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Abstract 
 
Communication Systems is offered at senior level as a three-credit, one semester course at Dordt 
College.  Due to the number of topics covered, it turns out to be a very compact course with little 
time for experimentation.  However, the course content is rich with processes that are best 
described by block diagrams which should come alive as students implement these processes and 
have a chance to test signals at each block.  In order to facilitate such an experimental 
environment with limited institutional resources and student time for hardware implementations, a 
virtual toolkit of computer simulations was developed using LabVIEW.  LabVIEW’s graphical 
interface with live help windows and other visual feedback rendered this project achievable and 
enjoyable even for a freshman student programmer.  This paper will recount the project both from 
a professor’s point of view and from that of a freshman student, who did not know about the 
programming language nor about the processes she was to simulate at the onset of the project.  
The paper will also describe the toolkit prepared to demonstrate a wide variety of topics covered 
in a typical communication systems course and present some examples of the virtual instruments 
(VIs) developed. 
 
I.  Introduction 
 
The undergraduate engineering education environment is very different from the environment that 
the senior author has experienced.  The personal computer has now become ubiquitous and more 
powerful than the mainframe computers of the late 70’s and early 80’s while the educational 
utilization of the computer has been transformed from writing specific programs in FORTRAN 
for carrying out calculations for individual problems to mastering specialized applications for 
simulations or for data acquisition/processing.  With the proliferation of special purpose 
applications, undergraduate electrical engineering courses have been enriched with computer 
simulations with many textbooks incorporating some form of computer-aided tool1.  Simulations 
have made 'what if' type investigations possible even in situations where accessing the actual 
hardware to experiment with is, for one reason or another, impractical.  Whereas simulations fail 
to achieve some of the goals of hardware hands-on exercises, they still present much more 
powerful alternatives to static textbook examples, allowing playful interaction with the simulated 
system. 
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One of the summer 2001 projects on Dordt College campus was the development of a software 
toolkit that may be used with a typical communication systems course.  This project was 
undertaken upon the enthusiastic suggestion of the senior Communications Systems students in 
spring ’01 who had taken Digital Signal Processing (DSP) the previous semester.  LabVIEW was 
employed as the tool for data processing in the DSP class and the experience is described in an 
article presented last year1 with a follow up this year2.  This paper will describe the development 
of the toolkit specific for Communications Systems.  We will report on the progress of the project 
as well as the outcome.  The fact that the student programmer in this project had only completed 
one semester of her freshman year presented certain challenges to the programmer while making 
the completion of the project all the more rewarding.  Section II will present an overview of the 
environment: the target course and the available resources.  Section III will report on the work 
completed, section IV will describe some examples on how the software may be utilized and 
section V will have concluding words and a discussion on future development.   
 
II.  The Overall Environment:  The Course and the Resources 
 
The engineering department at Dordt College and its offerings are described in 1 and 3.  EGR 363, 
Introduction to Communication Systems, is a class elective in the spring semester of the senior 
year.  For the last two years, EGR 363 has been chosen over its alternative, Introduction to Power 
Systems.  EGR 363 is a three-credit class that meets for three 50-minute periods a week.  The 
mode of instruction employs active learning in which students are required to read the topic of the 
day prior to coming to class and the class period is utilized to clear concepts, emphasize important 
points and to study practical applications.  The textbook for this offering was Couch’s Digital and 
Analog Communication Systems 4.  This textbook was chosen because of its good pace through 
different communication techniques as well as its many examples involving MATLAB and 
MATHCAD.  The topics covered in this offering were:  properties of signals and noise, Fourier 
transform and spectra, power spectral density and autocorrelation, Fourier series, the discrete 
Fourier transform, pulse amplitude modulation, pulse code modulation, line codes and spectra, 
intersymbol interference, differential pulse code modulation, delta modulation, AM, FM and 
digital modulated systems.   
 
Students who take EGR 363 will usually have chosen DSP the previous semester and will be 
familiar with LabVIEW by the time they take Communication Systems.  In order to capitalize on 
their recently acquired programming skills, LabVIEW version 5.1, then available on the 
departmental lab computers, was chosen as the programming language for this toolkit.  Although 
the author of the textbook provides certain MATLAB and MATHCAD files, developing the 
toolkit in a language which the students understand well and seem to like would offset the 
disadvantage of ignoring these utilities provided. 
 
A position for a programmer was advertised in various engineering classes for which there was 
only one applicant.  The applicant was in her freshman year, having started in the spring semester.  
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However, the student already had a degree in business and engineering would be her second 
degree.  Given the student’s maturity and her willingness to learn LabVIEW, she was hired as a 
summer workstudy student to be the programmer.  Although she was happy to be given the 
opportunity, she had some concerns about the project:  “I had never heard of, let alone worked 
with, LabVIEW before then.  All I knew was ... that it was a programming environment which 
uses a graphical programming language to create programs in block diagram form.  My major 
concern was that the programming language I had learnt was somewhat outdated and I had no 
knowledge of the programming languages that are being used in its place.  Furthermore, I had 
only had one semester of engineering and certainly did not know enough to write a program for a 
senior level course.  Besides being a freshman, my emphasis was mechanical engineering but the 
programs I would be writing would be mostly for electrical engineers.  But I was assured that it 
would not be hard to learn.”  In order to address some of these concerns, we started out with a 
one-week training course in LabVIEW with her and some other students, basically covering all 
the essential programming skills from a freshman – level textbook on LabVIEW5. 
 
III.  Virtual Instruments Completed 
 
In the textbook used to train the students, one exercise on loops is writing a VI that "generates" a 
sine wave.  In other words, the students are asked to generate a number of data points using the 
sine block of LabVIEW and plot these data points.  That simple exercise gave rise to our first VI 
in the toolkit, namely a signal generator.  Figure 1 depicts the front panel of this signal generator.  
This particular version is for the students' visualization of the various periodical signals that may 
be selected, and is a top-level, or stand-alone VI.  A similar one, named Signal 
Generatorsub.vi is available as a subVI, which is LabVIEW’s term for subroutines.  The 
subVI has been modified such that all the front panel controls of Fig. 1 as well as the frequency of 
the periodic waveform may be input into an icon representing the subVI.  The data generated is 
available in the form of an array as well as the sampling frequency imposed by the parameter 
selections may be obtained from the same icon.  Thus Signal Generatorsub.vi has 
become our test signal generator in writing other simulations. 
 
Other VIs written are listed in alphabetical order: 
 
AM.vi modulates the baseband signal (an array input) using the amplitude modulation technique.  

Its other inputs are the amplitude of the carrier, the sampling frequency of the baseband signal, 
and the carrier frequency.  The outputs are a graph of the AM signal, a graph of the input 
signal and array of the values of the modulated signal. 

AM DSB-SC.vi is similar to AM.vi but uses the double sideband suppressed carrier AM 
technique. 

BPSK.vi simulates the transmission of binary information over analog lines using binary phase-
shift keying (BPSK).  Its main input is the 'input bit' and the outputs are a graph of the BPSK 
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waveform and synchronization 'LED' that marks the beginning of each bit.  This VI is for 
visualization only. 

 

 
Figure 1:  The Signal Generator VI, the first VI developed for this project.  
 
BPSKsub.vi is the version of BPSK.vi that has been adapted such that it can be incorporated 

in other simulations' block diagrams with an input array of binary data and an output array of 
BPSK waveform data. 

ENV_DET.vi simulates an envelope detector converting the input bandpass waveform into an 
output baseband waveform. 

FlattopPAMr1.vi simulates Pulse Amplitude Modulation using instantaneous sampling. 
FM.vi modulates an input signal using the frequency modulation technique. 
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FM DET.vi simulates frequency demodulation using slope detection (details may be obtained 
from the textbook4, pp. 268-269).  It makes use of LabVIEW’s differentiator VI and our 
ENV_DET.vi. 

Freq1.vi estimates the frequency of a periodic waveform by zero-crossing detection. 
FSKv3.vi simulates the transmission of binary information over analog lines using frequency-

shift-keying.  It is similar to BPSK.vi in operation and is for visualization only. 
 

 
Figure 2: Operation of FSKv3.vi, demonstrating the frequency-shift-keying technique. 
 
FSKv3subv3.vi is the version of FSKv3.vi that has been adapted to be incorporated into 

other diagrams. 
Integralsub.vi calculates the indefinite integral of its input waveform using either the right 

endpoint or the left endpoint or the trapezoidal approximation. 
NaturalPAM.vi simulates Pulse Amplitude Modulation using natural sampling. 
OOK.vi simulates the transmission of binary information on analog lines using on-off keying. 
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PM.vi modulates an input signal using the phase modulation technique. 
PROD_DET.vi simulates the function of a product detector. 
 
IV. Some Examples 
 
Figure 2 depicts the operation of the FSKv3.vi.  This VI simulates the operation of a modem 
using the frequency-shift keying method.  Its purpose is to display the analog output of the 
modem dynamically as the student inputs marks (binary 1’s) and spaces (binary 0’s) using the 
toggle button “Input Bit”.  The value of “Input Bit” is read at each synchronization instant, 
indicated by the blinking of the LED named “Synchro”.  The synchronization is based on a data 
rate of 300 bits/s.  The graph displays a running window on the binary input (blue line), the 
corresponding sinusoid generated (red line) and the synchronization, which marks the beginning 
of a new bit.  The “Speed” knob adjusts the speed with which the graph progresses by introducing 
a delay of variable milliseconds in the while loop that generates and graphs the data points, hence 
this simulation is not real time.  The VI runs continuously until the stop button (lower right) is 
depressed.  This simulation is based on the Bell-Type 103 FSK Modem, for which the transmit 
frequencies of the originate modem are 1,270 Hz for the mark and 1,070 Hz for the space4.  
However, with the window and graph size chosen, the difference between these two frequencies 
is not visually detectable and we have decided to change the mark and space frequencies to 1,370 
and 970 Hz respectively.   
 

 
Figure 3: The front panel of a quick VI that demonstrates FM. 
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Figure 3 depicts the front panel of a simulation that utilizes a number of the subVIs from the 
toolkit.  The Untitled 2 VI generates a baseband signal, modulates it utilizing the FM technique 
and then demodulates the result.  The signals shown are the baseband message signal and the 
demodulated signal.  A quick observation of the corresponding block diagram (figure 4) reveals 
that  Signal Generatorsub.vi, FM.vi and FM Det.vi are utilized in this simulation.   
 

 
Figure 4: The block diagram of a quick VI that demonstrates FM. 
 
Signal Generatorsub.vi (the leftmost block in figure 4) generates the baseband signal.  
The type of wave is input from the front panel of the calling VI (Untitled 2).  Other inputs are a 
constant (3) for the number of periods to be generated and another constant (1000) for the 
number of points per period.  The frequency of the periodic waveform is not specified, which 
implies that the default value of 1 is used.  The outputs from this block are the data points (a 
numeric array of size 3000) and the sampling frequency calculated from the number of points per 
period and the frequency (which turns out to be 1000 for this example).  The output array is 
graphed (the block labeled “Baseband” in figure 4) and then input into the block that performs 
FM (FM.vi).  Other inputs of FM.vi are specified by a constant for the carrier frequency (100) 
and the sampling frequency, output by Signal Generatorsub.vi.  The unspecified inputs 
of FM.vi (such as the amplitude and the modulation index) carry the default values of 1 and 0.1, 
respectively.  The output of FM.vi is an array of data points representing the frequency 
modulated signal.  This output is connected as the input array of FM Det.vi.  Other inputs to 
this block are the carrier frequency and the sampling frequency.  The clipping level can be 
adjusted from the front panel of the calling VI to study this parameter's effects.  Finally, the 
output of the demodulator is graphed (labeled 'Demodulated FM Signal'). 
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Figure 5: The front panel of FM Det.vi after it has been called in our exercise. 
 

 
(a) 

Bandpass limiter Differentiator Envelope detector
FM signal

Demodulated
signal

 
(b) 

Figure 6: (a) The block diagram of FM Det.vi. (b) The block diagram that describes 
FM detection in a textbook. 
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The walk through the block diagram for this exercise demonstrated how the various VIs in this 
toolkit may be used to implement a simulation.  We will now concentrate on FM Det.vi to 
demonstrate our utilization of modular programming in the development of the toolkit.  The front 
panel of this VI, after it has been called in our exercise, is shown in figure 5 and has the input and 
output values from the example in figure 3.  We note that the 0th element of the “Input Signal” 
array has a value of 1.00, the sampling frequency (“fs”) is read to be 1000, the carrier frequency is 
input as 100 and a clipping level of 0.6 has been selected. 
 
We note that the block diagram for FM Det.vi (see Fig. 6-a) is very similar to the diagram on 
page 269 of the textbook4 describing the process of frequency modulation using slope detection 
(see Fig. 6-b).  The LabVIEW blocks of Fig. 6-a, corresponding to the block diagram in Fig. 6-b 
are: Y[i]=Clip{X[i]}.vi that performs the function of the limiter, Derivative 
x(t).vi which performs differentiation and ENV_DET.vi which performs envelope detection.  
The first two blocks are part of the full development version of LabVIEW 5.1 and the last block, 
the envelope detector, is part of our toolkit. 
 
After describing some of the virtual instruments developed for this project, we would like to 
conclude our examples with one that demonstrates how the different tools in our toolkit may be 
used in a Communication Systems class in a way that “brings life” to these block diagrams and 
allows for playful interaction with the simulated system.  Our example will simulate a typical 
textbook example that demonstrates what happens to a baseband signal spectrum after 
modulation.  In most textbooks, baseband spectra are represented by an ideal lowpass spectrum.  
We shall apply double sideband, suppressed carrier amplitude modulation (DSB-SC AM) to such 
a baseband signal and observe the spectra of the baseband signal and the modulated signal as 
parameters are changed. 
 
From the duality property of Fourier Transforms, students should be aware that an ideal lowpass 
spectrum originates from a sinc in time domain, which is not a physically realizable waveform 
according to criterion # 1 on page 34 of Couch4, which states that a physical waveform should 
last over a finite time interval.  However, an approximation for the ideal lowpass spectrum may be 
obtained by a truncated sinc: 
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As T increases, the spectrum approximates the ideal lowpass spectrum better and the parameter f 
determines the bandwidth of the lowpass spectrum.  Figure 7 depicts the front panel of a virtual 
instrument that generates w(t), displays it and its magnitude spectrum as well as the magnitude 
spectrum of the DSB-SC AM signal.  The inputs T and fsinc control the parameters T and f of 
eq. 1, while fc determines the carrier frequency of DSB-SC AM.  The front panel shows the 
result of a run where T = 1.94 sec, f = 6.14 Hz and fc = 33.39 Hz.  Although this front panel is 
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also static and hence there seems to be no improvement over a textbook example, it should be 
noted that this is a capture of the front panel at the end of a continuous run.  In LabVIEW, a 
virtual instrument may be run continuously, which means that the input parameters will be 
monitored continuously and the output updated as the input parameters are changed.  When this 
VI is run continuously, the student can observe that increasing the parameter T approximates the 
lowpass spectrum better, increasing or decreasing fsinc makes the bandwidth wider or 
narrower, and increasing or decreasing the carrier frequency will move the sidebands higher or 
lower in the frequency band, all achieved by adjusting the “knobs” (fsinc and fc) and playing 
with the sliding switch (T).  In fact, the reason why the parameters T, f and fc seem to have 
arbitrary values ( 1.94 s rather than 2 s, 6.14 Hz rather than 6 Hz and 33.39 Hz rather than 33 Hz 
or 34 Hz) is the fact that the front panel was captured after “playing” with the parameters while 
the VI ran continuously. 
 

 
Figure 7: The front panel of a VI that demonstrates the effect f DSB-SC AM applied to a 

low-pass baseband signal 
 



 

 
 

Proceedings of the 2002 American Society for Engineering Education Annual Conference & Exposition  
 Copyright Ó 2002, American Society for Engineering Education 

Before we end the discussion on this example, we should briefly explain how it was achieved.  
Figure 8 displays the block diagram that gives rise to this example.  The blue block whose inputs 
are T, fs and fsinc, generates an array for w(t) utilizing eq. 1, its outputs (the array, the 
beginning time and Dt for proper graphing) determine the graph labeled “Baseband Signal”.  The 
magnitude spectrum of the baseband signal is determined by MagSpect.vi (whose icon spells 
|X(f)|, borrowed from our DSP toolkit2).  Finally the output of the sinc generator is applied to the 
AM DSB-SC.vi of our toolkit.  We should note that since we are interested in magnitude 
spectra only in this example, we have not made any effort to align the ‘0’ time instance of the sinc 
pattern and the carrier cosine. 
 

 
Figure 8: The block diagram that generates the output of Fig. 7. 
 
V.  Conclusions and Further Development 
 
In a previous paper, we wrote: "However, the instrument-like user interface of LabVIEW, its 
abundance of analysis VIs make it very attractive and inviting to implement most DSP routines"1.  
That paper also argued that for processes best explained by block diagrams, a graphical language 
such as LabVIEW is very intuitive to use.  This project confirmed the same conclusions for 
communication systems.  Although the student who worked on these VIs had completed only one 
semester of the freshman year in engineering, she was able to handle all the algorithms with close 
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and focused supervision.  For the project supervisor, it was closer to teaching a course than to 
supervising a senior design project team.  The programmer was appreciative of the experience:  “I 
started learning the basics of LabVIEW and writing simple programs to get a complete grasp of 
the programming environment.  We began working on one project at a time and each time we 
would build on it until the desired program was written.  From this opportunity I not only learnt 
how to use LabVIEW but I also learnt some valid information that I know I will need for my 
future classes.  I learnt about frequency spectra, modulation of signals, transmission of binary 
information and different kinds of waveforms and so much more!  I was able to get hands-on 
knowledge on the some of the things that electrical engineers do.”  The project supervisor 
regarded this experience as investment for other LabVIEW programming projects for the 
department.  In fact, the second phase of the project involved writing IEEE 488 drivers for the 
Tektronix TDS 210 oscilloscopes where the supervisor could rely more on the student’s expertise 
acquired on this project. 
 
The utilization of the tools in this toolkit is understood better with a rudimentary understanding of 
discrete signals.  Since these are computer simulations, hence, discrete-time (sampled) realizations 
of analog processes, we can take two approaches:  either make the sampling frequency 
transparent to the user and limit the range of frequencies that may be used in the simulations or 
make the sampling frequency as one of the inputs and expect the students to pay attention to the 
Nyquist rate as they implement these simulations.  We have chosen the latter option since our 
students usually take Communication Systems after they have taken DSP.  Furthermore, many 
Communication Systems textbooks deal with both digital and analog systems and we can expect 
that students will be familiar with concepts of sampling and aliasing.   
 
Clearly, the list of VIs given in section III is not exhaustive of all routines that may be used in a 
Communication Systems course.  Spring 2002 offering of EGR 363 will help expand the number 
of routines and help develop a manual similar to the one available for MATLAB6. 
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