synchronization step type to specify a name,
lifetime settings, and timeout settings for all Synchronization objects.

Name
When you create a Synchronization object, specify a unique name with a
literal string or an expression that evaluates to a string to create a reference
to the new Synchronization object. Because all named TestStand
Synchronization objects share the same name space, you cannot create
Synchronization objects with the same name. Synchronization object
names are not case sensitive.

If an object with the same name and type already exists, the step creates a
reference to the existing Synchronization object so you can access an
existing object from multiple threads or executions.

If you specify an empty string as the name for a Synchronization object,
TestStand creates an unnamed Synchronization object you can access only
through an object reference variable. To associate an unnamed
Synchronization object with an object reference variable, select
Use Object Reference as the object reference lifetime on the edit tab of
the Step Settings pane for each step type.

By default, you can access a Synchronization object only from the
operating system process in which you create the object. However, you can
make a Synchronization object accessible from other processes, such as
multiple instances of a user interface, by using an asterisk (*) as the first
character in the name.

You can also create a Synchronization object on a specific computer
by beginning the name of the object with the computer name, such
as \\computername\syncobjectname, which you can use to access the
Synchronization object from any computer on the network. To access
Synchronization objects on other computers, you must configure DCOM
for the TSAutoMgr.exe server, located in the <TestStand>\Bin
directory. Follow the instructions in the Setting up TestStand as a Server for
Remote Sequence Execution section of Chapter 5, Module Adapters, but
apply the instructions to the TSAutoMgr.exe server instead of the

Appendix B Synchronization Step Types

NI TestStand Reference Manual B-4 ni.com

REngine.exe server to configure DCOM and to set up a server for remote
access.

Note When you use a string constant in a dialog box expression control to specify an
object on a remote computer, escape the backslashes and surround the name in quotation
marks. For example, use "\\\\computername\\syncobjectname".

Lifetime
When you create a Synchronization object, you must specify a lifetime
for the reference you create. The object exists for at least as long as the
reference exists but can exist longer if another reference to the object
specifies a longer lifetime.

You can set the object reference lifetime to Same as Sequence, Same as
Thread, Same as Execution, or Use Object Reference. If you refer to the
object by name only, you typically set the reference lifetime to Same as
Sequence, Same as Thread, or Same as Execution to guarantee that the
object lives as long as the sequence, thread, or execution in which you
create the reference.

If you want to explicitly control the lifetime of the object reference or if you
want to use an object reference variable to refer to the object instead of
using the object name, set the lifetime to Use Object Reference. You can
also use the object reference from other threads without performing a
Create operation in each thread. When the last object reference to a
Synchronization object releases, TestStand disposes of the object.

Some Synchronization objects use Lock or Acquire operations, for which
you can also specify a lifetime to determine the duration of the operation.

Timeout
Most Synchronization objects can perform operations that time out if the
operations do not complete within the number of seconds you specify. You
can specify that TestStand treats a timeout as an error condition, or you can
explicitly check the value of the Step.Result.TimeoutOccurred property to
see if a timeout occurred.

Appendix B Synchronization Step Types

© National Instruments Corporation B-5 NI TestStand Reference Manual

Resource Usage Profiler
Select Tools»Profile Resource Usage to launch the Resource Usage
Profiler window to view and record the resources a multithreaded
TestStand system uses over a period of time. The profiler records resource
usage and TestStand thread synchronization operations the system
performs as long as the Resource Usage Profiler window is open.

You can review the recorded data in graphs and sortable tables to identify
performance bottlenecks and design flaws and to gain insight into the
behavior and timing of complex multithreaded systems. You can also copy
the information to external applications, such as Microsoft Word or Excel.

Refer to the Comparing Resource Usage Strategies.seq file in the
<TestStand Public>\Examples\ResourceUsageProfiler
directory for an example of how to use the profiler. Each example sequence
file automatically launches the profiler and displays instructions for the
example.

The Resource Usage Profiler displays the use of resources associated with
the Auto Schedule, Lock, Rendezvous, Queue, Notification, Wait, Batch
Synchronization, and Semaphore Synchronization step types.

Refer to the NI TestStand Help for more information about the Resource
Usage Profiler.

Lock
Use a Lock step, shown at left, to ensure that only one thread can access a
particular resource or data item at a time. For example, if you examine and
update the value of a global variable from multiple threads or executions,
use a lock to ensure that only one thread examines and updates the variable
at a time. Multiple threads waiting to lock an item wait in FIFO
(first-in-first-out) order for the item to become available.

A thread can lock the same item an unlimited number of times without
unlocking it, but to release the lock, the thread must balance each Lock
operation with an Unlock operation.

If all the threads that use a set of locks reside on the same computer and if
all the locks in the set reside on that same computer, TestStand detects and
reports a run-time error if deadlock occurs with the locks and threads. To
avoid deadlock, a set of locks must follow the same order in every thread,
or you must use a Lock operation to specify an array of lock names or

Appendix B Synchronization Step Types

NI TestStand Reference Manual B-6 ni.com

references that includes all the locks a thread requires. You can also use the
Synchronization panel on the Properties tab of the Step Settings pane to
create a lock around a single step.

Note Accessing TestStand variables and properties is thread safe.

Step Properties
In addition to the common custom properties, the Lock step type defines the
following step properties:

• Step.Result.TimeoutOccurred—Exists only when you configure the
step for the Lock operation. TestStand sets the value to True if the lock
operation times out.

• Step.NameOrRefExpr—Contains the Lock Name expression for the
Create operation and the Lock Name or Reference expression for all
other Lock operations. For the Lock operation, the expression can also
specify an array of names or references.

• Step.LifetimeRefExpr—Contains the object reference expression for
the Lock Reference Lifetime or the Lock Operation Lifetime when you
set either lifetime to Use Object Reference.

• Step.TimeoutEnabled—Contains the Timeout Enabled setting for the
Lock operation.

• Step.TimeoutExpr—Contains the Timeout expression, in seconds,
for the Lock operation.

• Step.ErrorOnTimeout—Contains the Timeout Causes Run-Time
Error setting for the Lock operation.

• Step.AlreadyExistsExpr—Contains the Already Exists expression
for the Create operation or the Lock Exists expression for the Get
Status operation.

• Step.NumThreadsWaitingExpr—Contains the Number of Threads
Waiting to Lock the Lock expression for the Get Status operation.

• Step.Operation—Contains a value that specifies the operation for the
step to perform. The valid values are 0 = Create, 1 = Lock, 2 = Early
Unlock, and 3 = Get Status.

• Step.Lifetime—Contains a value that specifies the lifetime setting
to use for the Create operation. The valid values are 0 = Same as
Sequence, 1 = Same as Thread, 2 = Use Object Reference,
and 3 = Same as Execution.

• Step.LockLifetime—Contains a value that specifies the lifetime
setting to use for the Lock operation. The valid values are 0 = Same

Appendix B Synchronization Step Types

© National Instruments Corporation B-7 NI TestStand Reference Manual

as Sequence, 1 = Same as Thread, 2 = Use Object Reference,
and 3 = Same as Execution.

• Step.CreateIfDoesNotExist—Contains the Create If Does Not Exist
setting for the Lock operation.

Rendezvous
Use a Rendezvous step, shown at left, to make threads wait for each other
before proceeding past a location you specify. Each thread blocks as it
performs the Rendezvous operation. When the number of blocked threads
reaches the total number you specified when you created the rendezvous,
the rendezvous unblocks all the waiting threads, and the threads resume
execution.

Step Properties
In addition to the common custom properties, the Rendezvous step type
defines the following step properties:

• Step.Result.TimeoutOccurred—Exists only when you configure the
step for the Rendezvous operation. TestStand sets the value to True if
the Rendezvous operation times out.

• Step.NameOrRefExpr—Contains the Rendezvous Name expression
for the Create operation and the Rendezvous Name or Reference
expression for all other Rendezvous operations.

• Step.LifetimeRefExpr—Contains the object reference expression for
the Rendezvous Reference Lifetime when you set the lifetime to Use
Object Reference.

• Step.TimeoutEnabled—Contains the Timeout Enabled setting for the
Rendezvous operation.

• Step.TimeoutExpr—Contains the Timeout expression, in seconds,
for the Rendezvous operation.

• Step.ErrorOnTimeout—Contains the Timeout Causes Run-Time
Error setting for the Rendezvous operation.

• Step.AlreadyExistsExpr—Contains the Already Exists expression
for the Create operation or the Rendezvous Exists expression for the
Get Status operation.

• Step.RendezvousCountExpr—Contains the Number of Threads Per
Rendezvous expression for the Create operation.

• Step.NumThreadsWaitingExpr—Contains the Number of Threads
Waiting for Rendezvous expression for the Get Status operation.

Appendix B Synchronization Step Types

NI TestStand Reference Manual B-8 ni.com

• Step.Operation—Contains a value that specifies the operation for the
step to perform. The valid values are 0 = Create, 1 = Rendezvous,
and 2 = Get Status.

• Step.Lifetime—Contains a value that specifies the lifetime setting
to use for the Create operation. The valid values are 0 = Same as
Sequence, 1 = Same as Thread, 2 = Use Object Reference,
and 3 = Same as Execution.

• Step.RendezvousCountOutExpr—Contains the Number of Threads
Per Rendezvous expression for the Get Status operation.

Queue
Use Queue steps, shown at left, to synchronize the production and
consumption of data among threads. An Enqueue operation places a data
item on the queue and blocks when the queue is full. A Dequeue operation
removes an item from the queue and blocks when the queue is empty.
If multiple threads block on the same Queue operation, the threads unblock
in FIFO order.

Step Properties
In addition to the common custom properties, the Queue step type defines
the following step properties:

• Step.Result.TimeoutOccurred—Exists only when you configure the
step for the Enqueue or Dequeue operation. TestStand sets the value to
True if an Enqueue or Dequeue operation times out.

• Step.NameOrRefExpr—Contains the Queue Name expression for
the Create operation and the Queue Name or Reference expression for
all other Queue operations. For the Dequeue operation, the expression
can also specify an array of names or references.

• Step.LifetimeRefExpr—Contains the object reference expression for
the Queue Reference Lifetime when you set the lifetime to Use Object
Reference.

• Step.TimeoutEnabled—Contains the Timeout Enabled setting for the
Enqueue or Dequeue operation.

• Step.TimeoutExpr—Contains the Timeout expression, in seconds,
for the Enqueue or Dequeue operation.

• Step.ErrorOnTimeout—Contains the Timeout Causes Run-Time
Error setting for the Enqueue or Dequeue operation.

Appendix B Synchronization Step Types

© National Instruments Corporation B-9 NI TestStand Reference Manual

• Step.AlreadyExistsExpr—Contains the Already Exists expression
for the Create operation or the Queue Exists expression for the Get
Status operation.

• Step.MaxNumElementsExpr—Contains the expression that
specifies the maximum number of queue elements for the Create
operation.

• Step.MaxNumElementsOutExpr—Contains the expression that
specifies where to store the maximum number of queue elements for
the Get Status operation.

• Step.NumThreadsWaitingEnqueueExpr—Contains the expression
that specifies where to store the number of threads waiting to enqueue
for the Get Status operation.

• Step.NumThreadsWaitingDequeueExpr—Contains the expression
that specifies where to store the number of threads waiting to dequeue
for the Get Status operation.

• Step.Operation—Contains a value that specifies the operation for the
step to perform. The valid values are 0 = Create, 1 = Enqueue,
2 = Dequeue, 3 = Flush, and 4 = Get Status.

• Step.Lifetime—Contains a value that specifies the lifetime setting
to use for the Create operation. The valid values are 0 = Same
as Sequence, 1 = Same as Thread, 2 = Use Object Reference,
and 3 = Same as Execution.

• Step.NumElementsExpr—Contains the expression that specifies
where to store the current number of queue elements for the Get Status
operation.

• Step.DataExpr—Contains the New Element to Enqueue expression
for the Enqueue operation, the Location to Store Element expression
for the Dequeue operation, and the Location to Store Array of Queue
Elements expression for the Flush or Get Status operation.

• Step.ByRef—Contains the Boolean value that specifies to store a
queue element by object reference instead of by value for the Enqueue
operation.

• Step.EnqueueLocation—Contains a value that specifies the location
to store the queue element for the Enqueue operation. The valid values
are 0 = Front of Queue and 1 = Back of Queue.

• Step.DequeueLocation—Contains a value that specifies the location
from which to remove the queue element for the Dequeue operation.
The valid values are 0 = Front of Queue and 1 = Back of Queue.

Appendix B Synchronization Step Types

NI TestStand Reference Manual B-10 ni.com

• Step.FullQueueOption—Contains a value that specifies the options
for the If the Queue is Full setting of the Enqueue operation. The valid
values are 0 = Wait, 1 = Discard Front Element, 2 = Discard Back
Element, and 3 = Do Not Enqueue.

• Step.RemoveElement—Contains a Boolean value that specifies to
remove the element from the queue when the step performs the
Dequeue operation.

• Step.WhichQueueExpr—Contains the expression that specifies
where to store the array offset of the queue on which the Dequeue
operation occurs.

Notification
Use Notification steps, shown at left, to notify threads when a particular
event or condition occurs. You can also pass data to the threads you notify.

Step Properties
In addition to the common custom properties, the Notification step type
defines the following step properties:

• Step.Result.TimeoutOccurred—Exists only when you configure the
step for the Wait operation. TestStand sets the value to True if a Wait
operation times out.

• Step.NameOrRefExpr—Contains the Notification Name expression
for the Create operation and the Notification Name or Reference
expression for all other Notification operations. For the Wait operation,
the expression can also specify an array of names or references.

• Step.LifetimeRefExpr—Contains the object reference expression for
the Notification Reference Lifetime when you set the lifetime to Use
Object Reference.

• Step.TimeoutEnabled—Contains the Timeout Enabled setting for the
Wait operation.

• Step.TimeoutExpr—Contains the Timeout expression, in seconds,
for the Wait operation.

• Step.ErrorOnTimeout—Contains the Timeout Causes Run-Time
Error setting for the Wait operation.

• Step.AlreadyExistsExpr—Contains the Already Exists expression
for the Create operation or the Notification Exists expression for the
Get Status operation.

Appendix B Synchronization Step Types

© National Instruments Corporation B-11 NI TestStand Reference Manual

• Step.NumThreadsWaitingExpr—Contains the expression that
specifies where to store the number of threads waiting on the
notification for the Get Status operation.

• Step.Operation—Contains a value that specifies the operation for the
step to perform. The valid values are 0 = Create, 1 = Set, 2 = Clear,
3 = Pulse, 4 = Wait, and 5 = Get Status.

• Step.Lifetime—Contains a value that specifies the lifetime setting
to use for the Create operation. The valid values are 0 = Same
as Sequence, 1 = Same as Thread, 2 = Use Object Reference,
and 3 = Same as Execution.

• Step.DataExpr—Contains the Data Value expression for the Set or
Pulse operation or the Location to Store Data expression for the Wait
or Get Status operation.

• Step.ByRef—Contains the Boolean value that specifies to store the
data by object reference instead of by value for the Set or Pulse
operation.

• Step.WhichNotificationExpr—Contains the expression that
specifies where to store the array offset of the notification to which the
Wait operation responds.

• Step.IsSetExpr—Contains the expression that specifies for the Get
Status operation where the step stores the Boolean value that indicates
the Set state of the notification.

• Step.IsAutoClearExpr—Contains the expression that specifies for
the Get Status operation where to store the Boolean value that indicates
the AutoClear state of the notification.

• Step.AutoClear—Contains the AutoClear setting for the Set
operation.

• Step.PulseNotifyOpt—Contains the setting for the Pulse operation
that indicates the threads to send a pulse notification to. The valid
values are 0 = Notify First Waiting Thread and 1 = Notify All Waiting
Threads.

Wait
Use Wait steps, shown at left, to wait for an execution or thread to complete
or to wait for a time interval to elapse.

When the thread or execution completes, the Wait step copies the result
status and error information for the thread or execution to its own status and
error properties. Therefore, if a Wait step waits on a sequence that fails,
TestStand sets the status of the Wait step to Failed. The result list entry

Appendix B Synchronization Step Types

NI TestStand Reference Manual B-12 ni.com

for a Wait step contains a TS.SequenceCall.ResultList property, which is
the result list for the thread or execution.

In a Wait step, do not specify to wait on a Sequence Call step if the
Sequence Call step launches more than one asynchronous call, such as in a
loop, because the Wait step waits on only the last asynchronous call the
Sequence Call step launches. To wait on multiple asynchronous calls you
launch from a Sequence Call step in a loop, store an ActiveX reference to
each thread or execution you launch and wait on each reference in a Wait
step.

Step Properties
In addition to the common custom properties, the Wait step type defines the
following step properties:

• Step.Result.TimeoutOccurred—Exists only when you configure the
step for the Wait for Thread or Wait for Execution operation. TestStand
sets the value to True if the Wait for Thread or Wait for Execution
operation times out.

• Step.TimeoutEnabled—Contains the Timeout Enabled setting for the
Wait for Thread or the Wait for Execution operation.

• Step.TimeoutExpr—Contains the Timeout expression, in seconds,
for the Wait for Thread or the Wait for Execution operation.

• Step.ErrorOnTimeout—Contains the Timeout Causes Run-Time
Error setting for the Wait for Thread or the Wait for Execution
operation.

• Step.ThreadRefExpr—Contains the Thread Reference expression
for the Wait for Thread operation when the Step.SpecifyBySeqCall
property is False.

• Step.SeqCallName—Contains the name of the Sequence Call step
that creates the thread or execution the step waits for when the
Step.SpecifyBySeqCall property is True.

• Step.SeqCallStepGroupIdx—Contains the step group of the
Sequence Call step that creates the thread or execution the step waits
for when the Step.SpecifyBySeqCall property is True. The valid
values are 0 = Setup, 1 = Main, and 2 = Cleanup.

• Step.WaitForTarget—Contains a value that specifies the type of Wait
operation the step performs. The valid values are 0 = Time Interval,
1 = Time Multiple, 2 = Thread, and 3 = Execution.

• Step.TimeExpr—Contains the time expression for the Time Interval
or Time Multiple operation of the step.

Appendix B Synchronization Step Types

© National Instruments Corporation B-13 NI TestStand Reference Manual

• Step.ExecutionRefExpr—Contains the expression that specifies
a reference to the execution on which the Wait for Execution operation
waits.

• Step.SpecifyBySeqCall—Contains the Specify By Sequence Call
setting for the Wait for Thread or the Wait for Execution operation.

At run time, TestStand adds the following properties to the results for Wait
steps you configure to wait for a thread or execution:

• AsyncMode—TestStand sets the value to True if the Wait step is
waiting on a thread and to False if the Wait step is waiting on an
execution.

• AsyncId—Contains the value of the Id property of the thread or
execution the step is waiting for.

Batch Synchronization
Use Batch Synchronization steps, shown at left, to define sections of a
sequence in which to synchronize multiple threads that belong to one batch.
Place Batch Synchronization steps around test steps to create a
synchronized section. Use the Synchronization panel on the Properties tab
of the Step Settings pane to synchronize a single step for the multiple
threads that belong to a batch. Typically, you use Batch Synchronization
steps in a sequence you execute using the Batch process model.

Synchronized Sections
Place a Batch Synchronization step at the beginning of a section of steps in
a sequence and specify an Enter operation for the step. Place another Batch
Synchronization step at the end of the section of steps and specify an Exit
operation for the step. You must place the Enter and Exit steps in the same
sequence file, but you do not have to place the Enter and Exit steps in the
same step group.

Each thread in a batch that enters a synchronized section blocks at the Enter
step until all the other threads in the batch arrive at their respective
instances of the Enter step. A thread cannot re-enter a section it has already
entered. Each thread in a batch that reaches the end of the synchronized
section blocks at the Exit step until all the other threads in the batch arrive
at their respective instances of the Exit step.

You can use the following types of synchronized sections in sequence files:

• Serial—Use a Serial section to ensure that each thread in the batch
executes the steps in the section sequentially and in the order you

Appendix B Synchronization Step Types

NI TestStand Reference Manual B-14 ni.com

specify when you create the batch. When all threads in a batch arrive
at their respective instances of an Enter step for a Serial section,
TestStand releases one thread at a time in ascending order according to
the order numbers you assign to the threads when you use a Batch
Specification step to add the threads to the batch. As each thread
reaches the Exit step for the section, the next thread in the batch
proceeds from the Enter step. After all the threads in the batch arrive at
the Exit step, the threads exit the section together. Refer to the
Semaphore section of this appendix for more information about order
numbers.

• Parallel—Use a Parallel section to run each thread independently.
When all threads in a batch arrive at their respective instances of an
Enter step for a Parallel section, TestStand releases all the threads at
once. As each thread reaches the Exit step for the section, the thread
blocks until all the threads in the batch reach the Exit step. After all the
threads in the batch arrive at the Exit step, the threads exit the section
together.

• One Thread Only—Use a One Thread Only section to specify that
only one thread in the batch executes the steps in the section. Typically,
you use this type of section to perform an operation that applies to the
batch as a whole, such as raising the temperature in a test chamber.
When all threads in a batch arrive at their respective instances of an
Enter step for a One Thread Only section, TestStand releases only one
thread. When that thread arrives at the Exit step for the section, all
remaining threads in the batch jump from the Enter step to the Exit
step, skipping the steps within the section. All the threads in the batch
exit the section together.

Mismatched Sections
Sections become mismatched when all the threads in a batch block at
different Enter or Exit operations. This situation can occur when a sequence
implements a conditional flow of execution as a result of preconditions,
post actions, or other flow control operations. When TestStand detects
mismatched sections, the thread at the Enter or Exit step that appears
earliest in the hierarchy of sequences and subsequences proceeds as if all
threads in the batch are at the same step. If multiple Enter and Exit
operations are equally early in the hierarchy of sequences and
subsequences, Enter operations proceed first.

Nested Sections
Nested sections can occur within the same sequence or when you call a
subsequence inside a synchronized section and the subsequence also

Appendix B Synchronization Step Types

© National Instruments Corporation B-15 NI TestStand Reference Manual

contains a synchronized section. You must exit nested sections in the
reverse order in which you entered the sections. When you nest one section
inside another, TestStand honors the inner section only when the type of the
outer section is serial or parallel. TestStand ignores the inner section if the
type of the outer section is One Thread Only. For example, if you nest one
serial section in another serial section, each thread that enters the outer
serial section proceeds only until the Enter step of the inner section and then
waits for the other threads to reach the same Enter step of the inner section
before completing the inner section.

Step Properties
In addition to the common custom properties, the Batch Synchronization
step type defines the following step properties:

• Step.Result.TimeoutOccurred—Exists only when you configure the
step for the Enter or Exit operation. TestStand sets the value to True if
an Enter or Exit operation times out.

• Step.TimeoutEnabled—Contains the Timeout Enabled setting for the
Enter or Exit operation.

• Step.TimeoutExpr—Contains the Timeout expression, in seconds,
for the Enter or Exit operation.

• Step.ErrorOnTimeout—Contains the Timeout Causes Run-Time
Error setting for the Enter or Exit operation.

• Step.Operation—Contains a value that specifies the operation for the
step to perform. The valid values are 0 = Enter Synchronized Section
and 1 = Exit Synchronized Section.

• Step.SectionNameExpr—Contains the expression that specifies the
section name for the Enter or Exit operation.

• Step.SectionType—Contains a value that specifies the type of
section the Enter operation defines. The valid values are 1 = Serial,
2 = Parallel, and 3 = One Thread Only.

Auto Schedule
Use the Auto Schedule step, shown at left, to define a block that contains
any number of Use Auto Scheduled Resource step sub-blocks. You
typically use Auto Schedule steps in a sequence you execute using the
Parallel or Batch process models. The Auto Schedule step executes each
sub-block once. The order in which the Auto Schedule step executes the
sub-blocks can vary according to the availability of the resources the
sub-blocks require. The Auto Schedule step can increase CPU and resource

Appendix B Synchronization Step Types

NI TestStand Reference Manual B-16 ni.com

use by directing a thread that otherwise waits for a resource another thread
locks to perform other actions using available resources instead.

Refer to the <TestStand Public>\Examples\Auto Schedule
directory for examples of how to use Auto Schedule and Use Auto
Scheduled Resource steps.

Step Properties
In addition to the common custom properties, the Auto Schedule step type
defines the following step properties:

• Step.Result.TimeoutOccurred—Exists only when you configure the
step for the Acquire operation. TestStand sets the value to True if
any Auto Scheduled Resource blocks within the Auto Schedule block
time out.

• Step.TimeoutEnabled—Contains the Timeout Enabled setting for the
Auto Schedule operation.

• Step.TimeoutExpression—Contains the Timeout expression,
in seconds, for the Auto Schedule operation.

• Step.TimeoutIsRuntimeError—Setting value to True causes a step
run-time error when a timeout occurs.

• Step.DisplayRuntimeDescription—Setting to True displays
execution scheduling information in the step description.

Use Auto Scheduled Resource
Use the Use Auto Scheduled Resource step, shown at left, to define a
sub-block of steps within an Auto Schedule block that uses a resource or
set of resources you specify. The Use Auto Scheduled Resource step locks
the resources you specify while the steps in its sub-block execute.

Refer to the <TestStand Public>\Examples\Auto Schedule
directory for examples of how to use Auto Schedule and Use Auto
Scheduled Resource steps.

Step Properties
In addition to the common custom properties, the Use Auto Scheduled
Resource step type defines the following step properties:

• Step.ResourceExpressions—Contains a list of expressions that
specify the lock alternatives the block can acquire before executing
the steps within the block.

Appendix B Synchronization Step Types

© National Instruments Corporation B-17 NI TestStand Reference Manual

• Step.SelectedResourceExpression—Contains an expression that
specifies a string variable or property into which to store the lock the
step acquires during execution.

Thread Priority
Use the Thread Priority step, shown at left, to adjust the operating system
priority of a TestStand thread so that the TestStand thread receives more or
less CPU time than other threads. Avoid starving important threads of CPU
time by boosting the priority of another thread too high. For example,
setting the priority of a thread to Time Critical can cause the user interface
of an application to become unresponsive. When you alter a thread priority,
save the previous priority value and restore it when the changed thread no
longer requires the altered priority value.

Step Properties
In addition to the common custom properties, the Thread Priority step type
defines the following step properties:

• Step.Operation—Contains a value that specifies the operation for the
step to perform. The valid values are 0 = Set Thread Priority and
1 = Get Thread Priority.

• Step.SetPriorityExpr—Specifies the thread priority expression for
the Set Thread Priority operation.

• Step.GetPriorityExpr—Specifies the location to store the thread
priority for the Get Thread Priority operation.

Semaphore
Use Semaphore steps, shown at left, to limit concurrent access to a resource
to a specific number of threads. A semaphore stores a numeric count, and
threads can increment (release) or decrement (acquire) the count as long as
the count stays equal to or greater than zero. If a decrement causes the count
to drop below zero, the thread that attempts to decrement the count blocks
until the count increases. When multiple threads wait to decrement a
semaphore and another thread increments the count, the semaphore
unblocks the threads in FIFO order.

A semaphore with an initial count of one behaves like a lock because a
one-count semaphore restricts access to a single thread at a time. Unlike a
lock, however, a thread cannot acquire a one-count semaphore multiple
times without first releasing the semaphore after each acquire. When a

Appendix B Synchronization Step Types

NI TestStand Reference Manual B-18 ni.com

thread attempts to acquire the semaphore a second time without releasing
it, the count is zero, and the thread blocks. Refer to the Lock section of this
appendix for more information about Lock objects.

Step Properties
In addition to the common custom properties, the Semaphore step type
defines the following step properties:

• Step.Result.TimeoutOccurred—Exists only when you configure the
step for the Acquire operation. TestStand sets the value to True if the
Acquire operation times out.

• Step.NameOrRefExpr—Contains the Semaphore Name expression
for the Create operation and the Semaphore Name or Reference
expression for all other Semaphore operations.

• Step.AutoRelease—Contains a Boolean value that specifies if the
Acquire operation automatically performs a release when the Acquire
lifetime expires.

• Step.LifetimeRefExpr—Contains the object reference expression for
the Semaphore Reference Lifetime or the Acquire Reference Lifetime
when you set either lifetime to Use Object Reference.

• Step.TimeoutEnabled—Contains the Timeout Enabled setting for the
Acquire operation.

• Step.TimeoutExpr—Contains the Timeout expression, in seconds,
for the Acquire operation.

• Step.ErrorOnTimeout—Contains the Timeout Causes Run-Time
Error setting for the Acquire operation.

• Step.AlreadyExistsExpr—Contains the Already Exists expression
for the Create operation or the Semaphore Exists expression for the
Get Status operation.

• Step.InitialCountExpr—Contains the Initial Semaphore Count
expression for the Create operation.

• Step.NumThreadsWaitingExpr—Contains the Number of Threads
Waiting to Acquire the Semaphore expression for the Get Status
operation.

• Step.Operation—Contains a value that specifies the operation for the
step to perform. The valid values are 0 = Set Thread Priority and
1 = Get Thread Priority.

Appendix B Synchronization Step Types

© National Instruments Corporation B-19 NI TestStand Reference Manual

• Step.Lifetime—Contains a value that specifies the lifetime setting
to use for the Create operation. The valid values are 0 = Same as
Sequence, 1 = Same as Thread, 2 = Use Object Reference, and
3 = Same as Execution.

• Step.InitialCountOutExpr—Contains the Initial Semaphore Count
expression for the Get Status operation.

• Step.AcquireLifetime—Contains a value that specifies the lifetime
setting for the Acquire operation. The valid values are 0 = Same as
Sequence, 1 = Same as Thread, and 2 = Use Object Reference. The
Acquire operation uses this setting only when Step.AutoRelease is
True.

• Step.CurrentCountExpr—Contains the Current Count expression
for the Get Status operation.

Batch Specification
Use Batch Specification steps, shown at left, to define a group of threads in
which each thread in the group runs an instance of the client sequence file.
When you define a group, you can perform Batch Synchronization
operations on the threads in the group. The TestStand Batch process model
uses Batch Specification steps to create a batch that contains a thread for
each test socket.

When you test each UUT in a separate thread, use the Batch Specification
step to include the UUT threads in one batch. Use the Batch
Synchronization step to control the interaction of the UUT threads as they
execute the test steps.

Refer to the Batch Synchronization section of this appendix for more
information about batch synchronization. Refer to the Batch Process Model
section of Appendix A, Process Model Architecture, for more information
about the Batch process model.

Step Properties
In addition to the common custom properties, the Batch Specification step
type defines the following step properties:

• Step.Operation—Contains a value that specifies the operation for the
step to perform. The valid values are 0 = Create, 1 = Add Thread,
2 = Remove Thread, and 3 = Get Status.

Appendix B Synchronization Step Types

NI TestStand Reference Manual B-20 ni.com

• Step.NameOrRefExpr—Contains the Name expression for the
Create operation and the Name or Reference expression for all other
Batch operations.

• Step.Lifetime—Contains a value that specifies the lifetime setting
to use for the Create operation. The valid values are 0 = Same as
Sequence, 1 = Same as Thread, 2 = Use Object Reference, and
3 = Same as Execution.

• Step.LifetimeRefExpr—Contains the object reference expression for
the Batch Reference Lifetime when you set the lifetime to Use Object
Reference.

• Step.AlreadyExistsExpr—Contains the Already Exists expression
for the Create operation or the Batch Exists expression for the Get
Status operation.

• Step.ThreadRefExpr—Contains the Object Reference to Thread
expression for the Add Thread and Remove Thread operations.

• Step.OrderNumExpr—Contains the Order Number expression for
the Add Thread operation.

• Step.NumThreadsWaitingExpr—Contains the Number of Threads
Waiting at Synchronized Sections expression for the Get Status
operation.

• Step.NumThreadsInBatchExpr—Contains the Number of Threads
in Batch expression for the Get Status operation.

• Step.DefaultBatchSyncExpr—Contains the Default Batch
Synchronization expression for the Create operation.

• Step.DefaultBatchSyncOutExpr—Contains the Default Batch
Synchronization expression for the Get Status operation.

© National Instruments Corporation C-1 NI TestStand Reference Manual

C
Database Step Types

Use the built-in Database step types, to communicate with a database. All
the Database step types, with the exception of the Property Loader step
type, use the icon shown at left. A simple database operation includes the
following steps:

1. Use the Open Database step type to connect to a database.

2. Use the Open SQL Statement step type to perform an SQL query on
tables in the database.

3. Use Data Operation step types to create new records and to retrieve and
update existing records.

4. Use the Close SQL Statement step type to close the SQL query.

5. Use the Close Database step type to disconnect from a database.

Use the Property Loader step type to import property and variable values
from a file or database during an execution.

Right-click the Database step and select Edit <step type> from the context
menu to configure the step type and to set the custom step properties. You
can also click the Edit <step type> button on the edit tab of the Step
Settings pane.

Refer to the <TestStand Public>\Examples\Database directory and
to the <TestStand Public>\Examples\Property Loader directory
for examples of how to use the Database step types. Refer to the
NI TestStand Help for more information about the Database step types.

Open Database
Use the Open Database step type to open a database for use in TestStand.
The Open Database step returns a database handle you can use to open SQL
statements.

Appendix C Database Step Types

NI TestStand Reference Manual C-2 ni.com

Step Properties
In addition to the common custom properties, the Open Database step type
defines the following step properties:

• Step.ConnectionString—Specifies a string expression that contains
the name of the data link to open.

• Step.DatabaseHandle—Specifies the numeric variable or property
the step type assigned as the value of the opened database handle.

Open SQL Statement
After you open a database, use the Open SQL Statement step type to select
the set of data with which to work. An Open SQL Statement step returns a
statement handle you can use in Data Operation steps.

Step Properties
In addition to the common custom properties, the Open SQL Statement
step type defines the following step properties:

• Step.PageSize—Specifies the number of records in a page for the
SQL statement.

• Step.CommandTimeout—Specifies the amount of time, in seconds,
TestStand waits while attempting to issue a command to the open
database connection.

• Step.CacheSize—Specifies the cache size for the SQL statement.

• Step.MaxRecordsToSelect—Specifies the maximum number of
records the SQL statement can return.

• Step.CursorType—Specifies the cursor type the SQL statement uses.

• Step.CursorLocation—Specifies where the data source maintains
cursors for a connection.

• Step.MarshalOptions—Specifies the marshal options for the updated
records in the SQL statement.

• Step.LockType—Specifies the lock type for the records the SQL
statement selects.

• Step.CommandType—Specifies the command type of the SQL
statement.

• Step.DatabaseHandle—Specifies the name of the variable or
property that contains the database handle with which you open the
SQL statement.

Appendix C Database Step Types

© National Instruments Corporation C-3 NI TestStand Reference Manual

• Step.StatementHandle—Specifies the numeric variable or property
the step type assigned as the value of the SQL statement handle.

• Step.SQLStatement—Specifies a string expression that contains the
SQL command.

• Step.NumberOfRecordsSelected—Specifies the numeric variable or
property to which the step assigns the number of records the SQL
statement returns.

• Step.RequiresParameters—Specifies if the SQL statement requires
input or output parameters to execute. If False, the step immediately
executes the SQL statement. If True, the step only prepares the SQL
statement, and a subsequent Data Operation step must perform an
Execute operation that defines the parameters for the statement.

Close SQL Statement
Use the Close SQL Statement step to close an SQL statement handle
you obtain from an Open SQL Statement step. National Instruments
recommends placing Close SQL Statement steps in the Cleanup step group.
Refer to the Step Groups section of Chapter 1, NI TestStand Architecture,
for more information about step groups.

Step Properties
In addition to the common custom properties, the Close SQL Statement
step type defines the Step.StatementHandle step property, which specifies
the name of the numeric variable or property that contains the SQL
statement handle to close.

Close Database
Use the Close Database step type to close the database handle you obtain
from an Open Database step type. You must call a Close Database step for
open handles because TestStand does not automatically close open
database handles. If you abort an execution, you must exit the application
process that loaded the TestStand Engine to guarantee that TestStand frees
all database handles. Selecting Unload All Modules from the File menu
does not close the handles. National Instruments recommends placing
Close Database steps in the Cleanup step group. Refer to the Step Groups
section of Chapter 1, NI TestStand Architecture, for more information
about step groups.

Appendix C Database Step Types

NI TestStand Reference Manual C-4 ni.com

Step Properties
In addition to the common custom properties, the Close Database step type
defines the Step.DatabaseHandle step property, which specifies the name of
the numeric variable or property that contains the open database handle to
close.

Data Operation
Use the Data Operation step type to perform operations on an SQL
statement you open with an Open SQL Statement step. Use the Data
Operation step to fetch new records, retrieve values from a record, modify
existing records, create new records, and delete records. For SQL
statements that require parameters, you can create parameters and set input
values, execute statements, close statements, and fetch output parameter
values.

You cannot encapsulate data operations within a transaction because the
current TestStand Database step types do not support transactions.

Step Properties
In addition to the common custom properties, the Data Operation step type
defines the following step properties:

• Step.StatementHandle—Specifies a string expression that contains
the name of the SQL statement on which to operate.

• Step.RecordToOperateOn—Specifies the record on which to
operate. Valid values are 0 = New, 1 = Current, 2 = Next, 3 = Previous,
and 4 = Index.

• Step.RecordIndex—Specifies the index of the record on which to
operate when you set the Step.RecordToOperateOn property to fetch a
specific index.

• Step.Operation—Specifies the operation to perform on the record.
Valid values are 0 = Fetch only, 1 = Set, 2 = Get, 3 = Put, 4 = Delete,
5 = Set and Put, 6 = Execute, and 7 = Close.

• Step.ColumnListSource—Specifies the name of the
DatabaseColumnValue array variable or property that stores the
column-to-variable or column-to-property mappings. By default, the
value is Step.ColumnList.

Appendix C Database Step Types

© National Instruments Corporation C-5 NI TestStand Reference Manual

• Step.ColumnList—Specifies the column-to-variable or
column-to-property mapping to perform on a Get or Set operation.
The property must be an array of DatabaseColumnValue custom data
types, which contain the following subproperties:

– ColumnName—Specifies the name or number of the column
from which to get a value or to assign a value to.

– Data—Specifies the variable or property to which TestStand
assigns the column value or the expression TestStand evaluates
and assigns to the column.

– FormatString—Specifies an optional format string for dates,
times, and currencies. Use the empty string ("") to use the default
format. Refer to the NI TestStand Help for a description of valid
format strings.

– WriteNull—Specifies if TestStand writes NULL to the column
instead of the value in the Data expression property.

– Status—Indicates the error code TestStand returns for the Get or
Set operation.

– Direction—Contains an enumerated value that specifies the
parameter direction as In, Out, In/Out, or Return.

– Type—Contains an enumerated value that specifies the parameter
value as String, Number, Boolean, or Date/Time.

– Size—Specifies the maximum size of a string parameter.

• Step.SQLStatement—Specifies the SQL statement the Edit Data
Operation dialog box uses to populate the ring controls that contain
column names.

Property Loader
Use the Property Loader step type, shown at left, to dynamically load
property and variable values from a text file, a Microsoft Excel file, or a
DBMS database at run time. The Property Loader step type can load limits
from all TestStand-supported databases except MySQL.

You can apply the values you load to the current sequence. For example,
you can develop a sequence that tests two different models of a cellular
phone, where each model requires unique limit values for each step. If you
use step properties to hold the limit values, include a Property Loader step
in the Setup step group of the sequence to initialize the property and
variable values each time before the steps in the Main step group execute.

Appendix C Database Step Types

NI TestStand Reference Manual C-6 ni.com

You can also load values for properties into sequences so that all
subsequent invocations of the sequences in the file use the dynamically
loaded property values. For example, include the Property Loader step in a
ProcessSetup model callback the execution calls once so the execution can
call the client sequence file multiple times with the dynamically loaded
property values.

Loading from Files
You can use tab-delimited text files (.txt), comma-delimited text files
(.csv), or Excel files (.xls) to load limit values. The following
tab-delimited limits text file includes one data block starting and ending
data markers specify.

Start Marker

End Marker

In the step name section of this example file, the row names correspond to
step names, and the column headings correspond to the names of step
properties. Each row contains values only for the columns that define
properties that exist in the step that corresponds to that row.

In the locals, file globals, and station globals variable sections, each row
specifies the name of the property and corresponding property value.

Starting and ending data markers designate the bounds of the block of data.
A data file can contain more than one block of data.

<Step Name> Limits.Low Limits.High Limits.String

Voltage at Pin A 9.0 11.0

Voltage at Pin B 8.5 9.5

Self Test Output "SYS OK"

<Locals> Variable Value

Count 100

<FileGlobals> Variable Value

Count 99

<StationGlobals> Variable Value

Power_On False

Appendix C Database Step Types

© National Instruments Corporation C-7 NI TestStand Reference Manual

Select Tools»Import/Export Properties to export property and variable
data in the appropriate block format. When you specify starting and ending
data markers in the text controls in the Import/Export Properties dialog box,
enter the marker text without double quotation marks. When you specify
starting and ending data markers in the expression controls in the Edit
Property Loader dialog box, you must surround literal marker text
values with double quotation marks. Refer to the examples in the
<TestStand Public>\Examples\Property Loader\

LoadingLimits directory and the NI TestStand Help for more
information about loading limits from files.

Loading from Databases
You can use the recordset an Open SQL Statement step returns to load limit
values. Each row of the recordset table pertains to a particular sequence
step or to a variable scope, as shown in Table C-1. The column headings
correspond to the names of properties in the steps or variable scopes. Each
row contains values only for the columns that define properties or variables
that exist in the step or variable scope that corresponds to that row.

The Property Loader step filters the data an SQL statement returns so you
load only values from rows that contain specific column values, which
is equivalent to using starting and ending data markers in a text or Excel
file. For example, you can load only the rows in Table C-1 where the
SEQUENCE NAME field contains the value Phone Test.seq.

Table C-1. Example Data for Property Loader Step

STEPNAME
LIMITS_

HIGH
LIMITS_

LOW
LIMITS_
STRING POWER_ON COUNT

SEQUENCE
NAME

Voltage at Pin A 9.0 11.0 — — — Phone Test.seq

Voltage at Pin B 8.5 9.5 — — — Phone Test.seq

Self Test Output — — "SYS OK" — — Phone Test.seq

<Locals> — — — — 100 Phone Test.seq

<File Globals> — — — — 99 Phone Test.seq

<Station Globals> — — — False — Phone Test.seq

Frequency at Pin A 100,000 10,000 — — — Frequency
Test.seq

Frequency at Pin B 90,000 9,000 — — — Frequency
Test.seq

Self Test Output — — "OK" — — Frequency
Test.seq

Appendix C Database Step Types

NI TestStand Reference Manual C-8 ni.com

Refer to the example in the <TestStand Public>\Examples\
Property Loader directory and the NI TestStand Help for more
information about loading limits from database tables.

Step Properties
In addition to the common custom properties, the Property Loader step type
defines the following step properties:

• Step.Result.NumPropertiesRead—Indicates the total number of
values the step loaded from the file or database.

• Step.Result.NumPropertiesApplied—Indicates the total number of
values the step assigned to properties or variables. A number less than
Step.Result.NumPropertiesRead indicates the step was unable to
update properties or variables.

• Step.ColumnListSource—Specifies the name of the
DatabaseColumnValue array variable or property that stores the list of
column comparisons you use to filter the rows in a database recordset.
By default, the value is Step.ColumnList.

• Step.ColumnList—Specifies the column comparisons TestStand
makes on a recordset before TestStand loads recordset values into a
property. The property must be an array of DatabaseColumnValue
custom data types, which contain the following subproperties:

– ColumnName—Specifies the name or number of the column on
which to perform the comparison.

– Data—Specifies the expression TestStand evaluates at run time to
compare against the column value.

– FormatString—Specifies an optional format string for dates,
times, and currencies. Use an empty string ("") to use the default
format. Refer to the NI TestStand Help for a description of valid
format strings.

– Direction—Contains an enumerated value that specifies the
parameter direction as In, Out, In/Out, or Return.

– Type—Contains an enumerated value that specifies the parameter
type as String, Number, Boolean, or Date/Time.

– Size—Specifies the maximum size of a string parameter.

– WriteNull—Not used.

– Status—Not used.

Appendix C Database Step Types

© National Instruments Corporation C-9 NI TestStand Reference Manual

• Step.PropertiesListSource—Specifies the name of the
DatabasePropertyMapping array variable or property that stores the
list of variables and properties in which to load data. By default, the
value is Step.PropertiesList.

• Step.PropertiesList—Specifies the list of variables and
properties in which to load data. The list must be an array of
DatabasePropertyMapping custom data types. Each element of the
array defines a mapping of source data to a TestStand variable or
property. The DatabasePropertyMapping custom data type contains
the following subproperties:

– PropertyName—Specifies the name of the property or variable
to which TestStand assigns a value.

– PropertyType—Specifies the scope of the property or variable.
Valid values are 0 = Step, 1 = Local, 2 = File Global, and
3 = Station Global.

– DataType—Specifies the TestStand type of the property.
Valid values are 1 = String, 2 = Boolean, and 3 = Number.

– ColumnName—Specifies the name of the column from which
TestStand obtains the value.

• Step.DataSourceType—Specifies where the step imports property
values from. Valid values are 2 = File and 3 = Database.

• Step.Database—Specifies the SQL statement handle and settings for
importing property values from a database to a sequence file. The
Database step property contains the following subproperties:

– SQLStatementHandle—Specifies the name of the variable or
property that contains the SQL statement handle the step uses at
run time to load values.

– SQLStatement—Specifies the SQL statement the Edit Property
Loader dialog box uses to populate ring controls that contain
column names.

– StepNameColumn—Specifies the name of the column in the
recordset that contains the names of the steps and variable scopes
that define the rows of data.

– AppendTypeName—Specifies if TestStand appends the data
type name of the property to the column name when selecting a
property from the available list.

Appendix C Database Step Types

NI TestStand Reference Manual C-10 ni.com

– FilterUsingColumnList—Specifies if the step loads only the
rows that match the specific column value.

– MaxColumnSize—Specifies the maximum number of characters
for a column name.

• Step.File—Specifies the file and settings for importing property
values from a file to a sequence file. The File step property contains the
following subproperties:

– Path—Specifies a literal pathname for the data file.

– DecimalPoint—Specifies the type of decimal point the file uses.

– UseExpr—Specifies if TestStand uses Step.File.Path or
Step.File.FileExpr for the pathname of the data file.

– FileExpr—Specifies a pathname expression TestStand evaluates
at run time.

– Format—Specifies the type of delimiters in the file and the file
type. Valid values are Tab, Comma, or Excel.

– Start.MarkerExpr—Specifies the expression for the starting
marker.

– EndMarkerExpr—Specifies the expression for the ending
marker.

– Skip—Specifies the string that causes the step type to ignore the
row when the string appears at the beginning of the row.

– MapColumnsUsingFirstRow—Specifies if the first row of each
data block in the data file contains the names of the step properties
into which the step loads the property values.

– ColumnMapping—Specifies the names of the properties into
which the step loads the values if
Step.File.MapColumnsUsingFirstRow is False.

• Step.SequenceFile—Specifies the path to the sequence file to import
properties to.

• Step.Sequence—Specifies the sequence to which the step imports
properties.

• Step.ExpandToRelatedExecutions—Specifies that TestStand
applies imported property values to sequences running in related
executions, which include the original execution and all executions
TestStand invoked or invokes using a Sequence Call step.

Appendix C Database Step Types

© National Instruments Corporation C-11 NI TestStand Reference Manual

• Step.UseCurrentSequence—Specifies to import properties to the
run-time copy of the sequence that includes the step. Otherwise,
imported properties apply to all invocations of the sequences the step
imports to.

• Step.UseCurrentFile— Specifies to import properties to the sequence
file that includes the step.

• Step.ImportAll—Specifies if the step attempts to import all property
values listed in a file into the selected sequence files.

• Step.StartMarkerMissingAction—Specifies the action the step
takes when TestStand does not find the start marker in the file. Valid
values are 1 = Stop and error and 2 = Skip sequence.

© National Instruments Corporation D-1 NI TestStand Reference Manual

D
IVI Step Types

Interchangeable Virtual Instrument (IVI) is an instrument driver standard
that provides common programming interfaces for several classes of
instruments. IVI drivers exist for a number of popular instruments,
including National Instruments devices. Refer to the National Instruments
Web site at ni.com/ivi for more information about IVI. Refer to the
Instrument Driver Network at ni.com/idnet for more information about
instrument drivers and for finding and downloading instrument drivers
compatible with National Instruments software.

Two architectures exist for IVI drivers—IVI-C, based on ANSI C, and
IVI-COM, based on Microsoft COM technology. The IVI step types
support IVI-C class-compliant instrument drivers, and support IVI-COM
class-compliant instrument drivers if you install the IVI-COM Adapter
component of the IVI Component Package included in the NI Driver CD.
TestStand does not install IVI class instrument drivers.

You can call IVI-C instrument class drivers and specific drivers from any
development environment that supports calls into DLLs. Many IVI-C
instrument drivers have native LabVIEW-generated wrappers. You can also
convert an IVI-C instrument driver using the Create VI Interface to CVI
Instrument Driver tool available from the Instrument Driver Network at
ni.com/idnet. You can call IVI-COM instrument class drivers and
specific drivers from any development environment that supports ActiveX.
Use the ActiveX/COM Adapter to configure steps to access objects
IVI-COM class instrument drivers define.

Refer to the Plug and Play Instrument Drivers section of this appendix for
more information about LabVIEW and LabWindows/CVI Plug and Play
drivers.

Use the IVI step types to configure and acquire data from IVI class
instruments. Use an initial IVI step to configure an instrument and use one
or more subsequent IVI steps to perform measurements. TestStand uses the
instrument logical name to reference a session to an instrument. Use
National Instruments Measurement & Automation Explorer (MAX) to
configure instrument logical names. TestStand initializes the instrument
session when you first configure the instrument and closes the instrument

Appendix D IVI Step Types

NI TestStand Reference Manual D-2 ni.com

session when the execution closes. If two executions reference the same
logical name, TestStand shares the session, and the session closes when
TestStand releases the last execution of the two.

IVI step types use the National Instruments Session Manager to share
named instrument connections. You can also use Session Manager to share
instrument connections in code modules even if you do not use IVI step
types. Access the NI Session Manager Help by selecting Start»All
Programs»National Instruments»Session Manager»NI Session
Manager Help.

Note With IVI-C drivers, you cannot use the same instrument driver session in more than
one operating system process simultaneously.

Although you can use IVI step types to configure and acquire data from IVI
class instruments, you must use code modules to control instruments to
ensure optimal performance by precisely specifying the instrument driver
calls, to call specific driver functions an IVI class does not support, to
interleave instrument control operations with other code that must reside
in a single code module, when the instrument does not conform to an IVI
class, or when no IVI driver exists for the instrument.

Right-click an IVI step and select Edit <step type> from the context menu
to configure and select an operation for the step to perform. You can also
click the Edit <step type> button on the edit tab of the Step Settings pane.
Refer to the NI TestStand Help for more information about each Edit IVI
<Step Name> dialog box and for information about the operation each IVI
step type can perform.

When TestStand configures an instrument, the instrument driver might
coerce a settings value. Configuring an instrument in TestStand might
result in an error that indicates an invalid value for a particular setting
because TestStand does not validate the instrument-based values until the
configuration actually occurs. When you edit a step that configures an
instrument, click the Validate button in the Edit IVI <Step Name> dialog
box to test the configuration before you close the dialog box.

Use the instrument soft front panel (SFP), which is a graphical display
panel for the instrument, to interact directly with the instrument session
TestStand controls.

Refer to the <TestStand Public>\Examples\IVI directory for
examples of how to use the IVI step types.

Appendix D IVI Step Types

© National Instruments Corporation D-3 NI TestStand Reference Manual

IVI Dmm
Use the IVI Dmm step, shown at left, to perform single-point and
multipoint measurements with digital multimeters.

Step Operations
The IVI Dmm step type supports the following operations:

• Configure—Configures the instrument to match the state the step
specifies.

• Show Soft Front Panel—Launches the SFP for the instrument.

• Hide Soft Front Panel—Hides the SFP for the instrument.

• Read—Initiates and returns a measurement from an instrument.

• Initiate—Initiates a measurement from an instrument.

• Fetch—Returns the measured value from a measurement the Initiate
operation started.

• Abort—Cancels the wait for a trigger.

• Send Software Trigger—Sends a software command to trigger the
instrument.

• Get Information—Retrieves low-level status and information from
the instrument.

Step Properties
In addition to the common custom properties, the IVI Dmm step type
defines the following step properties:

• Step.Result.Reading—Contains the measurement values for the Read
and Fetch operations. The property data type is NI_IviSinglePoint or
NI_IviWave.

• Step.LogicalName—Contains the logical name expression.

• Step.InstrOperation—Contains a value that specifies the operation
you configured the step to perform.

• Step.SettingsSource—Contains the name of the property or variable
where the step loads and stores the settings for the operation.

• Step.Configuration—Contains the settings for the Configure
operation. The data type of this property is NI_IviDmmConfig.

• Step.SoftFrontPanel—Contains the settings for the Show Soft Front
Panel operation. The data type of this property is
NI_IviSoftFrontPanel.

Appendix D IVI Step Types

NI TestStand Reference Manual D-4 ni.com

• Step.Readings—Contains the settings for the Read and Fetch
operations.

• Step.GetInfo—Contains the settings for the Get Information
operation.

IVI Scope
Use the IVI Scope step, shown at left, to acquire a voltage waveform from
an analog input signal using oscilloscopes.

Step Operations
The IVI Scope step type supports the following operations:

• Configure—Configures the instrument to match the state the step
specifies.

• Show Soft Front Panel—Launches the SFP for the instrument.

• Hide Soft Front Panel—Hides the SFP for the instrument.

• Read—Initiates and returns a measurement from an instrument.

• Initiate—Initiates a measurement from an instrument.

• Fetch—Returns the measured value from a measurement the Initiate
operation started.

• Abort—Cancels an ongoing Initiate operation.

• Auto Setup—Performs an automatic setup on the instrument.

• Get Information—Retrieves low-level status and information from
the instrument.

Step Properties
In addition to the common custom properties, the IVI Scope step type
defines the following step properties:

• Step.Result.Reading—Contains the measurement values for the Read
and Fetch operations. This property is a container array, and the size
of the array equals the number of channels you specify for the Read
or Fetch operation. The data type of each element of the array is
NI_IviSinglePoint, NI_IviWave, or NI_IviWavePair.

• Step.LogicalName—Contains the logical name expression.

• Step.InstrOperation—Contains a value that specifies the operation
you configured the step to perform.

Appendix D IVI Step Types

© National Instruments Corporation D-5 NI TestStand Reference Manual

• Step.SettingsSource—Contains the name of the property or variable
where the step loads and stores the settings for the operation.

• Step.Configuration—Contains the settings for the Configure
operation. The data type of this property is NI_IviScopeConfig.

• Step.SoftFrontPanel—Contains the settings for the Show Soft Front
Panel operation. The data type of this property is
NI_IviSoftFrontPanel.

• Step.Readings—Contains the settings for the Read and Fetch
operations. The data type of this property is NI_IviScopeReadings.
The Channels subproperty is an NI_IviScopeChannel array.

• Step.GetInfo—Contains the settings for the Get Information
operation.

IVI Fgen
Use the IVI Fgen step, shown at left, to instruct function generators to
generate predefined and custom waveforms using arbitrary waveform
generators.

Step Operations
The IVI Fgen step type supports the following operations:

• Configure—Configures the instrument to match the state the step
specifies.

• Show Soft Front Panel—Launches the SFP for the instrument.

• Hide Soft Front Panel—Hides the SFP for the instrument.

• Initiate—Initiates signal generation if the instrument is idle.

• Abort—Aborts a previously configured output and returns the
function generator to the idle state.

• Send Software Trigger—Sends a software command to trigger the
instrument.

• Get Information—Retrieves low-level status and information from
the instrument.

Appendix D IVI Step Types

NI TestStand Reference Manual D-6 ni.com

Step Properties
In addition to the common custom properties, the IVI Fgen step type
defines the following step properties:

• Step.LogicalName—Contains the logical name expression.

• Step.InstrOperation—Contains a value that specifies the operation
you configured the step to perform.

• Step.SettingsSource—Contains the name of the property or variable
where the step loads and stores the settings for the operation.

• Step.Configuration—Contains the settings for the Configure
operation. The data type of this property is NI_IviFgenConfig.

• Step.SoftFrontPanel—Contains the settings for the Show Soft Front
Panel operation. The data type of this property is
NI_IviSoftFrontPanel.

• Step.GetInfo—Contains the settings for the Get Information
operation.

IVI Power Supply
Use the IVI Power Supply step, shown at left, to instruct DC power supplies
to control the output voltages and currents and to measure output values at
the output terminals.

Step Operations
The IVI Power Supply step type supports the following operations:

• Configure—Configures the instrument to match the state the step
specifies.

• Show Soft Front Panel—Launches the SFP for the instrument.

• Hide Soft Front Panel—Hides the SFP for the instrument.

• Measure—Takes a measurement on the output signal and returns the
measured value.

• Initiate—Makes the power supply wait for a trigger.

• Abort—Cancels the wait for a trigger.

• Send Software Trigger—Sends a software command to trigger the
instrument.

Appendix D IVI Step Types

© National Instruments Corporation D-7 NI TestStand Reference Manual

• Reset Output Protection—Resets the output protection of the power
supply on a specific channel after an overvoltage or overcurrent
condition occurs.

• Get Information—Retrieves low-level status and information from
the instrument.

Step Properties
In addition to the common custom properties, the IVI Power Supply step
type defines the following step properties:

• Step.Result.Reading—Contains the measurement values for the
Measure operation. The property data type is an array of
NI_IviSinglePoint.

• Step.LogicalName—Contains the logical name expression.

• Step.InstrOperation—Contains a value that specifies the operation
you configured the step to perform.

• Step.SettingsSource—Contains the name of the property or variable
where the step loads and stores the settings for the operation.

• Step.Configuration—Contains the settings for the Configure
operation. The data type of this property is NI_IviDCPowerConfig.

• Step.SoftFrontPanel—Contains the settings for the Show Soft Front
Panel operation. The data type of this property is
NI_IviSoftFrontPanel.

• Step.Readings—Contains the settings for the Measure operation. The
data type of this property is NI_IviDCPowerReadings.

• Step.GetInfo—Contains the settings for the Get Information
operation.

• Step.ResetOutputProtection—Contains the channel setting for the
Reset Output Protection operation.

Appendix D IVI Step Types

NI TestStand Reference Manual D-8 ni.com

IVI Switch
The IVI Switch step, shown at left, provides a high-level programming
layer for instruments compliant with the IVI Switch class and
NI Switch Executive virtual devices. A switch is an instrument that can
establish a connection between two I/O channels. The IVI Switch step type
also supports IVI-compliant instruments that can perform trigger scanning
and trigger-synchronized path connection and disconnection.

NI Switch Executive is an intelligent switch management and routing
application you can use with TestStand to interactively configure switch
devices from multiple vendors as a single virtual device. You can specify
intuitive names for each channel within the virtual switch device and use an
end-to-end routing feature to automatically find switch routes by selecting
the channels you want to connect. Refer to ni.com/switchexecutive
for more information about NI Switch Executive.

Use the IVI Switch step type to connect and disconnect paths and routes,
to determine the connectivity of two switches or the state of a route, and
to query the state of the switch module or virtual device. Use the Switching
panel on the Properties tab of the Step Settings pane to connect and
disconnect routes required for steps in sequences. When you install
NI Switch Executive, you can also use the Switching panel to specify a
switching action TestStand performs around the execution of the step.
Refer to the NI TestStand Help for more information about the Switching
panel.

Route Specification String
When you instruct TestStand to connect or disconnect routes you define in
an NI Switch Executive virtual device, you must specify a route
specification string. NI Switch Executive ignores whitespace characters
between tokens in a route specification string.

The syntax of a route specification string consists of an
ampersand-delimited series of routes, as shown in the following example:

routeOrGroup { & routeOrGroup } { & routeOrGroup } . . .

where routeOrGroup is a route name, a route group name, or a fully
specified path enclosed in square brackets and consisting of a series of
channels delimited by "->", as shown in the following example:

[channel {-> channel } {-> channel} . . .]

Appendix D IVI Step Types

© National Instruments Corporation D-9 NI TestStand Reference Manual

where channel is a channel alias name, an IVI channel name, or a unique
name, which is a combination of the IVI device logical name and the
IVI channel name separated by a "/" delimiter.

Channels on each end of a bracketed, fully specified path must not be
Configuration or Hardwired channels. Only one end channel can be a
Source channel. The inner channels in a route specification string must be
Configuration or Hardwired channels.

The following example is a complete route specification string:

MyRouteGroup & MyRoute & [Dev1/CH3->CH4,CH4->R0]

Step Operations
The IVI Switch step type supports the following IVI Switch class
operations:

• Connect/Disconnect—Connects or disconnects the Source and
Destination channels in the switch instrument.

• Configure Scan—Configures the switch instrument for scanning.

• Start Scan—Initiates a scanning operation.

• Wait—Blocks operations until all switches debounce for an
instrument.

• Configure Switch—Configures channels as Configuration or Source
channels and configures specific paths between channels.

• Send Software Trigger—Sends a software command to trigger the
instrument during a scanning operation.

• Abort Scan—Cancels a scanning operation.

• Get Information—Retrieves low-level status and information from
the instrument.

The IVI Switch step type supports the following NI Switch Executive
operations:

• Connect/Disconnect—Connects or disconnects switch routes for
a virtual device.

• Wait—Blocks operations until all switches debounce for a virtual
device.

• Get Information—Retrieves low-level status and information from a
virtual device.

Appendix D IVI Step Types

NI TestStand Reference Manual D-10 ni.com

Step Properties
In addition to the common custom properties, the IVI Switch step type
defines the following step properties:

• Step.LogicalName—Contains the logical name expression.

• Step.InstrOperation—Contains a value that specifies the operation
you configured the step to perform.

• Step.SettingsSource—Contains the name of the property or variable
where the step loads and stores the settings for the operation.

• Step.IviOperation—Contains a value that specifies the operation you
configured the step to perform for IVI Switching mode.

• Step.ConnectDisconnect—Contains the settings for the Connect/
Disconnect operation.

• Step.SoftFrontPanel—Contains the settings for the Show Soft Front
Panel operation. The data type of this property is
NI_IviSoftFrontPanel.

• Step.GetInfo—Contains the settings for the Get Information
operation.

• Step.ScanningConfig—Contains the settings for the Configure Scan
operation.

• Step.Wait—Contains the settings for the Wait operation.

• Step.Configure—Contains the settings for the Configure operation.

IVI Tools
Use the IVI Tools step, shown at left, to perform low-level operations on
an instrument.

Step Operations
The IVI Tools step type supports the following operations:

• Get Session Info—Retrieves low-level session references and API
class handles to the IVI instrument.

• Show Soft Front Panel—Launches the SFP for the tool.

• Hide Soft Front Panel—Hides the SFP for the tool.

• Init—Initializes the driver or I/O resource for the session.

• Close—Closes the IVI session.

• Reset—Places the instrument in a known state.

Appendix D IVI Step Types

© National Instruments Corporation D-11 NI TestStand Reference Manual

• Self Test—Causes the instrument to perform a self-test.

• Revision Query—Queries the instrument driver and instrument for
revision information.

• Error Query—Returns instrument-specific error information.

• Get Error Info—Returns error information for the last IVI error in
a session.

• Set/Get/Check Attributes—Sets, queries, or verifies the value of
attributes.

Step Properties
In addition to the common custom properties, the IVI Tools step type
defines the following step properties:

• Step.LogicalName—Contains the logical name expression.

• Step.InstrOperation—Contains a value that specifies the operation
you configured the step to perform.

• Step.SettingsSource—Contains the name of the property or variable
where the step loads and stores the settings for the operation.

• Step.SoftFrontPanel—Contains the settings for the Show Soft Front
Panel operation. The data type of this property is
NI_IviSoftFrontPanel.

• Step.Init—Contains the settings for the Init operation.

• Step.SelfTest—Contains the settings for the Self Test operation.

• Step.SessionInfo—Contains the settings for the Get Session Info
operation.

• Step.RevisionQuery—Contains the settings for the Revision Query
operation.

• Step.ErrorQuery—Contains the settings for the Error Query
operation.

• Step.ErrorInfo—Contains the settings for the Get Error Info
operation.

• Step.Attributes—Contains the settings for the Set/Get/Check
Attributes operation.

Appendix D IVI Step Types

NI TestStand Reference Manual D-12 ni.com

Plug and Play Instrument Drivers
Plug and Play drivers simplify controlling and communicating with the
instrument through a standard, straightforward programming model for all
drivers. Plug and Play drivers exist for LabVIEW and LabWindows/CVI.

A LabVIEW Plug and Play instrument driver is a set of VIs. Each VI
corresponds to a programmatic operation for the instrument.
National Instruments distributes LabVIEW Plug and Play instrument
drivers with the block diagram source code so you can customize the VIs.
You can create instrument control applications and systems by
programmatically linking instrument driver VIs on the block diagram.
LabVIEW Plug and Play instrument drivers usually use VISA functions to
communicate with instruments.

In TestStand, you can call VIs that use LabVIEW Plug and Play instrument
drivers. When you return a VISA reference to TestStand and later pass the
reference to a different VI code module that uses the same instrument
driver, store the reference in a TestStand LabVIEWIOReference variable.
You can also use the LabVIEW Adapter to directly call VIs in an instrument
driver.

A LabWindows/CVI Plug and Play instrument driver is a set of ANSI C
software routines exported from a DLL. You can call these instrument
drivers from any development environment that supports calls into DLLs.
You can also use a LabWindows/CVI instrument driver in LabVIEW if you
convert the instrument driver using the Create VI Interface to CVI
Instrument Driver tool available from the Instrument Driver Network at
ni.com/idnet. LabWindows/CVI Plug and Play instrument drivers are
based on the VXIplug&play standard architecture and usually use VISA
functions to communicate with instruments.

In TestStand, you can call code modules that use LabWindows/CVI Plug
and Play instrument drivers. When you return a C-based reference to
TestStand and later pass the reference to a different code module that uses
the same instrument driver, store the reference in a TestStand numeric
variable. You can also use the LabWindows/CVI or C/C++ DLL Adapter to
directly call the functions in an instrument driver.

© National Instruments Corporation E-1 NI TestStand Reference Manual

E
LabVIEW Utility Step Types

Use the LabVIEW Utility step types to simplify running a VI on a remote
computer and to deploy or undeploy shared variables. All the LabVIEW
Utility step types use the icon shown at left.

Check Remote System Status
Use the Check Remote System Status step type to determine if LabVIEW
is running on a remote computer and if TestStand can connect to the remote
computer.

Step Properties
In addition to the common custom properties, the Check Remote System
Status step type defines the following step properties:

• Step.RemoteHost—Specifies the remote computer name or
IP address.

• Step.RemoteHostByExpr—Specifies if you can use an expression in
the Hostname field.

• Step.PortNumber—Specifies the remote host port number.

• Step.Timeout—Specifies the number of seconds to wait to connect to
the remote computer.

• Step.ServerCheckExpr—Specifies where to store a Boolean value
that indicates if the remote computer check passed.

Run VI Asynchronously
Use the Run VI Asynchronously step type to run a VI in a new thread in the
TestStand execution.

Appendix E LabVIEW Utility Step Types

NI TestStand Reference Manual E-2 ni.com

Step Properties
In addition to the common custom properties, the Run VI Asynchronously
step type defines the following step properties:

• Step.RemoteHost—Specifies the remote computer name or
IP address.

• Step.RemoteHostByExpr—Specifies if you can use an expression in
the Hostname field.

• Step.PortNumber—Specifies the remote host port number.

• Step.Timeout—Specifies the number of seconds to wait to connect to
the remote computer.

• Step.VIModule—Contains the settings for the VI the step calls.

Deploy Library
Use the Deploy Library step type to deploy or undeploy shared variables
defined in a LabVIEW project library file to or from the target computer.
Refer to the Network-Published Shared Variables section of Appendix A,
Using LabVIEW 8.x with TestStand, of the Using LabVIEW with TestStand
manual for more information about shared variables.

Step Properties
In addition to the common custom properties, the Deploy Library step type
defines the following step properties:

• Step.Operation—Specifies if the step deploys or undeploys shared
variables. Valid values are 0 = Deploy and 1 = Undeploy.

• Step.Libraries—Specifies an expression for the path of the project
library file on the local computer to deploy to or undeploy from the
target computer. The project library must define only shared variables
and cannot contain any VI files.

© National Instruments Corporation F-1 NI TestStand Reference Manual

F
Technical Support and
Professional Services

Visit the following sections of the award-winning National Instruments
Web site at ni.com for technical support and professional services:

• Support—Technical support resources at ni.com/support include
the following:

– Self-Help Technical Resources—For answers and solutions,
visit ni.com/support for software drivers and updates, a
searchable KnowledgeBase, product manuals, step-by-step
troubleshooting wizards, thousands of example programs,
tutorials, application notes, instrument drivers, and so on.
Registered users also receive access to the NI Discussion Forums
at ni.com/forums. NI Applications Engineers make sure every
question submitted online receives an answer.

– Standard Service Program Membership—This program
entitles members to direct access to NI Applications Engineers
via phone and email for one-to-one technical support as well as
exclusive access to on demand training modules via the Services
Resource Center. NI offers complementary membership for a full
year after purchase, after which you may renew to continue your
benefits.

For information about other technical support options in your
area, visit ni.com/services, or contact your local office at
ni.com/contact.

• Training and Certification—Visit ni.com/training for
self-paced training, eLearning virtual classrooms, interactive CDs,
and Certification program information. You also can register for
instructor-led, hands-on courses at locations around the world.

• System Integration—If you have time constraints, limited in-house
technical resources, or other project challenges, National Instruments
Alliance Partner members can help. To learn more, call your local
NI office or visit ni.com/alliance.

Appendix F Technical Support and Professional Services

NI TestStand Reference Manual F-2 ni.com

If you searched ni.com and could not find the answers you need, contact
your local office or NI corporate headquarters. Phone numbers for our
worldwide offices are listed at the front of this manual. You also can visit
the Worldwide Offices section of ni.com/niglobal to access the branch
office Web sites, which provide up-to-date contact information, support
phone numbers, email addresses, and current events.

© National Instruments Corporation I-1 NI TestStand Reference Manual

Index

A
Action step, 4-15
ActiveX controls

interface pointer, obtaining, 9-17
Multiple Document Interface (MDI)

application, creating, 9-15
using with DLLs, 5-5
using with Microsoft Visual C++, 9-16

ActiveX/COM Adapter, 1-7, 5-12
compatibility options for Visual Basic, 5-13
registering and unregistering servers, 5-13

ActiveX/COM server
compatibility options, 5-13
compatibility options for Visual Basic, 5-13
debugging, 5-13
registering and unregistering, 5-13

adapters. See module adapters
Additional Results panel, 4-5
Additional Results step, 4-25
Application Manager control, 9-3

command-line arguments, 9-29
generating events, 9-18

application manifests, 9-33
application settings

configuration file location, 9-30
custom, adding, 9-31
persisting, 9-30

application styles
multiple window, 9-27
no visible window, 9-29

array property, 1-8
arrays

dynamic array sizing, 12-3
empty, 12-4
specifying array sizes, 12-2

Authenticode signatures, 9-32
Auto Schedule step, B-15
automatic result collection, 1-16

B
Batch process model, A-5, A-20

Configuration entry point, A-24
Engine callbacks, A-27
hidden Execution entry points, A-24
Model callbacks, A-24
Single Pass – Test Socket entry point, A-32
Single Pass entry point, A-31
Test UUTs – Test Socket entry point, A-29
Test UUTs entry point, A-27
utility subsequence, A-27

Batch reports, 6-15
Batch Specification step, B-19
Batch Synchronization step, B-13

mismatched sections, B-14
nested sections, B-14
One Thread Only section, B-14
Parallel section, B-14
Serial section, B-13
step properties, B-15
synchronized sections, B-13

Break step, 4-19
built-in step properties, 4-3
built-in step types

Action, 4-15
Additional Results, 4-25
Call Executable, 4-23
custom properties, 4-6
FTP Files, 4-24
Label, 4-20
Message Popup, 4-21
module adapters, using with, 4-7

Index

NI TestStand Reference Manual I-2 ni.com

Multiple Numeric Limit Test, 4-11
Numeric Limit Test, 4-9
Pass/Fail Test, 4-8
Property Loader. See Property Loader

step
Sequence Call, 2-5, 4-15
Statement, 4-20
String Value Test, 4-13

Button control
description (table), 9-5

C
C++ (MFC)

creating event handlers (table), 9-18
localization functions (table), 9-26
menu open notification methods

(table), 9-24
using the TSUtil library (table), 9-22

C/C++ DLL Adapter, 1-7, 5-4
Call Executable step, 4-23
Call Stack pane, 3-5
callbacks

Engine, 1-16, 3-13, 10-4, A-10
caveats, 10-8
predefined (note), 10-4
table, 10-5

Front-End, 10-9
modifying, 10-9

Model, 1-16
Batch process model, A-24
Parallel process model, A-16
Sequential process model, A-7

modifying, 10-4
sequence executions, 1-17
sequence file callbacks, 2-2
sequences, 10-2
types (table), 1-17

caption connection, 9-10
Case step, 4-19
Check Remote System Status step, E-1

CheckBox control
description (table), 9-5

client sequence file, 1-15
Close Database step, C-3
Close SQL Statement step, C-3
code modules, 1-1

dynamic array sizing, 12-3
parameterized, creating, 1-13
parameters, accessing from, 1-13
specifying, 4-7
verifying privileges, 7-2

code templates, 13-6
Code Templates tab, 13-6
Create Code Templates dialog box, 13-8
creating, 13-8
customizing, 13-8
default code templates (table), 13-6
development environments, 13-6
legacy, 13-7
locating with search paths

<TestStand Public> subdirectory
(table), 8-5

<TestStand> subdirectory (table), 8-3
module adapters, 5-2
multiple, specifying, 13-8
source code templates, 1-11
specifying multiple code templates, 13-8

collecting results, 1-16, 3-7
ComboBox control

description (table), 9-5
command connections, 9-9

invoking, 9-10
command-line arguments, 9-29
configuration

See also customizing TestStand
configuration file location,

user interface, 9-30
Configure menu, 8-11
module adapters, 5-1

Index

© National Instruments Corporation I-3 NI TestStand Reference Manual

remote sequence execution, 5-19
Windows 2000 SP4, 5-22
Windows Vista, 5-20
Windows XP SP2, 5-20

sequence editor or user interface startup
options (table), 8-9

Configuration entry point, 1-15, 10-4
Database Options, 10-4
Model Options, 10-4
process models, A-4

Batch process model, A-24
Parallel process model, A-16
Sequential process model, A-6

Report Options, 10-4
configuration file location, user interface, 9-30
Configure Database Options entry point, A-7
Configure menu, 8-11
Configure Model Options entry point, A-7
Configure Report Options entry point, A-6
connections

command, 9-9
invoking, 9-10

information source
caption, 9-10
image, 9-11
numeric value, 9-12

list (table), 9-8
container property, 1-8
Continue step, 4-19
custom application settings, adding, 9-31
custom data types, 1-9, 1-10

creating and modifying, 12-7
custom properties

See also step properties
built-in step types, 4-6
lifetime of, 3-3
result properties, 3-8
step properties, 1-10

custom sequence files
deploying, 15-4
versioning, 15-3

custom step types
See also step types
creating, 13-1
step templates, differences with, 13-1

custom user interfaces
documenting, 9-31

custom user privileges, 7-3
customizing TestStand

components (table), 8-1
Tools menu, 8-2

D
data links, 6-4, 6-11

specifying (tutorial), 6-12
Data Operation step, C-4
data source, 4-12
data types

categories, 12-2
common properties, 12-7
creating custom data types (tutorial), 12-7
creating instances from context menus

(table), 12-1
custom properties, 12-8
displaying, 12-4
modifying, 12-4
named, 12-2
simple, 12-2
standard, 12-5

CommonResults, 12-6
Error, 12-6
Path, 12-6
using, 12-5

standard named, 1-9
Database step types

Close Database, C-3
Close SQL Statement, C-3
Data Operation, C-4
Open Database, C-1
Open SQL Statement, C-2

Index

NI TestStand Reference Manual I-4 ni.com

Property Loader, C-5
loading from database, C-7
loading from file, C-6

database viewer. See databases
databases

adding support for database management
systems, 6-9

concepts, 6-1
connection strings, 6-4
data links, 6-4
database technologies

Microsoft Object Linking and
Embedding Database
(OLE DB), 6-2

Microsoft Open Database
Connectivity (ODBC), 6-2

table, 6-3
example (table), 6-1
logging property in the sequence

context, 6-7
logging results, 6-5

configuring options (tutorial), 6-12
on-the-fly, 6-11
using the default process model, 6-6

result tables, 6-8
creating (tutorial), 6-13
creating with TestStand Database

Viewer, 6-9
default TestStand table schema, 6-8

sessions, 6-2
specifying data links, 6-12
specifying schemas, 6-12
step types. See Database step types
TestStand Database Viewer

result tables, creating (tutorial), 6-13
DCOM. See Distributed COM (DCOM)
debug

DLLs, 5-7
HTBasic Adapter, 5-15
.NET assemblies, 5-9
panes, 3-5

Deploy Library step, E-2
deployment. See TestStand Deployment

Utility
diagnostic tools (NI resources), F-1
directory structure, 8-2

<TestStand Application Data>
directory, 8-7

<TestStand Public> directory, 8-5
RuntimeServers directory, 8-6
subdirectories (table), 8-5

<TestStand> directory, 8-2
Components directory, 8-3

subdirectories (table), 8-3
subdirectories (table), 8-3

read-only files, copying to modify, 8-6
search paths, 5-2

DisplaySequenceFile event, 9-19
Distributed COM (DCOM), 5-18

configuring
Windows Vista, 5-18
Windows XP SP2, 5-18

DLLs
ActiveX controls, using, 5-5
debugging, 5-7

DLL functions, options for stepping
out of (table), 5-8

LabVIEW 7.1.1 shared libraries, 5-8
LabVIEW 8 or later, 5-5
LabVIEW 8.0 and later shared

libraries, 5-8
Microsoft Foundation Class (MFC)

Library, using, 5-5
parameter information, reading, 5-7
subordinate, loading, 5-6
translator DLL, creating, 15-2
using with TestStand, 5-5

Do While step, 4-18

Index

© National Instruments Corporation I-5 NI TestStand Reference Manual

drivers
LabVIEW Plug and Play, D-12
LabWindows/CVI Plug and Play, D-12
NI resources, F-1

dynamic array sizing, 12-3

E
Edit Search Directories dialog box, 5-2
editing sequence files

callback sequences, 10-2
entry point sequences, 10-3
normal sequences, 10-2

Editor applications, creating, 9-13
Else If step, 4-17
Else step, 4-16
empty arrays, 12-4
End step, 4-20
Engine callbacks, 1-16, 3-13, 10-4, A-10

Batch process model, A-27
caveats, 10-8
Parallel process model, A-17
predefined (note), 10-4
Sequential process model, A-10
table, 10-5

engine. See TestStand Engine
entry points

Configuration, 1-15
entry point sequences, 10-3
Execution, 1-15, 3-4

errors
run-time, 1-12, 3-18

caution, 4-4
handling interactively, 3-18

step failure, 3-17
event handling, 9-17

DisplayExecution event, 9-19
ExitApplication event, 9-18
ReportError event, 9-19
shut down, 9-20
startup, 9-20

Wait event, 9-18
examples (NI resources), F-1
Execution entry point, 1-15

Parallel process model, A-13
Sequential process model, A-6
Single Pass, 10-3, A-4

Batch process model, A-31
Parallel process model, A-19
Sequential process model, A-12

Single Pass – Test Socket entry point
Batch process model, A-24, A-32
Parallel process model, A-15, A-19

Test UUTs, 10-3, A-4
Batch process model, A-27
Parallel process model, A-17
Sequential process model, A-11

Test UUTs – Test Socket entry point
Batch process model, A-24, A-29
Parallel process model, A-15, A-18

using Execution entry points, 3-4
Execution object, 1-17
execution pointer, 3-1
Execution window, 3-3
executions, 3-1

aborting, 3-6, 3-7
debugging, 3-5

Call Stack pane, 3-5
Output pane, 3-6
Threads pane, 3-5
Variables pane, 3-6
Watch View pane, 3-6

direct, 3-4
executing sequences, 3-4
execution pointer, 3-1
Execution window, 3-3
interactive, 3-5
order of execution (table), 3-14
remote sequence execution, 5-17
run-time copy (note), 3-1
run-time errors, 3-18

Index

NI TestStand Reference Manual I-6 ni.com

step execution, 3-14
step status, 3-16
terminating, 3-6, 3-18
using Execution entry points, 3-4

ExecutionView Manager control, 9-4
connecting views, 9-7

ExpressionEdit control
description (table), 9-6

expressions, 1-10
context-sensitive editing, 1-10
sequence context, using, 3-2

Expressions panel, 4-5

F
file types

configuration file location, 9-30
project, 2-5
string resource files, creating, 8-7
type palette, 11-4
workspace, 2-5

files
collecting, 14-3
read-only, copying to modify, 8-6

Flow Control step types, 4-16
Break, 4-19
Case, 4-19
Continue, 4-19
Do While, 4-18
Else, 4-16
Else If, 4-17
End, 4-20
For, 4-17
For Each, 4-18
Goto, 4-20
If, 4-16
Select, 4-19
While, 4-18

For Each step, 4-18
For step, 4-17

Front-End callbacks, 10-9
modifying, 10-9

FTP Files step, 4-24

G
General panel, 4-3
Goto step, 4-20

H
hidden Execution entry points

Batch process model, A-24
Parallel process model, A-15

HTBasic Adapter, 1-7, 5-15
debugging subroutines, 5-15

I
If step, 4-16
image connections, 9-11
information source connection

caption, 9-10
image, 9-11
numeric value, 9-12

Insert Step submenu, 4-1
Insertion Palette, 4-1

figure, 2-4, 4-2
InsertionPalette control

description (table), 9-6
Instrument Driver Network, D-1
instrument drivers, D-1

NI resources, F-1
Plug and Play, D-12

LabVIEW, D-12
LabWindows/CVI, D-12

instrument logical name, D-1
instrument session, D-1
instrument soft front panel, D-2
interactive execution, 3-5

interactive mode, 3-5

Index

© National Instruments Corporation I-7 NI TestStand Reference Manual

interface pointer, obtaining, 9-17
IVI, D-1

instrument drivers. See instrument drivers
IVI-C, D-1
IVI-COM, D-1
soft front panel, D-2
step types. See IVI step types
steps, editing, D-2

IVI step types
code modules, using instead, D-2
IVI Dmm, D-3
IVI Fgen, D-5
IVI Power Supply, D-6
IVI Scope, D-4
IVI Switch, D-8
IVI Tools, D-10

K
KnowledgeBase, F-1

L
Label control

description (table), 9-6
Label step, 4-20
LabVIEW

creating event handlers (table), 9-18
localization functions (table), 9-26
menu open notification methods

(table), 9-24
module adapter, 1-7
Plug and Play drivers, D-12
using TestStand User Interface (UI)

Controls, 9-14
using TSUtil library (table), 9-22
Utility step types

Check Remote System Status, E-1
Deploy Library, E-2
Run VI Asynchronously, E-1

LabVIEW Adapter, 1-7, 5-4

LabWindows/CVI
creating event handlers (table), 9-18
localization functions (table), 9-26
menu open notification methods

(table), 9-24
module adapter, 1-7
Plug and Play drivers, D-12
using TestStand User Interface (UI)

Controls, 9-14
using TSUtil library (table), 9-22

LabWindows/CVI Adapter, 5-4
creating event handlers (table), 9-18
localization functions (table), 9-26

legacy code template, 13-7
license checking, 9-13
lifetime

custom step properties, 3-3
local variables, 3-3
parameters, 3-3
Synchronization step types, B-4

list connections (table), 9-8
ListBar control

description (table), 9-6
ListBox control

description (table), 9-6
local variables, 2-4

lifetime, 3-3
sequence local, 1-12

localization, 9-25
Lock step, B-5
logging results

database, on-the-fly, 6-11
loop results, 3-13
Looping panel, 4-4

Index

NI TestStand Reference Manual I-8 ni.com

M
Main sequence, 1-15
Manager controls

Application Manager, 9-3
ExecutionView Manager, 9-4
SequenceFileView Manager, 9-4

manifests. See application manifests
Measurement & Automation Explorer

(MAX), D-1
menus

Configure, 8-11
Tools menu

customizing, 8-2
modifying, 8-2

updating, 9-24
merging sequence files, 2-2
Message Popup step, 4-21
Microsoft

Access
example data link and result table

setup, 6-12
specifying data link and schema, 6-12

ActiveX Data Objects (ADO), 6-2
Microsoft Foundation Class (MFC)

Library
using in DLLs, 5-5

Object Linking and Embedding Database
(OLE DB), 6-2

Visual Basic
compatibility options with

ActiveX/COM server, 5-13
Visual C++

using TestStand User Interface (UI)
Controls, 9-16

Visual Studio
using TestStand User Interface (UI)

Controls, 9-15
Visual Studio .NET 2003

assembly references, adding, 9-23
.NET assemblies, debugging, 5-9
TestStand API, accessing, 5-12

Visual Studio 2005
assembly references, adding, 9-23

Model callbacks, 1-16, 10-2
Batch process model, A-24
Parallel process model, A-16
report generation (table), A-38
Sequential process model, A-7

model sequence files, 2-1
modifying types, 11-1
module adapters, 1-7

ActiveX/COM, 1-7, 5-12
registering and unregistering

servers, 5-13
using ActiveX/COM servers with

TestStand, 5-13
C/C++ DLL, 1-7, 5-4
configuring, 5-1
HTBasic, 1-7, 5-15
LabVIEW, 1-7, 5-4
LabWindows/CVI, 1-7, 5-4
.NET, 1-7, 5-9
overview, 1-7
Sequence, 1-7, 4-15, 5-16
source code templates, 5-2
supported code modules, 5-1
using built-in step types, 4-7

monitoring variables, 3-2
Multiple Document Interface (MDI)

application, creating, 9-15
Multiple Numeric Limit Test step, 4-11
multithreading, 1-17

N
National Instruments support and services, F-1
.NET

creating event handlers (table), 9-18
localization functions (table), 9-26
menu open notification methods

(table), 9-24
using TSUtil library (table), 9-22

Index

© National Instruments Corporation I-9 NI TestStand Reference Manual

.NET Adapter, 1-7, 5-9
.NET assemblies, debugging, 5-9

NI support and services, F-1
NI Switch Executive, D-8

route specification string, D-8
normal sequence files, 2-1
normal sequences, 10-2
Notification step, B-10
Numeric Limit Test step, 4-9
numeric value connection, 9-12

O
object

Execution, 1-17
SequenceContext, 1-9
Synchronization, B-1

common attributes, B-3
User, 7-3

Object Linking and Embedding Database
(OLE DB)

data links, using, 6-11
object reference properties, 12-5
Open Database Connectivity (ODBC), 6-2

Administrator, using, 6-12
data links, using, 6-11

Open Database step, C-1
Open SQL Statement step, C-2
Operator Interface application, 9-13
operator interface. See user interfaces
Output pane, 3-6

P
panels

Additional Results, 4-5
Expression, 4-5
Expressions, 4-5
General, 4-3
Looping, 4-4
Post Actions, 4-4

Preconditions, 4-5
Property Browser, 4-5
Requirements, 4-5
Run Options, 4-3
Switching, 4-4
Synchronization, 4-4

panes
Call Stack, 3-5
debugging, 3-5
Output, 3-6
Sequence File window, 2-5

Sequences pane, 2-5
Steps pane, 2-5
Variables pane, 2-5

Step Settings. See Step Settings pane
Steps, 2-3, 2-5
TestStand Sequence Editor

Workspace pane, 2-6
Threads, 3-5
Types, 2-2
Variable, 3-6
Variables, 2-2, 2-3, 2-4, 12-4
View Types For, 11-4
Watch View, 3-6
Workspace, 2-6

Parallel process model, A-5, A-13
Configuration entry point, A-16
Engine callbacks, A-17
Execution entry points, A-13

hidden, A-15
Model callbacks, A-16
Single Pass – Test Socket

entry point, A-19
Single Pass entry point, A-19
Test UUTs – Test Socket

entry point, A-18
Test UUTs entry point, A-17
utility sequences, A-13

Index

NI TestStand Reference Manual I-10 ni.com

parameters
accessing from code modules, 1-13
complex data types, 12-2
lifetime, 3-3
reading, 5-7
sequence, 1-13, 2-3

Pass/Fail Test step, 4-8
Plug and Play instrument drivers

LabVIEW, D-12
LabWindows/CVI, D-12

Post Actions panel, 4-4
Preconditions panel, 4-5
privileges

See also user privileges
accessing privilege settings

any user, 7-3
current user, 7-2

defining custom privileges, 7-3
process models, 1-14

architecture, A-1
Batch, A-5, A-20

Configuration entry point, A-24
Engine callbacks, A-27
hidden Execution entry point, A-24
Model callbacks, A-24
Single Pass – Test Socket

entry point, A-32
Single Pass entry point, A-31
Test UUTs – Test Socket

entry point, A-29
Test UUTs entry point, A-27
utility sequences, A-21

common features, A-4
Configuration entry point, A-4
entry points, 1-15
Execution entry point, A-4
modifying process model

sequence files, 10-1
Parallel, A-5

Configuration entry point, A-16
Engine callbacks, A-17

Execution entry points, A-13
hidden Execution entry points, A-15
Model callbacks, A-16
Single Pass – Test Socket

entry point, A-19
Single Pass entry point, A-19
Test UUTs – Test Socket

entry point, A-18
Test UUTs entry point, A-17
utility sequences, A-13

process flow (figure), A-2
process model location (table), A-3
selecting the default process model, A-6
Sequential, A-5, A-6

Configuration entry points, A-6
Engine callbacks, A-10
Execution entry points, A-6
Model callbacks, A-7
Single Pass entry point, A-12
Test UUTs entry point, A-11
utility sequences, A-10

station model, 1-14
support files, installation (table), A-33

programming examples (NI resources), F-1
project file, 2-5
properties

built-in
sequence properties, 1-13
shared (note), 3-1

custom
lifetime, 3-3
result, 3-8
step type, 13-9

monitoring, 3-2
object reference properties, 12-5
property-array property, 1-8
Result.Status standard values (table), 3-16
shared built-in properties (note), 3-1
single-valued property, 1-8
using in expressions, 1-10

Index

© National Instruments Corporation I-11 NI TestStand Reference Manual

Property Browser panel, 4-5
Property Loader step, C-5

Q
Queue step, B-8

R
reading parameter information, 5-7
remote sequence execution, 5-17

Distributed COM (DCOM),
configuring, 5-18

Windows Vista, 5-18
Windows XP SP2, 5-18

security configuration
setting Windows system

security, 5-19
Windows 2000 SP4, 5-22
Windows Vista, 5-20
Windows XP SP2, 5-20

setting up TestStand as server, 5-19
security permissions, 5-19

Rendezvous step, B-7
report generation, 3-13

functions and sequences, A-36
header and footer (table), A-37
Model callbacks (table), A-38
report body (table), A-37

reports
Batch, 6-15
failure chain, 6-15
generating, on-the-fly, 6-16
implementing test resorts, 6-14
property flags, 6-15
result collection, 3-7
schema, XML, 6-16
using test reports, 6-14

ReportView control
description (table), 9-6

Requirements panel, 4-5

resolving type conflicts, 11-2
resource files

creating, 8-7
customizing, 8-7
escape codes (table), 8-8
format, 8-7

resource string files
escape codes (table), 8-8

Resource Usage Profiler, B-5
result collection, 1-16

custom result properties, 3-8
disabling, 3-7
loop results, 3-13
report generation, 3-13
standard result properties, 3-10

Results property, 12-6
root interactive execution, 3-5
route specification string, D-8
Run Options panel, 4-3
Run VI Asynchronously step, E-1
run-time errors, 1-12, 3-18

caution, 4-4
description, 3-18
handling, 3-18

S
schema

See also databases
specifying (tutorial), 6-12

search directories. See search paths
search paths, 5-2

deployment, configuring for, 5-3
Edit Search Directories dialog box, 5-2

Select step, 4-19
Semaphore step, B-17
Sequence Adapter, 1-7, 4-15, 5-16
Sequence Call step, 2-5, 4-15
sequence context, 3-2

Logging property, 6-7
using, 3-2

Index

NI TestStand Reference Manual I-12 ni.com

sequence editor, 1-2
configuring startup options (table), 8-9
Execution window, 3-3
Workspace pane, 2-6

sequence execution, 1-17
See also execution

sequence file global variables, 2-2
sequence file translators, 15-1

creating translator DLLs, 15-2
examples, 15-2
using, 15-1
versioning, 15-3

Sequence File window, 2-4
figure, 2-4
Steps pane, 2-5
Variables pane, 2-5

sequence files, 1-1, 1-13, 2-1, 11-5
callbacks, 2-2
client sequence file, 1-15
comparing, 2-2
deploying custom sequence files, 15-4
editing

callback sequences, 10-2
entry point sequences, 10-3
normal sequences, 10-2

Front-End callbacks, 2-1
global variable, 1-13
global variables, 2-2
merging, 2-2
model, 2-1
normal, 2-1
processing with TestStand Deployment

Utility, 14-4
special editing capabilities for process

model sequence files
callback sequences, 10-2
entry point sequences, 10-3

Station callbacks, 2-1
type concepts, 11-5
type definitions, 2-2
types of sequence files, 2-1

versioning custom sequence files, 15-3
views, 2-4

Sequence Hierarchy window, 2-5
sequence local variables, 1-12
SequenceContext object, 1-9
SequenceFileView Manager control, 9-4
sequences, 1-1, 1-11, 2-3

built-in properties, 1-13
callback sequences, 1-16
callbacks, 1-17
entry point, 10-3
executing directly, 3-4
local variables, 1-12, 2-4
Model callbacks, 10-2
multithreading options, 1-17
parameters, 1-13, 2-3
run-time errors, 1-12
step groups, 1-12, 2-3

Sequences pane, 2-5
SequenceView control

description (table), 9-6
Sequential process model, A-5, A-6

Configuration entry points, A-6
Engine callbacks, A-10
Execution entry point, A-6
Model callbacks, A-7
Single Pass entry point, A-12
Test UUTs entry point, A-11
utility sequences, A-10

Session Manager, D-2
shut down, 9-20
Single Pass – Test Socket entry point

Batch process model, A-32
Parallel process model, A-19

Single Pass Execution entry point, 10-3, A-4
Batch process model, A-31
Parallel process model, A-19
Sequential process model, A-12

software (NI resources), F-1
source code control (SCC), 2-6

Index

© National Instruments Corporation I-13 NI TestStand Reference Manual

source code template, 5-2
See also code templates

SQL. See structured query language (SQL)
standard named data types, 1-9, 12-5

CommonResults, 12-6
Error, 12-6
Path, 12-6
using, 12-5

standard result property, 3-10
startup, 9-20
Statement step, 4-20
station global variables, 1-8, 11-5
Station Globals window, 11-5
station model, 1-14
StatusBar control

description (table), 9-7
step groups, 2-3
step properties

built-in, 4-3
Case, 4-19
lifetime of custom step properties, 3-3
modifying custom step properties, 4-5
Pass/Fail Test, 4-9
Select, 4-19
String Value Test, 4-14

Step Properties dialog box
Code Templates tab, 13-6
Disable Properties tab, 13-5
General tab, 13-3
Menu tab, 13-3
Substeps tab, 13-4
Version tab, 13-8

step results
See also result collection
custom result properties (table), 3-8
exceptions, 3-10
loop results, 3-13
standard properties (table), 3-10
subsequences (table), 3-11

Step Settings pane
Properties tab, 4-3

Additional Results panel, 4-5
Expressions panel, 4-5
General panel, 4-3
Looping panel, 4-4
Post Actions panel, 4-4
Preconditions panel, 4-5
Property Browser panel, 4-5
Requirements panel, 4-5
Run Options panel, 4-3
Switching panel, 4-4
Synchronization panel, 4-4

step status, 3-16
failures, 3-17
terminations, 3-18

step templates, 13-1
custom step types, differences with, 13-1

step types
See also built-in step types; Database step

types; Flow Control step types; IVI step
types; LabVIEW Utility step types;
Synchronization step types

application-specific (note), 4-1
common properties, 13-2
custom, 13-1

creating, 13-1
step templates, differences with, 13-1

custom properties, 13-9
Insert Step submenu, 4-1
Insertion Palette, 4-1
module adapters, using with, 4-7
shared custom properties, 4-6
source code templates, 1-11
specifying multiple code templates, 13-8

Index

NI TestStand Reference Manual I-14 ni.com

steps, 1-1, 1-10
built-in properties, 4-3
custom properties, 1-10
execution, order of actions (table), 3-14
failures, 3-17
interactive execution, 3-5
status (table), 3-16
step types, 1-11
terminations, 3-18

Steps pane, 2-3, 2-5
string resource files

creating, 8-7
customizing, 8-7
escape codes (table), 8-8
formatting, 8-7

String Value Test step, 4-13
structured query language (SQL)

SELECT command (queries), 6-2
SQL statement data, 6-2
step types. See Database step types

submenus
Insert Step, 4-1

subsequences, 1-1
results (table), 3-11

substeps
custom, 13-5
Edit, 13-4
Post-Step, 13-4
Pre-Step, 13-4

Switching panel, 4-4
Synchronization object, B-1

common attributes
lifetime, B-4
name, B-3
timeout, B-4

resources, profiling usage of. See
Resource Usage Profiler

Synchronization panel, 4-4

Synchronization step types, B-1
Auto Schedule, B-15
Batch Specification, B-19
Batch Synchronization

mismatched section, B-14
nested section, B-14
one thread only section, B-14
parallel section, B-14
serial section, B-13
step properties, B-15
synchronized section, B-13

Lock, B-5
Notification, B-10
Queue, B-8
Rendezvous, B-7
Semaphore, B-17
Thread Priority, B-17
Use Auto Scheduled Resource, B-16
Wait, B-11

system deployment, 2-6

T
tables

database result, 6-8
default result, creating, 6-9
query

SQL statement data, 6-2
template

code, 13-6
location (table), 13-6
multiple, specifying, 13-8

legacy code, 13-7
source code, 5-2
step, 13-1

custom step types,
differences with, 13-1

terminating executions, 3-6
test executive, 1-1
test modules. See code modules

Index

© National Instruments Corporation I-15 NI TestStand Reference Manual

test reports
See also reports; report generation
implementing, 6-14
using, 6-14

Test step types. See built-in step types
Test UUTs – Test Socket entry point

Batch process model, A-29
Parallel process model, A-18

Test UUTs entry point
Batch process model, A-27
definition, 10-3, A-6
Parallel process model, A-17
Sequential process model, A-11

tests, distributing, 14-7
TestStand

architecture overview, 1-1
building blocks

automatic result collection, 1-16
callback sequences, 1-16
custom data types, 1-9
expressions, 1-10
process models, 1-14
properties, 1-8
sequence executions, 1-17
sequence files, 1-13
sequences, 1-11
standard data types, 1-9
steps, 1-10
variables and properties, 1-8

software components
module adapters, 1-7
sequence editor, 1-2
TestStand Engine, 1-6
TestStand User Interface (UI)

Controls, 1-6
user interfaces, 1-3

customizable components (table), 8-1
directories. See directory structure
general concepts, 1-1

search paths, 5-2
deployment, configuring for, 5-3
Edit Search Directories

dialog box, 5-2
software components, 1-2

TestStand architecture overview
system components, 14-1

TestStand Database Viewer, 6-9
result tables, creating (tutorial), 6-13

TestStand Deployment Utility, 2-6, 14-1
deployment

building, 14-3
configuring, 14-3
identifying components for, 14-2

deployment scenarios, common
dynamically called files, adding to

workspaces, 14-8
TestStand Engine, deploying, 14-6
user interfaces, distributing, 14-10
workspaces, distributing

tests from, 14-7
files, collecting, 14-3
guidelines, 14-5
installer, creating, 14-2
NI components, installing, 14-5
path references, 14-4
search paths, configuring, 5-3
sequence files, processing, 14-4
setup, 14-1
system components, 14-1
system workspace files, creating, 14-2
VIs, processing, 14-4

TestStand Engine, 1-6
engine callbacks, 1-16

TestStand process models. See Batch process
model; Parallel process model; process
models; Sequential process model

Index

NI TestStand Reference Manual I-16 ni.com

TestStand User Interface (UI)
Controls, 1-6, 9-2

See also connections; Manager controls;
visible controls

application styles, 9-26
multiple window, 9-27
no visible window, 9-29
single window, 9-27

caption connections, 9-10
command connections, 9-9
command-line arguments, 9-29
configuration file location, 9-30
connecting, 9-7
custom application settings, adding, 9-31
custom user interfaces,

documenting, 9-31
Editor applications, creating, 9-13
guidelines, 9-2
handling events, 9-17

DisplayExecution, 9-19
DisplaySequenceFile, 9-19
ExitApplication, 9-18
ReportError, 9-19
typical events, 9-18
Wait, 9-18

image connections, 9-11
interface pointer, obtaining, 9-17
license checking, 9-13
list connections, 9-8
localization, 9-25
Manager controls, 9-3

Application Manager, 9-3
ExecutionView Manager, 9-4
SequenceFileView Manager, 9-4

numeric value connections, 9-12
Operator Interface application, 9-13
persistence, 9-30
specifying and changing

connections, 9-12
startup and shutdown, 9-20
TSUtil Functions Library, 9-21

using with LabVIEW, 9-14
using with Visual C++, 9-16
using with Visual Studio, 9-15
view connections, 9-7
visible controls (table), 9-5
writing applications, 9-3

TestStand User Manager, 7-1
security (note), 7-1

TestStand Utility Functions Library (TSUtil)
assembly references in Visual Studio,

adding, 9-23
creating menu items, 9-23
localization functions, 9-26
updating menus, 9-24

Thread Priority step, B-17
Threads pane, 3-5
Tools menu, 8-2
training and certification (NI resources), F-1
translators, 15-1

deploying, 15-4
DLLs, creating, 15-2
examples, 15-2
using, 15-1
versioning, 15-3

troubleshooting (NI resources), F-1
type conflicts. See types
type definitions, 2-2
type palette files, 11-4
Type Properties dialog box, 12-7
types

See also built-in; data type; step type
conflicts, resolving, 11-2
creating, 11-1
modifying, 11-1
storing, 11-1
type palette files, 11-4
Types Window, 11-4
versioning, 11-2

Types pane, 2-2
Types window, 11-4

Index

© National Instruments Corporation I-17 NI TestStand Reference Manual

U
unit under test (UUT), 1-2
Use Auto Scheduled Resource step, B-16
user interface controls See TestStand User

Interface (UI) Controls
user interfaces, 1-1, 1-3

application manifests, 9-33
application styles, 9-26
Authenticode signatures, 9-32
creating, 9-1

See also connections; Manager
controls; TestStand User Interface
(UI) Controls; visible controls

deploying. See TestStand Deployment
Utility

distributing, 14-10
documenting custom, 9-31
example user interfaces, 9-1
localization, 9-25
menu and menu items, 9-23

updating, 9-24
shutting down, 9-20
starting up, 9-20
startup options

configuring (table), 8-9
TestStand User Interface (UI) Controls,

1-6, 9-2
user manager, 11-5
User Manager window, 11-5
User object, 7-3
user privileges

accessing
current user, 7-2

verifying, 7-2
using DLLs

MFC, 5-5
utility subsequences

Batch process model, A-27
Parallel process model, A-13
Sequential process model, A-10

V
variables

See also properties
expressions, using, 1-10
local, 2-4

lifetime, 3-3
monitoring, 3-2
sequence file global, 2-2
sequence local, 1-12
standard and custom data types, 1-10
station global, 1-8

Variables pane, 2-2, 2-3, 2-4, 2-5, 3-6, 12-4
VariablesView control

description (table), 9-7
VI processing

using the TestStand Deployment
Utility, 14-4

view connections, 9-7
View Types For pane, 11-4
visible controls

description of controls (table), 9-5
Manager controls, connecting, 9-7

Visual Basic. See Microsoft
Visual C++. See Microsoft
Visual Studio .NET 2003. See Microsoft
Visual Studio 2005. See Microsoft
Visual Studio. See Microsoft

W
Wait step, B-11
Watch View pane, 3-6
While step, 4-18
windows

Execution, 3-3
Sequence File, 2-4
Sequence Hierarchy, 2-5
Station Global, 11-5
Types, 11-4
User Manager, 11-5

Index

NI TestStand Reference Manual I-18 ni.com

Windows 2000 SP4
remote execution

security, setting, 5-22
Windows remote execution

2000 Service Pack 4, 5-22
XP Service Pack 2, 5-20

Windows Vista
application manifests, 9-33
Authenticode signatures, 9-32
Distributed COM (DCOM),

configuring, 5-18
remote execution

firewall settings, configuring, 5-21
security, setting, 5-20

TestStand, using with
directory structure, 8-2

Windows XP SP2
Distributed COM (DCOM),

configuring, 5-18
remote execution

firewall settings, configuring, 5-21
security, setting, 5-20

workspace files
adding dynamically called files, 14-8
creating, 14-2
source code control, 2-6
tests, distributing, 14-7

Workspace pane, 2-6
workspaces, 2-5

X
XML report schema, 6-16

	NI TestStand Reference Manual
	Support
	Worldwide Technical Support and Product Information
	National Instruments Corporate Headquarters
	Worldwide Offices

	Important Information
	Warranty
	Copyright
	Trademarks
	Patents
	WARNING REGARDING USE OF NATIONAL INSTRUMENTS PRODUCTS

	Contents
	About This Manual
	Conventions

	Chapter 1 NI TestStand Architecture
	General Test Executive Concepts
	Major Software Components of TestStand
	TestStand Sequence Editor
	TestStand User Interfaces
	Features Comparison of Sequence Editor and User Interfaces
	Table 1-1. Features of TestStand Sequence Editor and TestStand User Interfaces

	TestStand User Interface Controls
	TestStand Engine
	Module Adapters

	TestStand Building Blocks
	Properties
	Built-In and Custom Properties

	Variables
	Standard and Custom Data Types
	Expressions
	Steps
	Step Types

	Sequences
	Step Groups
	Sequence Local Variables
	Sequence Parameters
	Built-in Sequence Properties

	Sequence Files
	Process Models
	Specifying Process Model Files
	Main Sequence and Client Sequence File
	Entry Points

	Automatic Result Collection
	Callback Sequences
	Table 1-2. Callback Types

	Sequence Executions

	Chapter 2 Sequence Files and Workspaces
	Sequence Files
	Types of Sequence Files
	Sequence File Callbacks
	Sequence File Globals
	Sequence File Type Definitions
	Comparing and Merging Sequence Files

	Sequences
	Step Groups
	Parameters
	Local Variables

	Sequence File Window and Views
	Figure 2-1. Sequence File Window and Insertion Palette

	Sequence Hierarchy Window
	Workspaces
	Source Code Control
	System Deployment

	Chapter 3 Executions
	Sequence Context
	Using the Sequence Context
	Lifetime of Local Variables, Parameters, and Custom Step Properties

	Sequence Editor Execution Window
	Figure 3-1. Sequence Editor Execution Window

	Executing Sequences
	Using Execution Entry Points
	Executing a Sequence Directly
	Interactively Executing Steps
	Debugging Executions
	Terminating and Aborting Executions

	Result Collection
	Custom Result Properties
	Table 3-1. Custom Properties in the Step Results for Steps that Use the Built-In Step Types
	Exceptions

	Standard Result Properties
	Table 3-2. Standard Step Result Properties

	Subsequence Results
	Table 3-3. Subproperty Names for Subsequence Results

	Loop Results
	Report Generation

	Engine Callbacks
	Step Execution
	Table 3-4. Order of Actions a Step Performs

	Step Status
	Table 3-5. Standard Values for the Status Property
	Failures
	Terminations

	Run-Time Errors

	Chapter 4 Built-In Step Types
	Using Step Types
	Figure 4-1. Insertion Palette
	Built-In Step Properties
	Custom Step Properties
	Custom Properties All Step Types Share

	Step Types You Can Use with Any Module Adapter
	Pass/Fail Test
	Numeric Limit Test
	Multiple Numeric Limit Test
	String Value Test
	Action

	Step Types That Work with a Specific Module Adapter
	Step Types That Do Not Use Module Adapters
	Flow Control
	If
	Else
	Else If
	For
	For Each
	While
	Do While
	Break
	Continue
	Select
	Case
	Goto
	End

	Statement
	Label
	Message Popup
	Call Executable
	Property Loader
	FTP Files
	Additional Results
	Synchronization Step Types
	Database Step Types
	IVI Step Types
	LabVIEW Utility Step Types

	Chapter 5 Module Adapters
	Configuring Adapters
	Source Code Templates
	Search Paths
	Configuring Search Paths for Deployment

	LabVIEW Adapter
	LabWindows/CVI Adapter
	C/C++ DLL Adapter
	Using DLLs
	Using ActiveX Controls in LabVIEW DLLs
	Using MFC in DLLs
	Loading Subordinate DLLs
	Reading Parameter Information

	Debugging DLLs
	Table 5-1. Options for Stepping Out of DLL Functions
	Debugging LabVIEW 8.0 and Later Shared Libraries (DLLs)
	Debugging LabVIEW 7.1.1 Shared Libraries (DLLs)

	.NET Adapter
	Debugging .NET Assemblies
	Table 5-2. Options for Stepping Out of Assemblies in Visual Studio

	Using the .NET Framework
	Accessing the TestStand API in Visual Studio .NET 2003 and Visual Studio 2005

	ActiveX/COM Adapter
	Debugging ActiveX Automation Servers
	Registering and Unregistering ActiveX/COM Servers
	Server Compatibility Options for Visual Basic

	HTBasic Adapter
	Debugging HTBasic Subroutines

	Sequence Adapter
	Remote Sequence Execution
	Table 5-3. Path Resolution of Sequence Pathnames for Remotely Executed Steps
	Setting up TestStand as a Server for Remote Sequence Execution
	Setting Windows System Security

	Chapter 6 Database Logging and Report Generation
	Database Concepts
	Databases and Tables
	Table 6-1. Example Database Table

	Database Sessions
	Microsoft ADO, OLE DB, and ODBC Database Technologies
	Figure 6-1. Microsoft Windows Database Technologies

	Data Links

	Database Logging Implementation
	Using Database Logging
	Logging Property in the Sequence Context

	TestStand Database Result Tables
	Default TestStand Table Schema
	Creating Default Result Tables with the Database Viewer
	Adding Support for Other Database Management Systems
	On-the-Fly Database Logging

	Using Data Links
	Using the ODBC Administrator
	Example Data Link and Result Table Setup for Microsoft Access
	Database Options—Specifying a Data Link and Schema
	Database Viewer—Creating Result Tables

	Test Report Implementation
	Using Test Reports
	Failure Chain in Reports
	Batch Reports
	Property Flags that Affect Reports
	On-the-Fly Report Generation
	XML Report Schema

	Chapter 7 User Management
	Privileges
	Accessing Privilege Settings for the Current User
	Accessing Privilege Settings for Any User
	Defining Custom Privileges

	Chapter 8 Customizing and Configuring TestStand
	Table 8-1. TestStand Customizable Components
	Tools Menu
	TestStand Directory Structure
	<TestStand> Directory
	Table 8-2. <TestStand> Subdirectories
	Components Directory
	Table 8-3. TestStand Component Subdirectories

	<TestStand Public> Directory
	Table 8-4. <TestStand Public> Subdirectories
	RuntimeServers Directory
	Copying Read-Only Files to Modify

	<TestStand Application Data> Directory

	Creating String Resource Files
	String Resource File Format
	Table 8-5. Resource String File Escape Codes

	Configuring Sequence Editor and User Interface Startup Options
	Table 8-6. Sequence Editor and User Interface Startup Options

	Configure Menu

	Chapter 9 Creating Custom User Interfaces
	Example User Interfaces
	TestStand User Interface Controls
	Writing an Application with the TestStand UI Controls
	Manager Controls
	Application Manager
	SequenceFileView Manager
	ExecutionView Manager

	Visible Controls
	Table 9-1. Visible TestStand UI Controls

	Connecting Manager Controls to Visible Controls
	View Connections
	List Connections
	Table 9-2. Available List Connections
	Command Connections
	Information Source Connections

	Specifying and Changing Control Connections

	Editor Versus Operator Interface Applications
	Creating Editor Applications

	License Checking
	Using TestStand UI Controls in Different Environments
	LabVIEW
	LabWindows/CVI
	Microsoft Visual Studio
	Visual C++
	Obtaining an Interface Pointer and CWnd for an ActiveX Control
	Using GetDlgItem

	Handling Events
	Table 9-3. Creating Event Handlers in Specific ADEs
	Events Typical Applications Handle
	ExitApplication
	Wait
	ReportError
	DisplaySequenceFile
	DisplayExecution

	Startup and Shutdown
	TestStand Utility Functions Library
	Table 9-4. Using the TSUtil Library in Different ADEs
	Adding Assembly References in Visual Studio

	Menus and Menu Items
	Updating Menus
	Table 9-5. Menu Open Notification Methods in Different ADEs

	Localization
	Table 9-6. TSUtil Library Localization Functions in Different ADEs

	User Interface Application Styles
	Single Window
	Multiple Window
	No Visible Window

	Command-Line Arguments
	Persistence of Application Settings
	Configuration File Location
	Adding Custom Application Settings

	Documenting Custom User Interfaces
	Deploying a User Interface
	Authenticode Signatures for Windows Vista
	Application Manifests

	Chapter 10 Customizing Process Models and Callbacks
	Modifying Process Model Sequence Files
	Normal Sequences
	Callback Sequences
	Entry Point Sequences

	Modifying Callbacks
	Engine Callbacks
	Table 10-1. Engine Callbacks
	Caveats for Using Engine Callbacks

	Front-End Callbacks

	Chapter 11 Type Concepts
	Storing Types in Files and Memory
	Modifying Types
	Type Versioning
	Resolving Type Conflicts
	Types Window
	Type Palette Files
	Sequence Files
	Station Globals
	User Manager

	Chapter 12 Standard and Custom Data Types
	Using Data Types
	Table 12-1. Creating Data Type Instances from Context Menus
	Specifying Array Sizes
	Figure 12-1. Array Bounds Dialog Box
	Dynamic Array Sizing
	Empty Arrays

	Modifying Data Types and Values
	Object References

	Using Standard Named Data Types
	Error and CommonResults
	Path
	Expression

	Creating Custom Data Types
	Properties Common to All Data Types
	Custom Properties of Data Types

	Chapter 13 Custom Step Types
	Creating Custom Step Types
	Properties Common to All Step Types
	Step Type Properties Dialog Box
	General Tab
	Menu Tab
	Substeps Tab
	Disable Properties Tab
	Code Templates Tab
	Table 13-1. Default Code Templates in <TestStand>\CodeTemplates
	Version Tab

	Custom Properties of Step Types
	Backward Compatibility

	Chapter 14 Deploying TestStand Systems
	TestStand System Components
	Setting Up the TestStand Deployment Utility
	Identifying Components to Deploy
	Determining If You Need to Create an Installer
	Creating a System Workspace File
	Configuring and Building the Deployment

	Building a Deployment
	Collecting Files
	Processing VIs
	Processing Sequence Files
	Installing National Instruments Components

	Guidelines for Successful Deployment
	Common Deployment Scenarios
	Deploying the TestStand Engine
	Distributing Tests from a Workspace
	Adding Dynamically Called Files to a Workspace
	Distributing a User Interface

	Chapter 15 Sequence File Translators
	Using a Sequence File Translator
	Creating a Translator DLL
	Example Sequence File Translators
	Versioning Translators and Custom Sequence Files
	Deploying Translators and Custom Sequence Files

	Appendix A Process Model Architecture
	Figure A-1. Process Flow
	Table A-1. TestStand Process Models
	Table A-2. Installed Support Files for the Process Model Files
	Table A-3. Sequences that Generate Report Headers and Footers
	Table A-4. Sequences or C Functions that Generate the Report Body
	Table A-5. Report Generation Model Callbacks

	Appendix B Synchronization Step Types
	Appendix C Database Step Types
	Table C-1. Example Data for Property Loader Step

	Appendix D IVI Step Types
	Appendix E LabVIEW Utility Step Types
	Appendix F Technical Support and Professional Services
	Index
	A-B
	C
	D
	E
	F-I
	K-L
	M-N
	O-P
	Q-S
	T
	U-W
	X

