
NI TestStandTM

Using LabWindowsTM/CVITM with TestStand

Using LabWindows/CVI with TestStand

May 2008
373201C-01

Support

Worldwide Technical Support and Product Information

ni.com

National Instruments Corporate Headquarters

11500 North Mopac Expressway Austin, Texas 78759-3504 USA Tel: 512 683 0100

Worldwide Offices

Australia 1800 300 800, Austria 43 662 457990-0, Belgium 32 (0) 2 757 0020, Brazil 55 11 3262 3599,
Canada 800 433 3488, China 86 21 5050 9800, Czech Republic 420 224 235 774, Denmark 45 45 76 26 00,
Finland 358 (0) 9 725 72511, France 01 57 66 24 24, Germany 49 89 7413130, India 91 80 41190000,
Israel 972 3 6393737, Italy 39 02 41309277, Japan 0120-527196, Korea 82 02 3451 3400,
Lebanon 961 (0) 1 33 28 28, Malaysia 1800 887710, Mexico 01 800 010 0793, Netherlands 31 (0) 348 433 466,
New Zealand 0800 553 322, Norway 47 (0) 66 90 76 60, Poland 48 22 3390150, Portugal 351 210 311 210,
Russia 7 495 783 6851, Singapore 1800 226 5886, Slovenia 386 3 425 42 00, South Africa 27 0 11 805 8197,
Spain 34 91 640 0085, Sweden 46 (0) 8 587 895 00, Switzerland 41 56 2005151, Taiwan 886 02 2377 2222,
Thailand 662 278 6777, Turkey 90 212 279 3031, United Kingdom 44 (0) 1635 523545

For further support information, refer to the Technical Support and Professional Services appendix. To comment
on National Instruments documentation, refer to the National Instruments Web site at ni.com/info and enter
the info code feedback.

© 2003–2008 National Instruments Corporation. All rights reserved.

 Important Information

Warranty
The media on which you receive National Instruments software are warranted not to fail to execute programming instructions, due to defects
in materials and workmanship, for a period of 90 days from date of shipment, as evidenced by receipts or other documentation. National
Instruments will, at its option, repair or replace software media that do not execute programming instructions if National Instruments receives
notice of such defects during the warranty period. National Instruments does not warrant that the operation of the software shall be
uninterrupted or error free.

A Return Material Authorization (RMA) number must be obtained from the factory and clearly marked on the outside of the package before any
equipment will be accepted for warranty work. National Instruments will pay the shipping costs of returning to the owner parts which are covered by
warranty.

National Instruments believes that the information in this document is accurate. The document has been carefully reviewed for technical accuracy. In
the event that technical or typographical errors exist, National Instruments reserves the right to make changes to subsequent editions of this document
without prior notice to holders of this edition. The reader should consult National Instruments if errors are suspected. In no event shall National
Instruments be liable for any damages arising out of or related to this document or the information contained in it.

EXCEPT AS SPECIFIED HEREIN, NATIONAL INSTRUMENTS MAKES NO WARRANTIES, EXPRESS OR IMPLIED, AND SPECIFICALLY DISCLAIMS ANY WARRANTY OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. CUSTOMER’S RIGHT TO RECOVER DAMAGES CAUSED BY FAULT OR NEGLIGENCE ON THE PART OF NATIONAL
INSTRUMENTS SHALL BE LIMITED TO THE AMOUNT THERETOFORE PAID BY THE CUSTOMER. NATIONAL INSTRUMENTS WILL NOT BE LIABLE FOR DAMAGES RESULTING
FROM LOSS OF DATA, PROFITS, USE OF PRODUCTS, OR INCIDENTAL OR CONSEQUENTIAL DAMAGES, EVEN IF ADVISED OF THE POSSIBILITY THEREOF. This limitation of
the liability of National Instruments will apply regardless of the form of action, whether in contract or tort, including negligence. Any action against
National Instruments must be brought within one year after the cause of action accrues. National Instruments shall not be liable for any delay in
performance due to causes beyond its reasonable control. The warranty provided herein does not cover damages, defects, malfunctions, or service
failures caused by owner’s failure to follow the National Instruments installation, operation, or maintenance instructions; owner’s modification of the
product; owner’s abuse, misuse, or negligent acts; and power failure or surges, fire, flood, accident, actions of third parties, or other events outside
reasonable control.

Copyright
Under the copyright laws, this publication may not be reproduced or transmitted in any form, electronic or mechanical, including photocopying,
recording, storing in an information retrieval system, or translating, in whole or in part, without the prior written consent of National
Instruments Corporation.

National Instruments respects the intellectual property of others, and we ask our users to do the same. NI software is protected by copyright and other
intellectual property laws. Where NI software may be used to reproduce software or other materials belonging to others, you may use NI software only
to reproduce materials that you may reproduce in accordance with the terms of any applicable license or other legal restriction.

Trademarks
National Instruments, NI, ni.com, NI TestStand, and LabVIEW are trademarks of National Instruments Corporation. Refer to the Terms of Use
section on ni.com/legal for more information about National Instruments trademarks.

Other product and company names mentioned herein are trademarks or trade names of their respective companies.

Members of the National Instruments Alliance Partner Program are business entities independent from National Instruments and have no agency,
partnership, or joint-venture relationship with National Instruments.

Patents
For patents covering National Instruments products, refer to the appropriate location: Help»Patents in your software, the patents.txt file
on your media, or ni.com/patents.

WARNING REGARDING USE OF NATIONAL INSTRUMENTS PRODUCTS
(1) NATIONAL INSTRUMENTS PRODUCTS ARE NOT DESIGNED WITH COMPONENTS AND TESTING FOR A LEVEL OF
RELIABILITY SUITABLE FOR USE IN OR IN CONNECTION WITH SURGICAL IMPLANTS OR AS CRITICAL COMPONENTS IN
ANY LIFE SUPPORT SYSTEMS WHOSE FAILURE TO PERFORM CAN REASONABLY BE EXPECTED TO CAUSE SIGNIFICANT
INJURY TO A HUMAN.

(2) IN ANY APPLICATION, INCLUDING THE ABOVE, RELIABILITY OF OPERATION OF THE SOFTWARE PRODUCTS CAN BE
IMPAIRED BY ADVERSE FACTORS, INCLUDING BUT NOT LIMITED TO FLUCTUATIONS IN ELECTRICAL POWER SUPPLY,
COMPUTER HARDWARE MALFUNCTIONS, COMPUTER OPERATING SYSTEM SOFTWARE FITNESS, FITNESS OF COMPILERS
AND DEVELOPMENT SOFTWARE USED TO DEVELOP AN APPLICATION, INSTALLATION ERRORS, SOFTWARE AND HARDWARE
COMPATIBILITY PROBLEMS, MALFUNCTIONS OR FAILURES OF ELECTRONIC MONITORING OR CONTROL DEVICES,
TRANSIENT FAILURES OF ELECTRONIC SYSTEMS (HARDWARE AND/OR SOFTWARE), UNANTICIPATED USES OR MISUSES, OR
ERRORS ON THE PART OF THE USER OR APPLICATIONS DESIGNER (ADVERSE FACTORS SUCH AS THESE ARE HEREAFTER
COLLECTIVELY TERMED “SYSTEM FAILURES”). ANY APPLICATION WHERE A SYSTEM FAILURE WOULD CREATE A RISK OF
HARM TO PROPERTY OR PERSONS (INCLUDING THE RISK OF BODILY INJURY AND DEATH) SHOULD NOT BE RELIANT SOLELY
UPON ONE FORM OF ELECTRONIC SYSTEM DUE TO THE RISK OF SYSTEM FAILURE. TO AVOID DAMAGE, INJURY, OR DEATH,
THE USER OR APPLICATION DESIGNER MUST TAKE REASONABLY PRUDENT STEPS TO PROTECT AGAINST SYSTEM FAILURES,
INCLUDING BUT NOT LIMITED TO BACK-UP OR SHUT DOWN MECHANISMS. BECAUSE EACH END-USER SYSTEM IS
CUSTOMIZED AND DIFFERS FROM NATIONAL INSTRUMENTS' TESTING PLATFORMS AND BECAUSE A USER OR APPLICATION
DESIGNER MAY USE NATIONAL INSTRUMENTS PRODUCTS IN COMBINATION WITH OTHER PRODUCTS IN A MANNER NOT
EVALUATED OR CONTEMPLATED BY NATIONAL INSTRUMENTS, THE USER OR APPLICATION DESIGNER IS ULTIMATELY
RESPONSIBLE FOR VERIFYING AND VALIDATING THE SUITABILITY OF NATIONAL INSTRUMENTS PRODUCTS WHENEVER
NATIONAL INSTRUMENTS PRODUCTS ARE INCORPORATED IN A SYSTEM OR APPLICATION, INCLUDING, WITHOUT
LIMITATION, THE APPROPRIATE DESIGN, PROCESS AND SAFETY LEVEL OF SUCH SYSTEM OR APPLICATION.

Conventions

The following conventions are used in this manual:

» The » symbol leads you through nested menu items and dialog box options
to a final action. The sequence File»Page Setup»Options directs you to
pull down the File menu, select the Page Setup item, and select Options
from the last dialog box.

This icon denotes a note, which alerts you to important information.

bold Bold text denotes items that you must select or click in the software, such
as menu items and dialog box options. Bold text also denotes parameter
names.

italic Italic text denotes variables, emphasis, a cross-reference, or an introduction
to a key concept. Italic text also denotes text that is a placeholder for a word
or value that you must supply.

monospace Text in this font denotes text or characters that you should enter from the
keyboard, sections of code, programming examples, and syntax examples.
This font is also used for the proper names of disk drives, paths, directories,
programs, subprograms, subroutines, device names, functions, operations,
variables, filenames, and extensions.

monospace italic Italic text in this font denotes text that is a placeholder for a word or value
that you must supply.

Platform Text in this font denotes a specific platform and indicates that the text
following it applies only to that platform.

© National Instruments Corporation v Using LabWindows/CVI with TestStand

Contents

Chapter 1
Role of LabWindows/CVI in a TestStand-Based System

Code Modules ..1-1
Custom User Interfaces..1-2
Custom Step Types ..1-2
LabWindows/CVI Adapter ..1-2

Chapter 2
Calling LabWindows/CVI Code Modules from TestStand

Required LabWindows/CVI Settings ..2-1
LabWindows/CVI Module Tab ...2-1

Source Code Buttons ...2-3
Creating and Configuring a New Step Using the LabWindows/CVI Adapter2-4

Chapter 3
Creating, Editing, and Debugging LabWindows/CVI Code Modules
from TestStand

Creating a New Code Module ...3-1
Editing an Existing Code Module..3-3
Debugging a Code Module ..3-3

Chapter 4
Using LabWindows/CVI Data Types with TestStand

Calling Code Modules with String Parameters..4-2
Calling Code Modules with Object Parameters...4-3
Calling Code Modules with Struct Parameters..4-3
Creating TestStand Data Types from LabWindows/CVI Structs4-4

Building a New Custom Data Type...4-4
Specifying Structure Passing Settings ...4-5
Calling a Function With a Struct Parameter..4-5

Contents

Using LabWindows/CVI with TestStand vi ni.com

Chapter 5
Configuring the LabWindows/CVI Adapter

Showing Function Arguments in Step Descriptions ... 5-2
Setting the Default Structure Packing Size ... 5-2
Selecting Where Steps Execute ... 5-2

Executing Code Modules in an External Instance of LabWindows/CVI 5-2
Debugging Code Modules .. 5-3

Executing Code Modules In-Process .. 5-3
Object and Library Code Modules ... 5-3
Source Code Modules... 5-5
Debugging DLL Code Modules ... 5-5

Loading Subordinate DLLs... 5-5
Per-Step Configuration of the LabWindows/CVI Adapter............................. 5-6

Code Template Policy ... 5-7

Chapter 6
Creating Custom User Interfaces in LabWindows/CVI

TestStand User Interface Controls... 6-1
Creating and Configuring ActiveX Controls .. 6-1
Programming with ActiveX Controls .. 6-1

Creating Custom User Interfaces... 6-3
Configuring the TestStand UI Controls .. 6-4
Enabling Sequence Editing ... 6-4
Handling Events .. 6-4
Starting and Shutting Down TestStand... 6-5
Menu Bars ... 6-6
Localization... 6-6

Other User Interface Utilities .. 6-7
Making Dialog Boxes Modal to TestStand... 6-7
Checking for Stopped Execution .. 6-7

Appendix A
Using the TestStand ActiveX APIs in LabWindows/CVI

Appendix B
Adding Type Libraries to LabWindows/CVI DLLs

Appendix C
Calling Legacy LabWindows/CVI Code Modules

Contents

© National Instruments Corporation vii Using LabWindows/CVI with TestStand

Appendix D
Technical Support and Professional Services

Index

© National Instruments Corporation 1-1 Using LabWindows/CVI with TestStand

1
Role of LabWindows/CVI
in a TestStand-Based System

NI TestStand is a test management environment you use to organize and
execute code modules written in a variety of languages and application
development environments (ADEs), including LabWindows™/CVI™.
TestStand handles core test management functionality, such as the
definition and execution of the overall testing process, user management,
report generation, database logging, and more. TestStand can work in a
variety of different testing scenarios and environments because it allows
extensive customization of components such as the process model, step
types, and user interfaces. You can use LabWindows/CVI in the following
ways to accomplish much of this customization:

• Create code modules, such as tests and actions, TestStand can call
using the LabWindows/CVI Adapter

• Create custom user interfaces for test systems

• Create custom step types

Code Modules
TestStand can call LabWindows/CVI code modules with a variety of
function prototypes. TestStand can also pass data to the code modules it
calls and store the data the code modules return. Additionally, the code
modules TestStand calls can access the complete TestStand application
programming interface (API) for advanced applications.

Chapter 1 Role of LabWindows/CVI in a TestStand-Based System

Using LabWindows/CVI with TestStand 1-2 ni.com

Custom User Interfaces
You can use the LabWindows/CVI development environment to build
custom user interfaces for test systems and for creating custom sequence
editors. Typically, custom user interfaces are designed for use in
production test systems. You can also create user interfaces using the
TestStand User Interface (UI) Controls and the TestStand API. Refer to
Chapter 9, Creating Custom User Interfaces, of the NI TestStand Reference
Manual for general information about creating custom user interfaces.

Custom Step Types
You can use LabWindows/CVI to create code modules you call from
custom step types. These code modules can implement editable dialog
boxes and other features of custom step types. Refer to Chapter 13, Custom
Step Types, of the NI TestStand Reference Manual for more information
about custom step types.

LabWindows/CVI Adapter
The LabWindows/CVI Adapter offers advanced functionality for
calling code modules from TestStand. You can use the LabWindows/CVI
Adapter to perform the following tasks:

• Call code modules with arbitrary function prototypes

• Create and edit code modules from TestStand

• Debug code modules (step in/step out) from TestStand

• Run code modules in-process or out-of-process using the
LabWindows/CVI development system

© National Instruments Corporation 2-1 Using LabWindows/CVI with TestStand

2
Calling LabWindows/CVI Code
Modules from TestStand

You can call LabWindows/CVI code modules from TestStand using the
LabWindows/CVI Adapter.

Required LabWindows/CVI Settings
All the tutorials in this manual require that you have LabWindows/CVI
and TestStand installed on the same computer. In addition, you must
configure the LabWindows/CVI Adapter to execute steps in an external
instance of the LabWindows/CVI development system and to allow only
new code templates. Refer to Chapter 5, Configuring the LabWindows/CVI
Adapter, for more information about configuring these settings for the
adapter.

LabWindows/CVI Module Tab
Use the LabWindows/CVI Module tab in the TestStand Sequence Editor
to configure calls to LabWindows/CVI code modules. Select a step that
uses the LabWindows/CVI Adapter to view the LabWindows/CVI Module
tab in the Step Settings pane, as shown in Figure 2-1.

Chapter 2 Calling LabWindows/CVI Code Modules from TestStand

Using LabWindows/CVI with TestStand 2-2 ni.com

Figure 2-1. LabWindows/CVI Module Tab

The LabWindows/CVI Adapter supports calling functions in
C source files, object files, static library files, and dynamic link library
(DLL) files. The Module tab includes Source Code buttons for creating and
editing code modules in LabWindows/CVI.

Note National Instruments recommends using DLL files when you develop code modules
using the LabWindows/CVI Adapter. The tutorials in this manual demonstrate creating and
debugging only DLL code modules. Refer to Chapter 5, Configuring the LabWindows/CVI
Adapter, for additional requirements for calling functions in C source files, object files, and
static library files.

You also use the LabWindows/CVI Module tab to specify the function
prototype, which includes the data type of each parameter and the values to
pass for each parameter.

The Parameters Table control shows all of the available parameters for the
function call and an entry for the return value. You can insert, remove, or
rearrange the order of the parameters. The Parameters Table control
contains the following columns:

• Parameter Name—Displays a symbolic name for the parameter.

• Description—Displays the short description of the parameter type
using C syntax.

• Value Expression—Displays the argument expression to pass.

When you select a parameter in the Parameters Table control, the specific
details about the parameter are displayed in the Parameter Details Table

1 LabWindows/CVI Module Tab
2 Parameters Table Control

3 Parameter Details Table Control
4 Source Code Buttons

1 3

4

2

Chapter 2 Calling LabWindows/CVI Code Modules from TestStand

© National Instruments Corporation 2-3 Using LabWindows/CVI with TestStand

control. The information required for a parameter varies depending on
whether the data type is Numeric, String, Object, C Struct, or Array. As an
alternative to specifying the function name and the parameter values, you
can use the Function Call control to directly edit the function name and all
of the function arguments at once.

Source Code Buttons
Use the Source Code buttons, shown in Figure 2-2, to generate or edit
the source code for the function and to resolve differences between the
parameter list in the source code and the parameter information on the
LabWindows/CVI Module tab. You do not have to use the Source Code
buttons in order for TestStand to call the code module.

Figure 2-2. LabWindows/CVI Module Tab Source Code Buttons

The Source Code Files button launches the CVI Source Code Files dialog
box, in which you can specify the source file that contains the function the
step calls and to specify the project to use when editing the source code. If
the code module is a DLL or static library, you must enter the name of the
LabWindows/CVI project used to create the DLL or static library file. If the
code module is an object file, you can optionally specify a project.

When you click the Create Code or Edit Code buttons, the
LabWindows/CVI Adapter launches a copy of LabWindows/CVI
and opens the source file. If you specify a project file using the Source
Code Files button, the LabWindows/CVI Adapter opens the project in
LabWindows/CVI when you click the Create Code or Edit Code buttons.
If you click the Create Code button for a function that already exists in the
file, the function you specified in the Code Template ring control is used
and LabWindows/CVI launches the Generate Code dialog box, in which
you can specify to either replace the current function or add the new
function above or below the current function.

1 Source Code Files
2 Create Code

3 Edit Code
4 Verify Prototype

1

2

3

4

Chapter 2 Calling LabWindows/CVI Code Modules from TestStand

Using LabWindows/CVI with TestStand 2-4 ni.com

Note If LabWindows/CVI returns a warning that some TestStand API files were not found
when you open a project, remove the files from the project and re-add them from the
<National Instruments>\Shared\CVI\instr\TestStand\API directory for
LabWindows/CVI 8.5 and later and from the <CVI>\instr\TestStand\API\CVI
directory for LabWindows/CVI 8.1.1 or earlier.

Click the Verify Prototype button to check for conflicts between the
parameter list in the source code and the parameter information on the
Module tab.

Click the Help or Help Topic button located on the Help toolbar to access
the NI TestStand Help, which provides additional information about the
LabWindows/CVI Module tab.

Creating and Configuring a New Step Using the
LabWindows/CVI Adapter

Complete the following steps to insert a new step that uses the
LabWindows/CVI Adapter and then configure the step to call a code
module.

1. Launch the TestStand Sequence Editor and select LabWindows/CVI
Adapter on the Insertion Palette.

2. Open a new Sequence File window if one is not already open.

3. Select File»Save As and save the sequence file as <TestStand
Public>\Tutorial\CallCVICodeModule.seq. The
<TestStand Public> directory is located at
C:\Documents and Settings\All Users\Documents\

National Instruments\TestStand x.x on Windows 2000/XP
and at C:\Users\Public\Documents\National Instruments\
TestStand x.x on Windows Vista.

4. Insert a Pass/Fail step in the Main step group of the Sequence File
window and rename the new step CVI Pass/Fail Test.

5. On the LabWindows/CVI Module tab of the Step Settings pane,
click the File Browse button, select <TestStand Public>\
Tutorial\CallCVICodeModule.dll, and click Open.

Chapter 2 Calling LabWindows/CVI Code Modules from TestStand

© National Instruments Corporation 2-5 Using LabWindows/CVI with TestStand

6. On the LabWindows/CVI Module tab, select the PassFailTest
function in the Function ring control.

Note When you select a function, the LabWindows/CVI Adapter attempts to read the
export information LabWindows/CVI includes in the DLL, or the function parameter
information from the type library in the code module, if one exists. If the function
parameter information is not defined, you can either select a code template from the Code
Template ring control to specify the function prototype or specify the function prototype
by adding parameters to the Parameters Table control.

7. Select PassFail template for LabWindows/CVI in the Code
Template ring control.

The Parameters Table control contains the default value expressions
specified by the code template. When TestStand calls the code module,
the LabWindows/CVI Adapter stores the returned values for the result
and the error details in the specified properties of the step.

8. Select File»Save to save the sequence file.

9. Select Execute»Single Pass to run the sequence file using the Single
Pass Execution entry point.

Because the LabWindows/CVI Adapter is configured to use an
external instance of LabWindows/CVI to execute code modules,
TestStand launches the LabWindows/CVI development environment
to execute the function the step calls.

When the execution completes, the resulting report indicates the step
passed. The code module always returns True as its Pass/Fail output
parameter.

10. Select File»Unload All Modules to instruct TestStand to unload the
DLL the step calls so you can rebuild the DLL in the next chapter.
Close the Execution window.

© National Instruments Corporation 3-1 Using LabWindows/CVI with TestStand

3
Creating, Editing, and
Debugging LabWindows/CVI
Code Modules from TestStand

You can use the LabWindows/CVI Adapter to create new code modules to
call from TestStand, and to edit and debug existing code modules.

Creating a New Code Module
Complete the following steps to create a new code module from TestStand.

1. Launch the TestStand Sequence Editor and select the
LabWindows/CVI Adapter in the Insertion Palette.

2. Open <TestStand Public>\Tutorial\
CallCVICodeModule.seq. if it is not already open. You created this
sequence file in the Creating and Configuring a New Step Using the
LabWindows/CVI Adapter section of Chapter 2, Calling
LabWindows/CVI Code Modules from TestStand.

3. Insert a Numeric Limit Test step after the CVI Pass/Fail Test step
and rename it CVI Numeric Limit Test.

4. Select the CVI Numeric Limit Test step and use the
LabWindows/CVI Module tab of the Step Settings pane to complete
the following steps.

a. For the Module control, click the File Browse button, shown at
left, and select <TestStand Public>\Tutorial\
CallCVICodeModule.dll.

b. Type NumericLimitTest in the Function ring control.

c. Select NumericLimit template for LabWindows/CVI in the
Code Template ring control.

5. Click the Source Code Files button, shown at left, to launch the CVI
Source Code Files dialog box. Complete the following steps.

a. Type CVINumericLimitTest.c in the Source File Containing
Function control.

Chapter 3 Creating, Editing, and Debugging LabWindows/CVI Code Modules from TestStand

Using LabWindows/CVI with TestStand 3-2 ni.com

b. For the CVI Project File to Open control, click the File Browse
button and select <TestStand Public>\Tutorial\
CallCVICodeModule.prj.

c. Click Close.

6. Click the Create Code button, shown at left, to create a code module.

When you click the Create Code button, TestStand launches the
Select a Source File dialog box. Browse to the <TestStand
Public>\Tutorial directory and click OK.

TestStand creates a new code module based on the available source
code templates for the TestStand Numeric Limit Test and opens the
code module in LabWindows/CVI.

Note The TestStand Numeric Limit Test step type requires code modules to store a
measurement value in the Step.Result.Numeric property, and the step type performs a
comparison operation to determine if the step passes or fails. Code modules can update step
properties by passing step properties as parameters to and from the module or by using the
TestStand API in the module. If you use a default code template from National Instruments
to create a module, TestStand creates the parameters needed to access the step properties
for you.

7. In LabWindows/CVI, uncomment the following code in the
source file:

double testMeasurement = 10.0;

double lowLimit;

*measurement = testMeasurement;

8. Save and close the source file. Leave LabWindows/CVI open.

9. In the LabWindows/CVI project window, select Build»Create
Debuggable Dynamic Link Library to rebuild the DLL.

10. Return to the TestStand Sequence Editor and click the
LabWindows/CVI Module tab. Notice that TestStand automatically
updates the function prototype and parameter values based on the
information stored in the code template for the Numeric Limit Test
step type.

11. Save the sequence file as <TestStand Public>\Tutorial\
CallCVICodeModule2.seq.

12. Select Execute»Single Pass to run the sequence file using the Single
Pass Execution entry point. When the execution completes, the
resulting report indicates the step passed with a numeric measurement
of 10.0.

Chapter 3 Creating, Editing, and Debugging LabWindows/CVI Code Modules from TestStand

© National Instruments Corporation 3-3 Using LabWindows/CVI with TestStand

13. Select File»Unload All Modules to unload the DLL.

14. Leave this sequence file open so you can use it in the next tutorial.

Refer to the Code Templates Tab section of Chapter 13, Custom Step Types,
of the NI TestStand Reference Manual for more information about creating
code templates for step types.

Editing an Existing Code Module
Complete the following steps to edit an existing code module.

1. Open <TestStand Public>\Tutorial\
CallCVICodeModule2.seq, if it is not already open.

2. Right-click the CVI Numeric Limit Test step and select
Edit Code from the context menu. LabWindows/CVI becomes the
active application in which the CVINumericLimitTest.c source file
is open.

3. Change the initial value in the declaration for the testMeasurement
variable to 5.0.

4. Save and close the source file.

5. Rebuild the DLL.

6. In the TestStand Sequence Editor, select Execute»Single Pass to run
the sequence file using the Single Pass Execution entry point.When the
execution completes, the resulting report indicates the step failed and
the code module returns 5 in the Measurement field.

Debugging a Code Module
Complete the following steps to debug a code module you call from
TestStand using the LabWindows/CVI Adapter.

1. Open <TestStand Public>\Tutorial\
CallCVICodeModule.seq.

2. Place a breakpoint on the CVI Pass/Fail Test step.

3. Save the sequence file and select Execute»Run MainSequence to
start an execution of MainSequence.

4. When the execution pauses, click the Step Into button on the sequence
editor toolbar. LabWindows/CVI becomes the active application, in
which the LabWindows/CVI Pass-Fail Test code module is open and
in a suspended state.

Chapter 3 Creating, Editing, and Debugging LabWindows/CVI Code Modules from TestStand

Using LabWindows/CVI with TestStand 3-4 ni.com

Note If LabWindows/CVI does not launch, the LabWindows/CVI Adapter is not
configured to execute steps in an external instance. To configure the LabWindows/CVI
Adapter, complete all executions and select Configure»Adapters. Then select
LabWindows/CVI and click the Configure button. In the Step Execution section, select
Execute Steps in an External Instance of CVI. Click OK to close the LabWindows/CVI
Adapter Configuration dialog box. Click OK when the adapter displays a warning that
confirms all modules will be unloaded. Begin step 3 again.

Refer to Chapter 5, Configuring the LabWindows/CVI Adapter, for more information
about configuring the LabWindows/CVI Adapter.

5. Click the Step Into or Step Over button on the LabWindows/CVI
toolbar to begin single-stepping through the code module. You can
click the Continue button at any time to finish single-stepping through
the code module.

6. When you finish single-stepping through the code module, click the
Finish Function button on the LabWindows/CVI toolbar to return to
TestStand. The execution pauses at the next step in the sequence.

7. Select Debug»Resume in TestStand to complete the execution.

8. Select File»Unload All Modules to unload the DLL.

9. Close the Execution window.

© National Instruments Corporation 4-1 Using LabWindows/CVI with TestStand

4
Using LabWindows/CVI
Data Types with TestStand

TestStand provides number, string, Boolean, and object reference built-in
data types. TestStand also provides several standard named data types
including Path and Error. You can create container data types that hold any
number of other data types. TestStand container data types are analogous
to C structures in LabWindows/CVI.

LabWindows/CVI has a greater variety of built-in data types than
TestStand, so TestStand converts LabWindows/CVI data types in certain
ways when calling code modules. Table 4-1 describes how TestStand
handles the various LabWindows/CVI data types.

Table 4-1. TestStand Equivalents for LabWindows/CVI Data Types

LabWindows/CVI C Data Type TestStand Data Type

char, unsigned char, short, unsigned short,
long, unsigned long, float, or double

Number

TestStand stores all numeric C data types as
double precision floating point numbers.
TestStand does not set the format for a number
property when assigning a value.

const char*, char[], const wchar_t*,
const unsigned short*, wchar_t[], or
unsigned short[]

Path, String, or Expression

Refer to the Calling Code Modules with String
Parameters section of this chapter for more
information about using the string data type.

enum Number

IDispatch *pDispatch, IUnknown *pUnknown,
or CAObjHandle objHandle

Object reference

Refer to the Calling Code Modules with Object
Parameters section of this chapter for more
information about using the object reference
data type.

Chapter 4 Using LabWindows/CVI Data Types with TestStand

Using LabWindows/CVI with TestStand 4-2 ni.com

Note The LabWindows/CVI Adapter supports return values of type void and numeric,
which includes 32-bit doubles and 8-, 16-, and 32-bit integers.

Calling Code Modules with String Parameters
When you configure calls to code modules that use strings as parameters,
you can specify whether to pass the string as a constant or as a buffer,
as well as whether to pass the string as a C string or a unicode string.

If you pass the string as a constant, the LabWindows/CVI Adapter passes
the address of the actual string directly to the function without copying it to
a buffer. The code module must not change the contents of the string.

If you pass a string as a buffer, the LabWindows/CVI Adapter copies the
contents of the string argument and a trailing NUL character into a
temporary buffer before calling the function. You specify the minimum size
of the temporary buffer. If the string value is longer than the buffer size you
specify, the LabWindows/CVI Adapter resizes the temporary buffer so it is
large enough to hold the contents of the string argument and the trailing
NUL character. After the function returns, the LabWindows/CVI Adapter
copies the value the function writes into the temporary buffer back to the
string argument. The LabWindows/CVI Adapter only copies data from the
beginning of the temporary buffer up to and including the first NUL
character.

You can pass NULL to a string pointer parameter by passing an empty object
reference or the constant Nothing.

Array of x Array of TestStand (x)

struct Container

Refer to the Calling Code Modules with Struct
Parameters section of this chapter for more
information about using the container data type.

Table 4-1. TestStand Equivalents for LabWindows/CVI Data Types (Continued)

LabWindows/CVI C Data Type TestStand Data Type

Chapter 4 Using LabWindows/CVI Data Types with TestStand

© National Instruments Corporation 4-3 Using LabWindows/CVI with TestStand

Calling Code Modules with Object Parameters
You can configure calls to code modules that use an ActiveX Automation
IDispatch Pointer (IDispatch *), ActiveX Automation IUnknown Pointer
(IUnknown *), or a LabWindows/CVI ActiveX Automation Handle
(CAObjHandle) as a parameter.

You can use these types to pass a reference to a built-in or custom TestStand
data type in a code module function. You can also use these types to pass
the value of an object reference property to a code module function.

If you specify an object reference property as the value of an object
parameter, TestStand passes the value of the property. Otherwise, TestStand
passes a reference to the property object you specify.

The function the step calls can invoke methods and access the properties on
the object. You can pass the object parameter by value or by reference.
If the function stores the value of the object for later use after the function
returns, the function must properly add an additional reference to the
ActiveX Automation IDispatch Pointer or ActiveX Automation IUnknown
Pointer or duplicate the LabWindows/CVI ActiveX Automation Handle.
If you pass the object by reference and the function alters the value of the
reference, the function must release the original reference.

Calling Code Modules with Struct Parameters
When you configure calls to code modules that use structs as parameters,
you specify that a TestStand data type maps to the entire C struct. TestStand
can help you create a new custom data type that matches a C struct.

Use the Struct Passing tab in the Type Properties dialog box for a custom
data type to specify how TestStand maps subproperties to members in
a C struct. When you specify the data to pass for the struct parameter on
the Module tab of the Step Settings pane, you only need to specify an
expression that evaluates to data with the data type.

Refer to Chapter 11, Type Concepts, of the NI TestStand Reference Manual
for more information about where TestStand stores custom data types.
Refer to the NI TestStand Help for more information about the Type
Properties dialog box.

Chapter 4 Using LabWindows/CVI Data Types with TestStand

Using LabWindows/CVI with TestStand 4-4 ni.com

Creating TestStand Data Types from
LabWindows/CVI Structs

Complete the following steps to create a TestStand data type that matches
a LabWindows/CVI struct and call a function in a DLL that has the struct
as a parameter.

Building a New Custom Data Type
In this section, you will create a new container data type that contains both
numeric and string subproperties.

1. Open <TestStand Public>\Tutorial\
CallCVICodeModule2.seq, if it is not already open.

2. In the Sequence File window, right-click and select View»Types from
the context menu. Make sure the CallCVICodeModule2.seq
sequence file is selected in the View Types For pane.

3. Select the Custom Data Types item in the Types window.

4. Right-click the Custom Data Types item and select Insert Custom
Data Type»Container to insert a new data type. Rename the new
container data type CVITutorialStruct.

5. Click the CVITutorialStruct item. Click the plus sign to expand
the CVITutorialStruct item.

6. Right-click inside the Types window under the CVITutorialStruct
item and select Insert Field»Number to insert a new field in the data
type. Rename the new field Measurement.

7. Right-click inside the Types window and select Insert Field»String to
insert another new field in the CVITutorialStruct container data type.
Rename the new field Buffer.

You have completed the CVITutorialStruct container data type.
Leave the sequence file open, and continue to the next tutorial.

Refer to the NI TestStand Help and to Chapter 12, Standard and
Custom Data Types, of the NI TestStand Reference Manual for more
information about custom data types and the Types window.

Chapter 4 Using LabWindows/CVI Data Types with TestStand

© National Instruments Corporation 4-5 Using LabWindows/CVI with TestStand

Specifying Structure Passing Settings
In this section, you will specify the structure passing properties for the
CVITutorialStruct container data type.

1. Right-click the CVITutorialStruct item in the Types window and
select Properties to launch the Type Properties dialog box.

Note The name of the Type Properties dialog box is specific to the name of the property
you have selected.

2. Click the C Struct Passing tab in the Type Properties dialog box.

3. Enable the Allow Objects of This Type to be Passed as Structs
option on the C Struct Passing tab.

The Property ring control lists the two fields in the
CVITutorialStruct container data type. Notice that the Numeric
Type control for the Measurement property defaults to 64-bit Real
Number (double).

4. Select the Buffer property.

5. Make sure the String Type control setting is set to C String Buffer.
This setting instructs TestStand to allow the C function to alter the
value of the structure field.

6. Select OK to close the Type Properties dialog box.

7. Leave the sequence file open, and continue to the next tutorial.

Calling a Function With a Struct Parameter
In this tutorial, you will use the CVITutorialStruct container data type
as a parameter to a function a step calls.

1. Click the CallCVIModule2.seq tab in the Sequence File window.

2. Click the Variables pane.

3. Right-click the Locals item on the Variables pane and select Insert
Local»Type»CVITutorialStruct to insert an instance of the
container data type.

4. Rename the new variable CVIStruct.

5. Select the Steps: MainSequence pane and then select
LabWindows/CVI Adapter in the Insertion Palette.

6. Insert a new Action step into the Main step group of MainSequence
after the CVI Numeric Limit Test step.

7. Rename the step Pass Struct Test.

Chapter 4 Using LabWindows/CVI Data Types with TestStand

Using LabWindows/CVI with TestStand 4-6 ni.com

8. Click the LabWindows/CVI Module tab on the Step Settings pane.

9. Click the File Browse button next to the Module control and select the
<TestStand Public>\Tutorial\CallCVICodeModule.dll
file.

10. Type PassStructTest in the Function control.

11. Click the Add Parameter button, shown at left, to insert a new
parameter and enter the following information in the Parameter Details
Table control:

a. In the Name field, rename the parameter cviStruct.

b. In the Category field, select C Struct.

c. In the Type field, select CVITutorialStruct.

12. Enter Locals.CVIStruct in the Value Expression field for the
parameter in the Parameters Table control.

13. Click the Source Code Files button to launch the CVI Source Code
Files window. Complete the following steps to select the source file
and project file to use when inserting thefunction.

a. In the Source File Containing Function control, type
CVIStructPassingTest.c.

b. Click the File Browse button next to the CVI Project File to Open
option and select the <TestStand Public>\Tutorial\
CallCVICodeModule.prj file.

c. Click Close.

14. Click the Create Code button to create a code module.

15. In the Select a Source File dialog box, browse to the <TestStand
Public>\Tutorial directory and click OK.

TestStand creates a new source file with an empty function.

16. In LabWindows/CVI, add the following type definition before the
first function:

struct CVITutorialStruct {

double measurement;

char buffer[256];

};

Add the following code to the PassStructTest function:

if (cviStruct)

{

cviStruct->measurement = 10.0;

strcpy(cviStruct->buffer, "Average Voltage");

}

Chapter 4 Using LabWindows/CVI Data Types with TestStand

© National Instruments Corporation 4-7 Using LabWindows/CVI with TestStand

Add the following statement to the top of the source file to include the
declaration of the strcpy function:

#include <ansi_c.h>

17. Save and close the source file.

18. In the LabWindows/CVI project window, select Build»Create
Debuggable Dynamic Link Library to rebuild the DLL.

19. Return to the TestStand Sequence Editor.

20. Place a breakpoint on the new Pass Struct Test step.

21. Select Execute»Run MainSequence to start a new execution of
MainSequence.

Single-step through the sequence and review the values in the
Locals.CVIStruct variable before and after executing the new step.

22. Select File»Unload All Modules to unload the DLL. Close the
Execution window.

© National Instruments Corporation 5-1 Using LabWindows/CVI with TestStand

5
Configuring the
LabWindows/CVI Adapter

You can configure the TestStand LabWindows/CVI Adapter to select a
LabVIEW server, reserve loaded functions for execution, establish a code
template policy, and change legacy settings.

Select Configure»Adapters to launch the Adapter Configuration dialog
box, select LabWindows/CVI in the Adapter column, and click the
Configure button to launch the LabWindows/CVI Adapter Configuration
dialog box, as shown in Figure 5-1.

Figure 5-1. LabWindows/CVI Adapter Configuration Dialog Box

Chapter 5 Configuring the LabWindows/CVI Adapter

Using LabWindows/CVI with TestStand 5-2 ni.com

Showing Function Arguments in Step Descriptions
Use the Show Function Arguments in Step Description control to
specify whether the description for a step in the sequence editor and user
interfaces include the parameters with the function. If you disable this
option, the description only displays the function and module name.

Setting the Default Structure Packing Size
The LabWindows/CVI Adapter can call functions in code modules that
have structure parameters. Use the Default Struct Packing control to
specify the default setting for how the LabWindows/CVI Adapter packs
structure parameters it passes. The following options are available: 1-, 2-,
4-, 8-, and 16-byte boundaries.

The compatibility mode of the LabWindows/CVI development
environment you use to create DLLs determines the structure packing
value. For LabWindows/CVI, the default structure packing can be either
1- or 8-byte. For example, in Microsoft Visual C++ compatibility mode,
LabWindows/CVI has a default of 8-byte packing. Refer to the Calling
a Function With a Struct Parameter section of Chapter 4, Using
LabWindows/CVI Data Types with TestStand, for more information about
calling code modules with struct parameters.

Selecting Where Steps Execute
The LabWindows/CVI Adapter can run code modules out-of-process using
an external instance of the LabWindows/CVI development environment
or run code modules in the same process as the sequence editor or user
interface you are running, without using the LabWindows/CVI
development environment.

Use the Step Execution section in the LabWindows/CVI Adapter
Configuration dialog box to select where steps execute.

Executing Code Modules in an External Instance of LabWindows/CVI
To execute tests in an external instance of LabWindows/CVI, the
LabWindows/CVI Adapter launches a copy of the LabWindows/CVI
development environment and loads an execution server project. You can
specify the execution server project to load in the LabWindows/CVI
Adapter Configuration dialog box. The default project is <TestStand
Public>\AdapterSupport\CVI\tscvirun.prj.

Chapter 5 Configuring the LabWindows/CVI Adapter

© National Instruments Corporation 5-3 Using LabWindows/CVI with TestStand

When a TestStand step calls a function in an object, static library, or DLL
file, the execution server project automatically loads the code module and
executes the function in an external instance of LabWindows/CVI. If you
want a TestStand step to call a function in a C source file, you must include
the C source file in the execution server project before you run the project.
You must also include any support libraries other than LabWindows/CVI
libraries the object, static library, or C source file requires.

Debugging Code Modules
You can debug C source and DLL code modules when the
LabWindows/CVI Adapter executes tests in an external instance of
LabWindows/CVI. To debug DLL code modules, you must create a
debuggable DLL in LabWindows/CVI. LabWindows/CVI honors all
breakpoints you set in the source files for the DLL project.

When you execute tests in an external instance of LabWindows/CVI, you
do not need to launch the sequence editor or user interface application from
LabWindows/CVI to debug DLL code modules you call with the
LabWindows/CVI Adapter.

If you click Step Into in the TestStand Sequence Editor while the execution
is suspended on a step that calls into the DLL code module,
LabWindows/CVI suspends on the first statement in the called function.

Executing Code Modules In-Process
When executing code modules in the same process as the sequence editor
or user interface, the LabWindows/CVI Adapter loads and runs code
modules directly without using the LabWindows/CVI development
environment.

Object and Library Code Modules
When the LabWindows/CVI Adapter loads an object or static library file,
the LabWindows/CVI Run-Time Engine resolves all external references in
the file. When running code modules in-process, the adapter must load the
support libraries on which the object file or static library file depends
before loading the code module file.

To configure a list of support libraries for the LabWindows/CVI Adapter
to load, manually copy the support libraries to the <TestStand
Public>\AdapterSupport\CVI\AutoLoadLibs directory. You can
also click the Configure Auto-Loading of Support Libraries Needed for
Linking .objs and .libs button in the LabWindows/CVI Adapter

Chapter 5 Configuring the LabWindows/CVI Adapter

Using LabWindows/CVI with TestStand 5-4 ni.com

Configuration dialog box to launch the Auto-Load Library Configuration
dialog box, as shown in Figure 5-2.

Figure 5-2. Auto-Load Library Configuration Dialog Box

You can configure the support libraries by performing one of the following
actions in the Auto-Load Library Configuration dialog box:

• Click the Add Default CVI Libraries button to search for an
installation of the LabWindows/CVI development environment and
copy the LabWindows/CVI static library files to the auto-load library
directory.

• Click the Add Other Libraries button to search for files to copy to the
auto-load library directory.

• Click the Delete Selected Files button to remove the selected files
from the auto-load library directory.

Note Data Execution Prevention (DEP) is a Windows security feature that prevents an
application from executing dynamically loaded code. Calling LabWindows/CVI object and
static library files from an executable with DEP enabled, such as a custom user interface,
is not supported and results in an error.

Chapter 5 Configuring the LabWindows/CVI Adapter

© National Instruments Corporation 5-5 Using LabWindows/CVI with TestStand

Source Code Modules
When TestStand executes code modules in-process, the LabWindows/CVI
Adapter cannot directly execute code modules that exist in C source files.
Instead, the adapter attempts to find an object file with the same name. If
the adapter finds the object file, it executes the code in the object file. If the
adapter cannot find the object file, it prompts you to create the object file
in an external instance of LabWindows/CVI. If you decline to create the
object file, the adapter reports a run-time error.

Debugging DLL Code Modules
In order to debug in-process code modules, the code modules must exist in
DLLs enabled for debugging in LabWindows/CVI at the time they were
built. To debug a DLL in-process, you must launch the sequence editor or
user interface from LabWindows/CVI. Select Run»Specify External
Process in the LabWindows/CVI project window to identify the executable
you want to launch. Select Run»Debug Project to launch the executable
and begin debugging.

If you click Step Into in the TestStand Sequence Editor while the execution
is currently suspended on a step that calls into a LabWindows/CVI DLL
you are debugging, LabWindows/CVI suspends on the first statement in the
DLL function.

Refer to the LabWindows/CVI documentation for more information about
debugging DLLs.

Loading Subordinate DLLs
TestStand directly loads and runs the DLLs you specify on the
LabWindows/CVI Module tab for the LabWindows/CVI Adapter. Because
code modules most likely call subsidiary DLLs, such as instrument drivers,
you must ensure that the operating system can find and load any DLL you
specify.

The LabWindows/CVI Adapter first attempts to load subordinate DLLs
using the following search directory precedence:

1. The directory that contains the DLL the adapter calls directly

2. (Windows 2000 and Windows XP SP1 and earlier) The current working
directory of the application

3. The Windows\System32 and Windows\System directories

4. The Windows directory

Chapter 5 Configuring the LabWindows/CVI Adapter

Using LabWindows/CVI with TestStand 5-6 ni.com

5. (Windows XP SP2 and later) The current working directory of the
application

6. The directories listed in the PATH environment variable

For backward compatibility, when the LabWindows/CVI Adapter fails to
load a DLL, the adapter temporarily sets the current working directory to
the directory of the DLL and attempts to load subordinate DLLs using the
following deprecated search directory precedence:

1. The directory that contains the application that loaded the adapter

2. (Windows 2000 and Windows XP SP1 and earlier) The current working
directory of the application, which the adapter sets to the directory that
contains the DLL it calls directly

3. The Windows\System32 and Windows\System directories

4. The Windows directory

5. (Windows XP SP2 and later) The current working directory of the
application, which the adapter sets to the directory that contains the
DLL it calls directly

6. The directories listed in the PATH environment variable

Note National Instruments does not recommend placing subordinate DLLs in the
directory that contains the application that loaded the adapter because TestStand might not
support loading DLLs from this location in future versions.

Note Refer to Chapter 14, Deploying TestStand Systems, of the NI TestStand Reference
Manual for more information about deploying code modules and subsidiary DLLs for use
with TestStand.

Per-Step Configuration of the LabWindows/CVI Adapter
You can direct TestStand to always run steps that use the
LabWindows/CVI Adapter in-process. Make this selection by enabling
the Always Run In Process option on the LabWindows/CVI Module tab.
This setting overrides the global setting in the LabWindows/CVI Adapter
Configuration dialog box. Use this option when you do not want the global
settings for the adapter to affect the tools and step types you create for use
with the LabWindows/CVI Adapter.

Chapter 5 Configuring the LabWindows/CVI Adapter

© National Instruments Corporation 5-7 Using LabWindows/CVI with TestStand

Code Template Policy
Use the Code Template Policy section in the LabWindows/CVI Adapter
Configuration dialog box to specify if TestStand allows you to create new
test code modules using old, or legacy, code module templates. These
legacy code module templates are files you can call from previous versions
of TestStand. Refer to Appendix C, Calling Legacy LabWindows/CVI
Code Modules, for more information about legacy code module templates.

If you enable the Allow Only New Templates option and create a new code
module from the LabWindows/CVI Module tab, TestStand creates a new
code module based on the code template for the specified step type. If the
step type has multiple code templates available, TestStand launches the
Choose Code Template dialog box, as shown in Figure 5-3, in which you
can select the code template to use for the new code module.

Figure 5-3. Choose Code Template Dialog Box

If you enable the Allow Only Legacy Templates option, TestStand
immediately creates a new code module based on the legacy code module
template for the specified step type.

If you enable the LabWindows/CVI Adapter using the Allow New and
Legacy Templates option, TestStand launches the Choose Code Template
dialog box, in which you can select the template to use for the new code
module.

Refer to the NI TestStand Help for more information about the Choose
Code Template dialog box.

© National Instruments Corporation 6-1 Using LabWindows/CVI with TestStand

6
Creating Custom User Interfaces
in LabWindows/CVI

You can create custom user interfaces and create user interfaces for other
components, such as custom step types.

National Instruments recommends reading Chapter 9, Creating Custom
User Interfaces, of the NI TestStand Reference Manual to obtain a general
understanding of the TestStand UI Controls before you proceed with this
chapter.

TestStand User Interface Controls
Use the TestStand UI Controls in the LabWindows/CVI development
environment to develop a custom user interface application, including
custom sequence editors.

Creating and Configuring ActiveX Controls
Select Create»ActiveX and select a UI control whose name begins with
TestStand UI to add a TestStand UI Control to a panel in the User
Interface Editor. Double-click the control to launch the standard
LabWindows/CVI Edit Control dialog box, in which you can configure the
control. Right-click the control and select Properties from the context
menu to open property pages a UI control supports.

Programming with ActiveX Controls
In order to access the methods, properties, and events specific to an
ActiveX control, you need to use the ActiveX driver for the control. The
TestStand UI Controls driver and additional support instrument drivers are
located in the <TestStand>\API\CVI directory. TestStand copies these
files to the <National Instruments Shared>\CVI\TestStand\API
directory for LabWindows/CVI 8.5 and later and to the CVI>\instr\
TestStand\API\CVI directory for LabWindows/CVI 8.1.1 or earlier.

Chapter 6 Creating Custom User Interfaces in LabWindows/CVI

Using LabWindows/CVI with TestStand 6-2 ni.com

Add the following function panel files to the LabWindows/CVI project for
your TestStand application:

• TestStand UI Controls (tsui.fp)—Contains functions for
dynamically creating controls, calling methods and accessing
properties on controls, and handling events from the controls.

• TestStand UI Support Library (tsuisupp.fp)—Contains
functions for various collections the TestStand UI Controls driver uses.

• TestStand Utility Functions (tsutil.fp)—Contains utility
functions for managing menu items that correspond to TestStand
commands, localizing strings on user interfaces, making dialog boxes
associated with LabWindows/CVI code modules modal in respect to
TestStand applications, and checking whether an execution that calls a
code module has stopped.

• TestStand API (tsapicvi.fp)—Provides low-level access to
TestStand objects.

For each interface the ActiveX control supports, the driver contains a
function you can use to programmatically create an instance of the ActiveX
control. The ActiveX driver also includes functions you can use to register
callback functions for receiving events defined by the control.

When you store ActiveX controls in .uir files, you do not need to use the
creation functions the driver includes. The control is created when you load
the panel from the file using the LoadPanel function. You identify the
control in subsequent calls to User Interface Library functions with the
constant name you assigned to the control in the User Interface Editor.

When you use other functions in the driver, you must identify the
control with a unique object handle which LabWindows/CVI then
associates with the control. You obtain this handle when you call the
GetObjHandleFromActiveXCtrl function using the constant name for
the control. This handle is cached in the control, and you do not need to
discard the handle explicitly.

LabWindows/CVI requires that a thread be initialized as apartment
threaded before you can use ActiveX controls in a program. If you do not
initialize the thread before creating an ActiveX control or before loading a
panel containing an ActiveX control from a .uir file, LabWindows/CVI
automatically initializes the thread to apartment threaded. If you use
the CA_InitActiveXThreadStyleForCurrentThread function
to initialize the thread yourself, you must use
COINIT_APARTMENTTHREADED as the threading model.

Chapter 6 Creating Custom User Interfaces in LabWindows/CVI

© National Instruments Corporation 6-3 Using LabWindows/CVI with TestStand

Refer to Appendix A, Using the TestStand ActiveX APIs in
LabWindows/CVI for general information about programming the
TestStand API from LabWindows/CVI.

Creating Custom User Interfaces
User interfaces that use the TestStand UI Controls typically perform the
following basic operations:

• Configure connections, commands, and other control settings

• Register to handle events the controls generate

• Start TestStand

• Wait in a main event loop until you close the application

• Shut down TestStand

User interfaces can also include a menu bar that contains non-TestStand
items and items that invoke TestStand commands.

Refer to the example user interfaces included with TestStand for additional
information about creating a TestStand User Interface using the TestStand
UI Controls in LabWindows/CVI. Begin with the simple user interface
example, <TestStand Public>\UserInterfaces\Simple\CVI\
TestExec.prj. Refer to the full-featured example, <TestStand
Public>\UserInterfaces\Full-Featured\CVI\TestExec.prj
for a more advanced sequence editor example that includes menus and
localization options.

TestStand installs the source code files for the default user interfaces
in the <TestStand>\UserInterfaces and <TestStand Public>\
UserInterfaces directories. To modify the installed user interfaces or to
create new user interfaces, modify the files in the <TestStand Public>\
UserInterfaces directory. You can use the read-only source files for the
default user interfaces in the <TestStand>\UserInterfaces directory
as a reference. When you modify installed files, rename the files after you
modify them if you want to create a separate custom component. You do
not have to rename the files after you modify them if you only want to
modify the behavior of an existing component. If you do not rename the
files and you use the files in a future version of TestStand, changes National
Instruments makes to the component might not be compatible with the
modified version of the component. Storing new and customized files in the
<TestStand Public> directory ensures that new installations of the
same version of TestStand do not overwrite the customizations and ensures
that uninstalling TestStand does not remove the files you customize.

Chapter 6 Creating Custom User Interfaces in LabWindows/CVI

Using LabWindows/CVI with TestStand 6-4 ni.com

TestStand no longer includes example user interfaces that use the TestStand
API. These examples contained a large amount of complex source code,
and they provided less functionality than the simpler examples that use the
TestStand UI Controls. National Instruments recommends using the
examples that use the TestStand UI Controls as a basis for new
development.

Configuring the TestStand UI Controls
Refer to Table 6-1 for information about which functions in the example
user interface files demonstrate configuring connections, commands, and
other settings for the TestStand UI Controls.

Enabling Sequence Editing
The TestStand UI Controls support both Operator Mode and Editor Mode.
To allow the user to create and edit sequence files, set the
ApplicationMgr.IsEditor property to True for the Application
Manager control. You can also specify the /editor command-line flag to
set the property.

Handling Events
TestStand UI Controls generate events to notify the application of user
input and application events, such as the completion of an execution. To
handle an event in LabWindows/CVI, you register a callback function,
which LabWindows/CVI automatically calls when the control generates
the event. Use the Event Callback Registration functions in the TestStand
UI Controls driver to perform event registration.

Table 6-1. Functions in Examples for Configuring the TestStand UI Controls

Source File Functions

<TestStand Public>\UserInterfaces\
Simple\CVI\TestExec.c

SetupActiveXControls

<TestStand Public>\UserInterfaces\
Full-Featured\CVI\TestExec.c

GetActiveXControlHandles
RegisterActiveXEventCallbacks
ConnectTestStandControls
ConnectStatusBarPanes
RebuildMenuBar

Chapter 6 Creating Custom User Interfaces in LabWindows/CVI

© National Instruments Corporation 6-5 Using LabWindows/CVI with TestStand

For example, the following statement registers a callback function for the
OnExitApplication event sent from the Application Manager control:

TSUI__ApplicationMgrEventsRegOnExitApplication (

gAppMgrHandle, AppMgr_OnExitApp, NULL, 1, NULL);

The callback function can contain the following code, which verifies
whether the TestStand Engine is in a state where it can shut down:

HRESULT CVICALLBACK AppMgr_OnExitApp(CAObjHandle

caServerObjHandle, void *caCallbackData)

{

VBOOL canExitNow;

if (!TSUI_ApplicationMgrShutdown(gAppMgrHandle,

&errorInfo, &canExitNow) && (canExitNow))

QuitUserInterface(0);

return S_OK;

}

Starting and Shutting Down TestStand
When you initialize the user interface application, use the
TSUI_ApplicationMgrStart driver function to invoke the
ApplicationMgr.Start method, which starts the TestStand Engine and
logs in a user.

LabWindows/CVI applications typically wait for user input by calling the
RunUserInterface() function after loading and displaying the main
user interface panel. The RunUserInterface() function handles all
events, such as menu selections, control value changes, and ActiveX
control events.

Typically, you stop a user interface application by clicking the Close box
or by executing the Exit command through either a TestStand menu or a
Button control. For user interface events that request the user interface to
close, the user interface must call the TSUI_ApplicationMgrShutdown
function to unload sequence files, log out, and trigger an
OnApplicationCanExit event. If the function determines that the
TestStand Engine can shutdown, the canExitNow output parameter
returns True. The user interface application should then call the
QuitUserInterface() function, which causes the preceding
RunUserInterface() call to return. After the application exits the
function call to RunUserInterface(), the user interface application
must call TSUI_ApplicationMgrShutdown a second time to complete
the cleanup process and shutdown the TestStand Engine.

Chapter 6 Creating Custom User Interfaces in LabWindows/CVI

Using LabWindows/CVI with TestStand 6-6 ni.com

Menu Bars
The TestStand Utility Functions provide the following set of functions for
creating and handling TestStand-specific menu items without requiring any
additional code:

• TS_InsertCommandsInMenu

• TS_RemoveMenuCommands

• TS_CleanupMenu

Use the TS_InsertCommandsInMenu function to create new menu items
that execute commands you specify. To create menu items, specify an array
of command types and the menu bar and menu IDs determine where to
insert the commands. Each command type specifies a menu item or group
of menu items to insert. You must also specify a handle to the Application
Manager control, ExecutionView Manager control, or SequenceFileView
Manager control to which the new menu items apply. TestStand uses a
manager control to determine whether the menu item is visible or dimmed.
TestStand installs a callback for each menu item that automatically invokes
the associated command when the user selects the menu item.

Call the TS_InsertCommandsInMenu function when the application
rebuilds the menu bar in a MenuDimmerCallback function in order
to populate the menu bar with commands that apply to the current
state of the application. Before you call this function, you can call
TS_RemoveMenuCommands to remove any menu items you previously
inserted.

Refer to the RebuildMenuBar function in the <TestStand Public>\
UserInterfaces\Full-Featured\CVI\TestExec.c source file for
an example of rebuilding the menu bar.

Localization
The TestStand UI Controls and TestStand Utility Functions driver provide
tools that localize user interfaces based on the TestStand language setting.
Use the following functions to localize the user interface:

• TS_LoadPanelResourceStrings

• TS_LoadMenuBarResourceStrings

• TSUI_ApplicationMgrLocalizeAllControls

Refer to the <TestStand Public>\UserInterfaces\
Full-Featured\CVI\TestExec.c source file for an example of
localizing user interface panels.

Chapter 6 Creating Custom User Interfaces in LabWindows/CVI

© National Instruments Corporation 6-7 Using LabWindows/CVI with TestStand

Other User Interface Utilities
You can also launch dialog boxes modal to TestStand application windows
and enable functions to check for stopped executions.

Making Dialog Boxes Modal to TestStand
Code modules that TestStand calls can launch dialog boxes modal to
TestStand application windows, such as the TestStand Sequence Editor or
custom user interfaces.

Use the following functions the TestStand Utility Functions driver provides
to make a dialog box modal to TestStand application windows.

• TS_StartModalDialogEx

• TS_EndModalDialog

• TS_EndModalDialogAndDiscard

Refer to the <TestStand>\Components\StepTypes\MsgBox\
msgbox.c source file to see how to use these functions.

Checking for Stopped Execution
Code modules TestStand calls can launch dialog boxes or perform other
time-consuming operations. In these cases, it can be useful for code
modules to periodically check if TestStand terminated or aborted their
parent execution so the code modules can stop gracefully so the parent
execution can terminate or abort.

Use the following functions the TestStand Utility Functions driver provides
to enable code modules that TestStand calls to verify if the execution that
called the function has stopped.

• TS_CancelDialogIfExecutionStops

• TS_CancelDialogIfExternalExecutionStops

Refer to the dialog box code in the following example source files to see
how to use these functions:

• <TestStand Public>\Examples\Demo\C\computer.c

• <TestStand Public>\Examples\Demo\C\auto.c

© National Instruments Corporation A-1 Using LabWindows/CVI with TestStand

A
Using the TestStand ActiveX
APIs in LabWindows/CVI

In some cases you may need to program the TestStand API or TestStand
User Interface (UI) Controls from LabWindows/CVI code modules and
user interface source code.

The ActiveX Library topic of the LabWindows/CVI Online Help contains
fundamental information about ActiveX concepts and how to access
ActiveX servers from LabWindows/CVI. National Instruments
recommends becoming familiar with this material before proceeding with
this appendix.

Using ActiveX Drivers in LabWindows/CVI
LabWindows/CVI creates and accesses ActiveX objects using functions in
a LabWindows/CVI-generated driver. This driver uses function panels to
define C functions for all the methods and properties available for each
object. For servers that define events, the driver contains functions for
registering callbacks for events.

The driver functions you use to invoke methods and properties have a
special naming convention in which function names start with a prefix,
such as TS_. Methods are followed by the class name and the method name.
Properties are followed by either Get or Set and the property name. In
some cases, the class, method, and property names are abbreviated to keep
the function name within the constraints of the .fp file format.

The LabWindows/CVI ActiveX Automation Library uses the
CAObjHandle data type for handles to ActiveX objects. The TestStand
ActiveX drivers also follow this convention, so you can use the
CAObjHandle data type for all handles to TestStand objects. However,
one drawback of using the same data type for all TestStand objects that the
compiler cannot flag calls to methods in which you pass a handle for the
wrong kind of object.

Appendix A Using the TestStand ActiveX APIs in LabWindows/CVI

Using LabWindows/CVI with TestStand A-2 ni.com

Objects can support more than one interface. For example, a
SequenceContext object has a SequenceContext interface and a
PropertyObject interface. When using handles in LabWindows/CVI
to invoke methods or access properties of an object, you do not have to
convert a specific reference for one interface to a specific reference for
another interface. The ActiveX driver always queries the handle for the
proper interface before invoking the method or accessing the property.

If you receive an object handle as the result of calling a method or getting
the handle from a property, you must release the handle when you are
finished with it. Refer to the Adding and Releasing References section of
this appendix for more information about the CA_DiscardObjHandle
function.

Some TestStand ActiveX API methods have output parameters that
return strings. You must use the CA_FreeMemory function in the
LabWindows/CVI ActiveX Automation Library to free these strings
when you are done with them.

Invoking Methods
TestStand objects have methods you invoke to perform an operation or
function on the objects. In LabWindows/CVI, you invoke methods on
TestStand objects using the functions defined in the ActiveX driver for
those objects.

The following function shows how to access the number of steps in a
sequence:

int GetNumSteps(CAObjHandle sequence)

{

int error = 0;

ErrMsg errMsg = "";

ERRORINFO errorInfo;

CAObjHandle engine = 0;

long *numSteps = 0;

tsErrChk(TS_SequenceGetNumSteps (sequence,

&errorInfo, TS_StepGroup_Main, &numSteps);

Error:

return error;

}

Appendix A Using the TestStand ActiveX APIs in LabWindows/CVI

© National Instruments Corporation A-3 Using LabWindows/CVI with TestStand

The errorInfo variable is a structure the LabWindows/CVI ActiveX
Automation Library defines to hold information about errors that can occur
in the operation of the function. The tsErrChk macro determines whether
the function’s return value or the errorInfo variable indicates an error
occurred and continues execution at the Error label when True.

Note The functions, constants, and enumerations in the tsapicvi.fp driver begin
with the unique prefix TS_. This prefix is not included in the function, constant, and
enumeration names in the NI TestStand Help.

Accessing Built-In Properties
TestStand defines a number of built-in properties that are always present
for objects such as steps and sequences. Nearly every kind of object has
built-in properties, which are static with respect to the TestStand API. The
TestStand API recognizes each of these properties, allowing you to access
them in the programming language you specify. Examples of built-in
properties are the Sequence.Name property and the
SequenceContext.Sequence property.

In LabWindows/CVI, you access built-in properties using a property
function in the ActiveX driver. The following code obtains the value of
the Sequence.Name property:

int GetSequenceName(CAObjHandle sequence)

{

int error = 0;

ErrMsg errMsg = "";

ERRORINFO errorInfo;

char *sequenceName = 0;

tsErrChk(TS_SequenceGetName (sequence, &errorInfo,

&sequenceName));

Error:

// Free Resources

if (sequenceName)

CA_FreeMemory(sequenceName);

return error;

}

Appendix A Using the TestStand ActiveX APIs in LabWindows/CVI

Using LabWindows/CVI with TestStand A-4 ni.com

The following function obtains a reference to a step from a Sequence
object:

int GetStepInSequence(CAObjHandle sequence)

{

int error = 0;

ErrMsg errMsg = "";

ERRORINFO errorInfo;

CAObjHandle step = 0;

tsErrChk(TS_SequenceGetStepByName (sequence,

&errorInfo, &step));

Error:

// Free Resources

if (step)

CA_DiscardObjHandle(step);

return error;

}

Accessing Dynamic Properties
TestStand allows you to define custom step properties, sequence local
variables, sequence file global variables, and station global variables.
Because the TestStand API has no knowledge of the variables and custom
step properties you define, these variables and properties are dynamic with
respect to the TestStand API. The TestStand API provides the
PropertyObject class so you can access dynamic properties and
variables from within code modules, where you use lookup strings to
identify specific properties by name.

Appendix A Using the TestStand ActiveX APIs in LabWindows/CVI

© National Instruments Corporation A-5 Using LabWindows/CVI with TestStand

The following example illustrates setting a local variable by calling a
method of the PropertyObject class on a handle to a
SequenceContext object:

int SetLocalVariable(CAObjHandle seqContextCVI)

{

int error = 0;

ErrMsg errMsg = "";

ERRORINFO errorInfo;

VBOOL propertyExists;

// Set local variable NumericValue to a random number

tsErrChk(TS_PropertyExists(seqContextCVI,

&errorInfo, "Locals.NumericValue", 0,

&propertyExists));

if (propertyExists)

tsErrChk(TS_PropertySetValNumber(seqContextCVI,

&errorInfo, "Locals.NumericValue", 0, rand()));

Error:

return error;

}

Adding and Releasing References
LabWindows/CVI automatically maintains an object reference for each
handle you obtain for an object. If you assign the handle to another variable,
LabWindows/CVI does not add a reference to the object. Use the
CA_DuplicateObjHandle function in the LabWindows/CVI ActiveX
Automation Library to obtain a new handle to an existing object, thus
adding a reference to the object.

LabWindows/CVI automatically releases the object reference for each
handle you obtain when you call the CA_DiscardObjHandle function
from the LabWindows/CVI ActiveX Automation Library. The following
example shows how to obtain a handle to the TestStand Engine from the
SequenceContext object, how to call a method on the engine to acquire
a version string, and how to release the handle to the engine and the string:

int GetEngineVersion(CAObjHandle seqContextCVI)

{

int error = 0;

ErrMsg errMsg = "";

ERRORINFO errorInfo;

Appendix A Using the TestStand ActiveX APIs in LabWindows/CVI

Using LabWindows/CVI with TestStand A-6 ni.com

CAObjHandle engine = 0;

char *versionString = 0;

tsErrChk(TS_SeqContextGetEngine(seqContextCVI,

&errorInfo, &engine));

tsErrChk(TS_EngineGetVersionString (engine,

&errorInfo, &versionString));

Error:

// Free Resources

if (engine)

CA_DiscardObjHandle(engine);

if (versionString)

CA_FreeMemory(versionString);

return error;

}

Note If you fail to release the handle, LabWindows/CVI does not release the object.
Repeatedly opening references to objects without closing them can cause the system
to run out of memory.

While many of the functions specified in the tsapicvi.fp library are
simple wrappers to API methods that require no storage of information,
there are several functions, especially those containing Get or New, where
TestStand is actively allocating new memory to hold the information. In any
instance where you are using a function of this type, you must release the
allocated memory at the end of the code using calls to CA_FreeMemory,
CA_DiscardObjHandle, or similar functions.

If you are concerned about whether a function returns a piece of data that
needs to be manually released, refer to the LabWindows/CVI Help or
NI TestStand Help for that function. Both of these resources explicitly state
if the function is allocating memory and often contain additional code
fragments explaining how to use the function.

The following are examples of functions that allocate memory:

TS_PropertyGetValString()

TS_PropertyGetValIDispatch()

TS_PropertyGetPropertyObject()

TS_NewEngine()

TS_SeqFileNewEditContext()

TS_EngineNewSequence()

Appendix A Using the TestStand ActiveX APIs in LabWindows/CVI

© National Instruments Corporation A-7 Using LabWindows/CVI with TestStand

The following example uses one of the previous functions and then releases
the memory:

char *stringVal = NULL;

TS_PropertyGetValString (propObj, &errorInfo,

“Step.Limits.String”, 0, &stringVal);

...

CA_FreeMemory (stringVal);

Using TestStand API Constants and Enumerations
Some TestStand API methods require string and numeric constant input
arguments. The acceptable values of these arguments are organized into
groups that correspond to different properties and methods. For example,
the PropertyObject.SetValNumber method has an options input
argument that accepts many different numeric constants.

The header file for the ActiveX driver defines all constants and
enumerations the methods and properties require. The constant
and enumeration names start with a prefix, such as TS_, followed by
the constant or enumeration name.

Note The functions, constants, and enumerations in the tsapicvi.fp driver begin
with the unique prefix TS_. This prefix is not included in the function, constant, and
enumeration names in the NI TestStand Help.

For example, the ActiveX driver defines the RunModes constant as follows:

#define TS_RunMode_Normal "Normal"

#define TS_RunMode_Skip "Skip"

#define TS_RunMode_ForceFail "Fail"

#define TS_RunMode_ForcePass "Pass"

The ActiveX driver defines the StepGroups enumeration as follows:

enum TSEnum_StepGroups

{

TS_StepGroup_Setup = 0,

TS_StepGroup_Main = 1,

TS_StepGroup_Cleanup = 2,

TS_StepGroupsForceSizeToFourBytes = 0xFFFFFFFF

};

Appendix A Using the TestStand ActiveX APIs in LabWindows/CVI

Using LabWindows/CVI with TestStand A-8 ni.com

For parameters of functions of type enumeration, the LabWindows/CVI
function panel displays the list of enumerations in a ring control.

For parameters of functions that specify a numeric constant, use the
bitwise-OR operator to specify multiple options. For example, the
following code only sets a local variable if the variable does not already
exist:

int options = PropOption_DoNothingIfExists |

PropOption_InsertIfMissing;

tsErrChk (TS_PropertySetValNumber(seqContext, NULL,

"Locals.NumericValue", options, rand()));

Handling Events
TestStand controls can generate events to notify the application of user
input and application events, such as the completion of an execution. To
handle events in LabWindows/CVI, you must register a callback function
using the event callback registration functions in the instrument driver for
an ActiveX control, and use the CA_UnregisterEventCallback
function if you need to close the callback before closing the application.

Refer to Chapter 6, Creating Custom User Interfaces in LabWindows/CVI,
for more information about handling events the TestStand UI Controls
generate.

© National Instruments Corporation B-1 Using LabWindows/CVI with TestStand

B
Adding Type Libraries to
LabWindows/CVI DLLs

If a DLL contains export information or if a LabWindows/CVI DLL file
contains a type library, the LabWindows/CVI Adapter automatically
populates the Function control on the LabWindows/CVI Module tab with
all of the function names exported from the DLL. In addition, when you
select a function in the DLL, the adapter queries the export information or
the type library for the parameter list information and displays it in the
Parameters Table control on the LabWindows/CVI Module tab. If a DLL
was not created with LabWindows/CVI 7.0 or later, or if the DLL does not
have type library information, you must enter the parameter information
manually in the Parameters Table control.

LabWindows/CVI can use the information specified in a function panel file
to generate type library information to include in a DLL. Complete the
following steps to instruct LabWindows/CVI to generate a type library
resource from a function panel and add the type library resource to a DLL.

1. Open a new function panel file and create a function panel for each
exported function you want to include in the type library.

2. Add the function panel file to the LabWindows/CVI project.

3. In the LabWindows/CVI project window, select Build»Target
Settings to launch the Target Settings dialog box.

4. In the Target Settings dialog box, click the Type Library button to
launch the Type Library dialog box.

5. In the Type Library dialog box, enable the Add Type Library
Resource to DLL option and enter the path to the file in the Function
Panel File control.

You can also choose to include links in the type library resource to a
Windows help file, or generate a Windows help file from the function
panel file by selecting Options»Generate Windows Help in the
Function Tree Editor window.

6. In the Project window, select Build»Create Debuggable Dynamic
Link Library to build the DLL.

Appendix B Adding Type Libraries to LabWindows/CVI DLLs

Using LabWindows/CVI with TestStand B-2 ni.com

Note If an exported function in a DLL uses the __cdecl calling convention instead of
__stdcall, and you specify to add a type library resource to the DLL, LabWindows/CVI
displays a warning when you build the DLL. This warning applies to any DLLs you intend
to use with Microsoft Visual Basic. Because the LabWindows/CVI Adapter can call
functions with either calling convention, you can ignore the warning.

LabWindows/CVI imposes certain requirements on the declaration of the
DLL API in a type library. Use the following guidelines to ensure that
TestStand can use the DLL:

• Use typedefs for structure parameters and union parameters.

• Do not use enum parameters.

• Do not use structures that require forward references or that contain
pointers.

• Do not use pointer types except when passing parameters by reference.

Refer to the LabWindows/CVI documentation for more information about
adding type libraries to DLLs.

© National Instruments Corporation C-1 Using LabWindows/CVI with TestStand

C
Calling Legacy LabWindows/CVI
Code Modules

Prior to TestStand 3.0, you had to use the DLL Flexible Prototype Adapter
to call functions in LabWindows/CVI DLLs that did not use a specific
prototype. Using TestStand 3.0 and later, you can call functions with a
wide variety of parameter data types, including code modules with legacy
function prototypes.

Prototypes of Legacy Code Modules
TestStand supports standard and extended legacy prototypes. In earlier
versions of TestStand, National Instruments recommended using the
standard prototype. The extended prototype provides backward
compatibility with the LabWindows/CVI Test Executive Toolkit
version 2.0 and earlier and offers an additional string parameter.

The following is the standard prototype:

void TX_TEST StandardFunc(tTestData *data, tTestError

*error)

The following is the extended prototype:

int TX_TEST ExtendedFunc(const char *params, tTestData

*data, tTestError *error)

While you would usually create new code modules using the
LabWindows/CVI Module tab for steps that use the LabWindows/CVI
Adapter, TestStand can also create legacy-style code modules. Refer to
Chapter 5, Configuring the LabWindows/CVI Adapter, for more
information about configuring the LabWindows/CVI Adapter for creating
new legacy-style code modules.

The legacy prototypes contain the tTestData and tTestError structure
parameters, which the LabWindows/CVI Adapter uses to pass values into
and out of the code module.

Appendix C Calling Legacy LabWindows/CVI Code Modules

Using LabWindows/CVI with TestStand C-2 ni.com

tTestData Structure
The tTestData structure contains input and output data. Table C-1 lists the
fields in the tTestData structure.

Table C-1. tTestData Structure Member Fields

Field Name Data Type
In/
Out Description

result int Out Set by test function to indicate whether the test passed.
Valid values are PASS or FAIL. The LabWindows/CVI
Adapter copies this value into the
Step.Result.PassFail property if the property
exists.

measurement double Out Numeric measurement the test function returns. The
LabWindows/CVI Adapter copies this value into the
Step.Result.Numeric property if the property
exists.

inBuffer char * In For passing a string parameter to a test function. The
LabWindows/CVI Adapter copies the Step.InBuf
property value into this field if the property exists.

outBuffer char * Out Output message to display in the report. The
LabWindows/CVI Adapter copies the message value
into the Step.Result.ReportText property if the
property exists.

modPath char * const In Directory path of the module that contains the test
function. The LabWindows/CVI Adapter sets this
value before executing the code module.

modFile char * const In Filename of the module that contains the test function.
The LabWindows/CVI Adapter sets this value before
executing the code module.

hook void * In Reserved (no longer used).

hookSize int In Reserved (no longer used).

mallocFuncPtr tMallocPtr const In Contains a function pointer to malloc, which a code
module must use to allocate memory for any buffer it
assigns to the inBuffer, outBuffer, and errorMessage
fields.

freeFuncPtr tFreeptr In Contains a function pointer to free, which a code
module must use to free any buffers to which the
inBuffer, outBuffer, and errorMessage fields point.

seqContextDisp struct IDispatch * In Dispatch pointer to the sequence context. This value is
NULL if you choose not to pass the sequence context.

Appendix C Calling Legacy LabWindows/CVI Code Modules

© National Instruments Corporation C-3 Using LabWindows/CVI with TestStand

Note Use the sequence context to access all the objects, variables, and properties in the
execution. Refer to the NI TestStand Help for more information about using the sequence
context from a LabWindows/CVI code module.

tTestError Structure
The tTestError structure only contains output error information.
Table C-2 lists the fields in the tTestError structure.

seqContextCVI CAObjHandle In LabWindows/CVI ActiveX Automation handle for the
sequence context. This value is 0 if you choose not to
pass the sequence context.

stringMeasurement char * Out String value the test function returns. The
LabWindows/CVI Adapter copies this string into the
Step.Result.String property if the property exists.

replaceStringParameter tReplaceStringPtr const In Contains a function pointer to ReplaceString, which
a code module can use to reassign a value to the
inBuffer, outBuffer, and errorMessage fields. The
ReplaceString prototype is as follows:

int ReplaceString(char **destString, char
*srcString);

The function return value is non-zero if successful.

structVersion int In Structure version number. A test module can use this
value to detect new versions of the structure.

Table C-2. tTestError Structure Member Fields

Field Name Data Type
In/
Out Description

errorFlag Boolean (int) Out The test function must set this value to True if an error
occurs. The LabWindows/CVI Adapter copies this output
value into the Step.Result.Error.Occurred property if
the property exists.

errorLocation tErrLoc (int) Out Reserved (no longer used).

errorCode int Out The test function can set this value to a non-zero value if an
error occurs.

errorMessage char * Out The test function can set this field to a descriptive string if an
error occurs.

Table C-1. tTestData Structure Member Fields (Continued)

Field Name Data Type
In/
Out Description

Appendix C Calling Legacy LabWindows/CVI Code Modules

Using LabWindows/CVI with TestStand C-4 ni.com

Updating Step Properties
You can use the following two methods to pass data between the code
module and TestStand.

• Using the tTestData structure.

• Using the sequence context ActiveX reference. This method allows
you to call the TestStand ActiveX API functions to set the variables
used to store the results of the test, such as Step.Result.PassFail.

Before calling a code module, the LabWindows/CVI Adapter assigns
values from TestStand to input fields of the tTestData structure. After
calling the code module, the LabWindows/CVI Adapter copies the values
of the output fields of the structures to properties of the step. The
LabWindows/CVI Adapter copies a value into a property when the
following conditions are true:

• The property exists.

• The code module does not change the value of the property directly
through the TestStand API.

In some cases, the LabWindows/CVI Adapter translates the value of a
structure field to a different value in the corresponding property.

Table C-3 lists all the properties the LabWindows/CVI Adapter updates
and the value translation, if any, the adapter makes.

Table C-3. Step Properties Updated by LabWindows/CVI Adapter

Structure Member
Valid Values

Tests Can Return Step.Result Property Step Property Value

result PASS or FAIL PassFail True/False

outBuffer string value ReportText string value

measurement floating-point value Numeric numeric value

stringMeasurement string value String string value

errorFlag True or False Error.Occurred True/False

errorCode integer value Error.Code numeric value

errorMessage string value Error.Msg string value

Appendix C Calling Legacy LabWindows/CVI Code Modules

© National Instruments Corporation C-5 Using LabWindows/CVI with TestStand

Note The values set using the sequence context ActiveX reference take precedence over
the values set using the tTestData structure. In other words, if you use both methods to set
the value of the same variable, the values you set using the sequence context ActiveX
reference are recognized. The values you set using the tTestData structure are ignored.

You can use both the sequence context ActiveX reference and the tTestData structure
together in the code module if you do not try to set the same variable twice. For example,
if you use the sequence context ActiveX reference to set the value of Step.Result.PassFail
and then use the tTestData structure to set the value of Step.Result.ReportText, both values
are set correctly.

Example Code Module
When you create a legacy code module for the LabWindows/CVI Adapter,
you must add the stdtst.h header file located in the <TestStand
Public>\AdapterSupport\CVI directory to the source file. The
stdtst.h file includes the type definitions for the tTestData and
tTestError structures. The following is an example code module that uses
the LabWindows/CVI standard prototype:

// Simple test example

#include "stdtst.h"

void TX_TEST __declspec(dllexport) FunctionName

(tTestData *testData, tTestError *testError)

{

int error = 0;

double measurement = 5.0;

char *lastUserName = NULL;

testData->measurement = measurement;

if ((error = TS_PropertyGetValString(

testData->seqContextCVI, NULL,

"StationGlobals.TS.LastUserName",

0, lastUserName)) < 0)

goto Error;

Error:

// FREE RESOURCES

CA_FreeMemory(lastUserName);

// Set the error flag to cause a run-time error

Appendix C Calling Legacy LabWindows/CVI Code Modules

Using LabWindows/CVI with TestStand C-6 ni.com

if (error < 0)

{

testError->errorFlag = TRUE;

testError->errorCode = error;

testData->replaceStringFuncPtr(&testError->

errorMessage, "ErrorText");

}

}

© National Instruments Corporation D-1 Using LabWindows/CVI with TestStand

D
Technical Support and
Professional Services

Visit the following sections of the award-winning National Instruments
Web site at ni.com for technical support and professional services:

• Support—Technical support resources at ni.com/support include
the following:

– Self-Help Technical Resources—For answers and solutions,
visit ni.com/support for software drivers and updates, a
searchable KnowledgeBase, product manuals, step-by-step
troubleshooting wizards, thousands of example programs,
tutorials, application notes, instrument drivers, and so on.
Registered users also receive access to the NI Discussion Forums
at ni.com/forums. NI Applications Engineers make sure every
question submitted online receives an answer.

– Standard Service Program Membership—This program
entitles members to direct access to NI Applications Engineers
via phone and email for one-to-one technical support as well as
exclusive access to on demand training modules via the Services
Resource Center. NI offers complementary membership for a full
year after purchase, after which you may renew to continue your
benefits.

For information about other technical support options in your
area, visit ni.com/services, or contact your local office at
ni.com/contact.

• Training and Certification—Visit ni.com/training for
self-paced training, eLearning virtual classrooms, interactive CDs,
and Certification program information. You also can register for
instructor-led, hands-on courses at locations around the world.

• System Integration—If you have time constraints, limited in-house
technical resources, or other project challenges, National Instruments
Alliance Partner members can help. To learn more, call your local
NI office or visit ni.com/alliance.

Appendix D Technical Support and Professional Services

Using LabWindows/CVI with TestStand D-2 ni.com

If you searched ni.com and could not find the answers you need, contact
your local office or NI corporate headquarters. Phone numbers for our
worldwide offices are listed at the front of this manual. You also can visit
the Worldwide Offices section of ni.com/niglobal to access the branch
office Web sites, which provide up-to-date contact information, support
phone numbers, email addresses, and current events.

© National Instruments Corporation I-1 Using LabWindows/CVI with TestStand

Index

A
ActiveX

Automation Library, A-1, A-5
using drivers in LabWindows/CVI, A-1

ActiveX controls
configuring, 6-1
creating, 6-1
creating and configuring, 6-1
programming, 6-1

adapter. See LabWindows/CVI Adapter
Auto-Load Library Configuration dialog

box, 5-4

C
Choose Code Template dialog box (figure), 5-7
code modules, 1-1

calling
from TestStand, 2-1
object parameters, 4-3
string parameters, 4-2
struct parameters, 4-3

creating (tutorial), 3-1
debugging (tutorial), 3-3
debugging DLL code modules

in-process, 5-5
debugging in external instances of

LabWindows/CVI, 5-3
editing (tutorial), 3-3
executing

in external instances of
LabWindows/CVI, 5-2

in-process
debugging DLL code modules, 5-5
object and library code

modules, 5-3
source code modules, 5-5

legacy code module (example), C-5
legacy prototypes, C-1
stopped execution, checking for, 6-7

Code Template Policy, 5-7
Allow New and Legacy Templates, 5-7
Allow Only Legacy Templates, 5-7
Allow Only New Templates, 5-7

code template policy
Choose Code Template dialog box

(figure), 5-7
configuring

ActiveX controls, 6-1
LabWindows/CVI Adapter, per step, 5-6
new step, 2-4
TestStand UI Controls, 6-4

constants, A-7
conventions used in the manual, iv
creating

ActiveX controls, 6-1
custom user interfaces, 6-3
new code modules (tutorial), 3-1
new step (tutorial), 2-4
TestStand data types from structs

building a new custom data type, 4-4
calling a function with a struct

parameter, 4-5
specifying structure passing

settings, 4-5
custom

data types, building (tutorial), 4-4
sequence editors, 1-2
step types, 1-2
user interfaces, 1-2

Index

Using LabWindows/CVI with TestStand I-2 ni.com

D
Data Execution Prevention, 5-4
data types, 4-1

building custom data types (tutorial), 4-4
TestStand data types

built-in, 4-1
creating from LabWindows/CVI

structs, 4-4
equivalents with LabWindows/CVI

(table), 4-1
debugging

code modules (tutorial), 3-3
code modules in external instances of

LabWindows/CVI, 5-3
DLL code modules, 5-5

diagnostic tools (NI resources), D-1
DLLs

adding type libraries, B-1
API, declaring in a type library

requirements for, B-2
debugging code modules, 5-5
subordinate, loading, 5-5

documentation
conventions used in the manual, iv
NI resources, D-1

drivers (NI resources), D-1
dynamic properties, accessing, A-4

E
enumerations, A-7
Event Callback Registration functions, 6-4
events

handling, 6-4
events generated by TestStand UI

Controls, A-8
examples (NI resources), D-1
execution

executing code modules in-process
debugging DLL code modules, 5-5

object and library code modules, 5-3
source code modules, 5-5

executing steps in external instances of
LabWindows/CVI, 3-4

stopped execution, checking for, 6-7
extended legacy prototype, C-1

F
function

arguments, showing in step
descriptions, 5-2

calling with struct parameters
(tutorial), 4-5

H
handling events, 6-4, A-8

I
instrument drivers (NI resources), D-1
invoking methods on TestStand objects, A-2

K
KnowledgeBase, D-1

L
LabWindows/CVI

accessing built-in properties, A-3
accessing dynamic properties, A-4
ActiveX

Automation Library, A-1, A-5
drivers, A-1

Adapter. See LabWindows/CVI Adapter
adding and releasing references, A-5
adding type libraries to DLLs, B-1
building custom user interfaces, 1-2
code modules, 1-1

Index

© National Instruments Corporation I-3 Using LabWindows/CVI with TestStand

DLL API, requirements for declaring in a
type library, B-2

executing code modules in-process
debugging DLL code modules, 5-5
object and library code modules, 5-3
source code modules, 5-5

executing in-process
per-step configuration, 5-6

external instances
code modules

debugging, 5-3
executing, 5-2

configuring, 3-4
handling events, A-8
invoking methods on TestStand

objects, A-2
Module tab, 2-1

figure, 2-2
required settings, 2-1
using LabWindows/CVI with

TestStand, 1-1
LabWindows/CVI Adapter, 1-2, 3-1

calling code modules, 2-1
configuration, 5-1

Code Template Policy, 5-7
selecting where steps execute, 5-2
setting the default structure packing

size, 5-2
showing function arguments in step

descriptions, 5-2
creating and configuring a new step

(tutorial), 2-4
loading subordinate DLLs, 5-5
per-step configuration, 5-6
updating step properties (table), C-4

LabWindows/CVI Module tab, 2-1
figure, 2-2
Parameters Table control, 2-2
Source Code buttons, 2-3

legacy
code module (example), C-5
prototype code modules

extended, C-1
standard, C-1

updating step properties, C-4
localization, 6-6

M
methods

invoking on TestStand objects, A-2

N
National Instruments support and

services, D-1

P
Parameters Table control, 2-2, 2-5
programming examples (NI resources), D-1
programming with ActiveX controls, 6-1

R
references, adding and releasing, A-5

S
sequence editors

creating custom sequence editors with
TestStand UI Controls, 1-2

sequences
enabling sequence editing, 6-4

showing function arguments in step
descriptions, 5-2

software (NI resources), D-1
Source Code buttons, 2-3

figure, 2-3
standard legacy prototype, C-1

Index

Using LabWindows/CVI with TestStand I-4 ni.com

step execution, selecting where, 5-2
step properties, updating, C-4
Step Settings Pane

LabWindows/CVI Module tab
figure, 2-2

step types, custom, 1-2
struct parameters

calling functions (tutorial), 4-5
structure packing size, setting default, 5-2
structure passing settings, specifying

(tutorial), 4-5
subordinate DLLs, loading, 5-5

T
technical support (NI Resources), D-1
TestStand

<TestStand Public> directory, 2-4, 6-3
TestStand API, 6-2, A-1

constants and enumerations, A-7
using in LabWindows/CVI, A-1

TestStand UI Support Library, 6-2
TestStand User Interface (UI)

Controls, 6-1, A-1
ActiveX controls

creating and configuring, 6-1
programming with, 6-1

configuring, 6-4
creating custom user interfaces, 6-3
enabling sequence editing, 6-4
handling events, 6-4
localization, 6-6
menu bars, 6-6
TestStand

shutting down, 6-5
starting, 6-5

TestStand Utility Functions, 6-2, 6-6
making a dialog box modal to

TestStand, 6-7
stopped execution, checking for, 6-7
user interface utilities, 6-7

training and certification (NI Resources), D-1
troubleshooting (NI resources), D-1
tTestData structure

member fields (table), C-2, C-3
tTestError structure

member fields (table), C-3

U
updating step properties, C-4
user interfaces, 1-2

creating custom sequence editors, 1-2
localization, 6-6
utilities

dialog boxes, making modal to
TestStand, 6-7

stopped execution, checking for, 6-7

W
Web resources (NI Resources), D-1

	Using LabWindows/CVI with TestStand
	Support
	Worldwide Technical Support and Product Information
	National Instruments Corporate Headquarters
	Worldwide Offices

	Important Information
	Warranty
	Copyright
	Trademarks
	Patents
	WARNING REGARDING USE OF NATIONAL INSTRUMENTS PRODUCTS

	Conventions
	Contents
	Chapter 1 Role of LabWindows/CVI in a TestStand-Based System
	Code Modules
	Custom User Interfaces
	Custom Step Types
	LabWindows/CVI Adapter

	Chapter 2 Calling LabWindows/CVI Code Modules from TestStand
	Required LabWindows/CVI Settings
	LabWindows/CVI Module Tab
	Figure 2-1. LabWindows/CVI Module Tab
	Source Code Buttons
	Figure 2-2. LabWindows/CVI Module Tab Source Code Buttons

	Creating and Configuring a New Step Using the LabWindows/CVI Adapter

	Chapter 3 Creating, Editing, and Debugging LabWindows/CVI Code Modules from TestStand
	Creating a New Code Module
	Editing an Existing Code Module
	Debugging a Code Module

	Chapter 4 Using LabWindows/CVI Data Types with TestStand
	Table 4-1. TestStand Equivalents for LabWindows/CVI Data Types
	Calling Code Modules with String Parameters
	Calling Code Modules with Object Parameters
	Calling Code Modules with Struct Parameters
	Creating TestStand Data Types from LabWindows/CVI Structs
	Building a New Custom Data Type
	Specifying Structure Passing Settings
	Calling a Function With a Struct Parameter

	Chapter 5 Configuring the LabWindows/CVI Adapter
	Figure 5-1. LabWindows/CVI Adapter Configuration Dialog Box
	Showing Function Arguments in Step Descriptions
	Setting the Default Structure Packing Size
	Selecting Where Steps Execute
	Executing Code Modules in an External Instance of LabWindows/CVI
	Debugging Code Modules

	Executing Code Modules In-Process
	Object and Library Code Modules
	Figure 5-2. Auto-Load Library Configuration Dialog Box
	Source Code Modules
	Debugging DLL Code Modules

	Loading Subordinate DLLs
	Per-Step Configuration of the LabWindows/CVI Adapter

	Code Template Policy
	Figure 5-3. Choose Code Template Dialog Box

	Chapter 6 Creating Custom User Interfaces in LabWindows/CVI
	TestStand User Interface Controls
	Creating and Configuring ActiveX Controls
	Programming with ActiveX Controls

	Creating Custom User Interfaces
	Configuring the TestStand UI Controls
	Table 6-1. Functions in Examples for Configuring the TestStand UI Controls

	Enabling Sequence Editing
	Handling Events
	Starting and Shutting Down TestStand
	Menu Bars
	Localization

	Other User Interface Utilities
	Making Dialog Boxes Modal to TestStand
	Checking for Stopped Execution

	Appendix A Using the TestStand ActiveX APIs in LabWindows/CVI
	Appendix B Adding Type Libraries to LabWindows/CVI DLLs
	Appendix C Calling Legacy LabWindows/CVI Code Modules
	Table C-1. tTestData Structure Member Fields
	Table C-2. tTestError Structure Member Fields
	Table C-3. Step Properties Updated by LabWindows/CVI Adapter

	Appendix D Technical Support and Professional Services
	Index
	A-C
	D-L
	M-S
	T-W

